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Abstract

We apply an iterative method in order to construct a solution to the mean
curvature equation for nonparametric surfaces.

1 Introduction

The prescribed mean curvature equation with Dirichlet condition for a nonpara-
metric surface X : Ω −→ IR3, U(x, y) = (x, y, u(x, y)) is the quasilinear partial
differential equation

(1)

(1 + u2
y)uxx + (1 + u2

x)uyy − 2uxuyuxy = 2h(u)
(
1 + |∇u|2

) 3
2 in Ω

u = g in ∂Ω

where Ω is a bounded domain in IR2, and h : IR −→ IR is a given continuous function.
This problem and the general parametric case have been studied by several authors,
see e.g. [2-5,6,7,9-13].
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2 Solutions by an iterative method

We’ll apply an iterative method inspired in the Newton Imbedding procedure [8].
For this purpose, let us define for each v ∈ C1(Ω) the bounded linear operator

Qv : W 2,p(Ω)→ Lp(Ω) given by

Qvu =
1

2(1 +∇v2)
3
2

((1 + v2
y)uxx + (1 + v2

x)uyy − 2vxvyuxy)

Remark: u ∈W 2,p(Ω) is a solution of (1) if and only ifQuu = h(u) in Ω

u = g in ∂Ω

We’ll assume that h ∈ C2(IR), h′ ≥ 0, g ∈ C2,γ(Ω) for 0 < γ < 1, and ∂Ω ∈ C2,γ.
The aim of the method is to start with u0 solution of

(2t)

Qu0u0 = th(u0) in Ω

u0 = g in ∂Ω

and then find a step ε such that a solution of the problem

(2t+ε)

Quu = (t+ ε)h(u) in Ω

u = g in ∂Ω

may be obtained as a limit of a sequence {un}n∈IN ⊂ W 2,p(Ω) for some p such that
γ < 1− 2

p
.

Remark: If the curvature of ∂Ω is positive then (1) is solvable for h = 0 [5].
Thus, by this method it’s possible to find a sequence 0 = t0 < t1 < t2 < .... such
that (2tj ) admits a solution for every tj.

In order to define the sequence {un}n∈IN we’ll use the following results:
Lemma 1
Let u, u0 ∈ C1(Ω). Then

‖(Qu −Qu0)v‖p ≤
√

3‖u− u0‖1,∞‖v‖2,p

for any v ∈ W 2,p(Ω) (i.e. Q : C1(Ω) → L(W 2,p(Ω), Lp(Ω)) is Lipschitz continuous
with constant k ≤

√
3).

Proof

Let Fi(a1, a2) =
1+a2

i

2(1+a2
1+a2

2)3/2 , G(a1, a2) = a1a2

(1+a2
1+a2

2)3/2 . By simple computation

we obtain:

|∂Fi
∂aj
| ≤


2

3
√

3
if i = j

1√
3

if i 6= j

and

| ∂G
∂aj
| ≤ 4

3
√

3
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Thus,

‖(Qu −Qu0)v‖p =

‖(F2(∇u)− F2(∇u0))vxx + (F1(∇u)− F1(∇u0))vyy − (G(∇u)−G(∇u0))vxy‖p
= ‖∇F2(ξ1)∇(u− u0)vxx +∇F1(ξ2)∇(u− u0)vyy −∇G(ξ3)∇(u− u0)vxy‖p

and the result follows.

We recall now the following apriori bound (see e.g. [5], lemma 9.17): let u ∈
C1(Ω) and L : W 2,p(Ω)→ Lp(Ω) the operator given by Lv = Quv+α∇v+βv, where
α ∈ L∞(Ω, IR2) and β ∈ L∞(Ω) is nonnegative. Then L|W 2,p(Ω)∩W 1,p

0 (Ω) is bounded

by below, i.e. there exists a constant c = c(u) such that

(3) ‖v‖2,p ≤ c‖Lv‖p

for any v ∈ W 2,p(Ω) ∩W 1,p
0 (Ω). We’ll see that c may be choosen uniformly in a

neighborhood of any (u, α, β). In other words, if E = C1(Ω)×L∞(Ω, IR2)×L∞≥0(Ω)
with the norm ‖(u, α, β)‖ = max{‖u‖1,∞, ‖α‖p, ‖β‖p}, then:

Lemma 2
Let c(u, α, β) be the minimum such that (3) holds. Then c : E → IR is upper

semicontinuous.

