Solutions to quasilinear equations by an iterative method

P. Amster M. M. Cassinelli M. C. Mariani

Abstract

We apply an iterative method in order to construct a solution to the mean curvature equation for nonparametric surfaces.

1 Introduction

The prescribed mean curvature equation with Dirichlet condition for a nonparametric surface $X : \overline{\Omega} \longrightarrow \mathbb{R}^3$, U(x, y) = (x, y, u(x, y)) is the quasilinear partial differential equation

(1)
$$\begin{cases} (1+u_y^2)u_{xx} + (1+u_x^2)u_{yy} - 2u_xu_yu_{xy} = 2h(u)\left(1+|\nabla u|^2\right)^{\frac{3}{2}} \text{ in } \Omega\\ u = g \quad \text{in } \partial\Omega \end{cases}$$

where Ω is a bounded domain in \mathbb{R}^2 , and $h : \mathbb{R} \longrightarrow \mathbb{R}$ is a given continuous function. This problem and the general parametric case have been studied by several authors, see e.g. [2-5,6,7,9-13].

Received by the editors $\,$ May 1999.

Communicated by J. Mawhin.

Bull. Belg. Math. Soc. 7 (2000), 435-441

2 Solutions by an iterative method

We'll apply an iterative method inspired in the Newton Imbedding procedure [8].

For this purpose, let us define for each $v \in C^1(\overline{\Omega})$ the bounded linear operator $Q_v : W^{2,p}(\Omega) \to L^p(\Omega)$ given by

$$Q_v u = \frac{1}{2(1+\nabla v^2)^{\frac{3}{2}}}((1+v_y^2)u_{xx} + (1+v_x^2)u_{yy} - 2v_x v_y u_{xy})$$

Remark: $u \in W^{2,p}(\Omega)$ is a solution of (1) if and only if

$$\begin{cases} Q_u u = h(u) \text{ in } \Omega \\ u = g \quad \text{ in } \partial \Omega \end{cases}$$

We'll assume that $h \in C^2(\mathbb{R})$, $h' \ge 0$, $g \in C^{2,\gamma}(\overline{\Omega})$ for $0 < \gamma < 1$, and $\partial \Omega \in C^{2,\gamma}$. The aim of the method is to start with u_0 solution of

$$(2_t) \begin{cases} Q_{u_0} u_0 = th(u_0) \text{ in } \Omega\\ u_0 = g \quad \text{ in } \partial\Omega \end{cases}$$

and then find a step ε such that a solution of the problem

$$(2_{t+\varepsilon}) \begin{cases} Q_u u = (t+\varepsilon)h(u) \text{ in } \Omega\\ u = g \quad \text{in } \partial\Omega \end{cases}$$

may be obtained as a limit of a sequence $\{u_n\}_{n\in\mathbb{N}} \subset W^{2,p}(\Omega)$ for some p such that $\gamma < 1 - \frac{2}{p}$.

Remark: If the curvature of $\partial \Omega$ is positive then (1) is solvable for h = 0 [5]. Thus, by this method it's possible to find a sequence $0 = t_0 < t_1 < t_2 < \dots$ such that (2_{t_j}) admits a solution for every t_j .

In order to define the sequence $\{u_n\}_{n\in\mathbb{N}}$ we'll use the following results:

Lemma 1

Let $u, u_0 \in C^1(\overline{\Omega})$. Then

$$||(Q_u - Q_{u_0})v||_p \le \sqrt{3}||u - u_0||_{1,\infty}||v||_{2,p}$$

for any $v \in W^{2,p}(\Omega)$ (i.e. $Q: C^1(\overline{\Omega}) \to \mathcal{L}(W^{2,p}(\Omega), L^p(\Omega))$ is Lipschitz continuous with constant $k \leq \sqrt{3}$).

