Solutions to quasilinear equations by an iterative method

P. Amster M. M. Cassinelli M. C. Mariani

Abstract

We apply an iterative method in order to construct a solution to the mean curvature equation for nonparametric surfaces.

1 Introduction

The prescribed mean curvature equation with Dirichlet condition for a nonparametric surface $X: \bar{\Omega} \longrightarrow \mathbb{R}^{3}, U(x, y)=(x, y, u(x, y))$ is the quasilinear partial differential equation

$$
\text { (1) }\left\{\begin{array}{l}
\left(1+u_{y}^{2}\right) u_{x x}+\left(1+u_{x}^{2}\right) u_{y y}-2 u_{x} u_{y} u_{x y}=2 h(u)\left(1+|\nabla u|^{2}\right)^{\frac{3}{2}} \text { in } \Omega \\
u=g \quad \text { in } \partial \Omega
\end{array}\right.
$$

where Ω is a bounded domain in \mathbb{R}^{2}, and $h: \mathbb{R} \longrightarrow \mathbb{R}$ is a given continuous function. This problem and the general parametric case have been studied by several authors, see e.g. [2-5,6,7,9-13].

[^0]
2 Solutions by an iterative method

We'll apply an iterative method inspired in the Newton Imbedding procedure [8].
For this purpose, let us define for each $v \in C^{1}(\bar{\Omega})$ the bounded linear operator $Q_{v}: W^{2, p}(\Omega) \rightarrow L^{p}(\Omega)$ given by

$$
Q_{v} u=\frac{1}{2\left(1+\nabla v^{2}\right)^{\frac{3}{2}}}\left(\left(1+v_{y}^{2}\right) u_{x x}+\left(1+v_{x}^{2}\right) u_{y y}-2 v_{x} v_{y} u_{x y}\right)
$$

Remark: $u \in W^{2, p}(\Omega)$ is a solution of (1) if and only if

$$
\left\{\begin{array}{l}
Q_{u} u=h(u) \text { in } \Omega \\
u=g \quad \text { in } \partial \Omega
\end{array}\right.
$$

We'll assume that $h \in C^{2}(\mathbb{R}), h^{\prime} \geq 0, g \in C^{2, \gamma}(\bar{\Omega})$ for $0<\gamma<1$, and $\partial \Omega \in C^{2, \gamma}$. The aim of the method is to start with u_{0} solution of

$$
\left(2_{t}\right)\left\{\begin{array}{l}
Q_{u_{0}} u_{0}=\operatorname{th}\left(u_{0}\right) \text { in } \Omega \\
u_{0}=g \quad \text { in } \partial \Omega
\end{array}\right.
$$

and then find a step ε such that a solution of the problem

$$
\left(2_{t+\varepsilon}\right)\left\{\begin{array}{l}
Q_{u} u=(t+\varepsilon) h(u) \text { in } \Omega \\
u=g \quad \text { in } \partial \Omega
\end{array}\right.
$$

may be obtained as a limit of a sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}} \subset W^{2, p}(\Omega)$ for some p such that $\gamma<1-\frac{2}{p}$.

Remark: If the curvature of $\partial \Omega$ is positive then (1) is solvable for $h=0$ [5]. Thus, by this method it's possible to find a sequence $0=t_{0}<t_{1}<t_{2}<\ldots$. such that $\left(2_{t_{j}}\right)$ admits a solution for every t_{j}.

In order to define the sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ we'll use the following results:

Lemma 1

Let $u, u_{0} \in C^{1}(\bar{\Omega})$. Then

$$
\left\|\left(Q_{u}-Q_{u_{0}}\right) v\right\|_{p} \leq \sqrt{3}\left\|u-u_{0}\right\|_{1, \infty}\|v\|_{2, p}
$$

for any $v \in W^{2, p}(\Omega)$ (i.e. $Q: C^{1}(\bar{\Omega}) \rightarrow \mathcal{L}\left(W^{2, p}(\Omega), L^{p}(\Omega)\right)$ is Lipschitz continuous with constant $k \leq \sqrt{3})$.
Proof
Let $F_{i}\left(a_{1}, a_{2}\right)=\frac{1+a_{i}^{2}}{2\left(1+a_{1}^{2}+a_{2}^{2}\right)^{3 / 2}}, G\left(a_{1}, a_{2}\right)=\frac{a_{1} a_{2}}{\left(1+a_{1}^{2}+a_{2}^{2}\right)^{3 / 2}}$. By simple computation we obtain:

$$
\left|\frac{\partial F_{i}}{\partial a_{j}}\right| \leq \begin{cases}\frac{2}{3 \sqrt{3}} & \text { if } i=j \\ \frac{1}{\sqrt{3}} & \text { if } i \neq j\end{cases}
$$

