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Abstract

Flocks of deficiency one of quadratic cones and hyperbolic quadrics in
PG(3, K), for K a finite field, correspond to translation planes admitting
certain collineation groups that fix Baer subplanes pointwise. In this article,
this theory is extended to the general situation where K is an arbitrary field.
Flocks of quadratic cones and of hyperbolic quadrics in PG(3, q) correspond
to spreads in PG(3, q) which are unions of q or q + 1 reguli respectively. A
more general theory of the analogous conical and ruled spreads is developed
for spreads in PG(3, K) and K an arbitary skewfield.

1 Introduction.

In this article, some generalizations of the connections with flocks of quadric sets
in PG(3, q) are developed. For a complete history of the problems and theory of
geometries related to flocks as well as certain fundamental definitions, the reader is
referred to the survey article by Johnson and Payne [26].

Let F be a flock of a quadratic cone in PG(3, q). It is now well known that there
is a corresponding spread in PG(3, q) which is a union of q reguli sharing a common
line. Furthermore, there is a corresponding generalized quadrangle of order (q2, q)
obtained via an associated q -clan. When F is a flock of a hyperbolic quadric in
PG(3, q), there is an associated spread in PG(3, q) which is a union of q + 1 reguli
sharing two common lines.
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In addition to these connections with flocks and translation planes, there are
translation planes with spreads in PG(3, q) corresponding to partial flocks of de-
ficiency one of quadratic cones and to partial flocks of deficiency one of hyper-
bolic flocks (see Johnson [16]). The associated translation planes of order q2 admit
collineation groups of order q and q − 1 respectively which fix subplanes of order q
pointwise.

More generally, it is possible to consider spreads in PG(3, K), for K an arbitrary
field, corresponding to both flocks of quadratic cones and of hyperbolic quadrics (see
Jha-Johnson [12], De Clerck-Van Mandeghem [6] and Johnson [23]).

In this article, we consider the more general situation for spreads over arbitrary
skewfields. In this case, the direct connection with flocks and generalized quadran-
gles is lost but some interesting translation planes emerge which are derivable but
derive planes some of which have infinite dimension over their kernels.

The structure of any derivable net is known by the results of Johnson [17]. In
particular, given a derivable net N , there is a skewfield K and a 4-dimensional left
vector space V over K such that points of N are (x, y) for all x, y 2-vectors over
K and the lines of N are vector translates of the Z(K)-subspaces given by the
equations x = 0, y = xδ ∀δ ∈ K where xδ = (x1, x2)δ = (x1δ, x2δ) where xi ∈ K for
i = 1, 2. Any derivable partial spread within PG(3, K) in this way is said to be a
pseudo-regulus net.

In particular, we consider spreads in PG(3, K) which are covered by pseudo-
reguli that share a given line that we call conical spreads and spreads in PG(3, K)
which are covered by pseudo-reguli that share two given lines which we call ruled
spreads and formulate the corresponding theory.

There are some technical problems forming unions of pseudo-reguli that can
occur due to the possible non-commutativity of multiplication of K so we consider
what are called normal sets of pseudo-reguli and we direct the reader to the relevant
section for the definition. Our main results on conical and ruled spreads (translation
planes) are as follows:

Theorem 1. (1) Let π be a translation plane with spread in PG(3, K), for K a
skewfield, which is a union of a normal set of pseudo-reguli that share exactly one
line L. We shall call π a conical translation plane under these conditions.

Then there is an elation group E with axis L of π which acts regularly on lines
6= L incident with the zero vector of each pseudo-regulus net.

(2) Let π be a translation plane with spread in PG(3, K) which is a union of a
normal set of pseudo-reguli that share exactly two lines L and M . We shall call π a
ruled translation plane under these conditions.

Then there is a homology group H of π with axis and coaxis L and M which acts
regularly on lines 6= L or M incident with the zero vector of each pseudo-regulus net.

Theorem 2. (1) If π is a conical translation plane then the spread for π may be

represented in the form x = 0, y = x

[
u + g(t) f(t)

t u

]
∀ t, u ∈ K and for g, f

functions on K.
(2) Consider f and g are functions on K such that x2t + xg(t) − f(t) = φx(t).

Then φx(t) is bijective ∀ x ∈ K ⇐⇒ the functions define a conical spread of the
form (1).
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(3) If π is a ruled translation plane then the spread for π may be represented in

the form x = 0, y = 0, y = x

[
v 0
0 v

]
, y = x

[
g(t)u f(t)u
tu u

]
∀v, t, u for ut 6= 0 ∈

K where g, f functions on K.
(4) If π is a conical translation plane with line L and also a ruled translation

plane with lines L and M such that two normal 1 -dimensional left K-subspaces lie
on L then the spread for π may be represented in the form

x = 0, y = x

[
u + gt ft

t u

]
∀t, u ∈ K where g and f are constants in K.

The above results are applied to determine a set of translation planes which
we call skew-Hall planes. The planes obtained are derived from certain translation
planes which are both conical and ruled. However, these planes may not have spreads
within PG(3, K) as the kernel of each such plane is always Z(K). The reader is
directed to section 5 for a description of these planes.

A partial flock of deficiency one of a quadratic cone PC consists of q − 1 conics
and a partial flock of deficiency one of a hyperbolic quadric HC consists of q conics.
Payne -Thas [31] have shown that it is always possible to extend a partial flock of
a quadratic cone of q − 1 conics. However, there are non-extendable partial flocks
of a hyperbolic quadric of q conics. In particular, there are deficiency one partial
flocks in PG(3, 4), PG(3, 5), and PG(3, 9) (see Johnson [19], Biliotti-Johnson [3],
and Johnson-Pomareda [27] respectively).

In this article, we extend the theory of partial flocks of quadratic cones and of
hyperbolic quadrics of deficiency one in PG(3, K) for K an arbitrary field. There
are corresponding translation planes admitting certain Baer groups. Furthermore, in
the infinite case, it is an open question whether such partial flocks either of quadratic
cones or of hyperbolic quadrics are extendible to flocks as there are no examples of
either to the contrary.

Our main results on partial flocks of deficiency one are:

Theorem 3. (1) The set of partial flocks of deficiency one of a quadratic cone in
PG(3, K), for K a field, is equivalent to the set of translation planes with spreads
in PG(3, K) that admit a point-Baer elation group B which acts transitively on
nonfixed 1-dimensional K-subspaces of components of the fixed point subplane.

(2) A partial flock of deficiency one of a quadratic cone in PG(3, K), for K a
field, may be extended to a flock ⇐⇒ in the corresponding translation plane which
admits a point-Baer elation group B as in (1), the net defined by the point-Baer
affine plane FixB defines a regulus in PG(3, K).

Theorem 4. (1) The set of partial flocks of deficiency one of a hyperbolic quadric
in PG(3, K), for K a field, is equivalent to the set of translation planes with spreads
in PG(3, K) which admit a point-Baer homology group B which is transitive on the
nonfixed 1-dimensional K-subspaces on any component of FixB.

(2) A partial flock of deficiency one of a hyperbolic quadric may be extended
to a flock if and only if the net defined by FixB of the corresponding translation
plane which admits a point-Baer homology group B as in (1) defines a regulus in
PG(3, K).
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Actually, the above theorems may be stated more generally when K is an arbi-
trary skewfield. The reader is referred to section 4 for the generalization.

2 Conical and ruled translation planes.

In order for the reader to appreciate our definition of pseudo-regulus, we describe the
characterization of a derivable net due to Johnson [17]. The following description
may also be found in Johnson [24] and for a more complete history of derivation,
the reader is referred to Johnson [21]

Definition 1. A derivable net N = (P, L, B, C, I) is an incidence structure with
a set P of points, a set L of lines, a set B of Baer subplanes of the net, a set C of
parallel classes of lines and a set I which is called the incidence set such that the
following properties hold:

(i) Every point is incident with exactly one line from each parallel class, each
parallel class is a cover of the points and each line of L is incident with exactly one
of the classes of C.

(ii) Two distinct points are incident with at most one line of L.

(iii) If we refer to the set C as the set of infinite points then the subplanes of B
are affine planes with infinite points exactly those of the set C.

(iv) Given any two distinct points a and b of P which are incident with a line
of L, there is a Baer subplane πa,b of B containing (incident with) a and b.

Remark 1. Given a derivable net N = (P, L, B, C, I), we may define a paral-
lelism relation on the set B of subplanes. Two subplanes ρ and τ of B are de-
fined to be parallel ⇐⇒ they are disjoint on points. Define N∗ = (P, B, L, C∗, I)
= (P ∗, L∗, B∗, C∗, I∗) as the incidence structure where P ∗ = P is the set of points,
L∗ = B is the set of lines, B∗ = L is the set of Baer subplanes, C∗ is the parallelism
on the set of lines L∗ defined on the set of Baer subplanes B and I∗ is the incidence
set I.

Then N∗ is also a derivable net which is called the derived net. The transfer
from N to N∗ is called the derivation of N.

Theorem 5. (Johnson [17]). Given a derivable net N = (P, L, C, B, I), there is
a 3-dimensional projective space Π and a fixed line R of Π such that the set P of
points, the set L of lines, the set C of parallel classes, the set B of Baer subplanes
of the net N are the set of lines of Π skew to R, the set of points of Π− R, the set
of planes of Π that contain R, and the set of planes of Π which do not contain R
respectively, where incidence I is the natural incidence of Π.

The question was raised in Johnson [18] whether the process of derivation is ge-
ometric. In the present context, we might ask how the two combinatorial structures
relate within the three dimensional projective spaces corresponding to a derivable
net and its derived net. We shall provide a slight generalization of these geometric
connections.
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2.1 The annihilator mapping.

