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Abstract

In the 4-dimensional Minkowski space R4
1, a surface is said to be a hy-

perbolic rotation surface, if it is a orbit of a regular curve under the action
of the orthogonal transformations of R4

1 which leave a spacelike plane point-
wise fixed. In this paper, we give the totally classification of the timelike and
spacelike hyperbolic rotation surfaces in 3-dimensional de Sitter space S3

1.

Introduction.

In differential geometry, for the study of the surfaces theory in space forms, it is a
very important and interesting problem to contruct or classify the constant mean
curvature surfaces. Spacelike constant mean curvature hypersurfaces in arbitrary
spacetime have interest in reletivity theory. They are convenient initial surfaces for
the Cauchy problem and provide a time guage which is important in the study of
singularities, the positivity of mass, and gravitational radiation.
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The surfaces of constant mean curvature in Minkowski space have been studied
extensively. For example, K. Akutagawa and S. Nishikawa give a representation
formula for spacelike surfaces with prescribed mean curvature in [AK-N]; such a
representation formula for timelike surfaces has been give by M. A. Magid in [MA].
In [IN-1] and [IN-2], I. Inoguchi studied the spacelike and timelike surfaces with
constant mean curvature or Gaussian curvature in 3-dimensional Minkowski space
R3

1 via the theory of finite-type harmonic maps and the split-quaternion algebra;
he also reformulates the fundamental equations and the representation formula. In
[AL], [M-1], [M-2] and [M-3], rotational spacelike surfaces in the de Sitter space are
considered and determined.

In this paper, we consider the surfaces in 3-dimensional de Sitter space S3
1. We

will give the classification of all timelike and spacelike hyperbolic rotation surfaces
with non-zero constant mean curvature in S3

1.

1 Preliminaries

Let Rn+1
1 be the (n+1)-dimensional Minkowski space with the natural basis e1, ..., en+1,

its metric < , > is given by

< x, y >=
n∑
i=1

xiyi − xn+1yn+1, x, y ∈ Rn+1
1 ,

x = (x1, x2, ..., xn+1), y = (y1, y2, ..., yn+1). The n-dimensional de Sitter space Sn1 is
defined by

Sn1 = (x ∈ Rn+1
1 :< x, x >= 1).

It is well known that Sn1 is the complete simply connected Pseudo-Riemannian hy-
persurface with constant sectional curvature 1 in Rn+1

1 ([L-1], [L-2]).
Let Pk(k = 2, 3) denote an k-dimensional subspace of R4

1 passing through the
origin and O(P2) the group of orthogonal transformations of R4

1 with positive de-
terminant that leave P2 pointwise fixed.

Definition.(cf.[DC-D]) Choose P2 and P3 such that P2 ⊂ P3 and P3 ∩ S3
1 6= ∅. Let

C be a regular C2-curve in P3 ∩ S3
1 that does not meet P2. The orbit of C under

the action of O(P2) is called a rotation surface M in S3
1 generated by C around

P2 if the induced metric G of M from R4
1 is nodegenerate. The surface M is said

to be spherical (resp., hyperbolic or parabolic) if the restriction Ḡ/P2 (where Ḡ is
the metric of R4

1) is a pseudo-Riemannian metric (resp., a Riemannian metric or a
degenerate quadric form).

In the 4-dimensional Minkowski space R4
1, let C1 : c1(u) = (x(u), y(u), 0, w(u))

or C2 : c2(u) = (x(u), y(u), w(u), 0), u ∈ I , be any C2-curve in P3 ∩ S3
1 which is

parameterized by arc length, whose domain of definition I is an open interval of real
numbers including zero, and for which the following equations are satisfied

x(u)2 + y(u)2 − w(u)2 = 1,(1.1.i)

x′(u)2 + y′(u)2 − w′(u)2 = ε,(1.2.i)
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for the curve C1;

x(u)2 + y(u)2 + w(u)2 = 1,(1.1.ii)

x′(u)2 + y′(u)2 + w′(u)2 = 1,(1.2.ii)

for the curve C2; where ε = ±1.
The surfaces

M1 : r(u, v) = (x(u), y(u), w(u) sinh(v), w(u) cosh(v)), u ∈ I, v ∈ R,(1.3.i)

