Pseudo-Riemannian metrics on tangent bundle
and harmonic problems *

Oniciuc C.

Abstract

The problems studied in this paper are related to the harmonicity of the
canonical projection m : TM — M, where (M, g) is a Riemannian space
and TM is its tangent bundle, and to the harmonicity of the vector fields
¢ € x(M) thought of as maps from M to TM. We have considered on
TM the pseudo-Riemannian metrics G, g¢ of lift-complete type defined by
means of an arbitrary nonlinear connection on T'M. We have also studied the
harmonicity of a tensor field J of type (1,1) on M, where J is thought of as
a map from T'M into itself.

Introduction

A vector field £ on a Riemannian manifold (M, g) can be thought of as a map
& M — TM, where m : TM — M is the tangent bundle of the manifold
M. The conditions under which £ is an isometric immersion, a totally geodesic
or harmonic map, have been studied in the cases where one considers on T'M the
Riemannian metrics defined by Sasaki, Cheeger-Gromoll or the pseudo-Riemannian
metrics of complete lift type (see [7], [16], [12], [13], [14], [11]). The conditions under
which the canonical projection 7 : T'M — M is a totally geodesic or harmonic map
have been also studied.
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A tensor field J of type (1,1) on M can be thought of as a map J : TM — T M.
The conditions under which J is a harmonic map have been studied only in the case
where the complete lift metric is considered on T'M (see [4]).

In this paper we deal with the same problems of harmonicity of vector fields, the
canonical projection and tensor fields of type (1,1) on M. We consider on T'M the
pseudo-Riemannian metrics G and ¢¢ defined by means of a nonlinear connection
on T'M. The main idea is to modify the nonlinear connection: we shall no longer
use the nonlinear connection defined by the Levi-Civita connection V of (M, g) but,
more generally, an arbitrary nonlinear connection on 7T'M. We can obtain some
quite interesting results.

The manifolds, maps, vector fields etc. considered in this work are assumed to
be smooth, i.e. differentiable of class C'*°. The well known summation convention
is used throughout the paper. The ranges for the indices are {1, ...,n} for h, i, j, k,(
and {1,...,m} for «, 3,7, 0; x(M) stands for the Lie algebra of the smooth vector
fields on M.

The author wishes to express his gratitude to professor V.Oproiu for many helpful
talks and hints about the argument discussed in this paper.

1 The tangent bundle

Let (M,g) be an n—dimensional Riemannian manifold with n > 1 and let 7 :
TM — M be its tangent bundle. A local chart (U,z),i = 1,...,n on M induces
a local chart (7~'(U), 2% y%),i = 1,...,n on TM, where we denote, by abuse, z°
instead of 7*z° = 2% o 7w, and y’ are the vector space coordinates of the element
v € 71 (U) € TM with respect to the natural basis (%)W(v),i = 1,...,n, ie.
v = yi(%)w(v). Denote by T'}; the Christoffel symbols of g and by V the Levi-Civita
connection of g.

We have the vertical distribution VT'M on T'M, defined by V,(T'M) = kerm, .,
v € TM. One must note that V(T'M) is an integrable distribution. We consider a
nonlinear connection on T'M defined by the distribution H(T'M) on T'M, comple-
mentary to V(T M), i.e. H,(TM)® V,(TM) =T,(TM), v € TM. The distribution
H(TM) is the horizontal distribution. For any induced local chart (7=*(U),z%, y")
we have a local adapted frame in H(T'M) defined by the vector fields

o 0 ;
( ) 51,2 axz z(x7y>ayj y 2 ) y Ty

where the local functions N7 (x,y) are the connection coefficients of the nonlinear
connection defined by H(T'M). The vector fields (-32;), i = 1,...,n define a local

oy’
frame for the vertical distribution V(T'M). Let £ = £'5% be a (local) vector field on
M. The horizontal and the vertical lifts of £ are defined by
) .0
H _ vV _ i
We have (52:)7 = 5% and (2)" = 8?/?" A
The system of local 1-forms (dz', Dy") defines the dual frame of the frame
(55, 8?/")’ where
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(2) Dy’ = dy' + Ni(z,y)dx’.
Denote
(3) R =5 = 5ok = 596 — 52 — ().