Let V4 denote the left vector space over a skewfield K ≡ (K, +, ·) such that the
lattice of left vector subspaces defines the three-dimensional projective space Π cor-
responding to the derivable net N . Let V ∗4 denote the dual space of V4. We note that
V ∗4 is a right vector space over K by defining scalar multiplication as follows: If f is
in V ∗4 define fα by fα(x) = f(x)α for x in V4. V ∗4 is a left Kopp ≡ (K, +, ◦)-space
where ab = a · b = b ◦ a.

Now consider the annihilator mapping ⊥ defined from V4 onto V ∗4 where if W
is a left K-subspace of V4 then W⊥ = 〈f εV ∗4 | f(w) = 0 ∀ w in W 〉 is a left Kopp-
subspace of V ∗4 .

Let Π and Π∗ be the projective spaces defined by the lattices of left vector K-
subspaces of V4 and left Kopp-subspaces of V ∗4 respectively.

Note that the annihilator mapping is dimension inverting and when considered
on the associated 3-dimensional projective spaces Π and Π∗ maps lines of Π onto
lines of Π∗. Furthermore, points and planes of Π are interchanged with planes and
points of Π∗ respectively as W ⊆ Z for W, Z left K-subspaces of V4 ⇐⇒ Z⊥ ⊆W⊥

for Z⊥, W⊥ left Kopp-subspaces of V ∗4 .
Let R denote the line of Π corresponding to the construction of the derivable

net N . Let R∗ = R⊥. Then, clearly points of Π− R map to planes of Π∗ which do
not contain R∗. Similarly, planes containing R are mapped to points of Π∗ incident
with R∗ and points of R are mapped to planes of Π∗ containing R∗.

Hence, the annihilator map defines a derivable net N∗ which corresponds natu-
rally to the 4-dimensional left Kopp-vector space V ∗4 . If we identify the lines of V4

and V ∗4 via the annihilator mapping then we have made an identification between
the points of N and N∗.

So, we have given a geometric connection between a derivable net and its derived
net.

We have interpreted a derivable net within a three-dimensional projective space
Π isomorphic to PG(3, K) and its derived net similarly interpreted within a three-
dimensional projective space Π∗ isomorphic to PG(3, Kopp). In the following, we
shall give an algebraic connection and also determine a three-dimensional projective
space Σ isomorphic to PG(3, K) corresponding to a derivable net. However, in this
context, we may consider the lines of the net as translates of certain lines of Σ where
as this was not the interpretation in Π.

2.2 Pseudo-reguli.

Note that it now follows from the above theorem that the collineation group of any
derivable net is isomorphic to the full collineation group PΓL(4, K)R which leaves
the line R invariant of the 3 -dimensional projective space Π . Furthermore, with
the use of this chacterization result and realization of the group of the derivable net,
it is possible to give a complete structure theory for derivable nets.

Theorem 6. (Johnson [17]). A net is derivable⇐⇒ there is a skewfield K and a left
4-dimensional vector space V over K such that the points of the net are the vectors
of V and the lines of the net are translates of the following set of Z(K)-subspaces:
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The points are (x1, x2, y1, y2) ≡ (x, y) ∀xi , yi ∈ K, i = 1, 2, and the lines are
translates of the Z(K)-subspaces x = 0, y = δx where δx = δ(x1, x2) = (δx1, δx2) ∀δ
∈ K. The Baer subplanes are translates of the sets πa,b = {(αa, αb, βa, βb) | α, β ε
K} and (a, b) ∈ K ⊕K − {(0, 0)}.

In Johnson [20], it was noted that given a derivable net N algebraically repre-
sented as in the above theorem with reference to a skewfield K then the derived
net N∗ may be algebraically represented as in the above theorem with reference to
the skewfield Kopp where multiplication ◦ in Kopp is defined by a ◦ b = ba where
juxtaposition denotes multiplication in K.

We note that, in the present notation, if the vector space V of points is a left
vector space over the skewfield K then the lines of the derivable net incident with
the zero vector are not necessarily always 2-dimensional left K-vector subspaces
although they are natural 2-dimensional right K -vector subspaces. However, the
Baer subplanes incident with the zero vector are left 2-dimensional left K-vector
spaces.

For the derived net, the situation is reversed. The lines of the derived net incident
with the zero vector are not always 2-dimensional left Kopp -vector subspaces but
they are natural 2-dimensional right Kopp -vector subspaces as they are always 2-
dimensional left K-subspaces. Similarly, the Baer subplanes incident with the zero
vector of the derived net are 2-dimensional left Kopp-vector spaces as they are the
lines of the original net incident with the zero vector which are 2-dimensional left
K-vector subspaces.

Since we would like to represent the lines of our derivable net within the lattice
of left subspaces of a 4-dimensional left vector space, we dualize everything and note
the following:

Remark 2. Let N denote a derivable net with lines incident with the zero vector
represented in the form y = xδ for all δ in a skewfield J where the associated vector
space V is a 4-dimensional left J-space and the lines indicated are 2−dimensional
left J -subspaces.

So, the lines of N incident with the zero vector become lines in the projective
space Σ isomorphic to PG(3, J) defined as the lattice of left vector J-subspaces.

In terms of a given basis, V may also be defined as a 4-dimensional right or
left Jopp-vector space V ∗ and the lines of N∗ incident with the zero vector become
lines in the projective space Σ∗ isomorphic to PG(3, Jopp) defined as the lattice of
left vector Jopp -subspaces.

Choose a left K-basis B = {ei for i in λ} . For a vector Σxiei , xi in K for
i = 1, 2, 3, 4, a left space over Kopp may be defined as follows: u ◦Σxiei = Σxiuei =
Σ(u ◦ xi)ei. Recall that ac = c ◦ a defines multiplication “ ◦ ” in Kopp relative
to K. So, there are many ways to form a projective space PG(3, Kopp) if K is a
non-commutative skewfield.

Definition 2. Let S be any set of mutually skew lines of PG(3, K) . A vector-
transversal L to S is a line of some PG(3, Kopp) of Z(K)-projective points with the
property that L as a left Z(K)-subspace has a nontrivial vector intersection with
each line of S as a left Z(K)-subspace such that the direct sum of any two such
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intersections is L. A point-transversal to S is a line of PG(3, K) which is also a
vector-transversal.

A pseudo-regulus R = R
{L,M,N}
{U,V,W} in PG(3, K) is a set of lines (as left 2-dimensional

K -vector spaces) containing {L, M, N} with a set of points {U, V, W} of L such that
any line T which intersects L in either U, V, or W and also intersects M and N
intersects each line of R and T is contained in the set of these intersections. So,
any such line T becomes a point-transversal.

Definition 3. The corresponding net defined by a pseudo-regulus is called a pseudo-
regulus net. Often, we shall use the same notation for the pseudo-regulus and the
corresponding net.

Theorem 7. Choose any three mutually skew lines L, M, N of PG(3, K) and let
U, V, W be any three distinct points on L.

(1) Then there exists a unique pseudo-regulus R
{U,V,W}
{L,M,N} in PG(3, K) which con-

tains L, M, N and which has point-transversals intersecting L in U ,V , and W .
Furthermore, there is a unique basis such that L, M, N may be represented in the

form y = x, x = 0, y = 0, respectively where L = 〈U〉 ⊕ 〈V 〉 and W = 〈U + V 〉.

The pseudo-regulus then has the form x = 0, y = x

[
u 0
0 u

]
for all u in K.

(2) Choose any set {L∗, M∗, N∗} of three mutually skew lines of the pseudo-

regulus R
{U,V,W}
{L,M,N} . Then there exist points U∗, V ∗, W ∗ on L∗ such that R

{U∗,V ∗,W∗}
{L∗,M∗,N∗} =

R
{U,V,W}
{L,M,N}.

(3) Any pseudo-regulus net is a derivable net.

Proof: Consider the associated 4-dimensional left K-vector space V . Choose
a basis for L as 〈U, V 〉 . Then W = αU + βV for α, β in K. Choose U∗ = αU
and V ∗ = βV . Hence, projectively, we may assume without loss of generality
that W = U + V . Represent V4 = M ⊕ N , then there exist unique elements
mu, mv of M and nu, nv of N such that U = mu + nu and V = nv + nu. Then
W = U + V = (mu + nu) + (mv + nv) = ((mu + mv) = mw) + ((nu + nv) = nw). It
is immediate that {mu, mv} is a basis for M and {nu, nv} is a basis for N .

Now form TU = 〈mu, nu〉, TV = 〈mv, nv〉, TW = 〈mw, nw〉. Clearly, TU ∩L = 〈U〉,
TV ∩L = 〈V 〉 and TW ∩L = 〈W 〉. Choose a basis {mu, mv, nu, nv} for V4. In terms
of this basis, V4 = {(x1, x2, y1, y2) | xi, yi ε K for i = 1, 2}. Let x = (x1, x2) and
y = (y1, y2). Then L, M , N are y = x, y = 0, x = 0 respectively.

Furthermore, TU = {(x1, 0, y1, 0) | xi ε K for i = 1, 2}, TV = {(0, y1, 0, y2) |
yi ε K for i = 1, 2} and TW = {(x1, x1, y1, y1) | x1, y1 ε K}. It follows that any

component of the pseudo-regulus is of the form y = x

[
a b
c d

]
for a, b, c, d in K

and the intersection with TU , TV and TW shows that a = d = u and b = c = 0.

Let the pseudo-regulus R be represented in the form x = 0, y = 0, y = x

[
u 0
0 u

]
for u ε λ ⊆ K. Now in order that TU is contained in {TU ∩ Z | z ε R}, we have
{(x1, 0, x1u, 0) | x1ε K} = TU ∀ u ∈ λ. It clearly follows that this forces λ = K
so that the pseudo-regulus has the required form. It follows immediately that any
pseudo-regulus is a derivable partial spread.
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The derivable net R defined by x = 0, y = x

[
u 0
0 u

]
∀ u ∈K has Baer subplanes

ρa,b = {(aα, bα, aβ, bβ) ∀ α, β ∈ K} and (a, b) 6= (0, 0) and by such a choice of
basis for the vector space, we see that there are at least three 2-dimensional Kopp-
subspaces which are vector-transversals which are also point-transversals (lines of
PG(3, K)), namely ρ0,1, ρ1,0 and ρ1,1 . Note that if Z(K) is isomorphic to GF (2),
there are exactly three lines of PG(3, K) which are point-transversals to this net.

