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Abstract

The problems studied in this paper are related to the harmonicity of the
canonical projection π : TM −→ M , where (M, g) is a Riemannian space
and TM is its tangent bundle, and to the harmonicity of the vector fields
ξ ∈ χ(M) thought of as maps from M to TM . We have considered on
TM the pseudo-Riemannian metrics G, gc of lift-complete type defined by
means of an arbitrary nonlinear connection on TM . We have also studied the
harmonicity of a tensor field J of type (1, 1) on M , where J is thought of as
a map from TM into itself.

Introduction

A vector field ξ on a Riemannian manifold (M, g) can be thought of as a map
ξ : M −→ TM , where π : TM −→ M is the tangent bundle of the manifold
M . The conditions under which ξ is an isometric immersion, a totally geodesic
or harmonic map, have been studied in the cases where one considers on TM the
Riemannian metrics defined by Sasaki, Cheeger-Gromoll or the pseudo-Riemannian
metrics of complete lift type (see [7], [16], [12], [13], [14], [11]). The conditions under
which the canonical projection π : TM −→ M is a totally geodesic or harmonic map
have been also studied.

∗partially supported by the Grant 64 /1998, Ministerul Educaţiei Naţionale, Romania
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A tensor field J of type (1, 1) on M can be thought of as a map J : TM −→ TM .
The conditions under which J is a harmonic map have been studied only in the case
where the complete lift metric is considered on TM (see [4]).

In this paper we deal with the same problems of harmonicity of vector fields, the
canonical projection and tensor fields of type (1, 1) on M . We consider on TM the
pseudo-Riemannian metrics G and gc defined by means of a nonlinear connection
on TM . The main idea is to modify the nonlinear connection: we shall no longer
use the nonlinear connection defined by the Levi-Civita connection ∇ of (M, g) but,
more generally, an arbitrary nonlinear connection on TM . We can obtain some
quite interesting results.

The manifolds, maps, vector fields etc. considered in this work are assumed to
be smooth, i.e. differentiable of class C∞. The well known summation convention
is used throughout the paper. The ranges for the indices are {1, ..., n} for h, i, j, k, l
and {1, ..., m} for α, β, γ, σ; χ(M) stands for the Lie algebra of the smooth vector
fields on M .

The author wishes to express his gratitude to professor V.Oproiu for many helpful
talks and hints about the argument discussed in this paper.

1 The tangent bundle

Let (M, g) be an n−dimensional Riemannian manifold with n > 1 and let π :
TM −→ M be its tangent bundle. A local chart (U, xi), i = 1, ..., n on M induces
a local chart (π−1(U), xi, yi), i = 1, ..., n on TM , where we denote, by abuse, xi

instead of π∗xi = xi ◦ π, and yi are the vector space coordinates of the element
v ∈ π−1(U) ⊂ TM with respect to the natural basis ( ∂

∂xi
)π(v), i = 1, ..., n, i.e.

v = yi( ∂
∂xi

)π(v). Denote by Γkij the Christoffel symbols of g and by ∇ the Levi-Civita
connection of g.

We have the vertical distribution V TM on TM , defined by Vv(TM) = kerπ∗,v,
v ∈ TM . One must note that V (TM) is an integrable distribution. We consider a
nonlinear connection on TM defined by the distribution H(TM) on TM , comple-
mentary to V (TM), i.e. Hv(TM)⊕ Vv(TM) = Tv(TM), v ∈ TM . The distribution
H(TM) is the horizontal distribution. For any induced local chart (π−1(U), xi, yi)
we have a local adapted frame in H(TM) defined by the vector fields

(1)
δ

δxi
=

∂

∂xi
−N j

i (x, y)
∂

∂yj
, i = 1, ..., n ,

where the local functions N j
i (x, y) are the connection coefficients of the nonlinear

connection defined by H(TM). The vector fields ( ∂
∂yi

), i = 1, . . . , n define a local

frame for the vertical distribution V (TM). Let ξ = ξi ∂
∂xi

be a (local) vector field on
M . The horizontal and the vertical lifts of ξ are defined by

ξH = ξi
δ

δxi
, ξV = ξi

∂

∂yi
.

We have ( ∂
∂xi

)H = δ
δxi

and ( ∂
∂xi

)V = ∂
∂yi

.

