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Abstract

Let C`n be the (universal) Clifford algebra generated by e1, ..., en satisfying
eiej + ejei = −2δij , i, j = 1, ..., n. The Dirac operator in C`n is defined by
D =

∑n
i=0 ei

∂
∂xi

, where e0 = 1. The modified Dirac operator is introduced for

k ∈ R by Mkf = Df +kQ′f
xn

, where ′ is the main involution and Qf is given by
the decomposition f (x) = Pf (x)+Qf (x) en with Pf (x) , Qf (x) ∈ C`n−1. A
continuously differentiable function f : Ω → C`n is called k-hypermonogenic in
an open subset Ω of Rn+1, if Mkf (x) = 0 outside the hyperplane xn = 0. Note
that 0-hypermonogenic functions are monogenic and n − 1-hypermonogenic
functions are hypermonogenic defined by the author and H. Leutwiler in [10].
The power function xm is hypermonogenic. We prove integral formulas of
hypermogenic functions.

1 Introduction

There are several approaches to generalize classical complex analysis to higher di-
mensions. One approach led to the theory of monogenic functions based on Eu-
clidean space which became popular in the 1970s (see for example [1]). Another
one led to the theory of hypermonogenic functions based on hyperbolic metric ini-
tiated by H. Leutwiler around 1990 ([18], [19]). The advantage of hypermonogenic
functions is that positive and negative power functions are included to the theory
which is not in the monogenic case The essential result of generalization of the
Cauchy formula was provided very earlier for monogenic functions, but not for hy-
permonogenic functions. In this paper we prove a Cauchy formula for hypermogenic
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functions. This formula gives an important tool for handling partial differential
equations arising from hyperbolic Laplace-Beltrami type operators. A first step
towards the Cauchy formula was obtained earlier in [11].

Hypermonogenic functions are also related to 4k-monogenic functions, that is
functions satisfying D4k f = 0, considered in complex Clifford algebras by J. Ryan
in [22] and in real Clifford algebras under the name holomorphic Cliffordian functions
by G. Laville and I. Ramadanoff in [17] . In the case n odd hypermonogenic functions
are holomorphic Cliffordian and therefore they satisfy also a complicated integral
formula given in [22] or in [17] (see [8]).

2 Preliminaries

Let C`n be the universal Clifford algebra generated by the elements e1, ..., en satis-
fying the relation eiej + ejei = −2δij, where δij is the usual Kronecker delta. We
use the same notations as in [10] and [12]. The elements x = x0 + x1e1 + ... + xnen

for x0, ..., xn ∈ R are called paravectors. The set Rn+1 is identified with the set of
paravectors.

The main involution ′ : C`n → C`n is the algebra isomorphism defined by e′0 = 1
and e′i = −ei for i = 1, ..., n. The involution ˆ : C`n → C`n is defined by ên = −en

, êi = ei for i = 0, ..., n − 1 and âb = âb̂. It is easy to calculate that for arbitrary
a ∈ C`n

a′en = enâ and ena
′ = âen. (1)

The antiautomorphism ∗ : C`n → C`n, called reversion, is defined by e∗i = ei for
i = 0, ..., n and (ab)∗ = b∗a∗. The conjugation a is given by a = (a′)∗.

Using the decomposition a = b+cen of the element a ∈ C`n for b, c ∈ C`n−1(the
Clifford algebra generated by e1, ..., en−1) we define the mappings P : C`n → C`n−1

and Q : C`n → C`n−1 by Pa = b and Qa = c. Note that if w ∈ Cln, then

Qw =
enw

′ − wen

2
=

ŵ − w

2
en, (2)

Pw =
w − enw

′en

2
=

w + ŵ

2
.