Now assume that there is another pseudo-regulus with these conditions. Assume
that exist three point-transversals γ0, γ1, γ2 (2-dimensional left K-subspaces) such
that γo ∩ L = U, γ1 ∩ L = V and γ2 ∩ L = W . Assume that with respect to a basis
{e1, e2, e3, e4}, L is y = x and with respect to a basis {f1, f2, f3, f4} we have 〈f3〉 = U,
〈f4〉 = V , and 〈f3 + f4〉 = W . Then it follows that x1e1 + x2e2 + x1e3 + x2e4 and
y1f1 +y2f2 +y1e3 +y2e4 are both in L so that we must have x1(e1− f1)+x2(e2− f2)
∀ xi ∈ K, i = 1, 2 is in M ∩N which implies that e1 = f1 and e2 = f2.

In other words, any two sets of point-transversals of three elements to {L, M, N}
which intersect L in the same set of points are identical.

So, a second pseudo-regulus R′ sharing the same three point-transversals must

have the same basic form x = 0, y = x

[
u 0
0 g(u)

]
where g is some function on

K such that g(0) = 0 and g(1) = 1. However, ρ1,1 ∩ (y = x

[
u 0
0 g(u)

]
) =

{(α, α, αu, αg(u)} which is incident with ρ1,1 ⇐⇒ g(u) = u ∀ u ∈ K. Hence,
R′ = R. This proves (1).

We have noted that there are at least three lines of PG(3, K) which are point-

transversals to the pseudo-regulus R
{U,V,W}
{L,M,N}. By the structure theory for derivable

nets determined in Johnson[17], there exists a collineation group of the pseudo-
regulus net which is triply transitive of the components of the pseudo-regulus and
fixes each Baer subplane incident with the zero vector and hence every vector-
transversal . Thus, there exists a collineation σ of the net which carries {L, M, N}
onto {L∗, M∗, N∗} orderwise. Choose U∗, V ∗, W ∗ as Uσ, V σ, Wσ respectively. Then
the above construction is merely a basis change so that the two pseudo-regulus nets
are identical.

Remark 3. Any pseudo-regulus in PG(3, K) has a set of transversal lines in 1− 1
correspondence with a set of cardinality Z(K) + 1 .

We note that since the vector-transversals define Baer subplanes of the net inci-
dent with the zero vector, it is not necessarily true that every Baer subplane incident
with the zero vector intersects each component in a 1 -dimensional left K-subspace
(point of PG(3, K)).

In fact, the point-transversals are determined by any one intersection.

Corollary 8. Let R be any pseudo-regulus in PG(3, K). If a vector-transversal
intersects some line of R in a point (a 1-dimensional left K-space) then the vector-
transversal is a point-transversal (line).

Proof: We may represent R in the standard form x = 0, y = x

[
u 0
0 u

]
∀ u ∈ K.

The vector-transversals are exactly the Baer subplanes ρa,b . Suppose ρa,b intersects
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x = 0 in a 1-dimensional left K-space. Then, it follows that the intersection is
{(0, 0, aα, bα) ∀ α in K}. However, this is a 1-dimensional left K-space if and only

if a and b are in Z(K) which implies that the intersection with y = x

[
u 0
0 u

]
which

is {(aα, bα, aαu, bαu) ∀ α ∈ K} is a 1-dimensional left K-space. Similarly, if any
such intersection {(aα, bα, aαu, bαu) ∀ α ∈ K} is a 1-dimensional left K-space then
a and b are in Z(K) so that all intersections are 1-dimensional left K-spaces.

This also proves the following well-known corollary.

Corollary 9. If K is a field then there is a unique regulus containing any three
mutually skew lines L, M , and N .

Proof: Choose any three points on L and construct the corresponding regulus net.
Any vector-transversal is a point-transversal and corresponds to a Baer subplane of
the net. As any three points on L correspond to unique Baer subplanes of this
regulus net, it follows that the choice of three points on L is arbitrary.

To illustrate that the previous corollary is not necessarily valid for pseudo-reguli,
suppose K is a skewfield such that Z(K) ' GF (2) but K is not isomorphic to GF (2).
Then, the above result shows that for any three distinct points U, V, W on a line
L of PG(3, K), there is a unique pseudo-regulus R

{U,V,W}
{L,M,N} containing {L, M, N}.

Furthermore, there are exactly three Baer-transversals which are point-transversals
to this pseudo-regulus. So, take any three distinct points U∗, V ∗, W ∗ on L such
that {U, V, W} 6= {U∗, V ∗, W ∗}. Then, it is not possible that R

{U,V,W}
{L,M,N} is equal to

R
{U∗,V ∗,W∗}
{L,M,N} .

Remark 4. There exist skewfields K such that there are infinitely many pseudo-
reguli that share any three mutually skew lines in PG(3, K) .

Now suppose that D is a pseudo-regulus net represented in standard form. Sup-
pose that a subplane ρa,b intersects x = 0 in {(0, 0, aβ, bβ) ∀β ∈ K}. Assume that
a and b are not both in Z(K). Choose the vector (0, 0, a, b) and let 〈(0, 0, a, b)〉 = U
denote the left 1-dimensional K-subspace generated by (0, 0, a, b). Assume that
{x = 0, M, N} is a set of skew lines in PG(3, K) which is not in D. Choose any

other points V, W of x = 0 and form R
{U,V,W}
{x=0,M,N} = R. Then R and D are pseudo-

reguli which share at least one line but do not have the property that the vector-
transversals to the two pseudo-reguli partition x = 0 in the same set of sublines.
We shall be interested in situations where there is such a partition and to this end,
we formulate the following definition.

Definition 4. Let D1 and D2 be any two pseudo-regulus nets whose union defines
a partial spread in PG(3, K) that share either one or more components. Assume
that on one of the common components L there exists two points of PG(3, K) (1
-dimensional left K-subspaces) which are in point-transversals to D1 and D2.

Any two pseudo-reguli sharing one or more two lines whose nets satisfy the above
property shall be said to be normalizing. Furthermore, any set of pseudo-reguli shar-
ing one or more lines each pair of which satisfies the above property with respect to
the same two points shall be said to be normal set. Any such point shall be said to
be a normal point.
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Proposition 10. (1) Two normalizing pseudo-reguli in PG(3, K) share one or two
lines.

(2) If two normalizing pseudo-reguli share exactly one line then there is an elation
group with axis the common line which acts regularly on the remaining lines of
each pseudo-regulus. Furthermore, the vector-transversals to each pseudo-regulus
net induce the same partition on this common line.

(3) If two normalizing pseudo-reguli share at least two lines then there is a ho-
mology group with axis and coaxis the two common lines which acts regularly on the
remaining lines of each pseudo-regulus. Furthermore, on one of the common lines,
the vector-transversals to the various pseudo-reguli induce the same partition on this
line.

Proof: Assume the hypothesis of (2). By appropriate choice of coordinates, any

given pseudo-regulus may be brought into the form x = 0, y = x

[
u 0
0 u

]
∀ u ∈

K. Let D1 have this standard form. We assume that x = 0 is the common line.
The Baer subplanes incident with the zero vector are πa,b = {(aα, bα, aβ, bβ) ∀ α, β
∈ K}. Note the Baer subplanes which are transversal lines are πa,b where both a
and b are in Z(K). Furthermore, we may assume that the two 1-dimensional left K-
subspaces on x = 0 which belong to transversal lines of each of the two pseudo-reguli
have the general form 〈(0, 0, 1, 0)〉 and 〈(0, 0, 0, 1)〉 . Note that the Baer subplanes
of D1 containing the indicated 1-dimensional left K-subspaces are π1,0 and π0,1

respectively.
Assume that y = xTi for i in λ and x = 0 are the lines of the second pseudo-

regulus net D2.
Select two distinct values c, d of λ and change bases by the mapping (x, y) →

(x,−xTc + y).
This mapping fixes x = 0 pointwise and carries y = xTc onto y = 0. Now

change bases again by the mapping (x, y) → (x(Td − Tc), y). It follows, after the
basis change, that the components of the second pseudo-regulus net are x = 0, y =
x(Td − Tc)

−1(Ti − Tc). In particular, x = 0, y = x, y = 0 are components of the
second net D2. Since x = 0 is fixed pointwise by both of the above basis changes,
it follows that there are two transversal lines L, M to D2 intersecting x = 0 in
〈(0, 0, 0, 1)〉 and 〈(0, 0, 1, 0)〉 respectively such that L ∩ (y = 0) = 〈(m, n, 0, 0)〉 and
M ∩ (y = 0) = 〈(s, t, 0, 0)〉. Since L and M both intersect y = x in a 1−dimensional
left K-subspace, it follows that m = 0 = t. Hence, L and M are π0,1 and π1,0

respectively. It then easily follows since D2 is a derivable net with partial spread
in PG(3, K) that the components of the net have the general form x = 0, y =

x

[
uσ 0
0 u

]
∀u ∈ K and σ an automorphism of K. However, there is at least a

third transversal line to the derivable net. Since the Baer subplanes of the net in
question now have the form ρa,b = {(aασ, bα, aβσb, β)} then there exist a, b such that
ab 6= 0 and a and b are in Z(K) so it must be that σ = 1. Hence, the set of images

x = 0, y = 0, y = x(Td − Tc)
−1(Ti − Tc) is equal to x = 0, y = 0, y = x

[
u 0
0 u

]
∀ u

∈ K. Thus, Ti = Tc + (Td − Tc)uI ∀ u ∈ K. To prove part (2), it suffices to show
that Td − Tc = voI for some vo in K. Since x = 0 is fixed pointwise, it would then
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also follow that the vector-transversals to both pseudo-regulus nets share the same
points on x = 0.