<u>Proof</u>

Let $F_i(a_1, a_2) = \frac{1+a_i^2}{2(1+a_1^2+a_2^2)^{3/2}}$, $G(a_1, a_2) = \frac{a_1a_2}{(1+a_1^2+a_2^2)^{3/2}}$. By simple computation we obtain:

$$\left|\frac{\partial F_i}{\partial a_j}\right| \le \begin{cases} \frac{2}{3\sqrt{3}} & \text{if } i = j\\ \frac{1}{\sqrt{3}} & \text{if } i \neq j \end{cases}$$

and

$$\left|\frac{\partial G}{\partial a_j}\right| \le \frac{4}{3\sqrt{3}}$$

Thus,

$$\begin{aligned} \| (Q_u - Q_{u_0})v \|_p &= \\ \| (F_2(\nabla u) - F_2(\nabla u_0))v_{xx} + (F_1(\nabla u) - F_1(\nabla u_0))v_{yy} - (G(\nabla u) - G(\nabla u_0))v_{xy} \|_p \\ &= \| \nabla F_2(\xi_1)\nabla(u - u_0)v_{xx} + \nabla F_1(\xi_2)\nabla(u - u_0)v_{yy} - \nabla G(\xi_3)\nabla(u - u_0)v_{xy} \|_p \end{aligned}$$

and the result follows.

We recall now the following apriori bound (see e.g. [5], lemma 9.17): let $u \in C^1(\overline{\Omega})$ and $L: W^{2,p}(\Omega) \to L^p(\Omega)$ the operator given by $Lv = Q_u v + \alpha \nabla v + \beta v$, where $\alpha \in L^{\infty}(\Omega, \mathbb{R}^2)$ and $\beta \in L^{\infty}(\Omega)$ is nonnegative. Then $L|_{W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)}$ is bounded by below, i.e. there exists a constant c = c(u) such that

(3)
$$||v||_{2,p} \le c ||Lv||_p$$

for any $v \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$. We'll see that c may be choosen uniformly in a neighborhood of any (u, α, β) . In other words, if $E = C^1(\overline{\Omega}) \times L^{\infty}(\Omega, \mathbb{R}^2) \times L^{\infty}_{\geq 0}(\Omega)$ with the norm $||(u, \alpha, \beta)|| = max\{||u||_{1,\infty}, ||\alpha||_p, ||\beta||_p\}$, then:

Lemma 2

Let $c(u, \alpha, \beta)$ be the minimum such that (3) holds. Then $c : E \to \mathbb{R}$ is upper semicontinuous.

<u>Proof</u>

Let $(u_0, \alpha_0, \beta_0), (u, \alpha, \beta) \in E$ and $t > c(u_0, \alpha_0, \beta_0)$. Then, for $v \in W^{2,p}(\Omega) \cap W_0^{1,p}(\Omega)$,

$$\|L_{(u,\alpha,\beta)}v\|_{p} \geq \|L_{(u_{0},\alpha_{0},\beta_{0})}v\|_{p} - \|(Q_{u} - Q_{u_{0}})v\|_{p} - \|(\alpha - \alpha_{0})\nabla v\|_{p} - \|(\beta - \beta_{0})v\|_{p} \geq \frac{1}{c(u_{0})}\|v\|_{2,p} - \sqrt{3}\|u - u_{0}\|_{1,\infty}\|v\|_{2,p} - c_{1}\|\alpha - \alpha_{0}\|_{p}\|v\|_{2,p} - c_{0}\|\beta - \beta_{0}\|_{p}\|v\|_{2,p}$$

where c_1 and c_0 are the constants of the imbeddings of $W^{2,p}(\Omega)$ in $C^1(\overline{\Omega})$ and $C(\overline{\Omega})$ respectively (see e.g. [1] or [5]).

Hence, for $||u - u_0||_{1,\infty} + c_1 ||\alpha - \alpha_0||_p + c_0 ||\beta - \beta_0||_p \le \frac{1}{\sqrt{3}c(u_0)}$ small enough,

$$\frac{1}{t} < \frac{1}{c(u_0)} - \sqrt{3} \|u - u_0\|_{1,\infty} - c_1 \|\alpha - \alpha_0\|_p - c_0 \|\beta - \beta_0\|_p = \frac{1}{c} \le \frac{1}{c(u)}$$

and the result holds.