and

$$
\left|\frac{\partial G}{\partial a_{j}}\right| \leq \frac{4}{3 \sqrt{3}}
$$

Thus,

$$
\begin{aligned}
& \left\|\left(Q_{u}-Q_{u_{0}}\right) v\right\|_{p}= \\
& \quad\left\|\left(F_{2}(\nabla u)-F_{2}\left(\nabla u_{0}\right)\right) v_{x x}+\left(F_{1}(\nabla u)-F_{1}\left(\nabla u_{0}\right)\right) v_{y y}-\left(G(\nabla u)-G\left(\nabla u_{0}\right)\right) v_{x y}\right\|_{p} \\
& \quad=\left\|\nabla F_{2}\left(\xi_{1}\right) \nabla\left(u-u_{0}\right) v_{x x}+\nabla F_{1}\left(\xi_{2}\right) \nabla\left(u-u_{0}\right) v_{y y}-\nabla G\left(\xi_{3}\right) \nabla\left(u-u_{0}\right) v_{x y}\right\|_{p}
\end{aligned}
$$

and the result follows.
We recall now the following apriori bound (see e.g. [5], lemma 9.17): let $u \in$ $C^{1}(\bar{\Omega})$ and $L: W^{2, p}(\Omega) \rightarrow L^{p}(\Omega)$ the operator given by $L v=Q_{u} v+\alpha \nabla v+\beta v$, where $\alpha \in L^{\infty}\left(\Omega, \mathbb{R}^{2}\right)$ and $\beta \in L^{\infty}(\Omega)$ is nonnegative. Then $\left.L\right|_{W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)}$ is bounded by below, i.e. there exists a constant $c=c(u)$ such that

$$
\begin{equation*}
\|v\|_{2, p} \leq c\|L v\|_{p} \tag{3}
\end{equation*}
$$

for any $v \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$. We'll see that c may be choosen uniformly in a neighborhood of any (u, α, β). In other words, if $E=C^{1}(\bar{\Omega}) \times L^{\infty}\left(\Omega, \mathbb{R}^{2}\right) \times L_{\geq 0}^{\infty}(\Omega)$ with the norm $\|(u, \alpha, \beta)\|=\max \left\{\|u\|_{1, \infty},\|\alpha\|_{p},\|\beta\|_{p}\right\}$, then:

Lemma 2

Let $c(u, \alpha, \beta)$ be the minimum such that (3) holds. Then $c: E \rightarrow \mathbb{R}$ is upper semicontinuous.
Proof
Let $\left(u_{0}, \alpha_{0}, \beta_{0}\right),(u, \alpha, \beta) \in E$ and $t>c\left(u_{0}, \alpha_{0}, \beta_{0}\right)$. Then, for $v \in W^{2, p}(\Omega) \cap$ $W_{0}^{1, p}(\Omega)$,

$$
\begin{gathered}
\left\|L_{(u, \alpha, \beta)} v\right\|_{p} \geq\left\|L_{\left(u_{0}, \alpha_{0}, \beta_{0}\right)} v\right\|_{p}-\left\|\left(Q_{u}-Q_{u_{0}}\right) v\right\|_{p}-\left\|\left(\alpha-\alpha_{0}\right) \nabla v\right\|_{p}-\left\|\left(\beta-\beta_{0}\right) v\right\|_{p} \geq \\
\frac{1}{c\left(u_{0}\right)}\|v\|_{2, p}-\sqrt{3}\left\|u-u_{0}\right\|_{1, \infty}\|v\|_{2, p}-c_{1}\left\|\alpha-\alpha_{0}\right\|_{p}\|v\|_{2, p}-c_{0}\left\|\beta-\beta_{0}\right\|_{p}\|v\|_{2, p}
\end{gathered}
$$

where c_{1} and c_{0} are the constants of the imbeddings of $W^{2, p}(\Omega)$ in $C^{1}(\bar{\Omega})$ and $C(\bar{\Omega})$ respectively (see e.g. [1] or [5]).

Hence, for $\left\|u-u_{0}\right\|_{1, \infty}+c_{1}\left\|\alpha-\alpha_{0}\right\|_{p}+c_{0}\left\|\beta-\beta_{0}\right\|_{p} \leq \frac{1}{\sqrt{3} c\left(u_{0}\right)}$ small enough,

$$
\frac{1}{t}<\frac{1}{c\left(u_{0}\right)}-\sqrt{3}\left\|u-u_{0}\right\|_{1, \infty}-c_{1}\left\|\alpha-\alpha_{0}\right\|_{p}-c_{0}\left\|\beta-\beta_{0}\right\|_{p}=\frac{1}{c} \leq \frac{1}{c(u)}
$$

and the result holds.
Let $u_{0} \in W^{2, p}(\Omega)$ be a solution of $\left(2_{t_{0}}\right)$ for some t_{0}. We define recursively the sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$, where u_{n+1} is the solution of the quasilinear problem

$$
\text { (4) }\left\{\begin{array}{l}
Q_{u_{n+1}} u_{n+1}=\left(t_{0}+\varepsilon\right)\left(h^{\prime}\left(u_{n}\right)\left(u_{n+1}-u_{n}\right)+h\left(u_{n}\right)\right) \quad \text { in } \Omega \\
u_{n+1}=g \quad \text { in } \partial \Omega
\end{array}\right.
$$