Hence, we have a partial spread x = 0, y = x

[
u 0
0 u

]
∀ u ∈ K and y =

x(Tc + (Td − Tc)vI) ∀ v ∈ K.

Let Td =

[
a1 b1

c1 d1

]
and Tc =

[
a2 b2

c2 d2

]
. It then follows that all matrix differ-

ences are nonsingular or zero so that we must have[
a2 + (a1 − a2)v − u b2 + (b1 − b2)v

c2 + (c1 − c2)v d2 + (d1 − d2)v − u

]

is nonsingular ∀ u, v ∈ K. Assume that (b1 − b2) 6= 0. Then choose v so that
b2 + (b1 − b2)v = 0. Then there exists a u ∈ K such that a2 + (a1 − a2)v − u = 0.
This is a contradiction so b1 = b2 and similarly c1 = c2.

Note that if c2 = 0 then choosing u = a2 shows the matrix difference to be
singular. Hence, c2d2 6= 0. Also, since c1 = c2 and Td − Tc is nonsingular, it follows
that a1 − a2 6= 0.

Then, for each u in K, we may choose v in K so that a2 + (a1 − a2)v − u = 1.
This leaves us with the matrix[

1 b2

c2 1− a2 + d2 + ((d1 − d2)− (a1 − a2))v

]
.

Then, in order that the matrix be nonsingular, we must have

b2 − c−1
2 (1− a2 + d2 + ((d1 − d2)− (a1 − a2))v) 6= 0∀v ∈ K.

Clearly, this forces (d1 − d2)− (a1 − a2) = 0.

Hence, Td−Tc =

[
a1 − a2 0

0 a1 − a2

]
. Thus, there is an associated elation group

E of the form 〈
1 0 u 0
0 1 0 u
0 0 1 0
0 0 0 1

 ∀ u ε K

〉
.

Assume the conditions of (3). Let D1 be represented in the form

x = 0, y = x

[
u 0
0 u

]
∀u ∈ K

and choose the two common components to be x = 0, y = 0. Let D2 have com-
ponents y = xTi and x = 0, y = 0. Further, assume the two 1−dimensional left
K subspaces lie on x = 0 and are < (0, 0, 1, 0) > and < (0, 0, 0, 1) >. Choose
a new basis by (x, y) → (xTd, y). Then there are Baer subplanes in the image of
D2 which are 2-dimensional left K-subspaces that share x = 0, y = 0, y = x and
such that the subplanes intersect x = 0 in 〈(0, 0, 1, 0)〉, and 〈(0, 0, 0, 1)〉. It follows,
similarly as in the previous argument, that the two Baer subplanes have the form
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〈(1, 0, 0, 0), (0, 0, 1, 0)〉 and 〈(0, 1, 0, 0), (0, 0, 0, 1)〉. Hence, as before, D2 is now rep-

resented as x = 0, y = 0, y = x

[
u 0
0 u

]
∀ u ∈ K − {0}. Thus, Ti = TduI . Hence,

there is an associated homology group H of the form

〈
1 0 0 0
0 1 0 0
0 0 u 0
0 0 0 u

 ∀ K − {0}
〉

.

Since y = 0 is pointwise fixed by the basis change above, this proves (3). Further-
more, if D2 shares at least three components with D1 then this will force Td = voI
so that the two pseudo-regulus nets are identical. This proves (1).

Thus, we have the following result:

Theorem 11. (1) Let π be a translation plane with spread in PG(3, K), for K a
skewfield, which is a union of a normal set of pseudo-reguli that share exactly one
line L. Then there is an elation group E with axis L of π which acts regularly on
lines 6= L of each pseudo-regulus.

(2) Let π be a translation plane with spread in PG(3, K) which is a union of a
normal set of pseudo-reguli that share exactly two lines L and M . Then there is a
homology group H of π with axis and coaxis L and M which acts regularly on lines
6= L or M of each pseudo-regulus .

In a following section, we discuss what are called “skew-Hall” planes which are
defined by deriving translation planes which, although are not necessarily always
Desarguesian, are related to translation planes admitting families of reguli in their
spreads. Also, because of the connection with flocks of quadratic cones and flocks
of hyperbolic quadrics in PG(3, K), for K a field, we formulate the following defi-
nitions.

Definition 5. Let π be a translation plane with spread in PG(3, K) , for K a
skewfield.

If the spread for π is a normal set of pseudo-reguli sharing exactly one line L,
we shall call π a conical translation plane.

If the spread for π is a normal set of pseudo-reguli sharing exactly two lines M
and N , we shall call π a ruled translation plane.

Theorem 12. (1) If π is a conical translation plane then the spread for π may be

represented in the form x = 0, y = x

[
u + g(t) f(t)

t u

]
∀ t, u ∈ K and for g, f

functions on K.
(2) f and g are functions on K such that x2t + xg(t)− f(t) = φx(t) is bijective

∀ x in K ⇐⇒ the functions define a spread of the form (1).
(3) If π is a ruled translation plane then the spread for π may be represented in

the form

x = 0, y = 0, y = x

[
v 0
0 v

]
, y = x

[
g(t)u f(t)u
tu u

]
∀t, v, u, ut 6= 0 ∈ K
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where g, f functions on K.
(4) If π is a conical translation plane with line L and also a ruled translation plane

with lines L and M such that two normal points (1-dimensional left K-subspaces)
lie on L then the spread for π may be represented in the form

x = 0, y = x

[
u + gt ft

t u

]
∀t, u ∈ K

where g and f are constants in K.

Proof: If π is a conical translation plane, choose coordinates so that the common

component is x = 0, and one of the pseudo-reguli has the form x = 0, y = x

[
u 0
0 u

]
∀ u ∈ K. We shall refer to this as the standard form. It follows from the above
results that each remaining pseudo-regulus has the form x = 0, y = x(S + uI ) for
a set {S} of 2 × 2 K-matrices. Recall that the set of components must be of the
general form

x = 0, y = x

[
G(t, u) F (t, u)

t u

]
∀t, u ∈ K

and for functions G and F from K × K to K. Since the group E exists as a
collineation group, the result (1) now directly follows.

If π is a ruled translation plane, choose coordinates so that the two common
components are x = 0, y = 0 and that the two 1-dimensional left K -subspaces
referred to in the statement lie on x = 0. Choose one pseudo-regulus to have the
standard form. Since, the plane now admits the group H listed previously, the result
(3) now follows immediately.

If π is a ruled translation plane of the type listed in statement (4) , use the form
of (1) and apply the group H to obtain the conclusion that

g(t)v = g(tv) and f(t)v = f(tv) ∀t, v 6= 0 ∈ K.

Hence, letting g(1) = g and f(1) = f , (4) is now clear.
Assume the conditions of (2). We have that

x = 0, y = x

[
u + g(t) f(t)

t u

]
∀t, u ∈ K

and for g, f functions on K defines a spread⇐⇒, for each nonzero vector (a, b, c, d)
such that not both a and b zero, there exists a unique pair (u, t) such that

a(u + g(t)) + bt = c and

af(t) + bu = d.

If a is zero then there is a unique such pair, namely (b−1d, b−1c). If b = 0 then since
f(t) is bijective, the unique pair is (f−1(a−1d), a−1c− g(f−1(a−1d)). If ab 6= 0 then

b−1af(t)− g(t)− a−1bt = b−1d− a−1c ⇐⇒
z2t + zg(t)− f(t) = a−1d− a−1ba−1c for z = a−1b.
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Hence, if φz is bijective then, for any given d,c, there is a unique t in K that
satisfies the above equation and defining

u = −a−1b− a−1bt− g(t) = b−1d + b−1af(t),

there is a unique pair (u, t) which satisfies the first system of equations.

3 Point-Baer subplanes in spreads of PG(3,K).

We first recall some results of Jha and Johnson [15].

Definition 6. Let N denote an affine net containing an affine subplane πo. We
shall say that πo is a point-Baer subplane if and only if every point of the projective
extension of N is incident with a line of the projective extension of πo.

Similarly, a line-Baer subplane is a subplane such that every line of the projective
extension of N is incident with a point of the projective extension of πo.

A Baer subplane is a subplane which is both point-Baer and line-Baer.

A planar collineation of an affine net is said to be a point-Baer collineation if
its fixed plane is a point-Baer affine subplane.

Definition 7. Under the assumptions of the previous definition, a point-Baer col-
lineation σ of the net N is called a point-Baer perspectivity with axis Fixσ = πσ if
and only if N admits a partition of its affine points by a collection C of σ-invariant
point-Baer subplanes of N such that each plane of C different from πσ meets πσ
in at most one point. C is called the center of the Baer perspectivity σ and the
members of C are called the central planes of σ. If πs lies in C then σ is said to be
a point-Baer elation and is called a point-Baer homology otherwise.

Remark 5. If σ is a collineation of an affine plane then Fix σ is a Baer subplane
if and only if Fixσ is either point-Baer or line-Baer.

Proof: Jha and Johnson [14] Theorem 14.

Definition 8. Let D denote a vector space net which contains a point-Baer affine
plane πo sharing the same parallel classes. Let Ko denote the kernel of πo. A full
Ko-point-Baer elation group is a collineation group of the net which fixes πo pointwise
which may be identified with 〈[

I γ
0 I

]
∀γ ∈ Ko

〉
.