The following calculation rules are proved in ([10, Lemma 2] and [11, Lemma 1])

P (ab) = (Pa) Pb + (Qa) Q (b′) , (3)

Q (ab) = (Pa) Qb + (Qa) P (b′) , (4)

Q (ab) = aQb + (Qa) b′. (5)

3 Hypermonogenic functions

Let Ω be an open subset of Rn+1. The left Dirac operator in C`n is defined by
Dlf =

∑n
i=0 ei

∂f
∂xi

and the right Dirac operator by Drf =
∑n

i=0
∂f
∂xi

ei for a mapping
f : Ω → C`n, whose components are continuously differentiable. The operators
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Dl and Dr are defined by Dlf =
∑n

i=0 ei
∂f
∂xi

and Drf =
∑n

i=0
∂f
∂xi

ei. As usual we
abbreviate Dlf = Df if there is no confusion possible.

Let Ω be an open subset of Rn+1\ {xn = 0} and k be a non-negative integer. The

modified Dirac operators M l
k , M

l

k, M r
k and M

r

k are introduced by

M l
kf (x) = Dlf (x) + k

Q′f

xn

M r
kf (x) = Drf (x) + k

Qf

xn

and

M
l

kf (x) = Dlf (x)− k
Q′f

xn

,

M
r

kf (x) = Drf (x)− k
Qf

xn

,

where f ∈ C1 (Ω, C`n). The operator M l
k is also denoted by Mk and M l

n−1 by M .

Definition 1. Let Ω ⊂ Rn+1\ {xn = 0} be an open set. A mapping f : Ω → C`n

is called left k-hypermonogenic, if f ∈ C1 (Ω) and M l
kf (x) = 0 for any x ∈ Ω.

The n − 1-hypermonogenic functions are called briefly hypermonogenic and the 0-
hypermonogenic functions are called monogenic. The right hypermonogenic func-
tions are defined similarly.

Hypermonogenic functions were introduced in [10] and developed further in
[11]. Paravector-valued hypermonogenic functions are H-solutions introduced by
H. Leutwiler ([18], [19], [20], [21], [9]). The H-solutions are also studied by Cere-
jeiras [2], Cnops [3], Hempfling [13], [14], [15] and the author [4], [5],[6]. In the case
n = 2 hypermonogenic functions called hyperholomorphic functions are investigated
in [16]. For the general reference to the properties of monogenic functions we refer
to [1].

The Dirac operator and the modified Dirac operator are related as follows.

Lemma 2. Let Ω be an open subset of Rn+1\{xn = 0} and f : Ω → C`n be a
C1 (Ω, C`n) function. Then

Dl

(
f

xk
n

)
=

M l
kf

xk
n

− k
P ′f

xk+1
n

en, (6)

Dr

(
f

xk
n

)
=

M r
kf

xk
n

− k
Pf

xk+1
n

en, (7)

P
(
M l

kf
)

= xk
nP

(
Dl

(
f

xk
n

))
, (8)

Q
(
M l

kf
)

= Q (Dlf) , (9)

Dl

(
Qfen

xk
n

)
=

M l
k (Qfen)

xk
n

. (10)
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Proof. We just compute

Dl

(
f

xk
n

)
=

Dlf

xk
n

− k
enf

xk+1
n

=
Dlf

xk
n

+ k
Q

′
f

xk+1
n

− k
P ′fen

xk+1
n

=
M l

kf

xk
n

− k
P ′fen

xk+1
n

,

which implies the first equality. If we take P from the both sides of this equality we
obtain the third equality. The fourth equality follows directly from the definition of
Mk. The last equality follows from the first one if we replace f by (Qf) en.

The modified generalization of the Cauchy-Riemann equations is the following
system of equations.

Theorem 3 ([10, Proposition 3]). Let Ω be an open subset of Rn+1and f : Ω →
C`n be a mapping with continuous partial derivatives. The equation xnDlf +kQ′f =
0 is equivalent with the following system of equations

xn

(
Dl

n−1 (Pf)− ∂(Q′f)
∂xn

)
+ kQ′f = 0,

Dl
n−1 (Qf) + ∂P ′(f)

∂xn
= 0.

(11)

where Dl
n−1 =

∑n−1
i=0 ei

∂
∂xi

.

Hypermonogenic functions multiplied from the left by en are not any more hy-
permonogenic functions, but they satisfy a similar equation.