The system of local 1-forms (dxi, Dyi) defines the dual frame of the frame
( δ
δxi

, ∂
∂yi

), where
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(2) Dyi = dyi + N i
j(x, y)dxj.

Denote

(3) Ri
jk =

δN i
k

δxj
−

δN i
j

δxk
=

δ

δxj
(N i

k)−
δ

δxk
(N i

j).

Remark that Ri
kj = −Ri

jk. We have the following commutation formulae

(4)

[
δ

δxj
,

δ

δxk

]
= Ri

kj

∂

∂yi
,

[
δ

δxj
,

∂

∂yk

]
=

∂N i
j

∂yk
∂

∂yi
,

[
∂

∂yi
,

∂

∂yj

]
= 0.

It follows that the horizontal distribution H(TM) is integrable if and only if Ri
jk = 0.

We define on TM the tensor field of type (0, 2) G of lift-complete type by

(5) G(XV , Y V ) = 0, G(XV , Y H) = g(X, Y ), G(XH , Y H) = g(X, Y ),

(see [14]). If g = gijdxidxj is the expression of g in local coordinates, then G is given
locally by

(6) G = gijdxidxj + 2gijdxiDyj.

The tensor G defines a pseudo-Riemannian metric on TM . The vertical distribution
is maximally isotropic and G defines a pairing between the horizontal and vertical
distribution. The signature of G is (n, n) and the fibres of horizontal distribution
are isometric with the tangent spaces on M in the coresponding points.

Proposition 1 The Levi-Civita connection G∇ of G is given locally by

(7)



G∇ ∂

∂yi

∂
∂yj

= 0,

G∇ ∂

∂yi

δ
δxj

= 1
2

(
∂gki
∂xj
− ∂gij

∂xk
+

∂N l
k

∂yi
glj −

∂N l
j

∂yi
glk

)
gkh ∂

∂yh
,

G∇ δ

δxi

∂
∂yj

= 1
2

(
∂gjk
∂xi
− ∂gij

∂xk
+

∂N l
k

∂yj
gli +

∂N l
i

∂yj
glk

)
gkh ∂

∂yh
,

G∇ δ
δxi

δ
δxj

= 1
2

(
∂gjk
∂xi

+ ∂gik
∂xj
− ∂N l

j

∂yk
gli − ∂N l

i

∂yk
glj

)
gkh δ

δxh
+

+1
2

(
−∂gij

∂xk
+

∂N l
i

∂yk
glj +

∂N l
j

∂yk
gli + Rl

jiglk + Rl
ikglj −Rl

kjgli

)
gkh ∂

∂yh
.

Remark that TpM is a submanifold of TM and Tv(TpM) = span{ ∂
∂y1 (v), ..., ∂

∂yn
(v)},

where v ∈ TpM . Since Hv(TM) ⊕ Vv(TM) = Tv(TM), we can project the linear
connection G∇ on TpM . The induced connection is a flat connection and its geodesics
are the straight lines of TpM . They are geodesics of TM too, so TpM is a totally
geodesic submanifold of (TM,G∇).

In the following we shall consider the case N i
j(x, y) = Γijhy

h − T i
j (x), where

(T i
j (x)) are the components of a tensor field of type (1, 1) on M .
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By computing the curvature tensor field GR of G∇ we obtain

Proposition 2 The curvature tensor field GR is given locally by

(8)



GR( ∂
∂yi

, ∂
∂yj

) ∂
∂yk

=G R( ∂
∂yi

, ∂
∂yj

) δ
δxk

=G R( ∂
∂yi

, δ
δxj

) ∂
∂yk

= 0,

GR( ∂
∂yi

, δ
δxj

) δ
δxk

=G R( δ
δxi

, δ
δxj

) ∂
∂yk

= Rh
kij

∂
∂yh

,

GR( δ
δxi

, δ
δxj

) δ
δxk

= Rh
kij

δ
δxh

+

+{(∇lR
h
kij)y

l +∇iQ
h
jk −∇jQ

h
ik + Rh

kljT
l
i − Rh

kliT
l
j} ∂

∂yh
,

where Rh
klj are the components of the curvature tensor field R of ∇,

Qh
ij(x) =

1

2
(∇iTkj −∇jTki +∇kTji −∇iTjk −∇jTik +∇kTij)g

kh,

and Tij = gihT
h
j .