Remark that sz = —R;k. We have the following commutation formulae

W (L] g [5o 8] oMo [0 a]_
oad’ dxk | Moy |6xi’ Ayk| T Oyk oyt | Oyt dyi |

It follows that the horizontal distribution H(T'M) is integrable if and only if R%;, = 0.
We define on T'M the tensor field of type (0,2) G of lift-complete type by

(5)  GXV.YV)=0, GX", YN =g¢X,Y), GX" YY) =gX,Y),

(see [14]). If g = g;jdx'dx? is the expression of g in local coordinates, then G is given
locally by

The tensor GG defines a pseudo-Riemannian metric on T'M. The vertical distribution
is maximally isotropic and G defines a pairing between the horizontal and vertical
distribution. The signature of G is (n,n) and the fibres of horizontal distribution
are isometric with the tangent spaces on M in the coresponding points.
Proposition 1 The Levi-Civita connection N of G is given locally by

Vo5 =0
9 = =
a7 OV
l
G 5 _ 1 (0g _ 995 , ONj oN; kh 8
Vaia =3 (aa;f ot T a9~ gy 9k | 97 g

aNl

G 9 _ 1 (99, _ 9gi ON} kh _0
(7) Vs oy 2 (89{?1 - ang + 5. Dy 9ii + Byi gik | 9 P
Szt

l N
G § _ 1 (99K | dg _ ON; 0N} kh 6
Vi 55 =73 (8&8’ t o i g9 ) 9 Grt

dgi; , ON! ON!
+3 (— ot + G0+ gt g + Riigu + Ripgy — Rkjgzz> 9" 505

Remark that 7),M is a submanifold of TM and T,,(T,M) = span{%(’u), s %(’1})},
where v € T,M. Since H,(TM) & V,(TM) = T,(TM), we can project the linear
connection “V on T, M. The induced connection is a flat connection and its geodesics
are the straight lines of T,,M. They are geodesics of T'M too, so T,M is a totally
geodesic submanifold of (TM,% V).

In the following we shall consider the case N(x,y) = I'\,y" — Ti(x), where

(Tj(x)) are the components of a tensor field of type (1,1) on M.
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By computing the curvature tensor field “ R of ¥V we obtain
Proposition 2 The curvature tensor field R is given locally by

H(ViRG )Y+ ViQl, — V,Ql + Ry, T — RZlin}%a

kij

where RZU are the components of the curvature tensor field R of V,
1
Qiy(w) = 5 (Vi = ViThi + ViTii = Vil = ViTi + ViTig)g™,

and T'z‘j = gZhTJh

Remark that, if V;TF = 0 or if Tj; = =T}, then (T'M,G) is flat if and only if
(M, g) is a flat manifold.

Denote by K (v; %, %), 1 # j, the sectional curvature of the two-dimensional
subspace generated by % (v) and 3% (v). The restriction of G to span{z’, 55} is
positive defined.

Theorem 1 Assume that (M, g) have the constant sectional curvature c.

(a) If Ty; = —Ty; then K(v; 52, 55) = ¢
(b) If Ty = Sgi; then K(v; 2, 5 = c+ ¢y
Proposition 3 The Ricci tensor field Ric of “R is given locally by

o o, _ ,0 ¢ ()

R’ic(a—yjaa—yk) ’lc(a—yja w) = OaRiC(@a w)

= 2Ry,

where R;; are the components of the Ricci tensor field of (M,g). So, (T'M,G) is
Ricci flat if and only if (M, g) is Ricci flat.

Let Gy be the metric of type (5) which is obtained when 77 = 0. By studying
the harmonicity of Gy with respect to G we obtain

Proposition 4 The metric G is bitharmonic with respect to Gy, i.e. the identity
maps 1: (TM,G) — (TM,Gy), 1: (TM,Gy) — (T'M,G) are harmonic.