Let $u_0 \in W^{2,p}(\Omega)$ be a solution of (2_{t_0}) for some t_0 . We define recursively the sequence $\{u_n\}_{n\in\mathbb{N}}$, where u_{n+1} is the solution of the quasilinear problem

(4)
$$\begin{cases} Q_{u_{n+1}}u_{n+1} = (t_0 + \varepsilon)(h'(u_n)(u_{n+1} - u_n) + h(u_n)) & \text{in } \Omega \\ u_{n+1} = g & \text{in } \partial \Omega \end{cases}$$

In order to prove that the sequence is well defined for ε small enough, we'll state the following regularity result, which shows that $u_n \in C^{2,\gamma}(\overline{\Omega})$ for every n:

Lemma 3

Let $u \in W^{2,p}(\Omega)$ be a solution of

$$\begin{cases} Q_u u = F(x, y, u) & \text{in } \Omega \\ u = g & \text{in } \partial \Omega \end{cases}$$

where $F \in C^{\gamma}(\overline{\Omega} \times \mathbb{R})$. Then $u \in C^{2,\gamma}(\overline{\Omega})$. <u>Proof</u>

As $W^{2,p}(\Omega) \hookrightarrow C^{1,\gamma}(\overline{\Omega})$, the problem

$$\begin{cases} Q_u z = F(x, y, u) & \text{in } \Omega\\ z = g & \text{in } \partial \Omega \end{cases}$$

admits a unique solution $z \in C^{2,\gamma}(\overline{\Omega})$, and by the uniqueness in $W^{2,p}(\Omega)$ we conclude that z = u.

Theorem 4

There exists $\varepsilon > 0$ such that $\{u_n\}_{n \in \mathbb{N}}$ is well defined, and converges in $W^{2,p}(\Omega)$ to a solution of $(2_{t_0+\varepsilon})$.

Let us first note that for fixed $v \in B_R(u_0) \subset W^{2,p}(\Omega)$ and $u \in W^{2,p}(\Omega)$, we have: $Q_u u - Q_v v = Q_u(u-v) + (DF_2(\nabla v)v_{xx} + DF_1(\nabla v)v_{yy} - DG(\nabla v)v_{xy}) \nabla(u-v) + r(\nabla u)$

where the remainder r satisfies:

$$||r(\nabla u)||_p \le \overline{c} ||\nabla (u-v)||_{\infty}^2$$

for some constant \overline{c} independent of u and v. Moreover, if $\xi \in L^{\infty}(\Omega, \mathbb{R}^2)$ is a mean value between ∇u and ∇v , and $L_{v,\xi,u}$ the linear operator given by

$$L_{v,\xi,u}w = Q_{u}w + (DF_{2}(\xi)v_{xx} + DF_{1}(\xi)v_{yy} - DG(\xi)v_{xy})\nabla w - (t_{0} + \varepsilon)h'(v)w$$

then by lemma 2 there exist constants c, R such that if $v \in C^2(\overline{\Omega})$, $||v - u_0||_{2,p} \leq R$ and $||u - u_0||_{1,\infty} \leq c_1 R$, then

$$||w||_{2,p} \le c ||L_{v,\xi,u}w||_p$$

for every $w \in W^{2,p}(\Omega) \cap W^{1,p}_0(\Omega)$.

Choosing R and ε small enough, we'll see that (4) is uniquely solvable. Indeed, uniqueness follows from the assumption $h' \ge 0$ (using for example [5], theorem 10.2), and existence may be proved by fixed point methods in the following way: for u_1 , writing $z = u_1 - u_0$ and $L_z = L_{u_0, \nabla u_0, z+u_0}$, problem (4) is equivalent to

$$\begin{cases} L_z z = \varepsilon h(u_0) + r(\nabla(z)) \text{ in } \Omega\\ z = 0 \quad \text{ in } \partial \Omega \end{cases}$$

Let $T: C^1(\overline{\Omega}) \to C^1(\overline{\Omega})$ be the continuous operator defined by Tz = w, where $w \in W^{2,p}(\Omega)$ is the unique solution of the linear problem

$$\begin{cases} L_z w = \varepsilon h(u_0) + r(\nabla(z)) \text{ in } \Omega \\ w = 0 \quad \text{ in } \partial \Omega \end{cases}$$

