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1 Introduction

Results on cup products (we shall consider them only in Z2-cohomology) can be use-
ful for instance when studying the Lyusternik-Shnirel’man category (cf. James [7]).
Namely, by Eilenberg’s cup product theorem, if one finds a nontrivial cup product
in H∗(X;Z2), then its length gives a lower bound for the Lyusternik-Shnirel’man
category of the topological space X. In this context, one is naturally interested in
the maximum length of nontrivial cup-products in the Z2-algebra H∗(X;Z2); this
length is called the cup-length of X, and will be denoted by cup(X).

In general, cup(X) is not easily calculable, and its value remains unknown for
many important spaces. In view of this, it is good to know how the knowledge of
cup(X) for some X can be used to obtain at least some piece of information also
on the cup-length of other spaces somehow related to X. A standard procedure of
this type is the following: if cup(X) is known, and some space Y fibers over X in
such a way that to the fibration p : Y → X we can apply the Leray-Hirsch theorem,
then we have cup(Y ) = cup(X). The reason is clear: in this situation the induced
cohomology homomorphism p∗ : H∗(X;Z2) → H∗(Y ;Z2) is a monomorphism. For
instance, this procedure can be applied to manifolds suitably fibered over some of
the Grassmann manifolds Gn,k of all k-dimensional vector subspaces in Rn: if k 5 4,
then for these Grassmannians their cup-length is known, due to R. E. Stong [14].
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Speaking about Gn,k, we shall suppose that 2k ≤ n, because Gn,k and Gn,n−k are
diffeomorphic.

In this note we mainly shall consider smooth fiber bundles with a Grassmannian
as fiber and a closed connected manifold as total space. It turns out that for such
fiber bundles the known results on cup products in Grassmann manifolds can often
be employed for obtaining information on the cup-length in their total spaces. In
particular, for n odd we show that the fiber Gn,k of such a smooth fiber bundle is
totally non-homologous to zero, and therefore (see e.g. Serre [12]) they obey also
the Leray-Hirsch theorem.

The results presented here could also serve as a source of conditions under which
manifolds cannot be smoothly fibered if the fiber should be a prescribed Grassman-
nian.

2 The main result and some corollaries

Let wi := wi(γn,k) ∈ Hi(Gn,k;Z2) be the i-th Stiefel-Whitney class of the canonical
k-plane bundle overGn,k (2k ≤ n). Let us recall that the height of w1 inH∗(Gn,k;Z2)
is

height(w1) := sup{m;w1
m 6= 0},

and for 2s < n ≤ 2s+1 one has (see Stong [14])

height(w1) =


n− 1 if k = 1,

2s+1 − 2 if k = 2 or if k = 3 and n = 2s + 1,

2s+1 − 1 otherwise.

Now our main result is the following.

Theorem Let p : E −→ B be a smooth fiber bundle with E a closed connected
manifold and with fiber the Grassmann manifold Gn,k (2 ≤ 2k ≤ n).

(a) If each power of 2 dividing n divides also k, then the induced map p∗ :
H∗(B;Z2) −→ H∗(E;Z2) is a monomorphism and cup(E) ≥ cup(B).

(b) If n is odd, then the fiberGn,k is totally non-homologous to zero inE (in other
words, if i : Gn,k −→ E is the fiber inclusion, then i∗ : H∗(E;Z2) −→ H∗(Gn,k;Z2)
is an epimorphism).

(c) If n is odd, then one has cup(E) ≥ cup(Gn,k) + cup(B).

(d) If n ≡ 2 (mod 4) and k is odd or if n ≡ 0 (mod 4) and k is even, then one
has cup(E) ≥ [ 1

2
height(w1)].

For Gn,2 (n ≥ 4, 2s < n ≤ 2s+1), H. Hiller [5] proved that w2
n−2 6= 0 and that

w2
n−2 = w1

2s+1−2w2
1
2

(2n−4−2s+1+2) = w1
2s+1−2w2

n−2s−1

in the top dimension. Since height(w1) = 2s+1 − 2 in this case, one obtains

cup(Gn,2) = n+ 2s − 3.
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In addition to this, for 2s < n ≤ 2s+1 and n ≥ 2k, we recall from Stong’s [14]:

cup(Gn,k) =



2s+2 − 3 · 2p−1 − 2 + t if k = 3, n = 2s+1 − 2p + 2 + t,

0 ≤ t ≤ 2p−1 − 2, p ≥ 1;

2s+2 − 3 · 2p−1 − 4 if k = 3, n = 2s+1 − 2p + 1, p ≥ 1;

2s+1 + 2s − 7 if k = 4, n = 2s + 1;

2s+1 + 2s + 2r+1 − 7 + j if k = 4, n = 2s + 2r + 1 + j,

s > r ≥ 0, 0 ≤ j ≤ 2r − 1;

2s+1 + 2s + 2s−2 − 9 if k = 5, n = 2s + 1.