Remark that, if ∇iT
k
j = 0 or if Tij = −Tji, then (TM, G) is flat if and only if

(M, g) is a flat manifold.
Denote by K(v; δ

δxi
, δ
δxj

), i 6= j, the sectional curvature of the two-dimensional
subspace generated by δ

δxi
(v) and δ

δxj
(v). The restriction of G to span{ δ

δxi
, δ
δxj
} is

positive defined.

Theorem 1 Assume that (M, g) have the constant sectional curvature c.
(a) If Tij = −Tji then K(v; δ

δxi
, δ
δxj

) = c.
(b) If Tij = c1

2
gij then K(v; δ

δxi
, δ
δxj

) = c + c1.

Proposition 3 The Ricci tensor field Ric of GR is given locally by

Ric(
∂

∂yj
,

∂

∂yk
) = Ric(

∂

∂yj
,

δ

δxk
) = 0, Ric(

δ

δxj
,

δ

δxk
) = 2Rkj ,

where Rij are the components of the Ricci tensor field of (M, g). So, (TM, G) is
Ricci flat if and only if (M, g) is Ricci flat.

Let G0 be the metric of type (5) which is obtained when T j
i = 0. By studying

the harmonicity of G0 with respect to G we obtain

Proposition 4 The metric G is biharmonic with respect to G0, i.e. the identity
maps 1 : (TM, G) −→ (TM, G0), 1 : (TM, G0) −→ (TM, G) are harmonic.

We remark that G = G0 if and only if Tij = −Tji. In the case where Tij = −Tji
or ∇iT

k
j = 0 then G and G0 have the same geodesics. If Tij = Tji we have generally

G0∇ 6=G ∇.

2 The harmonicity of the canonical projection π : TM −→M

Let (M, g) and (M̃, g̃) be two Riemannian manifolds of dimensions n and m, re-

spectively, and let f : M −→ M̃ be a smooth map. Denote by M̃Γαβγ the Christoffel

symbols of the metric g̃ and by M̃∇ the Levi-Civita connection of g̃. Let (U, xi),
i = 1, ..., n, be a local chart on M in p ∈ M and let (V, uα), α = 1, ..., m, be also
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a local chart on M̃ in f(p). The second fundamental form of f in p, denoted by
β(f)p, is given in local coordinates by

(9) β(f)p(
∂

∂xi
,

∂

∂xj
) = (fαij − Γkijf

α
k +M̃ Γαβγf

β
i fγj )

∂

∂uα
,

where fαk = ∂fα

∂xk
and fαij = ∂2fα

∂xi∂xj
. The form β(f) is C∞(M) bilinear and symmetric.

The map f is a totally geodesic map if an only if β(f) = 0.
The tension field τ (f) of f is defined by

(10) τ (f) = tr β(f) = gijβ(f)(
∂

∂xi
,

∂

∂xj
).

The map f is a harmonic map if τ (f) = 0 (see [2]). If X ∈ χ(M) is f -related
with X̃ ∈ χ(M̃), i.e. f∗,pX = X̃(f(p)), ∀p ∈ M , and Y ∈ χ(M) is f -related with

Ỹ ∈ χ(M̃), then we have

(11) β(f)p(X, Y ) = (M̃∇
X̃
Ỹ )f(p)− f∗,p(∇XY ).

Recall that if M is a compact and orientable manifold then f : (M, g) −→ (M̃ , g̃)
is harmonic if and only if f is a critical map for the energy E, where E(f) =∫
M e(f)dvg and e(f) = 1

2
gijfαi fβj g̃αβ.

From the relations (9) and (10) one can see that the notion of harmonicity can
be extended to the case where M and M̃ are not Riemannian manifolds. Consider
(M, g) or (M̃ , g̃) as pseudo-Riemannian spaces or consider on M̃ just a torsion free
connection. If M is a compact and orientable manifold and (M̃, g̃) is a pseudo-
Riemannian manifold then f still remains a harmonic map if and only if f is a
critical map for the energy E.