Then for $||z||_{1,\infty} \leq \overline{R} \leq c_0 R$ and a compact set K containing a neighborhood of $u_0(\overline{\Omega})$ we have:

$$||Tz||_{2,p} \le ||L_z(Tz)||_p = c||\varepsilon h(u_0) + r(\nabla z)||_p \le c(\varepsilon ||h||_{\infty,K} + \overline{cR}^2)$$

and by the compactness of the imbedding $W^{2,p}(\Omega) \hookrightarrow C^1(\overline{\Omega})$ we conclude that the closure of $T(\{||z||_{1,\infty} \leq \overline{R}\})$ is compact. Furthermore,

$$||Tz||_{1,\infty} \le c_0 c(\varepsilon ||h||_{\infty,K} + \overline{c}\overline{R}^2) \le \overline{R}$$

if ε and \overline{R} are small enough. By Schauder theorem, we conclude that T has a fixed point z, and then $u_1 = z + u_0$ is a solution of (4).

Let us assume that the sequence is well defined up to u_{n+1} . Then, for n > 0

$$Q_{u_{n+1}}u_{n+1} - Q_{u_n}u_n - (t_0 + \varepsilon)h'(u_n)(u_{n+1} - u_n) =$$

$$(t_0 + \varepsilon)[h(u_n) - h(u_{n-1}) - h'(u_{n-1})(u_n - u_{n-1})] = (t_0 + \varepsilon)\frac{h''(s)}{2}(u_n - u_{n-1})^2$$

for some mean value $s \in L^{\infty}(\Omega)$.

Moreover, if $u_j \in B_R(u_0) \subset W^{2,p}(\Omega)$ for j = 1, ..., n+1 then

$$||u_{n+1} - u_n||_{2,p} \le c ||Q_{u_{n+1}}u_{n+1} - Q_{u_n}u_n - (t_0 + \varepsilon)h'(u_n)(u_{n+1} - u_n)||_p,$$

and we conclude that

$$\begin{aligned} \|u_{n+1} - u_n\|_{2,p} &\leq c \frac{(t_0 + \varepsilon)}{2} \|h''\|_{\infty,K} \|u_n - u_{n-1}\|_p \|u_n - u_{n-1}\|_{\infty} \leq \\ &\leq \frac{cc_0}{2} (t_0 + \varepsilon) \|h''\|_{\infty,K} \|u_n - u_{n-1}\|_{2,p}^2 \end{aligned}$$

for n > 0.

Thus, by induction

$$\|u_{n+1} - u_n\|_{2,p} \le \left(\frac{cc_0}{2}(t_0 + \varepsilon)\|h''\|_{\infty,K}\|u_1 - u_0\|_{2,p}\right)^{2^n - 1}\|u_1 - u_0\|_{2,p}$$

and as

$$||u_1 - u_0||_{2,p} \le c\varepsilon ||h(u_0)||_p,$$

if ε satisfies

$$c(\varepsilon) = \frac{c^2 c_0}{2} (t_0 + \varepsilon) \|h''\|_{\infty, K} \varepsilon \|h(u_0)\|_p < 1$$

then

$$||u_{n+1} - u_0||_{2,p} \le \sum_{0 \le j \le n} ||u_{j+1} - u_j||_{2,p} \le \frac{c\varepsilon ||h(u_0)||_p}{1 - c(\varepsilon)}.$$

Choosing ε small, $||u_1 - u_0||_{2,p} \leq R$, and then we may assume as inductive hypothesis that the sequence is well defined up to u_n and that $u_j \in B_R(u_0)$. As before, if $z = u_{n+1} - u_n$, problem (4) is equivalent to

$$\begin{cases} L_z z = (t_0 + \varepsilon) \frac{h''(s)}{2} (u_n - u_{n-1})^2 + r(\nabla(z)) \text{ in } \Omega\\ z = 0 \quad \text{in } \partial\Omega \end{cases}$$

where $L_z := L_{u_n, \nabla u_n, z+u_n}$ and defining an operator $T : C^1(\overline{\Omega}) \to C^1(\overline{\Omega})$ we obtain for $||z||_{1,\infty} \leq \overline{R} \leq c_0 R$:

$$||Tz||_{1,\infty} \le c_0 c \left(c(\varepsilon)^{2^n - 1} \varepsilon ||h(u_0)||_p + \overline{cR}^2 \right)$$