A full Ko-point-Baer homology group is a group of the net which fixes πo pointwise
which may be identified with〈[

I 0
0 γ

]
∀ γ ∈ Ko − {0}

〉
.
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Theorem 13. (Jha and Johnson [15]). Let π be a translation plane with kernel K.
Assume that σ is a point-Baer collineation and Fixσ = πo. Let Ko denote the kernel
of πo. Let G denote a collineation group in the translation complement which fixes
πo pointwise.

Then πo is a K-subspace in any of the following situations:
(i) K is a field and | G |> 2.
(ii) The characteristic is not 2 and σ is a point-Baer elation.
(iii) G is a full Ko-point-Baer elation group and |Ko| > 2
(iv) Lo is a subskewfield of Ko and G is a full Lo-point-Baer homology group of

order > 2.

Theorem 14. (Jha and Johnson [15]). Let S be a spread in PG(3, K) for K a
skewfield. Let π denote the corresponding translation plane. Let σ be a point-Baer
collineation where Fixσ = πo and Ko is the kernel of πo. Let G denote a collineation
group in the translation complement which fixes πo pointwise.

If G is a full Ko-point-Baer elation group of order > 2 or a full Ko -point-Baer
homology group of order > 2 then the kernel of π is K, Ko is isomorphic to K and
K is a field.

Specifically, we are interested in the nature of the point-Baer elation and point-
Baer homology groups. Most of the following theorem follows from more general
results of Jha and Johnson in [15].

Theorem 15. Let π be a translation plane with spread in PG(3, K), for K a skew-
field. Note that the following are considered the kernel mappings:

(x1, x2, y1, y2)→ (kx1, kx2, ky1, ky2) for k ∈ K − {0}

whereas linear collineations may be represented by 4×4 matrices acting on the right
and components have the general form x = 0, y = xM where M is a 2× 2 matrix
acting on the right.

(1) Let π admit a nontrivial point-Baer elation group B which fixes the point-
Baer subplane πo pointwise. Let the kernel of πo be Ko.

If B is a full Ko-point-Baer elation group of order > 2 then πo is a K-space, K
is a field isomorphic to Ko and B may be represented in the form

〈
1 β 0 0
0 1 0 0
0 0 1 β
0 0 0 1

 ∀β ∈ K

〉
.

(2) If π admits a nontrivial point-Baer homology group C then let FixC = πo
have kernel Ko. If C acts as the full Ko-point-Baer homology group of the net
containing FixC and has order > 2 then K is a field isomorphic to Ko and C may
be represented in the form

〈
λ 0 0 0
0 1 0 0
0 0 λ 0
0 0 0 1

 ∀λ ∈ K∗
〉

.
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Note, in this case, there is another point-Baer subplane sharing its infinite points
with FixC and invariant under C. This second point-Baer sublane is called coFixC.

(3) If L is any 2-dimensional left K -subspace which is disjoint from FixB then
the orbit of L under B union FixB is a pseudo-regulus net in PG(3, K).

(4) If L is any 2-dimensional left K-subspace which is disjoint from FixC or
coFixC then the orbit of L under C union FixC and coFixC is a pseudo-regulus net
in PG(3, K).

Proof: (1) and (2) follow from Jha and Johnson [15].
Now assume the conditions of (3).
Change coordinates so that FixB is represented by x = 0. B now has the

following form

〈
1 0 u 0
0 1 0 u
0 0 1 0
0 0 0 1

 ∀u ∈ K

〉
.

The set of B -images of y = 0 is y = x

[
u 0
0 u

]
∀ u ∈ K. It follows immediately from

Johnson [17] that this defines a derivable net. We may assume that a 2-dimensional
subspace disjoint from x = 0 has the general form y = xN where N is a 2×2 matrix

(possibly singular). By a coordinate change of the form

[
I −N
0 I

]
, we may take

the 2-dimensional subspace as y = 0 without changing the new form of the group
B. This then proves (3). (See also Jha-Johnson [12]

Assume the conditions of (4). Change bases over the prime field so that the fixed
subplanes have the form x = 0, and y = 0. The group now has the form

〈
u 0 0 0
0 u 0 0
0 0 1 0
0 0 0 1

 ∀u ∈ K∗
〉

.

Any 2-dimensional K-subspace disjoint from x = 0 and y = 0 has the form

y = xN where N is a nonsingular 2 × 2 matrix. Change bases by

[
I 0
0 N−1

]
.

This basis change leaves the new form of the group invariant and the images of the

2-dimensional subspace are y = x

[
u 0
0 u

]
∀ u ∈ K∗.

By the above remarks, we have the proof to (4).

4 Partial flocks of deficiency one.

We now apply the results of the previous section to PG(3, K), where K is a field.

Definition 9. Let Co be a conic in a plane of PG(3, K), for K a field. Let vo be a
point exterior to Co and form the quadratic cone.
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A partial flock of the quadratic cone is a set of mutually disjoint conics which lie
in the cone.

A partial flock of deficiency one is a partial flock such that for each line of the
cone, the union of the conics cover all but exactly one of the nonvertex points.

Theorem 16. (1) The set of partial flocks of a quadratic cone of deficiency one in
PG(3, K), for K a field, is equivalent to the set of translation planes with spreads
in PG(3, K) that admit a point-Baer elation group B which acts transitively on
nonfixed 1-dimensional K-subspaces of components of the fixed point subplane.

(2) A partial flock of a quadratic cone of deficiency one in PG(3, K), for K a
field, may be extended to a flock ⇐⇒ in the corresponding translation plane which
admits a point-Baer elation group B as in (1) the net defined by the point-Baer
affine plane FixB defines a regulus in PG(3, K).

Proof: Assume that such a translation plane π exists. We point out that when we
use the term Baer subplane of a regulus net we are not asserting that the subplane
indicated is a Baer subplane of any other net containing the regulus net as this is
not always the case in the infinite case.

Since K is a field, the point-Baer subplane is always a 2-dimensional K -subspace.
Hence, the group has the following representation:

〈
1 β 0 0
0 1 0 0
0 0 1 β
0 0 0 1

 ∀β ∈ K

〉
.

The components of the net N containing πo have the basic form

x = 0, y = x

[
u b(u)
0 u

]
∀u ∈ K

and b a function on K.
Since the kernel may be given by the mappings

β 0 0 0
0 β 0 0
0 0 β 0
0 0 0 β

 ∀β ∈ K

then the components of the spread which are not in the net N have the following
general form:

y = x

[
G(t, u) F (t, u)

t u

]
∀t 6= 0, u ∈ K

where G and F are functions of K ×K.
Change coordinates by (x1, x2, y1, y2)→ (x1, y1, x2, y2) so that the group has the

following form: 〈
1 0 β 0
0 1 0 β
0 0 1 0
0 0 0 1

 ∀β ∈ K

〉
.
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The components which are not in the net have the form:

y = x

[
−G(t, u)t−1 F (t, u)−G(t, u)t−1u

t−1 t−1u

]
∀t 6= 0, u ∈ K.

Hence, the components not in N have the general form

y = x

[
G∗(t, u) F ∗(t, u)

t u

]
∀t 6= 0, u ∈ K

for functions G∗ and F ∗ on K ×K.
Since the plane admits the group listed as above, it follows that G∗(t, u) = g(t)+u

and G∗(t, u) = f(t) for functions g, f on K.
It is now clear that there is a set of regulus nets Rt with partial spread x = 0

(which is the new equation for πo) and

y = x

[
g(t) + u f(t)

t u

]
∀u ∈ K and t fixed in K − {0}.

Note: We are not claiming that the matrices involved are nonsingular. However,
we may select one of the matrices and change bases without changing x = 0 so that
this matrix is zero.

The resulting partial spread has the form: Rt with partial spread x = 0 which
is the new equation for πo and

y = x

[
g1(t) + u f1(t)

t u

]
∀u ∈ K and t fixed in K − {to}, for to 6= 0

where the matrices and differences are either zero or nonsingular.
Now given any 1-dimensional K-subspace X. If X is in the original net N then

the B-orbit of X generates a 2-dimensional K-subspace which is a component of the
net and which intersects πo in a 1 -dimensional subspace. If X is not in the original
net N then the B -orbit of X generates a 2-dimensional K-subspace which again
intersects πo in a 1-dimensional K-subspace.

Take the set of 2-dimensional K-subspaces each of which is invariant under B
and each of which intersects πo in the same 1-dimensional K-subspace Po. Then,
there is exactly one which defines a component of the net N . It then follows directly
that any other such 2 -dimensional subspace is a Baer subplane of one of the regulus
nets Rt.

Using the Klein quadric, it is not hard to see that corresponding to a partial
flock of a quadratic cone in PG(3, K), there is a partial spread in PG(3, K) which
is a union of a set of regulus partial spreads which share a common component.
Furthermore, the points of the lines of the cone which are covered by the conics
of the partial flock correspond to Baer subplanes of the corresponding regulus nets
defined by the reguli in PG(3, K). The correspondence is such that the nonvertex
points on a given line of the cone correspond to the set of Baer subplanes which
share a given 1-dimensional K-subspace on the common component of the partial
spread.
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We consider the following partial flock of a quadratic cone in PG(3, K) defined
by equation xox1 = x2

2 in the plane x3 = 0 given by homogeneous coordinates
(xo, x1, x2, x3) with vertex (0, 0, 0, 1):

The planes containing the conics of intersection are:

ρt : xot− x1f(t) + x2g(t) + x3 = 0.

It follows easily that {ρt ∀ t 6= 0 } defines a partial flock of the quadratic cone
(see for example Jha-Johnson [12]).

Since the points on the lines of the cone correspond to Baer subplanes incident
with the zero vector of the regulus nets and each of these is a 2 -dimensional K-
subspace which is invariant under B, and for each 1 -dimensional K -subspace on πo,
there is exactly one component containing this 1-dimensional K-subspace, it follows
that there is exactly one point on each line of the cone which is not covered by the
partial flock. This shows that the deficiency is one.