We shall study the extensions considered above in the case of the map π :
(TM, G) −→ (M, g). From (7) and (11) we obtain

β(π)(
∂

∂yi
,

∂

∂yj
) = β(π)(

∂

∂yi
,

δ

δxj
) = 0,

β(π)(
δ

δxi
,

δ

δxj
) = −1

2
(
∂gij
∂xk
−

∂N l
j

∂yk
gli −

∂N l
i

∂yk
glj)g

kh ∂

∂xh
.

Consequently we have the following
Theorem 2 The following statements are equivalent:

(a) The map π : TM −→M is a totally geodesic map,
(b) β(π)(XH, Y H) = 0, ∀X, Y ∈ χ(M),

(c)
∂Nh

i

∂yj
(x, y) = Γhij(x) + {(P l

jkgli + P l
ikglj)g

kh + P h
ij}, where P l

jk(x, y) are the compo-

nents of a M-tensor field of type (1, 2) on TM , having the property: P l
jk = −P l

kj .
Remarks:
1) Under the condition of complete integrability of the equation above, the M-

tensor (P h
ij(x, y)), with the property P h

ij = −P h
ji, must satisfy the following system

of partial differential equation

∂P l
jh

∂yk
gli +

∂P l
ih

∂yk
glj +

∂P l
ij

∂yk
glh =

∂P l
kh

∂yj
gli +

∂P l
ih

∂yj
glk +

∂P l
ik

∂yj
glh.
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Remark that if (P h
ij) is a tensor on M then this system is fulfilled automatically.

2) If the coeficients of the nonlinear connection are N i
j(x, y) = Γijly

l + T i
j (x) +

Qi
j(x, y), where Qi

j(x, y) are the components of a M-tensor of type (1, 1) on TM ,
having the property that the M-tensor of type (0, 3) on TM defined by Qijk(x, y) =

gil
∂Qlj
∂yk

is antisymmetric in the first two indices, then π : (TM, G) −→ (M, g) is a
totally geodesic map.

Obviously, if Qi
j(x, y) = 0, i.e. N i

j(x, y) = Γijly
l + T i

j (x), then π : (TM, G) −→
(M, g) is totally geodesic.

3) If Nh
i (x, y) = {Γhij + [(P l

jk(x)gli + P l
ik(x)glj)g

kh + P h
ij(x)]}yj, where P l

jk(x) is a
tensor field of type (1, 2) on M with the property P l

jk = −P l
kj, then π : (TM, G) −→

(M, g) is a totally geodesic map.

In the following we shall give some results concerning the property of π to be
totally geodesic. The results are obtained giving various expressions for the nonlinear
connection. We consider the following cases

A) N i
j(x, y) = −1

2
∂Si

∂yj
, where S(x, y) = yi ∂

∂xi
+ Si(x, y) ∂

∂yi
is a semispray on TM .

Then,

Proposition 5 The map π is totally geodesic if and only if Sh(x, y) = −Γhijy
iyj+

T h
i (x)yi + ξh(x), where ξ ∈ χ(M).

Remark that, for T h
i = 0 and ξh = 0, we obtain Sh(x, y) = −Γhijy

iyj, i.e. S is
the geodesic spray.

B) N i
j (x, y) = {Γijh +P i

jh(x)}yh, where (P i
jk(x)) is a tensor field on M ; Γijh +P i

jh

are the coefficients of the linear connection ∇+P , where P = (P i
jh(x)). In this case

we have

Proposition 6 The map π is totally geodesic if and only if Pijk = −Pjik, where
Pijk = gilP

l
jk.

If P i
jk = −P i

kj , i.e. ∇ + P and ∇ have the same geodesics, then π is totally
geodesic if and only if (Pijk(x)) is an exterior differential form of degree 3.

Proposition 7 Let P i
jk = Qi

kj, where (∇ + Q)g = 0, i.e. ∇ + Q is a metric
connection. Then π is a totally geodesic map. So if Q is a homogeneous structure
then π is totally geodesic.

Proposition 8 a) Let (M, g, J) be an almost Hermitian manifold. If P i
jk = Qi

kj,
where Q(X, Y ) = −1

2
J(∇XJ)Y , then π is totally geodesic.

b) Let (M, g, J) be a nearly-Kähler manifold. If P i
jk = Qi

jk, where Q(X, Y ) =
−1

2
J(∇XJ)Y , then π is a totally geodesic map.

We note that (∇+ Q)J = 0, i.e. ∇ + Q is an almost complex connection.