Then, it suffices to consider for example $\varepsilon \leq (c_0 R)^2$ such that $c(\varepsilon) \ll 1$ and

$$c_0 c(\|h(u_0)\|_p + \overline{c})\sqrt{\varepsilon} \le 1$$

since in that case taking $\overline{R} = \sqrt{\varepsilon}$ we obtain $||Tz||_{1,\infty} \leq \overline{R}$, and the existence of u_{n+1} can be deduced from Schauder theorem.

Furthermore, as $||u_{n+1} - u_n||_{2,p} \leq c(\varepsilon)^{2^n-1} ||u_1 - u_0||_{2,p}$, $\{u_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in $W^{2,p}(\Omega)$, and the proof is complete.

Remark:

A sequence $\{u_n\}_{n\in\mathbb{N}}$ may be also defined recursively by the *linear* problems

$$\begin{cases} Q_{u_n}u_{n+1} = (t_0 + \varepsilon)(h'(u_n)(u_{n+1} - u_n) + h(u_n)) & \text{in } \Omega\\ u_{n+1} = g & \text{in } \partial\Omega \end{cases}$$

In this case, convergence can be guaranteed for ε small enough if $||u_0||_{2,p}$ is small.

References

- [1] Adams R. A., Sobolev Spaces. Academic Press, 1975.
- [2] Amster P., Mariani, M.C, Rial, D.F, Existence and uniqueness of H-System's solutions with Dirichlet conditions. To appear in Nonlinear Analysis, Theory, Methods, and Applications.
- [3] Brézis H. and Coron J.M., Multiple solutions of H- system and Rellich's conjeture. Comm. Pure Appl. Math. 37 (1984), 149 - 184.
- [4] Do Carmo M., Differential Geometric of Curves and Surfaces. Prentice-Hall, 1976.
- [5] Gilbarg D., Trudinger, N. S. : Elliptic partial differential equations of second order, Springer- Verlag (1983).
- [6] Goldstein Costa D., Tópicos em Analise não Linear e Aplicacões as Ecuacões Diferenciais. I.M.P.A., 1986.
- [7] Hildebrandt S., On th Plateau problem for surfaces of constant mean curvature. Comm. Pure Appl. Math. 23 (1970), 97- 114.
- [8] Hsiao G., Lectures on variational methods for boundary integral equations: theory and applications. Publicaciones de la primera escuela de verano del Fondap en Matemáticas Aplicadas, Univ. de Concepción, Chile, 1998.
- [9] Lami Dozo E. and Mariani M.C., A Dirichlet problem for an H-system with variable *H*. Manuscripta Mathematica 81 (1993), 1 14.

- [10] Lami Dozo E. and Mariani M.C., Solutions to the Plateau problem for the prescribed mean curvature equation via the mountain pass lemma. Studies un Applied Mathematics 96 (1996), 351 - 358.
- [11] Osserman R., A survey of minimal surfaces, Van Nostrand Reinhold Company, 1969.
- [12] Struwe M., Plateau's Problem and the calculus of Variations. Math. Notes 35, Princeton University Press. Princeton 1989.
- [13] Struwe M., Non uniqueness in the Plateau problem for surfaces of constant mean curvature, Arch. Rat. Mech. Anal. 93 (1986), 135-157.

Dpto. de Matemática, Fac. de Cs. Exactas y Naturales, UBA. PAB I, Cdad. Universitaria, 1428. Capital, Argentina.

Address for correspondence: Prof. M. C. Mariani, Dpto. de Matemática, Fac. de Cs. Exactas y Naturales, UBA. PAB I, Cdad. Universitaria, 1428. Capital, Argentina.

email: mcmarian@dm.uba.ar