Proposition 4. Let Ω be an open subset of Rn+1\{xn = 0}. A function f : Ω → C`n

is left k-hypermonogenic if and only if the function fen satisfies the equation

Dlg −
kP ′gen

xn

= 0.

Similarly, a function f : Ω → C`n is right k-hypermonogenic if and only if the
function enf satisfies the equation

Drg −
kPgen

xn

= 0.

Proof. Since P (fen) = −Qf , we obtain

Dl (fen) + k
Q′fen

xn

= Dl (fen)− kP ′ (fen) en

xn

.

Hence the first assertion holds. Using P (enf) = −Q′f we infer

Dr (enf) + k
enQf

xn

= Dr (enf) + k
Q′fen

xn

= Dr (enf)− kP (enf) en

xn

which implies the second assertion.
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The key idea for proving the Cauchy formula is the relation between the operators
M l

−k and M l
k stated next.

Proposition 5. Let Ω be an open subset of Rn+1\{xn = 0} and f : Ω → C`n be a
C1 (Ω, C`n) function. If k ∈ R, then

M l
−k

(
fen

xk
n

)
=

(
M l

kf
)
en

xk
n

,

M r
−k

(
enf

xk
n

)
=

en (M r
kf)

xk
n

.

Moreover a function f : Ω → C`n is k-hypermonogenic if and only if the function
fen

xk
n

is −k-hypermonogenic.

Proof. We just compute

Dl

(
fen

xk
n

)
=

(Dlf) en

xk
n

− k
enfen

xk+1
n

=

(
M l

kf
)
en

xk
n

+ k
P ′f

xk+1
n

.

Since Q
(

fen

xk
n

)
= Pf

xk
n

we obtain the first equality. The other equality is proved
similarly.

Let Ω be an open subset of Rn+1\ {xn = 0} and K is an n + 1-chain satisfying
K ⊂ Ω . Define a real n-form by

dx̌i = dx0 ∧ ... ∧ dxi−1 ∧ dxi+1 ∧ ...dxn

and a paravector valued n-form by

dσk =
1

xk
n

n∑
i=0

(−1)i eidx̌i

A real n + 1-form is introduced by

dmk =
1

xk
n

dx0 ∧ ... ∧ dxn.

Recall that ∫
∂K

gdσ0f =
∫

K
((Drg) f + gDlf) dm0, (12)

see [1, 9.2 Proposition, p.52]. We give a corresponding formula for Mk operators.

Theorem 6. Let Ω be an open subset of Rn+1\ {xn = 0} and K an n + 1-chain
satisfying K ⊂ Ω. If f, g ∈ C1 (Ω, C`n), then∫

∂K
gdσkf =

∫
K

(
(M r

kg) f + gM l
kf −

k

xn

P (gf ′) en

)
dmk.
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Proof. Using (12) and Lemma 2 we obtain

∫
∂K

gdσkf =
∫

∂K

g

xk
n

dσ0Pf +
∫

∂K
gdσ0

Qfen

xk
n

=
∫

K

(
Dr

(
g

xk
n

)
Pf +

g

xk
n

DlPf + gDl

(
Qfen

xk
n

)
+

DrgQfen

xk
n

)
dm0

=
∫

K

(
Dr

(
g

xk
n

)
Pf +

g

xk
n

DlPf + g
M l

k (Qfen)

xk
n

+
DrgQfen

xk
n

)
dm0

=
∫

K

((
M r

kg − kPgen

xn

)
Pf + gM l

kf + DrgQfen

)
dmk.

Since Drg = M r
kg − kQg

xn
, we infer

∫
∂K

gdσkf =
∫

K

(
(M r

kg) f + gM l
kf −

k

xn

(PgP ′f + QgQf) en

)
dmk.

Applying the product rule of P and the properties P (f ′) = P ′f and Qf ′ = −Q′f
we obtain

P (gf ′) = PgP ′f −QgQ′f ′ = PgP ′f + QgQf,

completing the proof.

By taking P -part from the both sides of the equation of the previous theorem
we obtain.