We remark that G = Gy if and only if T;; = —T};. In the case where T}; = —T1};
or Vin = 0 then G and Gy have the same geodesics. If T;; = Tj; we have generally
Goy £9 V.

2 The harmonicity of the canonical projection m:TM — M

Let (M,g) and (M,§) be two Riemannian manifolds of dimensions n and m, re-
spectively, and let f : M — M be a smooth map. Denote by M '3, the Christoffel

symbols of the metric g and by MY the Levi-Civita connection of g. Let (U,z%),
i =1,...,n, be a local chart on M in p € M and let (V,u®), a« = 1,...,m, be also
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a local chart on M in f(p). The second fundamental form of f in p, denoted by
B(f)p, is given in local coordinates by

g 0 o
= ek T
(9) B(f)p(axz7 a.fll'j) ( ] 'Ufk + f f )aua
where fff = gf;k and f2 = a(zj'ng' The form 3(f) is C°°(M) bilinear and symmetric.

The map f is a totally geodesic map if an only if 5(f) = 0.
The tension field 7(f) of f is defined by

(10) () = tr BU) = B s o).

The map f is a harmonic map if 7(f) = 0 (see [2]). If X € x(M) is f-related
with X € x(M), i.e. fi,X = X(f(p), Vp € M, and Y € x(M) is f-related with
Y € x(M), then we have

(11) BUNNXY) = (VY ) ) — fun(VxY).

Recall that if M is a compact and orientable manifold then f : (M, g) — (M, §)
is harmonic if and only if f is a critical map for the energy E, where E(f) =
Jar e(f)dvg and e(f) = 29 [0 £} Gas.

From the relations (9) and (10) one can see that the notion of harmonicity can
be extended to the case where M and M are not Riemannian manifolds. Consider
(M, g) or (M,g) as pseudo-Riemannian spaces or consider on M just a torsion free
connection. If M is a compact and orientable manifold and (M,g) is a pseudo-
Riemannian manifold then f still remains a harmonic map if and only if f is a
critical map for the energy F.

We shall study the extensions considered above in the case of the map =
(TM,G) — (M, g). From (7) and (11) we obtain

o 0 g 0
B( )(ayza ayﬂ) ﬁ(ﬂ->(a—yza @) - 07
5 &, 1,0g; ON; ON! ., 0
B(ﬂ(éxi’ (5xj> N 2(83:’§ oyk i~ oyk ot 99 oxh’

Consequently we have the following

Theorem 2 The following statements are equivalent:
(a) The map m: TM — M is a totally geodesic map,
(b) B(r) (X, YT) =0, VXY € (M),
(¢) S () = Tl (2) + {(Phyus + Phar)g™ + PL}, where Ply(x,y) are the compo-
nents of a M-tensor field of type (1,2) on T M, having the property: lek = —P,ij.

Remarks:

1) Under the condition of complete integrability of the equation above, the M-

tensor (P/*(z,y)), with the property P/ = —PJ:, must satisfy the following system
of partial differential equation

oP}, N P, N OP); opPl, N P}, N OP},
Dy gui By 9ij By Sgin = By . i Dy Oy
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Remark that if (P}}) is a tensor on M then this system is fulfilled automatically.
2) If the coeficients of the nonlinear connection are Ni(x,y) = Iyt + Ti(x) +
Qé(m,y), where Qé(:c,y) are the components of a M-tensor of type (1,1) on T M,

having the property that the M-tensor of type (0,3) on T'M defined by Q;jx(x,y) =

QL . . . T .
gﬂﬁQ,ﬁ is antisymmetric in the first two indices, then 7 : (TM,G) — (M,g) is a

totally geodesic map.

Obviously, if Q%(z,y) = 0, i.e. Ni(z,y) =Ty’ +Tj(x), then 7 : (TM,G) —
(M, g) is totally geodesic.

3) If NI, y) = {T0; + [(Pj(@)gui + P ()g13)g™" + Ply(w)]}y’, where Pj,(x) is a
tensor field of type (1,2) on M with the property lek = —P,ij, then 7 : (TM,G) —
(M, g) is a totally geodesic map.

