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Abstract

The existence of periodic solutions are studied for certain differential in-
clusions at resonance. Landesman–Lazer type conditions are derived. Appli-
cations are given to discontinuous differential equations.

1 Introduction

Many problems of nature are modeled by differential equations with discontinuous
nonlinearities [4], [9], [15]. In this paper, we deal with discontinuous differential
equations which are at resonance in infinity. This problem for continuous nonlinear
operator equations is handled by Landesman–Lazer type results [1], [3], [18]. The
purpose of this paper is to extend this method to discontinuous nonlinear operator
equations, i.e. to operator inclusions at resonance in infinity. A similar question
is investigated in [2]. To study such inclusions, we are motivated by recent papers
[6–8], [11], [13], [16]. Consequently, in Section 2 we present existence results of
Landesman–Lazer type, and then in Section 3, we apply them to discontinuous
differential equations. We also remark that our method can be used to certain
implicit scalar differential inclusions, see Section 4, and to certain implicit differential
equations as well [10], [12], see Section 5. Multi–valued boundary value problems
are studied also in [17]. Finally, we have to point out that we apply our method for
the existence of periodic solutions of nonlinear systems, but our method works also
for discontinuous partial differential equations similar to [4].
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2 Abstract Setting

Let H be a Banach space with a continuous inner product (·, ·) and with the corre-
sponding norm | · |. Let Z be a Banach space continuously embedded into H and
let Y be a reflexive Banach space compactly embedded into Z.

Definition 2.1. A mapping F : Z → 2H \ {∅} is said

– to be weakly upper semi–continuous (denote w.u.s.c.), if for any Z 3 un →
u ∈ Z, F (un) 3 zn ⇀ (weakly) z ∈ H, it holds z ∈ F (u).

– to be uniformly bounded, if its range is a bounded set.

In this section, we consider the operator inclusion

h ∈ Lu + F (u), (2.1)

where L : Y → H is bounded linear, Fredholm with index 0, symmetric with respect
to (·, ·), h ∈ H and F is uniformly bounded, w.u.s.c. with convex set values. Let us
put

S = {u ∈ kerL | |u| = 1} . (2.2)

Let Q : H → imL be the orthogonal projection with respect to (·, ·) and consider a
bounded linear operator B : Y → H such that

(C) B( imL ∩ Y ) ⊂ im L, B(kerL) ⊂ kerL, ker(B/kerL) = 0.

Of course, Bu = u, ∀u ∈ Y satisfies (C). The following result is an extension of
Landesman–Lazer type ones [1] to operator inclusions.

Theorem 2.2 Suppose the existence of a mapping φ : S → R such that

lim
ρ→∞

(
inf

z∈F (ρw+v)
(z, Bw)

)
≥ φ(w) (H1)

uniformly with respect to w ∈ S, and bounded v ∈ im L ∩ Y as well.
If there is a δ > 0 such that

(h, Bw) < φ(w)− δ ∀w ∈ S , (H2)

then (2.1) is solvable.

Proof. In spite of the fact that the proof is standard, we present it here for the
reader convenience. First of all, we consider

h ∈ Lu + εBu + F (u) , (2.3)

where ε > 0 is sufficiently small. Since (C) holds, (2.3) has the form

u ∈ (L + εB)−1(h− F (u)), u ∈ Z . (2.4)

The right–hand side of (2.4) is upper semi–continuous with compact convex set
values and uniformly bounded as well. Indeed, if ui → u and vi → v in Z are such
that

vi ∈ (L + εB)−1(h− F (ui)) ,
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then vi are uniformly bounded in Y . Since Y is reflexive and compactly embedded
into Z, we can suppose that vi ⇀ v in Y . Hence (L + εB)vi ⇀ (L + εB)v in H. On
the other hand, F is w.u.s.c. and it holds

(L + εB)vi ∈ h− F (ui) .

Consequently,
(L + εB)v ∈ h− F (u) ,

and the right–hand side of (2.4) has the abovementioned properties.
By [5], (2.4) has a solution uε for any sufficiently small ε > 0. We take

uε = wε + vε, wε ∈ kerL, vε ∈ imL ∩ Y .