M2 : r(u, v) = (x(u), y(u), w(u) cosh(v), w(u) sinh(v)), u ∈ I, v ∈ R,(1.3.ii)

are by definition the hyperbolic rotation surfaces in the 3-dimensional de Sitter space
S3

1 obtained by rotating the curve c1(u) or c2(u) (this rotation of R4
1 fixes a spacelike

plane i.e. x ◦ y plane). The first fundamental form of M1 is εdu2 + w(u)2dv2; when
ε = 1, the surface is spacelike; when ε = −1, the surface is timelike. The first
fundamental form of M2 is du2 −w(u)2dv2 and it is always timelike. Let

ξ1(u, v) =(y′(u)w(u)− w′(u)y(u), w′(u)x(u)− x′(u)w(u),(1.4.i)

(y′(u)x(u)− x′(u)y(u)) sinh(v), (y′(u)x(u)− x′(u)y(u)) cosh(v))

ξ2(u, v) =(y′(u)w(u)− w′(u)y(u), w′(u)x(u)− x′(u)w(u),(1.4.ii)

(x′(u)y(u)− y′(u)x(u)) cosh(v), (x′(u)y(u)− y′(u)x(u)) sinh(v)).

Then for the surface M1, we have

< ξ1, ru >=< ξ1, rv >=< ξ1, r >= 0, < ξ1, ξ1 >= −ε;

for the surface M2, we have

< ξ2, ru >=< ξ2, rv >=< ξ2, r >= 0, < ξ2, ξ2 >= 1;

where

ru =
dr(u, v)

du
, rv =

dr(u, v)

dv
.

So we know that ξ1(u, v) is a field of unit normal vectors on M1 in S3
1 and ξ2(u, v)

is a field of unit normal vectors on M2 in S3
1.

We denote by ∇̃ the covariant differentiation with respect to the indefinite Rie-
mannian metric of R4

1 and by ∇̄ and ∇ the covariant differentiations with respect
to the induced metric of S3

1 and M, respectively. We denote by η(x), x ∈ S3
1, the

position vector of x with respect to the origin of R4
1 which is a field of normal vectors

of S3
1 in R4

1. Then, considering that M1 (resp. M2) is locally embedded in S3
1, we

have the following Gauss’s and Weingarten’s formulas.

∇̃XY = ∇̄XY+ < X, Y > η,(1.5)

∇̄XY = ∇XY + h(X, Y )ξi,(1.6)

∇̄Xξi = −Aξi(X),(1.7)
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where X and Y are tangent vector fields on Mi, and Aξi is a field of type (1,1)
tensor on Mi corresponding to ξi, i.e.,

< Aξi(X), Y >= h(X, Y ),

i = 1, 2.
From (1.5), (1.6) and (1.7), we get the following equations about the mean

curvature of the surfaces M1 and M2. For the surface M1 we have

< Aξ1(ru), ru > = − < ∇̄ruξ1, ru >=< ξ1, ∇̄ruru >=< ξ1, ∇̃ruru >(1.8.i)

= x′′(y′w − w′y) + y′′(w′x− x′w)− w′′(y′x− x′y),
< Aξ1(rv), rv > = − < ∇̄rvξ1, rv >=< ξ1, ∇̄rvrv >=< ξ1, ∇̃rvrv >(1.9.i)

= −w(y′x− x′y),
< Aξ1(ru), rv > = − < ∇̄ruξ1, rv >=< ξ1, ∇̄rurv >=< ξ1, ∇̃rurv >= 0;(1.10.i)

since < ru, ru >= ε, < ru, rv >= 0, < rv, rv >= w2, then from (1.8.i), (1.9.i) and
(1.10.i), we obtain

2H = traceAξ1(1.11. i)

= ε(x′′(y′w − w′y) + y′′(w′x− x′w)− w′′(y′x− x′y))− (y′x− x′y)/w

=
εw2(x′′y′ − y′′x′) + εww′(y′′x− x′′y)− (εww′′ + 1)(y′x− x′y)

w
.