Now assume that there is a partial flock F of a quadratic cone of deficiency one in
PG(3, K). Again, note that there is a corresponding partial spread PF in PG(3, K)
which is the union of a set of reguli that share a common component and admit a
group B. The points on a line of the cone which are covered by the partial flock
correspond to Baer subplanes of the regulus nets of the translation net corresponding
to the partial spread. Hence, for each line of the cone, there is exactly one point
which then corresponds to a 2-dimensional K-subspace which is B-invariant in the
corresponding vector space (which is the ambient space of the translation plane)
and which is not a Baer subplane of one of the regulus nets. The points on the line
of the cone correspond to the set of all B-invariant 2 -dimensional K-spaces which
intersect the common component L in a fixed 1-dimensional K-subspace.

Hence, for each 1-dimensional K-subspace Z of L, there is a unique 2-dimensional
K-subspace πZ containing Z which is B-invariant which does not lie as a Baer
subplane in one of the regulus nets of the partial spread. So, there is a set R =
{πZ ; Z is a 1-dimensional K-subspace of L} of B-orbits which then must consist
of mutually disjoint 2-dimensional K-subspaces. It also clearly follows that these
subspaces are disjoint from the partial spread excluding the common component L.

Clearly, R ∪ (PF − L) covers the set of all 1-dimensional K-subspaces and is a
set of 2-dimensional K-subspaces. Hence, we have a translation plane with spread
in PG(3, K) and which admits B as a collineation group that fixes L pointwise.
Since L is a 2-dimensional K-subspace, L becomes an affine plane of the new trans-
lation plane Σ. We note that L defines a line-Baer subplane of Σ which admits a
collineation group B fixing it pointwise. We have also noted that this implies that
the subplane is Baer and hence point-Baer. This completes the proof of part (1) of
the theorem.

If the partial flock can be extended to a flock then there is a translation plane π+

corresponding to the flock by Jha-Johnson [12] which admits B as an elation group.
By (1), there is a translation plane π corresponding to the partial flock which admits
B as a point-Baer group and which shares all components with π+ which do not lie
in the net N defined by the components of FixB. Let N+ denote the subnet of π+

which replaces N . We notice that the components of N are generated by B -orbits.
Moreover, it follows that N+ is a regulus net so that B -orbits of 1-dimensional K-
subspaces within N+ generate the Baer subplanes of N+ which are the components
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of N . Hence, N is the opposite regulus net of N+.
Now assume that the plane π is derivable with net N . Then the net contains at

least three point-Baer subplanes so it follows from the preceding section that each
of the point-Baer subplanes is a K-subspace. This means the net N is a regulus net.
By Johnson [24], derivation of this net determines a translation plane with spread
in PG(3, K) which admits an elation group B such that any component orbit union
the axis of the group forms a regulus net. It follows from Jha-Johnson [12] that the
derived translation plane corresponds to a flock of a quadratic cone which extends
the original partial . This completes the proof of the theorem.

Remark 6. If one assumes that there is a partial flock of a quadratic cone which
has the property that the union of the conics cover all but at most one nonvertex
point on each line then either the partial flock is either a flock or a partial flock of
deficiency one.

Proof: Assume that partial flock is not a flock. Then there is a partial spread
P admitting an elation group E such that each component orbit union the axis of
E is a regulus net. Furthermore, the assumption implies that there is a subset W
of 1-dimensional K-subspaces of FixE such that for each element ω of W there is
a unique 2-dimensional K -subspace which is E −invariant which is not covered by
the partial spread. Remove W from FixE and adjoin the set S of these E-invariant
2-dimensional K-subspaces. It follows that {P −W} ∪ S is a spread in PG(3, K).
If W consists of exactly one 1-dimensional K -subspace Z then FixE remains a
component of the new translation plane because Z is removed then readjoined with
the 2-dimensional E-invariant subspace of S. If W has more than one element then
FixE cannot be a component but is a 2-dimensional K-subspace so defines a line-
Baer subplane of the translation plane. However, E is now a collineation group
which fixes the line-Baer subplane FixE pointwise so that, by the previous remark,
FixE is a Baer subplane and hence a point-Baer subplane.

In either case, the partial spread has been extended to a spread. In Jha-Johnson
[13], it is shown that if one line of the cone is completely covered by the conics then
the partial flock is a maximal partial flock. Hence, if there is at least one line of the
cone such that all but one points are covered and for every line at most one point is
uncovered then there is a unique point on each line of the cone which is uncovered.
Hence, the partial spread has deficiency one.

Definition 10. Let H be a ruled quadric of the form x1x4 = x2x3 in PG(3, K)
represented by homogeneous coordinates (x1, x2, x3, x4). A partial flock of H is a set
of mutually disjoint conics which lie in H.

A partial flock of deficiency one is a partial flock such that on any line of either
ruling, there is exactly one point which is not covered by the conics of the flock.

Theorem 17. (1) The set of partial flocks of ruled quadrics in PG(3, K), for K
a field, of deficiency one is equivalent to the set of translation planes with spreads
in PG(3, K) which admit a point-Baer homology group B which is transitive on the
nonfixed 1-dimensional K -subspaces on any component of FixB.

(2) A partial flock of deficiency one of a ruled quadric may be extended to a flock
⇐⇒ the net defined by FixB of the corresponding translation plane is a regulus net.
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Proof: A partial flock of a ruled quadric in PG(3, K) gives rise to a partial spread
in PG(3, K) which is the union of a set of reguli that share two lines. Furthermore,
a flock corresponds to a translation plane whose spread has the same property. In
addition, the translation plane admits an affine homology group B each of whose
components orbits union the axis and coaxis is a regulus net. This is also true of
any such corresponding partial spread.

In general, the Baer subplanes of the regulus nets correspond to points on the
ruling lines. Again, we are not necessarily assuming that the subplanes are Baer
in any net other than the regulus net in question. Furthermore, the set of points
on a given ruling line correspond to the set of Baer subplanes that share a given
1-dimensional K-space on a given common component of the partial spread. The
corresponding Baer subplanes are 2-dimensional K -subspaces generated by point
orbits under B. Let the two sets of ruling lines be denoted by R+ and R−. Let J+

be a line of R+ . The points on J+ correspond to the 2-dimensional K-subspaces
which are generated by B-orbits of 1-dimensional K-subspaces which are not on
the common components L and M and which intersect on one of the common
components, say L, in a particular 1-dimensional K-subspace.

First, let π be a translation plane with spread in PG(3, K) that admits a point-
Baer homology group so there are at least two point-Baer subplanes incident with
the zero vector which share the same infinite points. By the previous section, since
K is a field, each point-Baer subplane is a K-subspace and the group B may be
represented in the form

〈
λ 0 0 0
0 I 0 0
0 0 λ 0
0 0 0 I

 ∀λ ∈ K∗
〉

.

Following Johnson [23], it follows that each component orbit disjoint from the
two subplanes πo and π1 under B union πo and π1 defines a K-regulus in PG(3, K).

Let N denote the net containing the two point-Baer subplanes. It then follows
that corresponding to the partial spread {π − N} ∪ {L, M} is a partial flock since
{π−N}∪{L, M} admits the appropriate “homology group” with axis πo and coaxis
π1 if FixB = πo and {L, M} = {πo, π1}.

The 2-dimensional K-subspaces which are generated by point orbits under B
intersect πo and π1 in 1-dimensional K-subspaces. Each such point-orbit of a point
which is not on a component of N lies in a Baer subplane of a K-regulus net which
corresponds to a conic. For a given 1-dimensional K-subspace of πo, there is a
unique B-orbit 2 -dimensional K-subspace which is not in one of the regulus nets.
This unique B-orbit is the component of N containing the subspace in question.
This component also nontrivially intersects π1. Hence, it follows that for each line
of either ruling of the ruled quadric, there is a unique point of the line which is not
covered by conics corresponding to the regulus nets of {π − N} ∪ {L, M}. Hence,
the partial spread has deficiency one.

Now assume that a partial spread has deficiency one. Then, there is a par-
tial spread of the form P ∪ {L, M} admitting a homology group B which may be
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represented in the form

〈
λ 0 0 0
0 λ 0 0
0 0 I 0
0 0 0 I

 ∀λ ∈ K∗
〉

and such that each component orbit of P union {L, M} defines a regulus in
PG(3, K).

Similarly as above, the points of the ruling lines correspond to the 2 -dimensional
K-subspaces which are B-invariant and not equal to L or M . The deficiency one
assumption implies that for each 1-dimensional K -subspace of L, there is a unique
2-dimensional K-subspace invariant under B which is not in a regulus net of the
partial spread. The union of the set S of these 2-dimensional subspaces cover both L
and M and are mutually disjoint. Form P∪S. Clearly, this partial spread completely
covers all 1-dimensional K-subspaces and consists of 2 -dimensional K -subspaces so
that a translation plane with spread in PG(3, K) is obtained. Since the components
are defined via B-orbits, B is a collineation group of the constructed translation
plane. However, now L and M are 2-dimensional K-subspaces which then define
line-Baer affine planes. Since

〈
λ 0 0 0
0 λ 0 0
0 0 I 0
0 0 0 I

 ∀λ ∈ K∗
〉

is a collineation group of the translation plane that fixes L pointwise and

〈
λ 0 0 0
0 λ 0 0
0 0 λ 0
0 0 0 λ

 ∀λ ∈ K∗
〉

defines the kernel homology group, it follows that

〈
I 0 0 0
0 I 0 0
0 0 λ 0
0 0 0 λ

 ∀λ ∈ K∗
〉

is also a collineation group of the translation plane that fixes M pointwise. We
have noted that any point-Baer or line-Baer subplane which is pointwise fixed by a
collineation is a Baer subplane. This completes the proof of part (1).