In order to prove that the sequence is well defined for ε small enough, we'll state the following regularity result, which shows that $u_{n} \in C^{2, \gamma}(\bar{\Omega})$ for every n :

Lemma 3

Let $u \in W^{2, p}(\Omega)$ be a solution of

$$
\left\{\begin{array}{l}
Q_{u} u=F(x, y, u) \quad \text { in } \Omega \\
u=g \quad \text { in } \partial \Omega
\end{array}\right.
$$

where $F \in C^{\gamma}(\bar{\Omega} \times \mathbb{R})$. Then $u \in C^{2, \gamma}(\bar{\Omega})$.
Proof
As $W^{2, p}(\Omega) \hookrightarrow C^{1, \gamma}(\bar{\Omega})$, the problem

$$
\left\{\begin{array}{l}
Q_{u} z=F(x, y, u) \quad \text { in } \Omega \\
z=g \quad \text { in } \partial \Omega
\end{array}\right.
$$

admits a unique solution $z \in C^{2, \gamma}(\bar{\Omega})$, and by the uniqueness in $W^{2, p}(\Omega)$ we conclude that $z=u$.

Theorem 4

There exists $\varepsilon>0$ such that $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ is well defined, and converges in $W^{2, p}(\Omega)$ to a solution of $\left(2_{t_{0}+\varepsilon}\right)$.

Proof

Let us first note that for fixed $v \in B_{R}\left(u_{0}\right) \subset W^{2, p}(\Omega)$ and $u \in W^{2, p}(\Omega)$, we have: $Q_{u} u-Q_{v} v=Q_{u}(u-v)+\left(D F_{2}(\nabla v) v_{x x}+D F_{1}(\nabla v) v_{y y}-D G(\nabla v) v_{x y}\right) \nabla(u-v)+r(\nabla u)$ where the remainder r satisfies:

$$
\|r(\nabla u)\|_{p} \leq \bar{c}\|\nabla(u-v)\|_{\infty}^{2}
$$

for some constant \bar{c} independent of u and v. Moreover, if $\xi \in L^{\infty}\left(\Omega, \mathbb{R}^{2}\right)$ is a mean value between ∇u and ∇v, and $L_{v, \xi, u}$ the linear operator given by

$$
L_{v, \xi, u} w=Q_{u} w+\left(D F_{2}(\xi) v_{x x}+D F_{1}(\xi) v_{y y}-D G(\xi) v_{x y}\right) \nabla w-\left(t_{0}+\varepsilon\right) h^{\prime}(v) w
$$

then by lemma 2 there exist constants c, R such that if $v \in C^{2}(\bar{\Omega}),\left\|v-u_{0}\right\|_{2, p} \leq R$ and $\left\|u-u_{0}\right\|_{1, \infty} \leq c_{1} R$, then

$$
\|w\|_{2, p} \leq c\left\|L_{v, \xi, u} w\right\|_{p}
$$

for every $w \in W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$.
Choosing R and ε small enough, we'll see that (4) is uniquely solvable. Indeed, uniqueness follows from the assumption $h^{\prime} \geq 0$ (using for example [5], theorem 10.2), and existence may be proved by fixed point methods in the following way: for u_{1}, writing $z=u_{1}-u_{0}$ and $L_{z}=L_{u_{0}, \nabla u_{0}, z+u_{0}}$, problem (4) is equivalent to

$$
\left\{\begin{array}{l}
L_{z} z=\varepsilon h\left(u_{0}\right)+r(\nabla(z)) \text { in } \Omega \\
z=0 \quad \text { in } \partial \Omega
\end{array}\right.
$$

Let $T: C^{1}(\bar{\Omega}) \rightarrow C^{1}(\bar{\Omega})$ be the continuous operator defined by $T z=w$, where $w \in W^{2, p}(\Omega)$ is the unique solution of the linear problem

$$
\left\{\begin{array}{l}
L_{z} w=\varepsilon h\left(u_{0}\right)+r(\nabla(z)) \text { in } \Omega \\
w=0 \quad \text { in } \partial \Omega
\end{array}\right.
$$