Then (2.3) gives
h = Luε + εBuε + fε, fε ∈ F (uε) ,

and by (C), we have

(h, Bwε) = ε|Bwε|2 + (fε, Bwε), fε ∈ F (wε + vε) . (2.5)

Moreover, if h = h1 + h2, h1 ∈ kerL, h2 ∈ im L, then

h1 = (L + εB)vε + Qfε

vε = (L + εB)−1(h1 −Qfε) .

So vε is uniformly bounded in Y . Now we show that wε is also uniformly bounded.
Let us suppose that wεi → ∞ as εi → 0+. Then (H1–2) and (2.5) give for i
sufficiently large

φ(wεi)− δ > (h, Bwεi) ≥ (fεi, Bwεi) ≥ φ(wεi)− δ .

This contradiction gives the uniform boundedness of uε in Y . Since Y is reflexive
and compactly embedded into Z as well, there is a subsequence uεi → u ∈ Z and
Luεi ⇀ Lu. On the other hand, F is w.u.s.c., hence by passing to the limit in (2.3)
as εi → 0+, we obtain

h ∈ Lu + F (u) .

The proof is finished. �

Similarly we have the following result.

Theorem 2.3 Suppose the existence of a mapping ψ : S → R such that

lim
ρ→∞

(
sup

z∈F (ρw+v)

(z, Bw)
)
≤ ψ(w) (H3)

uniformly with respect to w ∈ S, and bounded v ∈ im L ∩ Y as well.
If there is a δ > 0 such that

(h, Bw) > ψ(w) + δ ∀w ∈ S , (H4)

then (2.1) is solvable.
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The next result is trivial.

Theorem 2.4 Let us put

sup
f∈∪u∈ZF (u)

(f, Bw) = M(w), inf
f∈∪u∈ZF (u)

(f, Bw) = m(w) .

We note that M(·) < ∞ and M(−w) = −m(w). If (2.1) has a solution then h
satisfies

m(w) ≤ (h, Bw) ≤ M(w) ∀w ∈ S .

3 Discontinuous Differential Equations at Resonance

Let us consider the equation

x′′ + x + g(x) = h(t) , (3.1)

where h ∈ L2
2π(R) = {x ∈ L2

loc(R) | x is 2π–periodic} and g : R→ R is uniformly
bounded. We put

g+(x) = lim
s→x

g(s)

g−(x) = lim
s→x

g(s) .

Then g± are Borel measurable. We take

H = Z = L2
2π(R), Y = {x ∈ H | x′, x′′ ∈ H}

F (u) = {y ∈ H | g−(u(s)) ≤ y(s) ≤ g+(u(s)) a.e. on R}

Lu = u′′ + u, Bu = u, (u, v) =

2π∫
0

u(s)v(s) ds .

Then F is w.u.s.c. [2], [4], and uniformly bounded as well. We have

kerL = {c sin(t + τ ) | c, τ ∈ R} .

Hence for (2.2), we can in this case consider

S = {sin(t + τ ) | τ ∈ R} .

We suppose

(i) There are constants A+ ≥ A− such that

A− ≤ g−(x) ≤ g+(x) ≤ A+ ∀x ∈ R .

(ii) There are constants A+ ≥ B− ≥ B+ ≥ A− such that

lim
x→∞

g−(x) = B−, lim
x→−∞

g+(x) = B+ .
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If f ∈ F (u) and w = sin(t + τ ), then

(f, w) =

2π∫
0

f(s) sin(s + τ ) ds .