We can now give several examples of corollaries of Theorem; they readily follow
from Theorem (c) combined with the above facts.

Corollary 1 Let p : E −→ B be a smooth fiber bundle with E a closed connected
manifold and with fiber the Grassmann manifold Gn,2 (n ≥ 4). Let 2s < n ≤ 2s+1.
If n is odd, then we have

cup(E) ≥ n+ 2s − 3 + cup(B).

Corollary 2 Let p : E −→ B be a smooth fiber bundle with E a closed connected
manifold and with fiber the Grassmann manifold Gn,3 (n ≥ 6). Let 2s < n ≤ 2s+1.

(i) If n = 2s+1 − 2p + 2 + t, for some odd t, 1 ≤ t ≤ 2p−1 − 3, and p ≥ 1, then we
have

cup(E) = 2s+2 − 3 · 2p−1 − 2 + t+ cup(B).

(ii) If n = 2s+1 − 2p + 1 for some p ≥ 1, then we have

cup(E) ≥ 2s+2 − 3 · 2p−1 − 4 + cup(B).

Corollary 3 Let p : E −→ B be a smooth fiber bundle with E a closed connected
manifold and with fiber the Grassmann manifold Gn,4 (n ≥ 8).

(a) If n = 2s + 1, then we have

cup(E) ≥ 2s+1 + 2s − 7 + cup(B).

(b) If n = 2s + 2r + 1 + j (s > r ≥ 0, 0 ≤ j ≤ 2r − 1) is odd, then we have

cup(E) ≥ 2s+1 + 2s + 2r+1 − 7 + j + cup(B).

Corollary 4 Let p : E −→ B be a smooth fiber bundle with E a closed connected
manifold and with fiber the Grassmann manifold Gn,5 (n ≥ 10).

If n = 2s + 1, then cup(E) ≥ 2s+1 + 2s + 2s−2 − 9 + cup(B).

Remark There are plenty of smooth fiber bundles with fiber Gn,k. For instance,
let G be any compact Lie group containing H := O(n) × O(k1) × · · · × O(kq) as
its closed subgroup. Of course, K := O(k) × O(n − k) × O(k1) × · · · × O(kq) is
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a closed subgroup of H, and the map p : G/K −→ G/H, p(aK) = aH (where
a ∈ G) defines a smooth fiber bundle with fiber H/K ∼= O(n)/(O(k) × O(n − k))
which can be identified with the Grassmann manifold Gn,k. Note that if G =
O(n+ k1 + · · ·+ kq), then G/K is the flag manifold of type (k, n− k, k1, . . . , kq) (see
e.g. Korbaš, Zvengrowski [9, 3.1]). Another explicit family of fiber bundles with
fiber Gn,k will be presented in Section 4.

3 Proof of Theorem

For the Grassmann manifold Gn,k write n =
∑
i=0 ni2

i, k =
∑
i=0 ki2

i as the dyadic
expansions of n and k. Then the first two Stiefel-Whitney classes of Gn,k (that is,
of its tangent bundle TGn,k) can be expressed by the following formulae (Bart́ık,
Korbaš [1]):

w1(Gn,k) =n0w1,

w2(Gn,k) =(1 + n1 + k0)w
2
1 + n0w2.

In addition to this, if n is odd, then (Bart́ık, Korbaš [1, 3.6.2] or Korbaš [8, 1.1])
for i ≤ k ≤ n− k the Stiefel-Whitney class wi(Gn,k) can uniquely be expressed as

wi(Gn,k) = wi + P (w1, . . . , wi−1), (*)

where P is a Z2-polynomial.

We also shall need the following.

Fact If p : E −→ B is a smooth fiber bundle with fiber the Grassmann manifold
Gn,k and i : Gn,k −→ E is the fiber inclusion, then one has

i∗(wj(E)) = wj(Gn,k) (**)

for all j.