In the following we shall give some results concerning the property of 7 to be
totally geodesic. The results are obtained giving various expressions for the nonlinear
connection. We consider the following cases

A) Ni(z,y) = —%375;, where S(z,y) = y' 2% + Si(x,y)a‘zi is a semispray on T'M.
Then,

Proposition 5 The map 7 is totally geodesic if and only if S"(x,y) = —F?jyiyj—i-
THx)y' + &"(x), where & € x(M).

Remark that, for T)* = 0 and " = 0, we obtain S"(z,y) = —Ily'y/, ie. S is
the geodesic spray.

B) Ni(x,y) = {T'}, + P}, (x)}y", where (P} (x)) is a tensor field on M; I, 4+ P},
are the coefficients of the linear connection V + P, where P = (Pj,(x)). In this case
we have

Proposition 6 The map m is totally geodesic if and only if P;jr = —Pjir, where
Py = guP}j..

If P, = =P, i.e. V+ P and V have the same geodesics, then 7 is totally
geodesic if and only if (P;x(x)) is an exterior differential form of degree 3.

Proposition 7 Let Pj, = Qj;, where (V4 Q)g = 0, i.e. V +Q is a metric
connection. Then m is a totally geodesic map. So if () is a homogeneous structure
then 7 1s totally geodesic.

Proposition 8 a) Let (M, g, J) be an almost Hermitian manifold. If Pj, = Q.
where Q(X,Y) = —1J(VxJ)Y, then 7 is totally geodesic.

b) Let (M,g,J) be a nearly-Kihler manifold. If Pj, = Q' where Q(X,Y) =
—2J(VxJ)Y, then T is a totally geodesic map.

We note that (V4 Q)J =0, i.e. V + @ is an almost complex connection.

Also we remark that if P, = AxV ;&' A # 0, where (Ax(z)) is a tensor field on

M of type (0,1), then 7 is a totally geodesic map if and only if ¢ is a Killing vector
field.

By studying the harmonicity of the canonical projection we obtain
Theorem 3 The map w: (T'M,G) — (M, g) is harmonic.
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3 The harmonicity of vector fields

In the following, we shall consider the case of N(z,y) =T y" — Ti(x).

Let £ be a vector field which is considered to be a map from (M, g) to (T'M,G).
Investigating the situations in which £ is an isometric immersion, a totally geodesic
or harmonic map, as well as the relation between them, we will obtain interesting
results.

Taking into account the relation

0 4] 0

12 (5=)=—+ (V& —ThH—
(12) 6 (5m) = 3+ (V6" ~ T
we obtain

Theorem 4 The map & : (M, g) — (T M, G) is an isometric immersion if and
only if
(13) V& + Vi = cij,
where ¢ = Ti; + Ty, Tij = ginT) and & = giné".

Remarks:

1) If T;; = —Tj; then € is an isometric immersion if and only if £ is a Killing

vector field.
2) If T;; = T}; then € is an isometric immersion if and only if 7}; = %(Vz‘fj +V,&).
3) If T;; = V;&; then ¢ is an isometric immersion.
Thus we obtain
Proposition 9 For any § € x(M) there is G a pseudo-Riemannian metric of
type (5) on TM such that € : (M, g) — (T M, G) is an isometric immersion.
From (13) we obtain by a straightforward computation the following relation

1
(14) ViViéh = Rij6n + 5 (Vicki + Ve — Vicyy)

satisfied by £ in the case of an isometric immersion £ : M — T'M.

Considering the condition of complete integrability of the partial differential sys-
tem defined by (13) with its consequence (14), it follows that, under the condition
of complete integrability, the manifold (M, ¢g) must have constant sectional curva-
ture and the tensor field ¢ must satisfy the following system of partial differential
equations

Vi(thjk — Vijh) -+ Vj(chih — thik> = CilRé‘kh — CﬂRi‘kh'

Remark that the tensor field ¢;; = 0 satisfies this system and if ¢ = g the system
is satisfied if and only if R = 0; for ¢;; = 0 we obtain the condition of complete
integrability for Killing vector fields.