For the surface M2 we have

< Aξ2(ru), ru > = − < ∇̄ruξ2, ru >=< ξ2, ∇̄ruru >=< ξ2, ∇̃ruru >(1.8.ii)

= x′′(y′w − w′y) + y′′(w′x− x′w) + w′′(x′y − y′x),
< Aξ2(rv), rv > = − < ∇̄rvξ2, rv >=< ξ2, ∇̄rvrv >=< ξ2, ∇̃rvrv >(1.9.ii)

= w(x′y − y′x),
< Aξ2(ru), rv > = − < ∇̄ruξ2, rv >=< ξ2, ∇̄rurv >=< ξ2, ∇̃rurv >= 0;(1.10.ii)

since < ru, ru >= 1, < ru, rv >= 0, < rv, rv >= −w2, then from (1.8.ii), (1.9.ii) and
(1.10.ii), we obtain

2H = traceAξ2(1.11.ii)

= (x′′(y′w − w′y) + y′′(w′x− x′w) + w′′(x′y − y′x))− (x′y − y′x)/w

=
w2(x′′y′ − y′′x′)−ww′(x′′y − y′′x) + (ww′′ − 1)(x′y − y′x)

w

2 Constant mean curvature surfaces of type M1

From the previous argument we see that the surface M1 has constant mean curvature
H 6= 0 in S3

1 if and only if on the interval I the following relations hold:

x(u)2 + y(u)2 − w(u)2 = 1(2.1)

x′(u)2 + y′(u)2 −w′(u)2 = ε(2.2)

2Hw = εw2(x′′y′ − y′′x′) + εww′(y′′x− x′′y)− (εww′′ + 1)(y′x− x′y).(2.3)
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Now we solve the above equations. From (2.1) we may put

(2.4)

{
x(u) = (w(u)2 + 1)

1
2 cosϕ(u),

y(u) = (w(u)2 + 1)
1
2 sinϕ(u),

and then determine the function ϕ(u) satisfying (2.2).
Since x′2 + y′2 − w′2 = (ww′)2/(w2 + 1) + (w2 + 1)ϕ′2 − w′2, then from (2.2) it

follows that

(2.5) ϕ′(u)2 =
εw2 + w′2 + ε

(w2 + 1)2
.

We assume that εw2 + w′2 + ε > 0 on I (when εw2 + w′2 + ε = 0, ϕ is constant).
Therefore the function ϕ(u) is of the form

(2.6) ϕ(u) = ±
∫ u

0

(εw(t)2 + w′(t)
2
+ ε)

1
2

(w(t)2 + 1)
dt.

and without loss of generality we may assume that the signature is positive.
From (2.4) and (2.6), we can show that

y′x− x′y = (w2 + 1)ϕ′ = (εw2 + w′
2
+ ε)

1
2 ,(2.7)

y′′x− x′′y = (y′x− x′y)′ = (εww′ + w′w′′)/(y′x− x′y).(2.8)

Differentiating (2.1) and (2.2) we obtain

xx′ + yy′ = ww′,

xx′′ + yy′′ = ww′′ − ε,
x′x′′ + y′y′′ = w′w′′.

Solving above equations for x′′ and y′′ we get

(y′x− x′y)x′′ = y′(ww′′ − ε)− yw′w′′,
(y′x− x′y)y′′ = −x′(ww′′ − ε) + xw′w′′.

So

(2.9) x′′y′ − y′′x′ = (εww′′ − εw′2 − 1)/(y′x− x′y).

Putting (2.7), (2.8) and (2.9) into (2.3), then we get

(2.10) ww′′ + w′
2
+ 2εw2 + ε = −2Hw(εw2 + w′

2
+ ε)

1
2 .

Without loss of generality, we can assume that w(u) > 0. When w(u) 6=constant,
let α(u) = w2 + 1

2
, then (2.10) becomes

(2.11) α′′ + 4εα = −2H(α′
2
+ 4εα2 − ε) 1

2 .