Indeed, as is well known (see Borel, Hirzebruch [3, 7.4, 7.6])

TE ∼= p∗(TB)⊕ η,

where η is a real vector bundle over E, whose fibers are the tangent spaces to the
fibers p−1(b) ∼= Gn,k (b ∈ B); η is called the bundle along the fibers. Since the
induced vector bundle i∗p∗(TB) = (p ◦ i)∗(TB) is isomorphic to the trivial dim(B)-
plane bundle εdim(B), we have i∗(TE) ∼= εdim(B) ⊕ TGn,k. That gives (**).

Now we are able to prove Theorem.

Proof of Theorem (a). By P. Sankaran [11] (cf. also Bart́ık, Korbaš [2]), if each
power of 2 dividing n divides also k, then the Grassmann manifold Gn,k is not a
boundary. Hence by D. Gottlieb [4, Corollary 4], the induced cohomology homo-
morphism p∗ : H∗(B;Z2) −→ H∗(E;Z2) is a monomorphism. �
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Proof of Theorem (b). Now we have n odd. An easy induction shows that

wi = wi(Gn,k) + Pi(w1(Gn,k), . . . , wi−1(Gn,k)), (***)

where Pi is a polynomial, for i = 1, . . . , k. Indeed, we have w1 = w1(Gn,k). Then by
(*) for j ≥ 1 one has

wj = wj(Gn,k) + a polynomial in w1, . . . , wj−1.

But the induction hypothesis then implies that

wj = wj(Gn,k) + Pj(w1(Gn,k), . . . , wj−1(Gn,k))

for some polynomial Pj.

As is well-known, the cohomology algebra H∗(Gn,k;Z2) is generated by the
Stiefel-Whitney classes w1, . . . , wk. Hence, by what we have just shown, in case
of n odd all of this algebra is generated by w1(Gn,k), . . . , wk(Gn,k) as well. But
by (**) w1(Gn,k), . . . , wk(Gn,k) lie in the image of the Z2-algebra homomorphism
i∗ : H∗(E;Z2) −→ H∗(Gn,k;Z2). Therefore i∗ is an epimorphism. �

Proof of Theorem (c) In view of Theorem (b), Theorem (c) will be proved if we
verify the following lemma.

Lemma Let p : E −→ B be a smooth fiber bundle with connected base B and
connected fiber F . Suppose that the fiber is totally non-homologous to zero. Then
one has cup(E) ≥ cup(F ) + cup(B).

Proof. The cup-length cup(F ) := r is given by some nonzero cup product a1 · · · ar ∈
H∗(F ;Z2), and the cup-length cup(B) := s by some nonzero product b1 · · · bs ∈
H∗(B;Z2). The ring homomorphism i∗ : H∗(E;Z2) −→ H∗(F ;Z2), induced by
the fiber inclusion i : F −→ E, is now surjective. Hence there exist a1

′, . . . , ar
′ ∈

H∗(E;Z2) with i∗(aj
′) = aj, and i∗(a1

′ · · · ar′) = a1 · · · ar.
Since the Leray-Hirsch theorem now applies, H∗(E) is a free H∗(B)-module,

with the action defined by p∗ : H∗(B;Z2) −→ H∗(E;Z2), and the nonzero product
a1
′ · · · ar′ can be taken as an element of its basis. Since p∗ is injective, we have

p∗(b1 · · · bs) = p∗(b1) · · · p∗(bs) 6= 0. Hence the cup product

p∗(b1 · · · bs)a1
′ · · · ar ′ = p∗(b1) · · · p∗(bs)a1

′ · · · ar ′ ∈ H∗(E;Z2)

is nonzero, and cup(E) ≥ s+ r. This closes the proof of Lemma and Theorem (c).�

Proof of Theorem (d). If n ≡ 2 (mod 4) and k is odd, or if n ≡ 0 (mod 4) and

k is even, then w2(Gn,k) = w2
1. Hence (see (**)) we obtain i∗(w

[ 1
2

height(w1)]
2 (E)) =

w
[ 1
2

height(w1)]
2 (Gn,k) 6= 0, and consequently w

[ 1
2

height(w1)]
2 (E) 6= 0. The proof of Theo-

rem is complete. �
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4 Remarks

Remark 1 If for some j < k(n−k) = dim(Gn,k) some element a ∈ Hj(Gn,k;Z2) were
a cup-product of the maximum length, then by Poincaré duality (Milnor, Stasheff
[10, 11.10]) there would exist a nonzero element b ∈ Hk(n−k)−j (Gn,k;Z2) such that
ab 6= 0. But then the length of ab would exceed the length of a, which is a contra-
diction.