By computing the second fundamental form 5(&) of £ we obtain

0 9\ _rowveh _wph, (phoen
(15 BO o o) = (Vi3 ~ VT + (Pho O} o

where

1
Plio &= S(2Rap€" + ViTy; — ViThi + ViTy = VT, — V,Ti + ViTy) g™
7 2
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Proposition 10 a) If V,T;; = 0 or T;; = —Tj; then  is totally geodesic if and

only if
Rije€ + ViV;&, = 0,

where Rk, are the components of the Riemann-Christoffel tensor. So € : (M, g) —
(T'M,G) is a totally geodesic map if and only if LV =0, i.e. ¢y is a totally geodesic
map Vt, where {p;} is the flow of €.

b) If T;; = Tj; then & : (M, g) — (T'M,G) is a totally geodesic map if and only
of

1
Vilij = 5(ViVi§ + ViV &).

Remarks:

1) If T =Ty, ViTi; # 0 and € : (M, g9) — (T'M,G) is totally geodesic then
tr T = div€ + ¢, where tr T = T;;g". So, if divé = 0 and ¢r T is not constant, then
¢ cannot be totally geodesic.

2) It Ty; = Ty, ViTi; # 0 and € is a Killing vector field then ¢ is not a totally
geodesic map.

3) If € is a Killing vector field then LV = 0; if M is a compact and orientable
manifold then ¢ is Killing if and only if LV = 0 (see [18]).

By studying the relation between & as isometric immersion map and £ as totally
geodesic map we obtain

Theorem 5 If§ : (M,g) — (TM,G) is an isometric immersion then & :
(M, g) — (T'M, Q) is totally geodesic.

Remark that for any vector field £ € x(M) there is a pseudo-Riemannian metric
G of type (5) such that & : (M, g) — (T'M,G) is a totally geodesic map.

Now computing the tension field 7(&) of £ we obtain

Proposition 11 If V,T;; =0 or T;; = =T} then £ : (M,g9) — (TM,G) is a
harmonic map if and only if € is a geodesic vector field, i.e. g (V;V ;&%) + RFEL =0,
where RY = Ry;g™*.

We remark that if ¢; is harmonic V¢, then ¢ is a geodesic vector field.

From Theorem 5 it follows that, if £ : (M,g9) — (T'M,G) is an isometric
immersion then ¢ is a harmonic map. So, for any £ € x (M) there is G of type (5)
such that £ is a harmonic map.

We consider now the case T;; = Tj;. The tension field 7(§) is given by

(16) (€)= (RIS + g7(VV,¢4) + [Valer T) ~ AV 5 7

It is known that the symmetric tensor field (7;;) is harmonic with respect to g
if and only if

1
VT, — S Valtr T) = 0

(see [1]). So we obtain

Proposition 12 If (T};) is harmonic with respect to g then £ is a harmonic map
if and only if & is a geodesic vector field.

We remark that if T;; = R;; then (T;) is harmonic with respect to g.

By studying the harmonicity of the tensor field £*G with respect to g we obtain

Theorem 6 The symmetric tensor field G is harmonic with respect to g if and
only if € : (M, g) — (T'M, Q) is a harmonic map.
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Finally, we shall study the energy E({) and the stress-energy tensor Sg of €. S
is defined by S¢ = e(§)g — "G (see [2]).
We have

e(§) = g + dive — tr T, B(€) = g /M 1dv, — /M tr Tdv,,

o 0 n—2 ,
(ot i) = 5 % T (diwe)gi; — (tr T)gij — (Vi§; + V&) + Tij + T,
0 ‘ ,
dws&(%) = —{¢""V;Vi&i + R — ¢*(V;Thi + V;Tiy) + Vi(tr T)}.

We remark that if 7;; = ¢;; we have E(§) < 0 and if T}; = %gzj we have E(§) = 0.
We note that in the Riemannian case E(§) > 0. Also, we note that the energy F(§)
of £ is independent of £. So, if £ € x(M) is a harmonic map, then ¢ is a critical
point to E and E(§) = E(&) for any variations of type &(p) = £(p) + tn(p), where
n € x(M).