Since A− ≤ f(s) ≤ A+, we have

A−

2π∫
0

sin+(s + τ ) ds + A+

2π∫
0

sin−(s + τ ) ds ≤
2π∫
0

f(s) sin(s + τ ) ds

≤ A+

2π∫
0

sin+(s + τ ) ds + A−

2π∫
0

sin−(s + τ ) ds ,

where sin+ t = max{sin t, 0}, sin− t = min{sin t, 0}. Hence

∣∣∣∣
2π∫
0

f(s) sin(s + τ ) ds
∣∣∣∣ ≤ 2(A+ − A−) ∀ τ ∈ R . (3.2)

Consequently we have

M(w) ≤ 2(A+ − A−), −2(A+ − A−) ≤ m(w)

in Theorem 2.4 for this case.
Now let f ∈ F (ρw + v), where sin(s + τ ) = w ∈ S and v ∈ Y is uniformly

bounded. We note that v is also uniformly bounded in the space C [0, 2π]. We show
the validity of (H1) for this case. The proof is standard [1]. We take small ε > 0.
Then there is r > 0 such that | sin(s + τ )| ≥ r for any s ∈ [0, 2π] \ Ωr = Ω′r, where
mesΩr ≤ ε. Uniformly with respect to τ , we compute for large ρ > 0

2π∫
0

f(s) sin(s + τ ) ds =
∫

Ωr
f(s) sin(s + τ ) ds +

∫
Ω′r

f(s) sin(s + τ ) ds

≥ −(|A+|+ |A−|)ε +
∫

Ω′r
f(s) sin+(s + τ ) ds +

∫
Ω′r

f(s) sin−(s + τ ) ds

≥ −(|A+|+ |A−|)ε + (B− − ε)
∫

Ω′r
sin+(s + τ ) ds + (B+ + ε)

∫
Ω′r

sin−(s + τ ) ds

= 2((B− − ε)− (B+ + ε))− (|A+|+ |A−|)ε

− (B− − ε)
∫

Ωr
sin+(s + τ ) ds− (B+ + ε)

∫
Ωr

sin−(s + τ ) ds

≥ 2(B− − B+)− 4ε − (|A+|+ |A−|+ |B+ − ε|+ |B+ + ε|)ε .

Hence (H1) holds with
φ(w) = 2(B− − B+) ,

and (H2) has now the form

2π∫
0

h(s) sin(s + τ ) ds < 2(B− − B+)− δ ∀ τ ∈ R . (3.3)



488 M. Fečkan

We note that (3.2), respectively (3.3), are equivalent to

∣∣∣∣
2π∫
0

h(s) eıs ds
∣∣∣∣ ≤ 2(A+ − A−) , (3.4)

respectively ∣∣∣∣
2π∫
0

h(s) eıs ds
∣∣∣∣ < 2(B− − B+)− δ . (3.5)

By applying Theorems 2.2 and 2.4, we obtain the following result.

Theorem 3.1 Consider (3.1) satisfying (i) and (ii). Then (3.1) may have a
2π–periodic solution only for h satisfying (3.4). On the other hand, if h is such that

∣∣∣∣
2π∫
0

h(s) eıs ds
∣∣∣∣ < 2(B− − B+) , (3.6)

then (3.1) has a 2π–periodic solution.

Remark 3.2. (3.1) is considered in [16] with g(x) = a sgn x, a > 0. Then A+ =
B− = a, A− = B− = −a, and (3.4), (3.6) become

∣∣∣∣
2π∫
0

h(s) eıs ds
∣∣∣∣ ≤ 4a,

∣∣∣∣
2π∫
0

h(s) eıs ds
∣∣∣∣ < 4a ,

respectively. We have recovered a result of [16].

Theorem 3.3 Consider (3.1) satisfying (i) and the following condition holds as
well:
(iii) There are constants A+ ≥ D− ≥ D+ ≥ A− such that

lim
x→∞

g+(x) = D+, lim
x→−∞

g−(x) = D− .

Then (3.1) has a 2π–periodic solution for any h satisfying

∣∣∣∣
2π∫
0

h(s) eıs ds
∣∣∣∣ < 2(D− −D+) . (3.7)

Proof. We apply Theorem 2.3. Like in the above proof, we derive

ψ(w) = 2(D+ −D−) .