Proof
Let (u0, α0, β0), (u, α, β) ∈ E and t > c(u0, α0, β0). Then, for v ∈ W 2,p(Ω) ∩

W 1,p
0 (Ω),

‖L(u,α,β)v‖p ≥ ‖L(u0,α0,β0)v‖p − ‖(Qu −Qu0)v‖p − ‖(α − α0)∇v‖p − ‖(β − β0)v‖p ≥

1

c(u0)
‖v‖2,p −

√
3‖u− u0‖1,∞‖v‖2,p − c1‖α − α0‖p‖v‖2,p− c0‖β − β0‖p‖v‖2,p

where c1 and c0 are the constants of the imbeddings of W 2,p(Ω) in C1(Ω) and C(Ω)
respectively (see e.g. [1] or [5]).

Hence, for ‖u− u0‖1,∞ + c1‖α− α0‖p + c0‖β − β0‖p ≤ 1√
3c(u0)

small enough,

1

t
<

1

c(u0)
−
√

3‖u− u0‖1,∞ − c1‖α− α0‖p − c0‖β − β0‖p =
1

c
≤ 1

c(u)

and the result holds.

Let u0 ∈ W 2,p(Ω) be a solution of (2t0) for some t0. We define recursively the
sequence {un}n∈IN, where un+1 is the solution of the quasilinear problem

(4)

Qun+1un+1 = (t0 + ε)(h′(un)(un+1 − un) + h(un)) in Ω

un+1 = g in ∂Ω

In order to prove that the sequence is well defined for ε small enough, we’ll state
the following regularity result, which shows that un ∈ C2,γ(Ω) for every n:
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Lemma 3
Let u ∈W 2,p(Ω) be a solution ofQuu = F (x, y, u) in Ω

u = g in ∂Ω

where F ∈ Cγ(Ω× IR). Then u ∈ C2,γ(Ω).

Proof
As W 2,p(Ω) ↪→ C1,γ(Ω), the problemQuz = F (x, y, u) in Ω

z = g in ∂Ω

admits a unique solution z ∈ C2,γ(Ω), and by the uniqueness in W 2,p(Ω) we conclude
that z = u.

Theorem 4
There exists ε > 0 such that {un}n∈IN is well defined, and converges in W 2,p(Ω)

to a solution of (2t0+ε).

Proof
Let us first note that for fixed v ∈ BR(u0) ⊂ W 2,p(Ω) and u ∈W 2,p(Ω), we have:

Quu−Qvv = Qu(u−v)+(DF2(∇v)vxx +DF1(∇v)vyy −DG(∇v)vxy)∇(u−v)+r(∇u)

where the remainder r satisfies:

‖r(∇u)‖p ≤ c‖∇(u− v)‖2
∞

for some constant c independent of u and v. Moreover, if ξ ∈ L∞(Ω, IR2) is a mean
value between ∇u and ∇v, and Lv,ξ,u the linear operator given by

Lv,ξ,uw = Quw + (DF2(ξ)vxx +DF1(ξ)vyy −DG(ξ)vxy)∇w − (t0 + ε)h′(v)w

then by lemma 2 there exist constants c, R such that if v ∈ C2(Ω), ‖v − u0‖2,p ≤ R
and ‖u− u0‖1,∞ ≤ c1R, then

‖w‖2,p ≤ c‖Lv,ξ,uw‖p
for every w ∈W 2,p(Ω) ∩W 1,p

0 (Ω).
Choosing R and ε small enough, we’ll see that (4) is uniquely solvable. Indeed,

uniqueness follows from the assumption h′ ≥ 0 (using for example [5], theorem 10.2),
and existence may be proved by fixed point methods in the following way: for u1,
writing z = u1 − u0 and Lz = Lu0,∇u0,z+u0 , problem (4) is equivalent toLzz = εh(u0) + r(∇(z)) in Ω

z = 0 in ∂Ω

Let T : C1(Ω) → C1(Ω) be the continuous operator defined by Tz = w, where
w ∈W 2,p(Ω) is the unique solution of the linear problemLzw = εh(u0) + r(∇(z)) in Ω

w = 0 in ∂Ω
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Then for ‖z‖1,∞ ≤ R ≤ c0R and a compact set K containing a neighborhood of
u0(Ω) we have:

‖Tz‖2,p ≤ ‖Lz(Tz)‖p = c‖εh(u0) + r(∇z)‖p ≤ c(ε‖h‖∞,K + cR
2
)

and by the compactness of the imbedding W 2,p(Ω) ↪→ C1(Ω) we conclude that the
closure of T ({‖z‖1,∞ ≤ R}) is compact. Furthermore,

‖Tz‖1,∞ ≤ c0c(ε‖h‖∞,K + cR
2
) ≤ R

if ε and R are small enough. By Schauder theorem, we conclude that T has a fixed
point z, and then u1 = z + u0 is a solution of (4).

Let us assume that the sequence is well defined up to un+1. Then, for n > 0

Qun+1un+1 −Qunun − (t0 + ε)h′(un)(un+1 − un) =

(t0 + ε)[h(un)− h(un−1)− h′(un−1)(un − un−1)] = (t0 + ε)
h′′(s)

2
(un − un−1)2

for some mean value s ∈ L∞(Ω).
Moreover, if uj ∈ BR(u0) ⊂ W 2,p(Ω) for j = 1, ..., n+ 1 then

‖un+1 − un‖2,p ≤ c‖Qun+1un+1 −Qunun − (t0 + ε)h′(un)(un+1 − un)‖p,

and we conclude that

‖un+1 − un‖2,p ≤ c
(t0 + ε)

2
‖h′′‖∞,K‖un − un−1‖p‖un − un−1‖∞ ≤

≤ cc0

2
(t0 + ε)‖h′′‖∞,K‖un − un−1‖2

2,p

for n > 0.
Thus, by induction

‖un+1 − un‖2,p ≤ (
cc0

2
(t0 + ε)‖h′′‖∞,K‖u1 − u0‖2,p)

2n−1‖u1 − u0‖2,p

and as
‖u1 − u0‖2,p ≤ cε‖h(u0)‖p,

if ε satisfies

c(ε) =
c2c0

2
(t0 + ε)‖h′′‖∞,Kε‖h(u0)‖p < 1

then

‖un+1 − u0‖2,p ≤
∑

0≤j≤n
‖uj+1 − uj‖2,p ≤

cε‖h(u0)‖p
1− c(ε) .

Choosing ε small, ‖u1 − u0‖2,p ≤ R, and then we may assume as inductive
hypothesis that the sequence is well defined up to un and that uj ∈ BR(u0). As
before, if z = un+1 − un, problem (4) is equivalent toLzz = (t0 + ε)h

′′(s)
2

(un − un−1)2 + r(∇(z)) in Ω

z = 0 in ∂Ω
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where Lz := Lun,∇un,z+un and defining an operator T : C1(Ω) → C1(Ω) we obtain
for ‖z‖1,∞ ≤ R ≤ c0R:

‖Tz‖1,∞ ≤ c0c
(
c(ε)2n−1ε‖h(u0)‖p + cR

2
)

Then, it suffices to consider for example ε ≤ (c0R)2 such that c(ε) << 1 and

c0c(‖h(u0)‖p + c)
√
ε ≤ 1,

since in that case taking R =
√
ε we obtain ‖Tz‖1,∞ ≤ R, and the existence of un+1

can be deduced from Schauder theorem.
Furthermore, as ‖un+1 − un‖2,p ≤ c(ε)2n−1‖u1 − u0‖2,p, {un}n∈IN is a Cauchy

sequence in W 2,p(Ω), and the proof is complete.
Remark:
A sequence {un}n∈IN may be also defined recursively by the linear problemsQunun+1 = (t0 + ε)(h′(un)(un+1 − un) + h(un)) in Ω

un+1 = g in ∂Ω

In this case, convergence can be guaranteed for ε small enough if ‖u0‖2,p is small.
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