Now, we shall study the relation between the tensor S¢ and the harmonicity of &.

If Vi.T;; =0, or T;; = =Ty, or T;; = T};; we have

((divS)*)" 0 & = —7(€).

Consequently we obtain

Proposition 13 The map § : (M,g9) — (T'M,G) is harmonic if and only if
d’i’USg =0.

We note that, in general, we have only: if £ is harmonic then divSe = 0.

4 The pseudo-Riemannian metric  ¢°
Let us define on T'M the complete lift g¢ of the Riemannian metric g by
(17) (XY =0, (X" YY) =g(X,Y), (X" YT) =0

The metric ¢g¢ is a pseudo-Riemannian metric with the signature (n,n). The
vertical and horizontal distributions are maximally isotropic.
Proposition 14 The Levi-Civita connection 9°N of g¢ is given locally by

Ogki 9gi k a
Ba:jl - Ba;lg + gl] By glk B_h’

dg;k | Oguw  ON N} kh &
oet T aw — agpJi — g9 ) 9 st

¢ 89 Ogi
(18) 9 Vi% = % (8525 _ 9] —l— ByJ gh ByJ g1k> %,
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Taking into account the relations (7), (11), (18) we obtain

Theorem 7 a) The map 7 : (TM,g°) — (M, g) is a totally geodesic map if
and only if the map w: (T'M,G) — (M, g) is a totally geodesic map.

b)The map 7 : (T M, g°) — (M, g) is a harmonic map.

Proposition 15 a) The identity map 1 : (TM,G) — (T'M, ¢°) is totally
geodesic if and only if m: (TM,G) — (M, g) is totally geodesic.

b) g¢ is biharmonic with respect to G.

From now on we shall consider only the case Ni(z,y) = I'y' — T/(x). We have
71 (TM,g°) — (M, g) is totally geodesic, ¥V =9 V and, consequently, we get

Theorem 8 The map & : (M, g) — (T'M, ¢°) is a harmonic map if and only if
the map & : (M, g) — (T'M, G) is harmonic.

We consider the Berwald connection on T'M given by

Dy7 Oy Dy7 oxd
19) 5 5 9 9
—Th =Th
B% dxd Fij Szl B% oyl FZJ oyh -

B is a linear connection with torsion, and we shall consider its mean connection

B.
The tension vector field 7(&) of the map & : (M, g) — (T'M, E) is given by
ij h N
(20) 7(§) = g"{ViV,;¢" = VT }a—yh'

We know that a tensor field J of type (1,1) on M is a harmonic endomorphism
field if and only if
9" (ViJj) =0

(see [4]). Consequently we obtain

Proposition 16 The following statements are equivalent:

a) The tensor field J is a harmonic endomorphism field,

b) J: (TM,G) — (T'M,G) is a harmonic map,

c)J:(TM, g% — (T'M,qg°) is a harmonic map.

If (M, J,g) is a nearly-Kéhler manifold, then J is a harmonic endomorphism
field. As example of nearly-Kéhler manifold, we can consider M = S, the tensor .J
defined by J,y = = x y, where x is the vectorial product of IR”, and g is the usually
Euclidean metric of IR".

From the relation (20) we obtain

Theorem 9 a) If T} = V&7 then € : (M, g) — (TM,E) is a harmonic map.

b) If T is a harmonic endomorphism field then & : (M,g) — (T M, E) is a
harmonic map if and only if V& is a harmonic endomorphism field.

Remarks:

1) If M is compact and orientable and T is a harmonic endomorphism field, then
V¢ is harmonic if and only if V& = 0; if (M, ¢g) has the constant sectional curvature
¢ # 0 then there is no £ # 0 such that V& = 0.

2) If (M, g) is Ricci-flat and T is a harmonic endomorphism field, then V¢ is a
harmonic endomorphism field if and only if £ is geodesic.
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3) For any vector field £ there is a Berwald connection of type (19) such that
E:(M,g) — (TM, E) is a harmonic map.