Since w(u) 6=constant, α′ 6≡ 0. From (2.11) we have

1
2
d(α′2 + 4εα2 − ε)
(α′2 + 4εα2 − ε) 1

2

= −2Hα′du.
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Then

(2.12) (α′
2
+ 4εα2 − ε) 1

2 = a− 2Hα, a− 2Hα > 0,

where a is integral constant. From (2.12) we get

(2.13) α′
2

= 4(H2 − ε)α2 − 4Haα + a2 + ε,

when H2 6= ε,

α′
2

= 4(H2 − ε)
(
α− aH

2(H2 − ε)

)2

+
εH2 − 1− εa2

(H2 − ε) .

We solve the equation (2.13) in the following cases.

Case one: ε = 1.

In this case, (2.13) becomes

(2.14) α′
2

= 4(H2 − 1)α2 − 4Haα + a2 + 1.

We consider the following subcases respect to the value of H.

(a) When H2 = 1, (2.14) becomes α′2 = −4Haα+ a2 + 1. Solving this equation we
get

(2.15)


α(u) = constant, when a = 0

α(u) = 1
4Ha

(a2 + 1− 4a2u2)

= H
4a

(a2 + 1− 4a2u2), when a 6= 0

where, and in the following, we take the integral constant as zero.

(b) When H2 > 1, solving the equation (2.14) we get

(i) if a2 > H2 − 1,

(2.16) α(u) =
aH

2(H2 − 1)
+

√
a2 − (H2 − 1)

2(H2 − 1)
cosh(2

√
H2 − 1u);

(ii) if a2 = H2 − 1,

(2.17) α(u) =
H

2a
+ e2au;

(iii) if a2 < H2 − 1,

(2.18) α(u) =
aH

2(H2 − 1)
+

√
H2 − 1− a2

2(H2 − 1)
sinh(2

√
H2 − 1u).

(c) When H2 < 1, solving the equation (2.14) we get

(2.19) α(u) =
aH

2(H2 − 1)
+

√
a2 + 1−H2

2(1−H2)
sin(2

√
1−H2u).
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Case two: ε = −1.

In this case, (2.13) becomes

(2.20) α′
2

= 4(H2 + 1)α2 − 4Haα + a2 − 1.

Solving this equation we get

(i) if a2 > H2 + 1,

(2.21) α(u) =
aH

2(H2 + 1)
+

√
a2 − (H2 + 1)

2(H2 + 1)
sinh(2

√
H2 + 1u);

(ii) if a2 = H2 + 1,

(2.22) α(u) =
H

2a
+ e2au;

(iii) if a2 < H2 + 1,

(2.23) α(u) =
aH

2(H2 + 1)
+

√
H2 + 1− a2

2(H2 + 1)
cosh(2

√
H2 + 1u).

Therefore we obtain

Theorem 2.1. In 3-dimensional de Sitter space S3
1,

(i) the spacelike hyperbolic rotation surface of type M1 is congruent to one (or a
part) of the following surfaces:

(2.24) r(u, v) = (a sin(u), a cos(u), b sinh(v), b cosh(v)), u ∈ [0, 2π], v ∈ R,

where a and b are constants;

(2.25)



r(u, v) = (x(u), y(u), w(u) sinh(v), w(u) cosh(v)), u ∈ I, v ∈ R,
x(u) = (w(u)2 + 1)

1
2 cosϕ(u),

y(u) = (w(u)2 + 1)
1
2 sinϕ(u),

ϕ(u) =
∫ u
0

(w(t)2+w′(t)2+1)
1
2

(w(t)2+1)
dt,

w(u) =
(
H
4a

(a2 + 1− 4a2u2)− 1
2

) 1
2 ,

where a 6= 0 is constant and H2 = 1;

(2.26)



r(u, v) = (x(u), y(u), w(u) sinh(v), w(u) cosh(v)), u ∈ I, v ∈ R,
x(u) = (w(u)2 + 1)

1
2 cosϕ(u),

y(u) = (w(u)2 + 1)
1
2 sinϕ(u),

ϕ(u) =
∫ u
0

(w(t)2+w′(t)2+1)
1
2

(w(t)2+1)
dt,

w(u) =
(

aH
2(H2−1)

+

√
a2−(H2−1)

2(H2−1)
cosh(2

√
H2 − 1u)− 1

2

)1
2

,
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where a and H are constants, a2 > H2 − 1 > 0;

