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Abstract

We apply an iterative method in order to construct a solution to the mean
curvature equation for nonparametric surfaces.

1 Introduction

The prescribed mean curvature equation with Dirichlet condition for a nonpara-
metric surface X : Q@ — IR? U(z,y) = (z,y,u(xr,y)) is the quasilinear partial
differential equation

3

(1) (14 ul)tae + (14 ul)uyy — 2ugttytzy = 2h(u) (1 + |Vu|2) *inQ
u=g¢g in 0N

where  is a bounded domain in IR?, and h : IR — IR is a given continuous function.

This problem and the general parametric case have been studied by several authors,
see e.g. [2-5,6,7,9-13].
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2 Solutions by an iterative method

We’ll apply an iterative method inspired in the Newton Imbedding procedure [§].
For this purpose, let us define for each v € C*(Q) the bounded linear operator
Q, : W2P(Q) — LP(Q) given by

1
Qou = 5 (1+ vi)um + (1 + vy, — 20,0,Usy)

(1+ Vo?)2

Remark: u € W?P(Q) is a solution of (1) if and only if

Quu = h(u) in Q
u=g in 0N

We'll assume that h € C*(IR), b/ >0, g € C*7(Q) for 0 < v < 1, and 9Q € C?7.
The aim of the method is to start with ug solution of

Quytio = th(ug) in
(2¢) .
up =g in 0N

and then find a step ¢ such that a solution of the problem

may be obtained as a limit of a sequence {u, }new C W2P(2) for some p such that
v<1-— %.

Remark: If the curvature of 0f) is positive then (1) is solvable for h = 0 [5].
Thus, by this method it’s possible to find a sequence 0 =ty < t; < ty < .... such
that (2;,) admits a solution for every ;.

In order to define the sequence {uy,}nen we'll use the following results:

Lemma 1

Let u,ug € C*(Q). Then

1(Qu = Qua)vlly < V3w —woll1oollv]l2,

for any v € W?P(Q) (i.e. Q : CY(Q) — L(W?P(Q), LP(Q)) is Lipschitz continuous
with constant k < v/3).

Proof
a2 wa . :
Let Fi(ay,as) = ﬁﬁ’ G(ai,a2) = et rozyare By simple computation
we obtain:
L . ..
on, [ =
da; 7 if 1 £ j
and
oG 4
o1 <

da; ~ 33
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Thus,

(Qu — Quo)vllp =
[(F2(Vu) = Fo(Vup))ves + (F1(Vu) — Fi(Vug))vyy — (G(Vu) — G(Vug) ) vay|lp
= [[VF2(§&)V(u — u0)vee + VF1(§)V(u — ug)vy, — VG(E)V (U — o) vyl

and the result follows.

We recall now the following apriori bound (see e.g. [5], lemma 9.17): let u €
CY(Q) and L : W2P(Q) — LP(Q) the operator given by Lv = Q,v+aVv+ Bv, where
a € L=(Q,1IR?) and # € L>(f) is nonnegative. Then L|W2,p(9)mwg,p(m is bounded
by below, i.e. there exists a constant ¢ = ¢(u) such that

(3) [v]l2.p < el Lol

for any v € W2P(Q) N W,?(Q). We'll see that ¢ may be choosen uniformly in a
neighborhood of any (u, @, 8). In other words, if E = C*(Q) x L>(Q,IR?) x LT (2
with the norm [|(u, o, B)[| = maz{|[ul1 0, [|t[l, [| B[]}, then:

Lemma 2

Let ¢(u, o, 3) be the minimum such that (3) holds. Then ¢ : E — IR is upper
semicontinuous.

Proof
Let (uo, a0, o), (u,, 3) € E and t > c(ug, g, Bp). Then, for v € WP(Q2) N

Wy (9),
HL(u,aﬂ)UHp > HL(UO,ao,ﬁo)UHp — [[(Qu = Quo)vllp — [[(@ — o) V|, = [[(8 = Bo)vll, >

1
m!\v!\z,p — V3|lu — uol1.col[v]l2p — crlla = collpllvllzp — coll 8 = Bollyllvll2s

where ¢; and ¢ are the constants of the imbeddings of W2?(Q) in C(Q2) and C(Q)
respectively (see e.g. [1] or [5]).
Hence, for ||u — ug||1,00 + 1]l — aollp, + ol 3 — Boll, < m small enough,
1
c(uo)

and the result holds.

1 1
7 < — V3l — w100 — 1l — aoll, — col|B = Boll, = SM

Let ug € W2P(Q) be a solution of (2,) for some ty. We define recursively the
sequence {uy }neN, where u, 1 is the solution of the quasilinear problem

Qupyrtn1r = (to + &) (W (un) (Unt1 — un) + h(un))  in €
(g) g St =
Upy1 = ¢ 1N

In order to prove that the sequence is well defined for € small enough, we’ll state
the following regularity result, which shows that u, € C?7() for every n:
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Lemma 3
Let u € W?P(Q) be a solution of

Quu = F(z,y,u) in§)
u=g in 02
where F' € C7(Q x IR). Then u € C*7(0Q).