Now assume that there is a partial flock of deficiency one which may be extended
to a flock. Let π denote the translation plane admitting the point-Baer group B
and let Σ denote the translation plane corresponding to the flock. Let G denote the
regulus-inducing homology group of Σ. We note that the subplanes of Σ which are
the Baer subplanes of the regulus nets sharing two components L and M correspond
to the 2-dimensional K -spaces which are G-invariant. Hence, all of the components
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of the net N of π are now various of these subplanes of Σ. Hence, G = B. In other
words, N is a regulus net and π and Σ are derivates of each other by replacement
of N .

Conversely, if N is a regulus net in π then, by Johnson [24], it must be that
derivation by N produces a translation plane Σ and B becomes a homology group
in Σ of the correct form to produce a flock of a quadratic cone. (There are derivable
nets in infinite affine planes such that derivation of the net does not produce an
affine plane.)

Remark 7. If a partial flock has the property that the conics cover all but at most
one point of each line of a ruling class then the partial flock is either a flock or a
partial flock of deficiency one.

Proof: The proof is very similar to the proof of the corresponding remark for
partial flocks of quadratic cones and is left to the reader.

Definition 11. The translation planes corresponding to partial flocks of deficiency
one of either quadratic cones or hyperbolic quadrics shall be called deficiency one
translation planes.

4.1 Skewfields:

Actually, the above results are not stated in the most general way. We have noted
that certain point-Baer elation or point-Baer homology groups force the kernel of
an associated spread to be commutative. In particular,

Theorem 18. Let π denote a translation plane with spread in PG(3, K), for K a
skewfield.

Let πo be a point-Baer subplane with kernel Ko. Let G denote a collineation
group of π.

(1) If G is a full Ko-point-Baer elation group of order > 2 then K is a field
and there is a corresponding partial flock of deficiency one of a quadratic cone in
PG(3, K).

(2) If G is a full Ko-point-Baer homology group of order > 2 then K is a field
and there is a corresponding partial flock of deficiency one of a hyperbolic quadric
in PG(3, K).

5 Skew-Hall planes.

The finite Hall planes of order q2 originally constructed by changing multiplication in
a finite field so as to construct an associated quasifield are exactly those translation
planes obtained by the derivation of a regulus net in a Desarguesian spread in
PG(3, GF (q)). If K is a field which admits a quadratic extension K[θ] then there
are analogous infinite Hall planes constructed via Pappian spreads in PG(3, K). A
Pappian plane defines flocks of both quadratic cones and ruled quadrics in PG(3, K).

We have seen that flocks of quadratic cones or ruled quadrics are equivalent to
translation planes with spreads in PG(3, K) which are unions of reguli either sharing
one or two lines respectively.
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A regulus cannot exist in PG(3, K), for K a skewfield, unless K is a field (see
Grundhöfer [11]). However, pseudo-reguli do exist in PG(3, K) as we have seen (also
see Johnson [17]).

In this section, we consider translation planes with spreads in PG(3, K) which
are unions of pseudo-reguli sharing either one or two lines. We construct a class of
translation planes which may be derived from a translation plane which has these
properties. Because of the similarity to Hall planes, we call these skew-Hall planes.
Note that the translation planes deriving the skew-Hall planes are both conical and
ruled.

Theorem 19. Let K be a skewfield and let π denote a 4-dimensional left K -vector
space.

(1) Then the set of left 2-dimensional K-subspaces

{x = 0, y = x

[
u + ρt γt

t u

]
∀t, u ∈ K}

is a spread in PG(3, K) ⇐⇒ z2 + zρ− γ 6= 0 ∀ z ∈ K where x and y are 2-vectors.
Let πρ,γ denote the corresponding translation plane.
(2) πρ,γ is a Desarguesian plane ⇐⇒ both ρ and γ are in the center of K.
(3) πρ,γ is a semifield plane which admits the elation group

Eu =

〈
1 0 u 0
0 1 0 u
0 0 1 0
0 0 0 1

 ∀u ∈ K

〉
.

The component orbits union the axis x = 0 of E define a set Cu of pseudo-regulus
nets that share exactly the component x = 0 and each of these nets may be derived
to produce an associated translation plane.

(4) πρ,γ also admits the elation group

Tt =

〈
1 0 ρt γt
0 1 t 0
0 0 1 0
0 0 0 1

 ∀t ∈ K

〉
.

The component orbits union the axis x = 0 of E defines a set Ct of pseudo-
regulus nets that share exactly the component x = 0, and each of these nets may be
derived to produce an associated translation plane.

(5) πρ,γ also admits the homology group

H =

〈
1 0 0 0
0 1 0 0
0 0 u 0
0 0 0 u

 ∀u ∈ K∗
〉

.

The component orbits union the axis (y = 0) and the coaxis (x = 0) define a set
R of pseudo-regulus nets that share two components x = 0, y = 0 and each of these
nets may be derived to produce an associated translation plane.
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(6) For each derived translation plane, the kernel of the plane is Z(K).
In particular, if K is not a field then the plane derived from a Desarguesian plane

does not have its spread in PG(3, K) and hence cannot be considered a Hall plane
even in this case.

Also, note that if K is infinite-dimensional over Z(K) then the derived planes
are infinite-dimensional over their kernels.

Proof: By previous results, we obtain a spread⇐⇒ equation z2t+zρt−γt = φz(t)
is bijective for each z in K . Hence, we obtain a spread ⇐⇒ z2 + zρ− γ is always
nonzero for z in K.

This proves that a spread is obtained under the stated conditions.
Direct computation shows that the spread is multiplicative⇐⇒ ρ and γ ∈ Z(K)

and furthermore multiplicative inverses exist provided z2 + zρ− γ 6= 0 for z in K.
From Johnson [17], it follows easily that

x = 0, y = x

[
u 0
0 u

]
∀u ∈ K

is a derivable net and also a pseudo-regulus net in PG(3, K) (see also Johnson
[22] and the previous results on pseudo-reguli). Clearly, any nontrivial image of a
component by Eu union the axis of Eu is then a pseudo-regulus net and similarly,
any nontrivial image of a component by H union the axis and coaxis of H is a
pseudo-regulus net.

It remains to show that any nontrivial image of a component by Tt union the
axis of Tt is a pseudo-regulus net in PG(3, K). Change bases by the matrix

1 ρ 0 0
0 1 0 0
0 0 0 1
0 0 γ−1 0

 .

This turns Tt into Eu.
Although at first glance the following seems trivial, it remains to show that

when x = 0, y = x

[
u 0
0 u

]
∀u ∈ K is derived, there is a constructed translation

plane. As we mentioned previously, there are derivable nets in affine planes such
that derivation of these nets do not produce a corresponding affine plane. On the
other hand, derivation by a regulus in a spread in PG(3, H), for H a field, does
always produce an affine plane but this result cannot necessarily be used as our
spread is in PG(3, K) for K a skewfield.

In order that the constructed structure is, in fact, an affine plane, it must be
that the subplanes of this derivable net are Baer subplanes of the translation plane.
Since the net is derivable, the subplanes must be point-Baer subplanes. It remains
to show that they are also line-Baer subplanes.

The affine subplanes sharing the parallel classes incident with the zero vector are
ρa,b = {(aα, bα, aβ, bβ) ∀ α, β ∈ K} and a and b not both zero.

We note from the previous section that any left 2-dimensional K-subspace defines
a line-Baer subplane. If either a or b = 0 then ρa,b is a left 2-dimensional K-subspace.
Hence, assume ab 6= 0.
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Take any line y = x

[
u + ρt γt

t u

]
+ (c, d). It must be shown that this line

intersects ρa,b projectively. Clearly, we may assume that t 6= 0 as if t = 0 then a line
of the net containing the subplane is obtained and the line projectively intersects
the subplane.

Hence, it remains to show that there exist α, β ∈ K such that

(aα, bα, aα(u + ρt) + bαt + c, aαγt + bαu + d) = (aα, bα, aβ, bβ).

Since ab 6= 0, we obtain the following equations:

a−1(aαρ + bα)t + a−1c + αu = β,

b−1aαγt + αu + b−1d = β.

If α = 0 then there is an intersection with x = 0 and the given line at (0, 0, c, d).
Hence, if (c, d) = (aβ, bβ), there is an intersection with ρa,b otherwise not. Thus,
assume that (c, d) 6= (aβ, bβ).

Hence, there exists such α, β ⇐⇒ there is a solution to

(αρ + a−1bα− b−1aαγ)t = −(a−1c− b−1d).

Note that

(a−1c− b−1d) = 0⇐⇒ (c, d) = (aβ, bβ) for some β ∈ K.

Since we have assumed t 6= 0, there is a solution ⇐⇒ ( αρ + a−1bα − b−1aαγ) 6=
0. Since we can only have that α 6= 0, so multiply by α−1on the left to obtain
(ρ + α−1a−1bα−α−1b−1aαγ) . Now multiply by α−1a−1bα = x on the left to obtain
the expression xρ + x2 − γ and since this is 6= 0, we obtain a solution. Hence, each
subplane ρa,b is line-Baer and hence a Baer subplane.

It remains to show that the kernel of any derived plane Π is Z(K). We may isolate

on the net x = 0, y = x

[
u 0
0 u

]
∀u ∈ K as all other nets may be transformed into

this net either by a collineation of the plane or by a K-basis change.
We note that the Baer subplanes ρa,b are components of the derived translation

plane. As these are right K-spaces but are left invariant only under Z(K) since a and
b may vary over K, this shows that Z(K) is a subfield of the kernel. If there exists an
element g such that g is not in K and in the kernel of the plane, then the skewfield
generated by K and g, 〈K, g〉, must fix all components of the translation plane
which are not in the derivable net. Since all such components are 2-dimensional K-
subspaces, this forces the components to be 1-dimensional 〈K, g〉 -subspaces. This
implies that these components may be embedded into a Desarguesian affine plane
Σ coordinatized by 〈K, g〉 .