Also we remark that if P i
jk = Ak∇jξ

i, Ak 6= 0, where (Ak(x)) is a tensor field on
M of type (0, 1), then π is a totally geodesic map if and only if ξ is a Killing vector
field.

By studying the harmonicity of the canonical projection we obtain

Theorem 3 The map π : (TM, G) −→ (M, g) is harmonic.
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3 The harmonicity of vector fields

In the following, we shall consider the case of N i
j(x, y) = Γijhy

h − T i
j (x).

Let ξ be a vector field which is considered to be a map from (M, g) to (TM, G).
Investigating the situations in which ξ is an isometric immersion, a totally geodesic
or harmonic map, as well as the relation between them, we will obtain interesting
results.

Taking into account the relation

(12) ξ∗(
∂

∂xi
) =

δ

δxi
+ (∇iξ

h − T h
i )

∂

∂yh

we obtain
Theorem 4 The map ξ : (M, g) −→ (TM, G) is an isometric immersion if and

only if

(13) ∇iξj +∇jξi = cij ,

where cij = Tij + Tji, Tij = gihT
h
j and ξi = gihξ

h.
Remarks:
1) If Tij = −Tji then ξ is an isometric immersion if and only if ξ is a Killing

vector field.
2) If Tij = Tji then ξ is an isometric immersion if and only if Tij = 1

2
(∇iξj+∇jξi).

3) If Tij = ∇iξj then ξ is an isometric immersion.
Thus we obtain
Proposition 9 For any ξ ∈ χ(M) there is G a pseudo-Riemannian metric of

type (5) on TM such that ξ : (M, g) −→ (TM, G) is an isometric immersion.
From (13) we obtain by a straightforward computation the following relation

(14) ∇i∇jξh = Rh
ijkξh +

1

2
(∇jcki +∇ickj −∇kcij)

satisfied by ξ in the case of an isometric immersion ξ : M −→ TM.
Considering the condition of complete integrability of the partial differential sys-

tem defined by (13) with its consequence (14), it follows that, under the condition
of complete integrability, the manifold (M, g) must have constant sectional curva-
ture and the tensor field c must satisfy the following system of partial differential
equations

∇i(∇hcjk −∇kcjh) +∇j(∇kcih −∇hcik) = cilR
l
jkh − cjlR

l
ikh.

Remark that the tensor field cij = 0 satisfies this system and if c = g the system
is satisfied if and only if R = 0; for cij = 0 we obtain the condition of complete
integrability for Killing vector fields.

By computing the second fundamental form β(ξ) of ξ we obtain

(15) β(ξ)(
∂

∂xi
,

∂

∂xj
) = {∇i∇jξ

h −∇iT
h
j + (P h

ij ◦ ξ)} ∂

∂yh
,

where

P h
ij ◦ ξ =

1

2
(2Riljkξ

l +∇iTkj −∇jTki +∇kTji −∇iTjk −∇jTik +∇kTij)g
kh.
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Proposition 10 a) If ∇kTij = 0 or Tij = −Tji then ξ is totally geodesic if and
only if

Riljkξ
l +∇i∇jξk = 0,

where Riljk are the components of the Riemann-Christoffel tensor. So ξ : (M, g) −→
(TM, G) is a totally geodesic map if and only if Lξ∇ = 0, i.e. ϕt is a totally geodesic
map ∀t, where {ϕt} is the flow of ξ.

b) If Tij = Tji then ξ : (M, g) −→ (TM, G) is a totally geodesic map if and only
if

∇kTij =
1

2
(∇k∇iξj +∇k∇jξi).