The proof is finished. �
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Now we consider the equation

x′′ + x + g(x′) = h(t) , (3.8)

where h ∈ L2
2π(R) and g : R → R is uniformly bounded. The set up of (3.8) is

similar as for (3.1), only B now has the form Bu = u′ and Z = H1
2π(R). We note

that this strategy was used in [6]. We verify (C) of Section 2. If v ∈ im L ∩ Y, 0 6=
c sin(s + τ ) = w ∈ kerL, then

(Bv, w) = c

2π∫
0

v′(s) sin(s + τ ) ds

= c
[
v(s) sin(s + τ )

]2π

0
− c

2π∫
0

v(s) cos(s + τ ) ds = 0 ,

Bw = c cos(s + τ ) 6= 0 .

Consequently, the condition (C) holds.

Theorem 3.4 Consider (3.8) satisfying (i) and (ii), respectively (i) and (iii).
Then (3.8) may have a 2π–periodic solution only for h satisfying (3.4). On the other
hand, if h satisfies (3.6), respectively (3.7), then (3.8) has a 2π–periodic solution.

Proof. The proof is the same like above, so we omit it. �

Remark 3.5. (3.8) is considered in [6] with g(x) = a sgn x, a > 0. Hence we
arrive at the same situation like in Remark 3.2.

We combine the above examples in the next one

x′′ + x + e(x′) + d(x) = h(t) , (3.9)

where h ∈ L2
2π(R) and e, d : R → R are uniformly bounded satisfying the following

assumption:
(H5) There are constants Ej

i , Gj
i , i, j ∈ {+,−} such that

Ej
− = lim

x→j∞
e−(x), Gj

− = lim
x→j∞

d−(x)

Ej
+ = lim

x→j∞
e+(x), Gj

+ = lim
x→j∞

d+(x) .

We use the framework of (3.8) with Bu = u′ + u. Hence

B sin(t + τ ) = cos(t + τ ) + sin(t + τ ) =
√

2 sin(
π

4
+ t + τ ) .

It is again clear that the condition (C) holds for our case. Let u = ρ sin(t + τ ) + v,
v ∈ Y be uniformly bounded and ρ > 0 be sufficiently large. Let f ∈ H be such
that

f(s) ∈ [e−(u
′(s)) + d−(u(s)), e+(u′(s)) + d+(u(s))]
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a.e. on R. Then we have

(
f, B sin(t + τ )

)
=
√

2

2π∫
0

f(s) sin(
π

4
+ s + τ ) ds .

We compute

2π∫
0

f(s) sin(
π

4
+ s + τ ) ds =

7∑
j=0

∫ π
4

(j+1)−τ

π
4
j−τ

f(s) sin(
π

4
+ s + τ ) ds . (3.10)

We note that all functions sin(π
4

+ t + τ ), sin(t + τ ), cos(t + τ ) do not change their

signs on the intervals
(
π
4
j − τ, π

4
(j + 1) − τ

)
, 0 ≤ j ≤ 7. By estimating (3.10) like

above (3.3) (we omit this tedious computation), we arrive at the following result.

Theorem 3.6 Consider (3.9) under the condition (H5). Let us put

K1 =
(
1 +

√
2

2

)(
E+
− + G+

− −E−+ −G−+
)

+
(
1−
√

2

2

)(
E−− + G−− − E+

+ −G+
+

)
K2 =

(
1 +

√
2

2

)(
E−− + G−− −E+

+ −G+
+

)
+
(
1−
√

2

2

)(
E+
− + G+

− − E−+ −G−+
)
.

If K1 > 0, respectively K2 > 0, and h satisfies

∣∣∣∣
2π∫
0

h(s) eıs ds
∣∣∣∣ < K ,

where K = K1, respectively K = K2, then (3.9) has a 2π–periodic solution.

Remark 3.7. Similar problems for the continuous case are studied in [14].

4 Scalar Implicit Differential Inclusions

In this section, we consider the differential inclusion

f(u′′, u′, u, t) ∈ S(u′, u, t) , (4.1)

where f : R3 × [0, 1] → R is continuous, S : R2 × [0, 1] → 2R \ {∅} is upper semi–
continuous with compact and convex values. Moreover, we suppose

(I) f = f(z, w, u, t) is monotone in z ∈ R.