Proof
As W2P(Q) — C*(Q), the problem

Quz = F(z,y,u) inQ
z=g¢ in 0N}

admits a unique solution z € C*7(Q), and by the uniqueness in W2?() we conclude
that z = u.

Theorem 4

There exists € > 0 such that {u, }new is well defined, and converges in W?2?(()
to a solution of (24, 4¢).

Proof
Let us first note that for fixed v € Br(ug) C W?P(Q) and u € W?P(Q), we have:

Quu—Quv = Qu(u—v)+(DF3(Vv)vg, + DF1(Vv)vy, — DG(Vv)vy,) V(u—v)+r(Vu)
where the remainder r satisfies:
I (Va)l, < eV (u—0v)|Z

for some constant ¢ independent of w and v. Moreover, if ¢ € L>(€,IR?) is a mean
value between Vu and Vv, and L, ¢, the linear operator given by

Lv,f,uw = Quw + (DFQ(f)/UJ:J: + DFy (f)vyy T DG(&)UJ»‘Z) Vuw — (t() + 8>h/(/0>w

then by lemma 2 there exist constants ¢, R such that if v € C?*(Q), ||v — uoll2p < R
and ||u — up||1.00 < 1R, then

[wllzp < el Loguwllp

for every w € W2P(Q) N W, P ().

Choosing R and e small enough, we’ll see that (4) is uniquely solvable. Indeed,
uniqueness follows from the assumption A’ > 0 (using for example [5], theorem 10.2),
and existence may be proved by fixed point methods in the following way: for wuq,
writing z = u; — ug and L, = Ly, vug.2+uy, Problem (4) is equivalent to

{Lzz = eh(up) +7(V(2)) in Q
z=0 in 00

Let T : CYQ) — CY(Q) be the continuous operator defined by Tz = w, where
w € W*P(Q) is the unique solution of the linear problem

{sz =ch(up) +r(V(2)) in Q
w=0 in 0}
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Then for [|z]10 < R < ¢oR and a compact set K containing a neighborhood of
uo(§2) we have:

552
1Tzll2p < N[L=(T2)[lp = clleh(uo) +1(V2)[lp < c(el|hlloo,x +CR)

and by the compactness of the imbedding W2?(Q)) — C'(2) we conclude that the
closure of T({]|z||1.00 < R}) is compact. Furthermore,

172|100 < coc(el|hllooic + R < R

if £ and R are small enough. By Schauder theorem, we conclude that 7" has a fixed
point z, and then u; = z + g is a solution of (4).
Let us assume that the sequence is well defined up to wu,1. Then, for n > 0

Qun+1un+1 - Qunun - (tO + 5)h/(un>(un+1 - un) =

h”(8>
2

2

(to + &) [A(un) = hetn—1) = B (tn1) (n = tn—1)] = (to + €)== (tn — un-1)

for some mean value s € L>(1).
Moreover, if u; € Br(ug) C W?P(Q) for j = 1,...,n+ 1 then

[tni1 — unHZp < CHQun+1un+1 = Qu,un — (to + 5>h/(un>(un+1 - un)”pa

and we conclude that

(to -+ 8)
2

[unt1 = tnllap < € 1A oo e l[m = tnallpllun = tn-illoo <

ce
SO
2

(to + )11 loo e — wnsll3,
for n > 0.
Thus, by induction

CCp
-

[Uni1 — tnll2p < ( 5 (to+ NN ||oo 1 — uoll2p)* ~Hlur — o2,

and as
Jur — woll2,p < cel[h(uo) |y,
if ¢ satisfies
c2co "
c(e) = —~(to + )W [joo, e[ (o) [, < 1
e luo)]
cel|h(uo)ll,
[tnt1 — toll2p < [wjir — willep < ——5
P OSJZ;R j jll2,p 1 0(8)
Choosing ¢ small, [Ju; — ugll2p, < R, and then we may assume as inductive
hypothesis that the sequence is well defined up to u, and that u; € Bgr(ug). As
before, if z = u,41 — uy,, problem (4) is equivalent to

L.z = (to+ )" (u, — wn1)? +7(V(2)) in Q
z=0 in 00
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where L. := Ly, Vu, -tu, and defining an operator T': C*(Q) — C"(Q) we obtain
for ||z|l1,00 < R < coR:

T2l 00 < coe ()" e llhwo)l, + o)
Then, it suffices to consider for example € < (coR)? such that c(e) << 1 and

coc([[h(uo)llp +E)vE < 1,

since in that case taking R = /¢ we obtain || Tz|/1..c < R, and the existence of u,,,
can be deduced from Schauder theorem.

Furthermore, as |[tun11 — unllap < c(€)* 7Hur — uollzp, {tn}nen is a Cauchy
sequence in W2P(Q), and the proof is complete.

Remark:

A sequence {uy,}new may be also defined recursively by the linear problems

Quntint1 = (to + &) (W (un) (Unt1 — un) + h(un)) in Q2
Upt1 = ¢ in 002

In this case, convergence can be guaranteed for € small enough if [|ugl|2,, is small.
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