Remarks:
1) If Tij = Tji, ∇kTij 6= 0 and ξ : (M, g) −→ (TM, G) is totally geodesic then

tr T = divξ + c, where tr T = Tijg
ij . So, if divξ = 0 and tr T is not constant, then

ξ cannot be totally geodesic.
2) If Tij = Tji, ∇kTij 6= 0 and ξ is a Killing vector field then ξ is not a totally

geodesic map.
3) If ξ is a Killing vector field then Lξ∇ = 0; if M is a compact and orientable

manifold then ξ is Killing if and only if Lξ∇ = 0 (see [18]).
By studying the relation between ξ as isometric immersion map and ξ as totally

geodesic map we obtain
Theorem 5 If ξ : (M, g) −→ (TM, G) is an isometric immersion then ξ :

(M, g) −→ (TM, G) is totally geodesic.
Remark that for any vector field ξ ∈ χ(M) there is a pseudo-Riemannian metric

G of type (5) such that ξ : (M, g) −→ (TM, G) is a totally geodesic map.
Now computing the tension field τ (ξ) of ξ we obtain
Proposition 11 If ∇kTij = 0 or Tij = −Tji then ξ : (M, g) −→ (TM, G) is a

harmonic map if and only if ξ is a geodesic vector field, i.e. gij(∇i∇jξ
k)+Rk

l ξ
l = 0,

where Rk
l = Rlig

ik.
We remark that if ϕt is harmonic ∀t, then ξ is a geodesic vector field.
From Theorem 5 it follows that, if ξ : (M, g) −→ (TM, G) is an isometric

immersion then ξ is a harmonic map. So, for any ξ ∈ χ(M) there is G of type (5)
such that ξ is a harmonic map.

We consider now the case Tij = Tji. The tension field τ (ξ) is given by

(16) τ (ξ) = {Rk
l ξ
l + gij(∇i∇jξ

k) + [∇h(tr T )− 2(∇iT
i
h)]g

hk} ∂

∂yk
.

It is known that the symmetric tensor field (Tij) is harmonic with respect to g
if and only if

∇iT
i
h −

1

2
∇h(tr T ) = 0

(see [1]). So we obtain
Proposition 12 If (Tij) is harmonic with respect to g then ξ is a harmonic map

if and only if ξ is a geodesic vector field.
We remark that if Tij = Rij then (Tij) is harmonic with respect to g.
By studying the harmonicity of the tensor field ξ?G with respect to g we obtain
Theorem 6 The symmetric tensor field ξ?G is harmonic with respect to g if and

only if ξ : (M, g) −→ (TM, G) is a harmonic map.
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Finally, we shall study the energy E(ξ) and the stress-energy tensor Sξ of ξ. Sξ
is defined by Sξ = e(ξ)g − ξ?G (see [2]).

We have

e(ξ) =
n

2
+ divξ − tr T, E(ξ) =

n

2

∫
M

1dvg −
∫
M

tr Tdvg,

Sξ(
∂

∂xi
,

∂

∂xj
) =

n− 2

2
gij + (divξ)gij − (tr T )gij − (∇iξj +∇jξi) + Tij + Tji,

divSξ(
∂

∂xi
) = −{gjk∇j∇kξi + Rliξ

l − gjk(∇jTki +∇jTik) +∇i(tr T )}.

We remark that if Tij = gij we have E(ξ) < 0 and if Tij = 1
2
gij we have E(ξ) = 0.

We note that in the Riemannian case E(ξ) > 0. Also, we note that the energy E(ξ)
of ξ is independent of ξ. So, if ξ ∈ χ(M) is a harmonic map, then ξ is a critical
point to E and E(ξ) = E(ξt) for any variations of type ξt(p) = ξ(p) + tη(p), where
η ∈ χ(M).

Now, we shall study the relation between the tensor Sξ and the harmonicity of ξ.
If ∇kTij = 0, or Tij = −Tji, or Tij = Tji we have

((divSξ)
])V ◦ ξ = −τ (ξ).

Consequently we obtain
Proposition 13 The map ξ : (M, g) −→ (TM, G) is harmonic if and only if

divSξ = 0.
We note that, in general, we have only: if ξ is harmonic then divSξ = 0.

4 The pseudo-Riemannian metric gc

Let us define on TM the complete lift gc of the Riemannian metric g by

(17) gc(XV , Y V ) = 0, gc(XH , Y V ) = g(X, Y ), gc(XH , Y H) = 0.

The metric gc is a pseudo-Riemannian metric with the signature (n, n). The
vertical and horizontal distributions are maximally isotropic.