At this point, it might be well to state a more general result on derivation.

Proposition 20. Let D be a pseudo-regulus net with components lines of PG(3, K),
for K a skewfield. Let V4 denote the associated left K-vector space.

If T is a line of PG(3, K) which as a vector subspace of V4 is contained in the
union of the components of D then T intersects each component of D and defines a
Baer subplane of the net whose infinite points are exactly those of D.
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Proof: Represent the components of D in standard form x = 0, y = x

[
u 0
0 u

]
∀

u ∈ K. Any line T is a 2-dimensional left vector space. Certainly, if K is finite then
T intersects each component of D. Hence, assume that K is infinite. T intersects
each component in a 0-dimensional or 1-dimensional K-vector subspace. Hence,
there are infinitely many components which T intersects in 1-dimensional K -vector
subspaces. Choose any three of these as x = 0, y = 0, y = x and choose a new
basis, if necessary, to preserve the standard form. Hence, relative to this basis,
T = 〈(s, t, 0, 0), (0, 0, s, t)〉 where not both s and t of K are zero. Since T is a
left 2-dimensional K -subspace, the 1-dimensional subspace Tu = 〈(s, t, us, ut)〉 for
u ∈ K must be contained in some component of D. Clearly, this component is

y = x

[
s−1us 0

0 t−1ut

]
. Thus, s−1us = t−1ut = uσ ∀ u ∈ K. So, T must intersect

each component y = x

[
uσ 0
0 uσ

]
∀ u ∈ K and since σ is an automorphism of K,

it follows that T must intersect each component of D in a 1 -dimensional vector
subspace so there is a spread induced on T which forces T to be a Desarguesian
affine Baer subplane of D whose infinite points are exactly those of D.

Now we return to the proof of the statement above.

Let D denote the derivable net of the original translation plane and let M denote
the complementary net. Then π = πρ,γ = D ∪M and Σ = N ∪M for some net
N . It follows that D and N are replacements for each other and note that all
components are at least K -subspaces. Assume that D and N are not equal. Then
each component T of N which is is not a component of D is a 2-dimensional K-
subspace which intersects each component of D either trivially or in a 1 -dimensional
K-subspace and is contained in the net D. By the above proposition, it follows that
T is an affine Baer subplane of D sharing all infinite points with D. Hence, a subnet
N∗ of N is defined by the set of Baer subplanes of D so that π and Σ are derivates
of each other. Since the Baer subplanes of D are left 2-dimensional subspaces, it
follows that K is a field. Since N and N∗ cover the same points, N∗ = N .

Thus, it follows that D and N are either equal or one is the opposite regulus of
the other and, in the latter case, K must be a field. In this situation, the original
plane is Pappian and the derived plane is Pappian.

However, the derived plane will now admit a full point-Baer homology group or a
full point-Baer elation which acts regularly on the components of the pseudo-regulus
net other than the axis and coaxis or axis respectively. It follows that the kernel
of one of the Baer subplanes is K and we have seen that this would force the axis
Baer subplane to be an L-space where L is the kernel of the plane. In other words,
the kernel can’t be as large as a skewfield coordinatizing the entire space since the
superplane contains a kernel group acting transitively on the nonzero points of any
component. Hence, the kernel of the derived plane is Z(K) = K in this situation.

The other situation is when π is actually Desarguesian and coordinatized by
L = 〈K, g〉 and derivable and there is an element g not in K which fixes each Baer
subplane of the derivable net D. Hence, g induces an element of the kernel on each
Baer subplane. Since the kernel of each Baer subplane is Kopp it follows that g must
be in Z(K) acting as a kernel homology of the derived plane which is a contradiction
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to our assumptions. This completes the proof of the theorem.

Example 1. Let K be any quaternion skewfield defined over a field F such that
there exist nonsquares in F . Then there exist nonsquares γ in K.

Hence, x2 − γ is nonzero ∀x ∈ K.
Let z = a + be1 + ce2 + de3 be a typical element in K with a, b, c, d in F where

ei for i = 1, 2, 3, 4 satisfy the conditions of Pickert p. 160 table 39 [29].
Then z2 = (a2 + b3c1 + c2c2 − d2c1c2) + b2e1 + c2e2 + d2e3 where ci for i = 1, 2

are the constants of table 39. So, if for example, γ is nonsquare in F then γei are
all nonsquares in K.

There are quaternion skewfields of any characteristic (see e.g. Cohn [5] p.292,
Pickert [29], section (6.3) and Yaqub [32] lemmas 2,3,4) and there exist skewfields
of characteristic 2 such that there exist nonsquares in F .

Definition 12. Any translation plane πρ,γ shall be called a skew-Desarguesian plane
and any plane derived as above from πρ,γ shall be called a skew-Hall plane.

Remark 8. We noted above when there is a full Ko-point-Baer homology or full
Ko-point-Baer elation group of order > 2 acting on a translation plane with spread
in PG(3, K) then this forces K to be a field.

In the skew-Hall planes, there are both full K-point-Baer homology groups and
elation groups for subplanes with kernel K = Ko and K is not necessarily commu-
tative. On the other hand, the kernel of the associated translation plane is Z(K) .
It would appear that the existence of full Ko-point-Baer elation or homology groups
forces the kernel of a corresponding translation plane to be a field. However, this
has been proved only for spreads in PG(3, K).

6 Double-covers.

In Biliotti-Johnson [3], the concept of double-covers is developed for spreads in
PG(3, K), where K is a field. Here, we consider this in a more general setting.

Definition 13. Let π denote a conical translation plane with spread in PG(3, K).
Let C denote a normal set of pseudo-reguli which share a common line L and whose
union is the spread for π. If there exists a second normal set of pseudo-reguli C∗ 6= C
which share a common line L∗ whose union is the spread for π, we shall call {C, C∗}
a double-cover for π. If L∗ = L and {C, C∗} is a normal set of pseudo-reguli then
we call {C, C∗} a normal, double-cover with common line.

So, we see that the skew-Desarguesian planes admit normal double-covers with
a common line. The converse is also true as we now point out.

Theorem 21. Let π be any conical translation plane with spread in PG(3, K), for
K a skewfield. If π admits a normal, double-cover with common line then π is a
skew-Desarguesian plane.

Proof: Represent π in the form x = 0, y = x

[
u + g(t) f(t)

t u

]
∀u, t ∈ K with

respect to the cover C and choose the common line to be x = 0. Let D be any
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pseudo-regulus net in C∗. By our assumptions, if we choose the same basis for
x = 0 with any basis for the entire space then a choice of lines of D − {x = 0} as
y = 0, y = x forces D to be in standard form. Moreover, D can share at most two
components with any net of C . Let λ denote the subset of K so that D share two
components with the regulus net

{x = 0, y = x

[
u + g(t) f(t)

t u

]
for t fixed and ∀u ∈ K}.

By previous results, we may assume that 0 is in λ. That is, we may assume that D
shares x = 0 and y = 0 with the standard net in C . Hence, there exists a subset λ
of K such that the components of D have the form

x = 0, y = 0, y = x

[
ut + g(t) f(t)

t ut

]
∀t ∈ λ

and for each t, ut is in K. Choose a basis change which fixes x = 0 pointwise and
leaves y = 0 invariant and maps

y = x

[
ut1 + g(t1) f(t1)

t1 ut1

]
= xM

onto y = x for t1 ∈ K − {0}. Let σ =

[
M 02

02 I1

]
and change basis applying the

mapping σ. Then, it follows that[
ut1 + g(t1) f(t1)

t1 ut1

]−1 [
ut + g(t) f(t)

t ut

]
=

[
h(t) 0
0 h(t)

]
∀t ∈ λ.

Since we obtain the standard pseudo-regulus net, it follows that {h(t) | t ∈ λ} = K.
In other words, the mapping t 7→ h(t) is surjective from λ to K. Since, differences of
matrices of D are nonsingular, it follows that the indicated mapping is also injective.
Hence, λ = K and

D = {x = 0, y = xMD

[
u 0
0 u

]
∀u ∈ K

and MD a nonsingular matrix depending only on D}. Another way to see this is to
apply a previous result which states that if two normalizing pseudo-reguli share two
components then they share a homology group of the form

〈
1 0 0 0
0 1 0 0
0 0 u 0
0 0 0 u

 ∀u ∈ K − {0}
〉

.

Furthermore, when we choose D to be represented in the standard form then all

pseudo-regulus in C∗ have the form x = 0, y = x

[
u + g∗(t) f∗(t)

t u

]
for functions

g∗ and f∗.
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Notice that we have shown that any pseudo-regulus net of C∗ must share two
components with each pseudo-regulus net of C . There are also two elation groups
EC and EC∗ where

Ec =

〈
1 0 u 0
0 1 0 u
0 0 1 0
0 0 0 1

 ∀ u ∈ K

〉
=

〈[
I2 uI2

02 I2

]
∀ u ∈ K

〉
.

It follows that

EC∗ =

〈[
I2 MDuI2

02 I2

]
∀ u ∈ K

〉
.

Since the pseudo-reguli from C share two components with pseudo-reguli from

C∗, it follows that EC ∩EC∗ = 〈1〉. Let MD =

[
a b
c d

]
then there is a component

of the form y = x

[
a b
c d

]
which is not in the standard net. Hence, it follows

that neither c nor b can be zero. Taking the image of y = 0 under EC∗ and then

EC , in turn, we obtain y = x

[
at bt
ct dt

]
and then y = x

[
at + u bt

ct dt + u

]
. Let

dt +u = v and s = ct to obtain components of the form y = x

[
ρs + v γs

s v

]
where

ρ = (a− d)c−1 and γ = bc−1. This completes the proof of the theorem.
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