Theorem 7. Let Ω be an open subset of Rn+1\ {xn = 0} and K an n + 1-chain
satisfying K ⊂ Ω. If f, g ∈ C1 (Ω, C`n), then∫

∂K
P (gdσkf) =

∫
K

P
(
(M r

kg) f + gM l
kf
)
dmk.

Corollary 8. Let Ω be an open subset of Rn+1\ {xn = 0} and K an n + 1-chain
satisfying K ⊂ Ω. If f is left k-hypermonogenic and g is right k-hypermonogenic in
Ω , then ∫

∂K
P (gdσkf) = 0.

In order to prove Theorem 7 for the Q-part we first verify a formula for the
measure σ0 corresponding to Theorem 6.

Theorem 9. Let Ω be an open subset of Rn+1\ {xn = 0} and K an n + 1-chain
satisfying K ⊂ Ω. If f, g ∈ C1 (Ω, C`n), then

∫
∂K

gdσ0f =
∫

K

((
M r

−kg
)
f + gM l

kf +
k

xn

Q (gf ′)

)
dm0.
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Proof. Using (12) we calculate∫
∂K

gdσ0f =
∫

K
(Drgf + gDlf) dm0.

Since Drg = M r
−kg + kQg

xn
and Dlf = M l

kf − kQ′f
xn

we deduce further

∫
∂K

(gdσ0f) =
∫

K

((
M r

−kg
)
f + gM l

kf +
k

xn

((Qg) f − gQ′f)

)
dm0

The product rule of Q implies that

Q (gf ′) = (Qg) f + gQ (f ′) = (Qg) f − gQ′f.

Hence the equality holds.

Applying the operator Q to the previous result, we directly conclude the following
result:

Theorem 10. Let Ω be an open subset of Rn+1\ {xn = 0} and K an n + 1-chain
satisfying K ⊂ Ω. If f, g ∈ C1 (Ω, C`n), then∫

∂K
Q (gdσ0f) =

∫
K

Q
((

M r
−kg

)
f + gM l

kf
)
dm0.

Corollary 11. Let Ω be an open subset of Rn+1\ {xn = 0} and K an n + 1-chain
satisfying K ⊂ Ω. If f is left k-hypermonogenic and g is right −k-hypermonogenic,
then ∫

∂K
Q (gdσ0f) = 0.

We have proved in [12] that the kernel for the P -part of a hypermonogenic
function is the following.

Lemma 12. The function

p (x, y) =
xn−1

n

2yn

(
(x− y)−1 − (x− ŷ)−1

|x− y|n−1 |x− ŷ|n−1

)

= xn−1
n

(x− y)−1

|x− y|n−1 en
(x− ŷ)−1

|x− ŷ|n−1 =
1

22n−1yn−1
n

D
x

∫ 1

|x−y|

|x−ŷ|

(1− s2)
n−1

sn
ds


is left and right hypermonogenic on Rn+1\ {y, ŷ} for each y with yn 6= 0.

The integral formula of the P -part given next is proved in [12].
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Theorem 13. Let Ω be an open subset of Rn+1
+ (or Rn+1

− ) and K an n + 1-chain
satisfying K ⊂ Ω. If f is hypermonogenic in Ω and y ∈ K, then

Pf (y) =
(2yn)n

ωn+1

∫
∂K

P (p (x, y) dσn−1 (x) f (x))

=
(2yn)n

ωn+1

∫
∂K

P

(
(x− y)−1

|x− y|n−1 en
(x− ŷ)−1

|x− ŷ|n−1dσ0 (x) f (x)

)

=
2n−1yn

n

ωn+1

(∫
∂K

p (x, y) dσn−1 (x) f (x) +
∫

∂K
p̂ (x, y)dσ̂n−1 (x) f̂ (x)

)
where

p (x, y) = xn−1
n

(x− y)−1

|x− y|n−1 en
(x− ŷ)−1

|x− ŷ|n−1

and ωn+1 is the surface measure of the unit ball in Rn+1.

The kernel for the Q-part is the conjugate gradient of the product function of
two Newtonian kernels.