Proposition 14 The Levi-Civita connection gc∇ of gc is given locally by

(18)



gc∇ ∂
∂yi

∂
∂yj

= 0,

gc∇ ∂
∂yi

δ
δxj

= 1
2

(
∂gki
∂xj
− ∂gij

∂xk
+

∂N l
k

∂yi
glj −

∂N l
j

∂yi
glk

)
gkh ∂

∂yh
,

gc∇ δ

δxi

∂
∂yj

= 1
2

(
∂gjk
∂xi
− ∂gij

∂xk
+

∂N l
k

∂yj
gli +

∂N l
i

∂yj
glk

)
gkh ∂

∂yh
,

gc∇ δ

δxi

δ
δxj

= 1
2

(
∂gjk
∂xi

+ ∂gik
∂xj
− ∂N l

j

∂yk
gli − ∂N l

i

∂yk
glj

)
gkh δ

δxh
+

+1
2

(
Rl
jiglk + Rl

ikglj −Rl
kjgli

)
gkh ∂

∂yh
.
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Taking into account the relations (7), (11), (18) we obtain
Theorem 7 a) The map π : (TM, gc) −→ (M, g) is a totally geodesic map if

and only if the map π : (TM, G) −→ (M, g) is a totally geodesic map.
b)The map π : (TM, gc) −→ (M, g) is a harmonic map.
Proposition 15 a) The identity map 1 : (TM, G) −→ (TM, gc) is totally

geodesic if and only if π : (TM, G) −→ (M, g) is totally geodesic.
b) gc is biharmonic with respect to G.
From now on we shall consider only the case N i

j(x, y) = Γijly
l − T i

j (x). We have
π : (TM, gc) −→ (M, g) is totally geodesic, G∇ =gc ∇ and, consequently, we get

Theorem 8 The map ξ : (M, g) −→ (TM, gc) is a harmonic map if and only if
the map ξ : (M, g) −→ (TM, G) is harmonic.

We consider the Berwald connection on TM given by

(19)


B ∂

∂yi

∂
∂yj

= 0, B ∂

∂yi

δ
δxj

= 0,

B δ
δxi

δ
δxj

= Γhij
δ
δxh

, B δ
δxi

∂
∂yj

= Γhij
∂
∂yh

.

B is a linear connection with torsion, and we shall consider its mean connection
m

B.

The tension vector field τ (ξ) of the map ξ : (M, g) −→ (TM,
m

B) is given by

(20) τ (ξ) = gij{∇i∇jξ
h −∇iT

h
j }

∂

∂yh
.

We know that a tensor field J of type (1, 1) on M is a harmonic endomorphism
field if and only if

gij(∇iJ
h
j ) = 0

(see [4]). Consequently we obtain
Proposition 16 The following statements are equivalent:
a) The tensor field J is a harmonic endomorphism field,
b) J : (TM, G) −→ (TM, G) is a harmonic map,
c) J : (TM, gc) −→ (TM, gc) is a harmonic map.
If (M, J, g) is a nearly-Kähler manifold, then J is a harmonic endomorphism

field. As example of nearly-Kähler manifold, we can consider M = S6, the tensor J
defined by Jxy = x× y, where × is the vectorial product of IR7, and g is the usually
Euclidean metric of IR7.

From the relation (20) we obtain

Theorem 9 a) If T j
i = ∇iξ

j then ξ : (M, g) −→ (TM,
m

B) is a harmonic map.

b) If T is a harmonic endomorphism field then ξ : (M, g) −→ (TM,
m

B) is a
harmonic map if and only if ∇ξ is a harmonic endomorphism field.

Remarks:
1) If M is compact and orientable and T is a harmonic endomorphism field, then

∇ξ is harmonic if and only if ∇ξ = 0; if (M, g) has the constant sectional curvature
c 6= 0 then there is no ξ 6= 0 such that ∇ξ = 0.

2) If (M, g) is Ricci-flat and T is a harmonic endomorphism field, then ∇ξ is a
harmonic endomorphism field if and only if ξ is geodesic.
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3) For any vector field ξ there is a Berwald connection of type (19) such that

ξ : (M, g) −→ (TM,
m

B) is a harmonic map.

If we consider on TpM the induced connection of G∇ or
m

B then Jp : TpM −→
TpM is a totally geodesic map, because it carries the straight lines, which are the
geodesics of TpM , into straight lines.

Thanks are due to the referee for many helpful remarks and suggestions leading to
consistent improvement of this paper. Thanks are due too, to Professor L. Vanhecke
for his patience and understanding.
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