If we consider on T, M the induced connection of ¢V or B then Jp  TyM —
T,M is a totally geodesic map, because it carries the straight lines, which are the
geodesics of T,M, into straight lines.

Thanks are due to the referee for many helpful remarks and suggestions leading to
consistent improvement of this paper. Thanks are due too, to Professor L. Vanhecke
for his patience and understanding,.

References

[1] Chen B.Y., Nagano T., Harmonic metrics, harmonic tensor and Gauss maps,
J. Math. Soc. Japan 36 (2) (1984), 295-313.

[2] Eels J., Lemaire L., Selected topics in harmonic maps, Conf. Board of the Math.
Sci. A.M.S. 50 (1983), 85 pp.

[3] Eels J., Ratto A., Harmonic maps and minimal immersions with symmetries.
Method of ordinary differential equations applied to eliptic variational problems,
Ann. Math. Studies 130, Princeton University Press, 1993.

[4] Garcia-Rio E., Vanhecke L., Vazquez-Abal M.E., Harmonic endomorphism
fields, Tllinois J. Math. 41 (1997), 23-30.

[5] Garcia-Rio E., Vanhecke L., Vézquez-Abal M.E., Tangent bundles of order r
and harmonicity of induced maps, Boll. Un. Mat. Ital. (7), 11-A, (1997), 809-
813.

[6] Garcia-Rio E., Vanhecke L., Vazquez-Abal M.E., Harmonic connection, Acta
Sci. Math. (Szeged) 62 (1996), 583-607.

[7] Ishihara S., Harmonic sections of tangent bundles, J. Math. Tokushima Univ.,
13, 1979, 23-27.

[8] Mok K. P., Patterson E. M., Wong Y. C., Structure of symmetric tensors of
type (0,2) and tensors of type (1,1) on the tangent bundle, Trans. Am. Math.
Soc. 234, (1977), 253-278.

[9] Nouhaud O., Applications harmoniques d’une variété riemanniene dans son
fibré tangent. Généralization, Comp. Rend. Acad. Sci. Paris 284 (1977), 815-
818.

[10] O’Neill B., The fundamental equations of a submersions, Michigan Math. J. 13
(1966), 459-469.

[11] Oniciuc C., On the harmonic sections of tangent bundles, An. Univ. Bucuresti,
47, (1), (1998), 67-72.

[12] Oniciuc C., The tangent bundles and harmonicity, An. St. Univ. 7 Al 1. Cuza”
Tasi, XLIII, (1), (1997), 151-172.



454 C. Oniciuc

[13] Oniciuc C., Nonlinear connections on tangent bundle and harmonicity, Italian
Journal of Pure and Applied Mathematics, 6, (1999), 109-122.

[14] Oproiu V., On the harmonic sections of cotangent bundles, Rend. Sem. Fac.
Sci., Univ. Cagliari, 59 (2), (1989), 177-184.

[15] Oproiu V., Harmonic maps between tangent bundles, Rend. Sem. Mat. Univers.
Politecn. Torino, 47, (1), (1989), 47-55.

[16] Piu M. P.,; Campi di vettori ed applicazione armoniche, Rend. Sem. Fac. Sci.
Univ. Cagliari, 52 (1), (1982), 85-94.

[17] Tricerri F., Vanhecke L., Homogeneous structures on Riemannian manifolds,
London Math. Soc. Lecture Note Series 83, Cambridge Univ. Press, Cambridge,
1983.

[18] Yano K., Integral formulas in Riemannian Geometry, M. Dekker, New-York,
1970.

[19] Yano K., Ishihara S., Tangent and Cotangent Bundle, M. Dekker, New-York,
1973.

[20] Yano K., Nagano T., On geodesic vector fields in a compact orientable Rieman-
nian space, Comment. Math. Helv. 35 (1), (1961), 55-64.

Faculty of Mathematics,
University " Al.I.Cuza”,
lasi, 6600, Romania,
e-mail: oniciucc@uaic.ro