Lemma 14. The function

q (x, y) =
(x− y)−1 + (x− ŷ)−1

2 |x− y|n−1 |x− ŷ|n−1

=
(x− y)−1

|x− y|n−1 (x− Py)
(x− ŷ)−1

|x− ŷ|n−1

= − 1

2 (n− 1)
D

x

(
1

|x− y|n−1 |x− ŷ|n−1

)

is left and right −n + 1-hypermonogenic on Rn+1\ {y, ŷ} for each y with yn 6= 0.

Proof. Note first that the functions 1
|x−y|n−1 and 1

|x−ŷ|n−1 are harmonic. Hence

DxD
x

(
1

|x− y|n−1 |x− ŷ|n−1

)
= 4x

(
1

|x− y|n−1 |x− ŷ|n−1

)

= 2

(
grad

1

|x− y|n−1 , grad
1

|x− ŷ|n−1

)

= 2 (n− 1)2

∑n−1
i=0 (xi − yi)

2 + x2
n − y2

n

|x− y|n+1 |x− ŷ|n+1 .

Noting that Q
(
Df

)
= − ∂f

∂xn
for any real function f, we obtain

1

n− 1
Q

(
D

(
1

|x− y|n−1 |x− ŷ|n−1

))
=

xn − yn

|x− y|n+1 |x− ŷ|n−1 +
xn + yn

|x− y|n−1 |x− ŷ|n+1 .

Since
1

|x− y|2
− 1

|x− ŷ|2
=

4xnyn

|x− y|2 |x− ŷ|2
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and

1

|x− y|2
+

1

|x− ŷ|2
=

2
(∑n−1

i=0 (xi − yi)
2 + x2

n + y2
n

)
|x− y|2 |x− ŷ|2

we may compute

1

n− 1
Q

(
D

(
1

|x− y|n−1 |x− ŷ|n−1

))
=

2xn

(∑n−1
i=0 (xi − yi)

2 + x2
n + y2

n

)
− 4xny

2
n

|x− y|n+1 |x− ŷ|n+1

=
2xn

(∑n−1
i=0 (xi − yi)

2 + x2
n − y2

n

)
|x− y|n+1 |x− ŷ|n+1 .

Hence we have

DxD
x

(
1

|x− y|n−1 |x− ŷ|n−1

)
− (n− 1)

Q

(
D

(
1

|x−y|n−1|x−ŷ|n−1

))
xn

= 0.

The Cauchy formula of the Q-part of a hypermonogenic functions is given next.

Theorem 15. Let Ω be an open subset of Rn+1
+ (or Rn+1

− ) and K an n + 1-chain
satisfying K ⊂ Ω. If f is hypermonogenic in Ω and y ∈ K, then

Qf (y) =
2nyn−1

n

ωn+1

∫
∂K

Q (q (x, y) dσ0 (x) f (x))

= −2n−1yn−1
n

ωn+1

(∫
∂K

q (x, y) dσ0 (x) f (x)−
∫

∂K
q̂ (x, y)dσ̂0 (x) f̂ (x)

)
en

where

q (x, y) =
(x− ŷ)−1

|x− ŷ|n−1 (x− Py)
(x− y)−1

|x− y|n−1

and ωn+1 is the surface measure of the unit ball in Rn+1.

Proof. Using Theorem 10 we obtain∫
∂K

Q (q (x, y) dσ0f) =
∫

∂(K\Br(y))
Q (q (x) dσ0f) +

∫
∂Br(y)

Q (q (x) dσ0f)

=
∫

∂Br(y)
Q (q (x) dσ0f) .

The preceding Lemma implies that the function q (x) is paravector valued. Thus we
have

q (x) = q (x)∗ =
(x− ŷ)−1

|x− ŷ|n−1 (x− Py)
(x− y)−1

|x− y|n−1 .
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Hence ∫
∂K

Q (q (x, y) dσ0f)

= Q

(∫
∂Br(y)

(x− ŷ)−1

|x− ŷ|n−1 (x− Py)
(x− y)−1

|x− y|n−1dσ0 (x) f (x)

)

= Q

(∫
∂Br(y)

(x− ŷ)−1

|x− ŷ|n−1 (x− Py)
(x− y)−1

|x− y|n−1

(x− y)

r
f (x) dS (x)

)
,

where S is the usual surface measure of the ball Br (y).When r → 0, we obtain the
result.