(2.27)



r(u, v) = (x(u), y(u), w(u) sinh(v), w(u) cosh(v)), u ∈ I, v ∈ R,
x(u) = (w(u)2 + 1)

1
2 cosϕ(u),

y(u) = (w(u)2 + 1)
1
2 sinϕ(u),

ϕ(u) =
∫ u

0
(w(t)2+w′(t)2+1)

1
2

(w(t)2+1)
dt,

w(u) =
(
H
2a

+ e2au− 1
2

)1
2 ,

where a and H are constants, a2 = H2 − 1 > 0

(2.28)



r(u, v) = (x(u), y(u), w(u) sinh(v), w(u) cosh(v)), u ∈ I, v ∈ R,
x(u) = (w(u)2 + 1)

1
2 cosϕ(u),

y(u) = (w(u)2 + 1)
1
2 sinϕ(u),

ϕ(u) =
∫ u

0
(w(t)2+w′(t)2+1)

1
2

(w(t)2+1)
dt,

w(u) =
(

aH
2(H2−1)

+
√
H2−1−a2

2(H2−1)
sinh(2

√
H2 − 1u)− 1

2

)1
2 ,

where a and H are constants, 0 < a2 < H2 − 1;

(2.29)



r(u, v) = (x(u), y(u), w(u) sinh(v), w(u) cosh(v)), u ∈ I, v ∈ R,
x(u) = (w(u)2 + 1)

1
2 cosϕ(u),

y(u) = (w(u)2 + 1)
1
2 sinϕ(u),

ϕ(u) =
∫ u

0
(w(t)2+w′(t)2+1)

1
2

(w(t)2+1)
dt,

w(u) =
(

aH
2(H2−1)

+
√
a2+1−H2

2(1−H2)
sin(2

√
1−H2u)− 1

2

)1
2 ,

where a and H are constants, H2 − 1 < 0;

(ii) the timelike hyperbolic rotation surface of type M1 is congruent to one (or a
part) of the following surfaces:

(2.30)



r(u, v) = (x(u), y(u), w(u) sinh(v), w(u) cosh(v)), u ∈ I, v ∈ R,
x(u) = (w(u)2 + 1)

1
2 cosϕ(u),

y(u) = (w(u)2 + 1)
1
2 sinϕ(u),

ϕ(u) =
∫ u

0
(−w(t)2+w′(t)2−1)

1
2

(w(t)2+1)
dt,

w(u) =
(

aH
2(H2+1)

+
√
a2−(H2+1)

2(H2+1)
sinh(2

√
H2 + 1u)− 1

2

) 1
2

,

where a and H are constants, a2 > H2 + 1;

(2.31)



r(u, v) = (x(u), y(u), w(u) sinh(v), w(u) cosh(v)), u ∈ I, v ∈ R,
x(u) = (w(u)2 + 1)

1
2 cosϕ(u),

y(u) = (w(u)2 + 1)
1
2 sinϕ(u),

ϕ(u) =
∫ u

0
(−w(t)2+w′(t)2−1)

1
2

(w(t)2+1)
dt,

w(u) =
(
H
2a

+ e2au− 1
2

)1
2 ,
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where a and H are constants, a2 = H2 + 1;

(2.32)



r(u, v) = (x(u), y(u), w(u) sinh(v), w(u) cosh(v)), u ∈ I, v ∈ R,
x(u) = (w(u)2 + 1)

1
2 cosϕ(u),

y(u) = (w(u)2 + 1)
1
2 sinϕ(u),

ϕ(u) =
∫ u
0

(−w(t)2+w′(t)2−1)
1
2

(w(t)2+1)
dt,

w(u) =
(

aH
2(H2+1)

+
√
H2+1−a2

2(H2+1)
cosh(2

√
H2 + 1u)− 1

2

) 1
2 ,

where a and H are constants, a2 < H2 + 1.