Since, again by Poincaré duality, Hk(n−k)(Gn,k;Z2) ∼= Z2, the above reasoning
implies that any cup-product of the maximum length in H∗(Gn,k;Z2) must be a
nonzero monomial wt11 · · ·wtkk ∈ Hk(n−k)(Gn,k;Z2). If n is odd, then this wt11 · · ·wtkk
can be written (see the proof of Theorem (b)) as

wt11 (Gn,k) · · · (wk(Gn,k) + Pk(w1(Gn,k), . . . , wk−1(Gn,k)))
tk .

The latter is nothing but
wt11 (Gn,k) · · ·wtkk (Gn,k),

because now all cup-products longer than t1 + · · · + tk vanish.
Hence (see (**)) we have

wt11 · · ·wtkk = i∗(wt11 (E) · · ·wtkk (E)),

and of course wt11 (E) · · ·wtkk (E) is then a nonzero cup-product in H∗(E;Z2).

Remark 2 Theorem (b) might appear to be closely related to Theorem C in
Shiga, Tezuka [13] (cf. also their note added in proof, p. 106). We can identify

Gn,k
∼= O(n)/(O(k) × O(n − k)) ∼= SO(n)/S(O(k) × O(n − k)),

where S(O(k)×O(n− k)) = SO(n)∩ (O(k)×O(n− k)). But the order of the Weyl
group of SO(n) (n ≥ 3) is even (see e.g. Husemoller [6]), and therefore Theorem C
of [13] does not say anything in the situations considered in this note.

Remark 3 It seems that possibilities of extending Theorem (b) are quite limited.
The following example shows that it does not extend to those Gn,k with vanishing
Euler-Poincaré characteristic, that is to those with n even and k odd.

Example Let n be even, k odd, (n, k) 6= (2, 1), and let m ≥ 2. Consider Rn as
Cn

2 . Then multiplication by i defines a linear automorphism I : Rn −→ Rn such
that I2 = − id, and there is an involution T : Gn,k −→ Gn,k, T (D) = I(D).

The involution T is free: if T (D) were D for some D ∈ Gn,k, then the restriction
I |D would be a linear automorphism of the odd-dimensional vector space D with

(det(I |D))2 = det((I |D)2) = det(− id : D −→ D) = −1.

Now let (−1) : Sm −→ Sm denote the antipodal involution on the m-sphere Sm.
Let X := (Gn,k × Sm)/T × (−1) be the obvious quotient manifold. One readily
verifies that the map

p : X −→ Sm/(−1) = RPm,

p([(D, x)] = [x],

defines a smooth fiber bundle with fiber Gn,k.
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The fiber Gn,k is not totally non-homologous to zero in X. Indeed, if Gn,k

were totally non-homologous to zero, then by the Leray-Hirsch theorem H1(X;Z2)
would contain at least two different nonzero elements, because H1(Gn,k;Z2) and
H1(RPm;Z2) are both isomorphic to Z2. But in fact we have H1(X;Z2) ∼= Z2.

To see the latter, take another smooth fiber bundle with the same total space
X,

q : X −→ Gn,k/T,

q([(D, x)]) = [D].

Its fiber is Sm; note that Gn,k/T is a smooth manifold, double covered by Gn,k.
Now the homotopy exact sequence of the fibration q : X −→ Gn,k/T gives that
the fundamental group π1(X) is isomorphic to π1(Gn,k/T ). On the other hand,
the Grassmann manifold G̃n,k of oriented k-dimensional vector subspaces in Rn is
a 4-fold universal covering of the manifold Gn,k/T . The map T̃ : G̃n,k −→ G̃n,k

defined by multiplication by i is an automorphism of order four of this universal
covering, with T̃ 2 = − id. Hence π1(Gn,k/T ) contains an element of order four,
and we have π1(Gn,k/T ) ∼= Z4

∼= π1(X). From this then H1(X;Z2) ∼= Z4, and
H1(X;Z2) ∼= Hom(Z4,Z2) ∼= Z2, as claimed.
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SK-812 37 Bratislava,
Slovakia
e-mail : horanska@cvt.stuba.sk

J. K.,
Department of Algebra,
Faculty of Mathematics and Physics,
Comenius University,
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