Combining the previous results we obtain.

Theorem 16. Let Ω be an open subset of Rn+1
+ (or Rn+1

− ) and K an n + 1-chain
satisfying K ⊂ Ω. If f is hypermonogenic in Ω and y ∈ K, then

f (y) =
2n−1yn−1

n

ωn+1

(∫
∂K

(x− y)−1 dσ0 (x) f (x)

|x− y|n−1 |x− ŷ|n−1 −
∫

∂K

(x̂− y)−1 dσ̂0 (x) f̂ (x)

|x− y|n−1 |x− ŷ|n−1 ,

)

where ωn+1 is the surface measure of the unit ball in Rn+1.

Proof. Applying Theorems 13 and 15 we deduce

f (y) =
(2yn)n

ωn+1

∫
∂K

P (p (x, y) dσn−1 (x) f (x)) +
2nyn−1

n

ωn+1

∫
∂K

Q (q (x, y) dσ0 (x) f (x)) en

=
2n−1yn

n

ωn+1

(∫
∂K

p (x, y) dσn−1 (x) f (x) +
∫

∂K
p̂ (x, y)dσ̂n−1 (x) f̂ (x)

)

+
2n−1yn−1

n

ωn+1

(∫
∂K

q (x, y) dσ0 (x) f (x)−
∫

∂K
q̂ (x, y)dσ̂0 (x) f̂ (x)

)

=
2n−1yn−1

n

ωn+1

∫
∂K

(
ynp (x, y) + xn−1

n q (x, y)
)
dσn−1 (x) f (x)

+
2n−1yn−1

n

ωn+1

∫
∂K

(
ynp̂ (x, y)− xn−1

n q̂ (x, y)
)

dσ̂n−1 (x) f̂ (x)

where

p (x, y) = xn−1
n

(x− y)−1

|x− y|n−1 en
(x− ŷ)−1

|x− ŷ|n−1 ,

q (x, y) =
(x− y)−1

|x− y|n−1 (x− Py)
(x− ŷ)−1

|x− ŷ|n−1 .

Since

ynp (x, y) + xn−1
n q (x, y) = xn−1

n

(x− y)−1

|x− y|n−1 |x− ŷ|n−1

and

ynp (x, y)− xn−1
n q (x, y) = −xn−1

n

(x− ŷ)−1

|x− y|n−1 |x− ŷ|n−1 ,

we conclude the assertion.
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Applying the previous integral formula to a continuous function we obtain a
hypermonogenic function.

Theorem 17. Let Ω be an open subset of Rn+1
+ and K an n + 1-chain satisfying

K ⊂ Ω If a function f : Ω → C`n is continuous, then the function

h (y) =
2n−1yn−1

n

ωn+1

(∫
∂K

(x− y)−1 dσ0 (x) f (x)

|x− y|n−1 |x− ŷ|n−1 −
∫

∂K

(x̂− y)−1 dσ̂0 (x) f̂ (x)

|x− y|n−1 |x− ŷ|n−1

)

is hypermonogenic in K.

Proof. In view of Proposition 5 it is enough to prove that the function ωn+1

2n−1yn−1
n

h (y) en

is −n + 1-hypermonogenic. Note first that in the proof of the previous theorem we
proved that

ωn+1

2nyn−1
n

h (y) = yn

∫
∂K

P (p (x, y) dσn−1 (x) f (x)) +
∫

∂K
Q (q (x, y) dσ0 (x) f (x)) en.

Hence denoting C = ωn+1

2n−1 and using (1) we may compute

Q′
(

Ch(y)en

yn−1
n

)
yn

=
∫

∂K
2P ′ (p (x, y) dσn−1 (x) f (x))

=
∫

∂K
2P ′

(
(x− y)−1

|x− y|n−1 en
(x− ŷ)−1

|x− ŷ|n−1dσ0 (x) f (x)

)

= −
∫

∂K
2P

(
(x− y)

|x− y|n+1 en
(x− ŷ)

|x− ŷ|n+1dσ′
0 (x) f ′ (x)

)

= −
∫

∂K
2P

(
(x− y)

|x− y|n+1

(x̂− y)−1

|x− ŷ|n−1dσ̂0 (x) f̂ (x) en

)
.