(II) lim|z|→∞ |f(z, w, u, t)| =∞ for any w, u, t.

We put

T (w, u, t) =
{
v ∈ R | f(v, w, u, t) = h, h ∈ S(w, u, t)

}
.

Now we show some properties of the mapping T .

Lemma 4.1 T : R2 × [0, 1]→ 2R \ {∅} is upper semi–continuous with compact
and convex set values.
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Proof. If vi → v, wi → w, ui → u, ti → t are such that

f(vi, wi, ui, ti) = hi, hi ∈ S(wi, ui, ti) ,

then we can assume that hi → h. The upper semi–continuity of S and continuity of
f imply

f(v, w, u, t) = h ∈ S(w, u, t) .

So T is upper semi–continuous with compact values. The convexity of T (w, u, t)
follows from (I) and from the convexity of S(w, u, t). �

Lemma 4.1 gives that (4.1) is equivalent to

u′′ ∈ T (u′, u, t) . (4.2)

By considering a suitable boundary value condition for (4.1) and growth conditions
for f and S as well, Theorems 2.2, 2.3 and 2.4 can be applied to (4.2) with h = 0,
like in Section 3. To be more concrete, and for the simplicity as well, we consider
(4.1) of the form

f(u′′) + u + g(u) = h(t) , (4.3)

where f is nondecreasing satisfying
(iv) supu∈R |u− f(u)| <∞.
Moreover, g : R → R satisfies (i) and (ii) of Section 3, and h is continuous

2π–periodic. The mapping T of (4.2) has now the form

T (u, t) =
{
v ∈ R | f(v) + u = p, p ∈ [−g+(u) + h(t),−g−(u) + h(t)]

}
.

Hence (4.3) has the form
0 ∈ u′′ + u + W (u, t) ,

where

W (u, t) =
{
v ∈ R | f(−v − u) + u = p, p ∈ [−g+(u) + h(t),−g−(u) + h(t)]

}
.

By (iv), we put

inf
v∈R

(f(v)− v) = C−, sup
v∈R

(f(v)− v) = C+ .

Then v ∈W (u, t) implies

g−(u)− h(t) + C− ≤ v ≤ g+(u)− h(t) + C+ .

By repeating the same arguments like in Section 3 above (3.3), we obtain the fol-
lowing result.

Theorem 4.2 Consider (4.3) under the above conditions. Then (4.3) may have
a 2π–periodic solution only for h satisfying

∣∣∣∣
2π∫
0

h(s) eıs ds
∣∣∣∣ ≤ 2(A+ −A− + C+ − C−) .
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On the other hand, if B− − B+ + C− − C+ > 0 and h satisfies

∣∣∣∣
2π∫
0

h(s) eıs ds
∣∣∣∣ < 2(B− − B+ + C− − C+) ,

then (4.3) has a 2π–periodic solution.

For instance, the equation

x′′ − sin(x′′ + t) + x + a sgnx = h(t), a > 0

may have a 2π–periodic solution only for h satisfying

∣∣∣∣
2π∫
0

h(s) eıs ds
∣∣∣∣ ≤ 4(a + 1) ,

and if a > 1 then it has a 2π–periodic solution provided

∣∣∣∣
2π∫
0

h(s) eıs ds

∣∣∣∣ < 4(a − 1) .

5 Implicit Operator Equations

Let L, H, Y, Z be given as in Section 2. Moreover, H is a Hilbert space with respect
to (·, ·).

Ideas of previous section can be extended to more general implicitly given oper-
ator equations of the form

G(Lu, u) = 0 , (5.1)

where G : H × Z → H is continuous and monotone in the first variable. Moreover,
we suppose

lim
|v|→∞

|G(v, u)| =∞ for any u ∈ Z .

We put
V (u) =

{
v ∈ H | G(v, u) = 0

}
. (5.2)

We show some properties of the mapping V .