3 Constant mean curvature surfaces of type M2

For the surface M2, it has constant mean curvature H 6= 0 in S3
1 if and only if on

the interval I the following relations hold:

x(u)2 + y(u)2 + w(u)2 = 1(3.1)

x′(u)2 + y′(u)2 + w′(u)2 = 1(3.2)

2Hw = w2(x′′y′ − y′′x′)− ww′(x′′y − y′′x) + (ww′′ − 1)(x′y − y′x).(3.3)

Now we solve the above equations. From (3.1) we may put

(3.4)

{
x(u) = (1−w(u)2)

1
2 cosϕ(u),

y(u) = (1− w(u)2)
1
2 sinϕ(u),

|w(u)| < 1

and by (3.2) we get

(3.5) ϕ′(u)2 =
1− w2 − w′2

(1− w2)2
.

We assume that 1 − w2 − w′2 > 0 on I (when 1 − w2 − w′2 = 0, ϕ is constant).
Therefore the function ϕ(u) is of the form

(3.6) ϕ(u) = ±
∫ u

0

(1−w(t)2 − w′(t)2
)

1
2

(1− w(t)2)
dt.

and without loss of generality we may assume that the signature is positive.
From (3.4) and (3.6), we can show that

x′y − y′x = −(1− w2)ϕ′ = −(1− w2 − w′2) 1
2 ,(3.7)

x′′y − y′′x = (x′y − y′x)′ = −(ww′ + w′w′′)/(x′y − y′x).(3.8)

Differentiating (3.1) and (3.2) we obtain

xx′ + yy′ = −ww′,
xx′′ + yy′′ = −ww′′ − 1,

x′x′′ + y′y′′ = −w′w′′.
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Solving above equations for x′′ and y′′ we get

(x′y − y′x)x′′ = y′(ww′′ + 1)− yw′w′′,
(x′y − y′x)y′′ = −x′(ww′′ + 1) + xw′w′′.

So

(3.9) x′′y′ − y′′x′ = (1 + ww′′ − w′2)/(x′y − y′x).
Putting (3.7), (3.8) and (3.9) into (3.3), then we get

(3.10) ww′′ + w′
2
+ 2w2 − 1 = −2Hw(1− w2 −w′2) 1

2 .

Without loss of generality, we can assume that w(u) > 0. When w(u) 6=constant,
let α(u) = w2 − 1

2
, then (3.10) becomes

(3.11) α′′ + 4α = −2H(1− α′2 − 4α2)
1
2 .

Since w(u) 6=constant, α′ 6≡ 0. From (3.11) we have

−1
2
d(1− α′2 − 4α2)

(1− α′2 − 4α2)
1
2

= −2Hα′du.

Then

(3.12) (1− α′2 − 4α2)
1
2 = a + 2Hα, a + 2Hα > 0,

where a is integral constant. From (3.12) we get

α′
2

= −4(H2 + 1)α2 − 4Haα+ 1− a2(3.13)

= 4(H2 + 1)

H2 + 1− a2

4(H2 + 1)2
−
(
α +

aH

2(H2 + 1)

)2
 ,

therefore, a2 < H2 + 1. Solving (3.13) we get

(3.18) α(u) =
−aH

2(H2 + 1)
+

√
H2 + 1− a2

2(H2 + 1)
sin(2

√
H2 + 1u),

where, we take the integral constant as zero. Therefore we obtain

Theorem 3.1. In 3-dimensional de Sitter space S3
1, the hyperbolic rotation surface

of type M2 is timelike and congruent to the following surface (or a part):

(3.19) r(u, v) = (a sin(u), a cos(u), b cosh(v), b sinh(v)), u ∈ [0, 2π], v ∈ R,
where a and b are constants;

(3.20)



r(u, v) = (x(u), y(u), w(u) cosh(v), w(u) sinh(v)), u ∈ I, v ∈ R,
x(u) = (1− w(u)2)

1
2 cosϕ(u),

y(u) = (1− w(u)2)
1
2 sinϕ(u),

ϕ(u) =
∫ u

0
(1−w(t)2−w′(t)2)

1
2

(1−w(t)2)
dt,

w(u) =
(
−aH

2(H2+1)
+
√
H2+1−a2

2(H2+1)
sin(2

√
H2 + 1u) + 1

2

) 1
2
,

where a and H are constants, a2 < H2 + 1.
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