Applying (2) and noting that

(x̂− ŷ)

|x− y|n+1

(x− ŷ)−1

|x− ŷ|n−1 = −en
x− y

|x− y|n+1 en
(x− ŷ)−1

|x− ŷ|n−1

= −en
(x− y)−1

|x− y|n−1 en
(x− ŷ)−1

|x− ŷ|n−1

we infer

Q′
(

Ch(y)en

yn−1
n

)
yn

= −
∫

∂K

(x− y)

|x− y|n+1

(x̂− y)−1

|x− ŷ|n−1dσ̂0 (x) f̂ (x) en

+
∫

∂K

(x̂− ŷ)

|x− y|n+1

(x− ŷ)−1

|x− ŷ|n−1dσ0 (x) f (x) en

= −
∫

∂K

(x− y)

|x− y|n+1

(x̂− y)−1

|x− ŷ|n−1dσ̂0 (x) f̂ (x) en

−
∫

∂K
en

(x− y)−1

|x− y|n−1 en
(x− ŷ)−1

|x− ŷ|n−1dσ0 (x) f (x) en.
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Since p (x, y) = xn−1
n

(x−y)−1

|x−y|n−1 en
(x−ŷ)

−1

|x−ŷ|n−1 is a paravector and therefore p (x, y) = p (x, y)∗,

we obtain

Q′
(

Ch(y)en

yn−1
n

)
yn

= −
∫

∂K

(x− y)

|x− y|n+1

(x̂− y)−1

|x− ŷ|n−1dσ̂0 (x) f̂ (x) en

−
∫

∂K
en

(x− ŷ)−1

|x− ŷ|n−1 en
(x− y)−1

|x− y|n−1dσ0 (x) f (x) en.

Since the functions (x− y)−1 |x− y|1−n and (x̂− y)−1 |x− ŷ|1−n = (x̂− y)−1 |x̂− y|1−n

are monogenic we observe

Dy
l

(
Ch (y) en

yn−1
n

)
=
∫

∂K
Dy

l

(
(x− y)−1

|x− y|n−1 |y − x̂|n−1

)
dσ0 (x) f (x) en

−
∫

∂K
Dy

l

(
(x̂− y)−1

|x− y|n−1 |x− ŷ|n−1

)
dσ̂0 (x) f̂ (x) en

= − (n− 1)
∫

∂K

(y − x̂) (x− y)−1

|x− ŷ|n+1 |x− y|n−1dσ0 (x) f (x) en

+ (n− 1)
∫

∂K

(x− y) (x̂− y)−1

|x− y|n+1 |x− ŷ|n−1dσ̂0 (x) f̂ (x) en.

Noting that

(y − x̂) (x− y)−1

|x− ŷ|n+1 |x− y|n−1 = −
en

(
ŷ − x

)
en (x− y)−1

|x− ŷ|n+1 |x− y|n−1

= en
(x− ŷ)−1

|x− ŷ|n−1 en
(x− y)−1

|x− y|n−1

we infer

Dy
l

(
Ch (y) en

yn−1
n

)
= − (n− 1)

∫
∂K

en
(x− ŷ)−1

|x− ŷ|n−1 en
(x− y)−1

|x− y|n−1dσ0 (x) f (x) en

− (n− 1)
∫

∂K

(x− y) (x̂− y)−1

|x− y|n+1 |x− ŷ|n−1dσ̂0 (x) f̂ (x) en

= (n− 1)
Q′
(

Ch(y)en

yn−1
n

)
yn

.

Hence M l
−n+1

(
h(y)en

yn−1
n

)
= 0 which implies by Proposition 5 that h is hypermonogenic.
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Boston, 2000, 287–302.

[11] Eriksson-Bique, S.-L. and H. Leutwiler, Hypermonogenic functions and Möbius
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