Lemma 5.1 V : Z → 2H \ {∅} is w.u.s.c. with bounded convex set values.

Proof. We know from [5]

G(v, u) = 0⇐⇒ (G(z, u), z − v) ≥ 0 ∀ z ∈ H . (5.3)

If ui → u, V (ui) 3 vi ⇀ v, then (5.3) implies

(G(z, ui), z − vi) ≥ 0 ∀ z ∈ H . (5.4)

By using the continuity of G, (5.4) implies

(G(z, u), z − v) ≥ 0 ∀ z ∈ H .

Hence (5.3) gives G(v, u) = 0. So V is w.u.s.c. The convexity of V (u) follows also
from (5.3). �
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Consequently, (5.1) is equivalent to the operator inclusion

Lu ∈ V (u) ,

which is of the form of (2.1).

Now we consider the implicit system

x′′ + Ax + Γ(x′′, x) = h(t) , (5.5)

where A is a symmetric matrix, Γ ∈ C(R2n+1,Rn) is uniformly bounded and h ∈
L2

2π(R,Rn). We suppose that the equation x′′ + Ax = 0 has only one linearly
independent 2π–periodic solution w0 sin(t + τ ), τ ∈ R, |w0| = 1. We take

H = Z = L2
2π(R,Rn), Y =

{
x ∈ H | x′, x′′ ∈ H

}
G(v, u) = v + Γ(v −Au, u)− h(t) .

Moreover, we assume that z + Γ(z, x) is monotone in z. Consequently, Lemma 5.1
holds for (5.5), and (5.5) has the form

0 ∈ Lu + F (u) (5.6)

Lu = −u′′ −Au

F (u) =
{
v ∈ H | v(t) + Γ(v(t)− Au(t), u(t))− h(t) = 0

a.e. on R
}

.

F is clearly uniformly bounded. For (2.2), we take S = {w0 sin(t + τ ) | τ ∈ R}. Let
〈·, ·〉 be the scalar product on Rn.

Theorem 5.2 Consider (5.5) under the above conditions. In addition, we
suppose the existence of a continuous mapping ω : {x ∈ Rn | |x| = 1} = Sn−1 → R
such that

lim
ρ→∞

〈
Γ(z, ρw), w

〉
≥ ω(w)

uniformly with respect to w ∈ Sn−1 and z as well. If ω(w0) > ω(−w0) and

∣∣∣∣
2π∫
0

〈h(s), w0〉 eıs ds
∣∣∣∣ < 2(ω(w0)− ω(−w0)) ,

then (5.5) has a 2π–periodic solution.

Proof. We apply Theorem 2.3 with h = 0 to (5.6). For any u ∈ Y uniformly bounded
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and v ∈ F (ũ), ũ = ρw0 sin(t + τ ) + u, we have

lim
ρ→∞

2π∫
0

〈v(s), ρw0 sin(s + τ )〉 ds

= − lim
ρ→∞

2π∫
0

〈Γ(v(s)− Aũ(s), ρw0 sin(s + τ ) + u(s))− h(s), w0 sin(s + τ )〉 ds

≤
2π∫
0

〈h(s), w0 sin(s + τ )〉 ds−
2π∫
0

ω
(
w0 sgn

{
sin(s + τ )

})
| sin(s + τ )| ds

=

2π∫
0

〈h(s), w0 sin(s + τ )〉 ds − 2ω(w0) + 2ω(−w0) .

Hence (H3) holds with

ψ(w0 sin(t + τ )) =

2π∫
0

〈h(s), w0 sin(s + τ )〉 ds − 2ω(w0) + 2ω(−w0) .

(H4), with h = 0, has the form

0 >

2π∫
0

〈h(s), w0 sin(s + τ )〉 ds − 2ω(w0) + 2ω(−w0) ,

i.e. ∣∣∣∣
2π∫
0

〈h(s), w0〉 eıs ds
∣∣∣∣ < 2(ω(w0)− ω(−w0)) .

The proof is finished. �
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