Then for $\|z\|_{1, \infty} \leq \bar{R} \leq c_{0} R$ and a compact set K containing a neighborhood of $u_{0}(\bar{\Omega})$ we have:

$$
\|T z\|_{2, p} \leq\left\|L_{z}(T z)\right\|_{p}=c\left\|\varepsilon h\left(u_{0}\right)+r(\nabla z)\right\|_{p} \leq c\left(\varepsilon\|h\|_{\infty, K}+\bar{c} \bar{R}^{2}\right)
$$

and by the compactness of the imbedding $W^{2, p}(\Omega) \hookrightarrow C^{1}(\bar{\Omega})$ we conclude that the closure of $T\left(\left\{\|z\|_{1, \infty} \leq \bar{R}\right\}\right)$ is compact. Furthermore,

$$
\|T z\|_{1, \infty} \leq c_{0} c\left(\varepsilon\|h\|_{\infty, K}+\bar{c} \bar{R}^{2}\right) \leq \bar{R}
$$

if ε and \bar{R} are small enough. By Schauder theorem, we conclude that T has a fixed point z, and then $u_{1}=z+u_{0}$ is a solution of (4).

Let us assume that the sequence is well defined up to u_{n+1}. Then, for $n>0$

$$
\begin{gathered}
Q_{u_{n+1}} u_{n+1}-Q_{u_{n}} u_{n}-\left(t_{0}+\varepsilon\right) h^{\prime}\left(u_{n}\right)\left(u_{n+1}-u_{n}\right)= \\
\left(t_{0}+\varepsilon\right)\left[h\left(u_{n}\right)-h\left(u_{n-1}\right)-h^{\prime}\left(u_{n-1}\right)\left(u_{n}-u_{n-1}\right)\right]=\left(t_{0}+\varepsilon\right) \frac{h^{\prime \prime}(s)}{2}\left(u_{n}-u_{n-1}\right)^{2}
\end{gathered}
$$

for some mean value $s \in L^{\infty}(\Omega)$.
Moreover, if $u_{j} \in B_{R}\left(u_{0}\right) \subset W^{2, p}(\Omega)$ for $j=1, \ldots, n+1$ then

$$
\left\|u_{n+1}-u_{n}\right\|_{2, p} \leq c\left\|Q_{u_{n+1}} u_{n+1}-Q_{u_{n}} u_{n}-\left(t_{0}+\varepsilon\right) h^{\prime}\left(u_{n}\right)\left(u_{n+1}-u_{n}\right)\right\|_{p},
$$

and we conclude that

$$
\begin{aligned}
\left\|u_{n+1}-u_{n}\right\|_{2, p} & \leq c \frac{\left(t_{0}+\varepsilon\right)}{2}\left\|h^{\prime \prime}\right\|_{\infty, K}\left\|u_{n}-u_{n-1}\right\|_{p}\left\|u_{n}-u_{n-1}\right\|_{\infty} \leq \\
& \leq \frac{c c_{0}}{2}\left(t_{0}+\varepsilon\right)\left\|h^{\prime \prime}\right\|_{\infty, K}\left\|u_{n}-u_{n-1}\right\|_{2, p}^{2}
\end{aligned}
$$

for $n>0$.
Thus, by induction

$$
\left\|u_{n+1}-u_{n}\right\|_{2, p} \leq\left(\frac{c c_{0}}{2}\left(t_{0}+\varepsilon\right)\left\|h^{\prime \prime}\right\|_{\infty, K}\left\|u_{1}-u_{0}\right\|_{2, p}\right)^{2^{n}-1}\left\|u_{1}-u_{0}\right\|_{2, p}
$$

and as

$$
\left\|u_{1}-u_{0}\right\|_{2, p} \leq c \varepsilon\left\|h\left(u_{0}\right)\right\|_{p}
$$

if ε satisfies

$$
c(\varepsilon)=\frac{c^{2} c_{0}}{2}\left(t_{0}+\varepsilon\right)\left\|h^{\prime \prime}\right\|_{\infty, K} \varepsilon\left\|h\left(u_{0}\right)\right\|_{p}<1
$$

then

$$
\left\|u_{n+1}-u_{0}\right\|_{2, p} \leq \sum_{0 \leq j \leq n}\left\|u_{j+1}-u_{j}\right\|_{2, p} \leq \frac{c \varepsilon\left\|h\left(u_{0}\right)\right\|_{p}}{1-c(\varepsilon)} .
$$

Choosing ε small, $\left\|u_{1}-u_{0}\right\|_{2, p} \leq R$, and then we may assume as inductive hypothesis that the sequence is well defined up to u_{n} and that $u_{j} \in B_{R}\left(u_{0}\right)$. As before, if $z=u_{n+1}-u_{n}$, problem (4) is equivalent to

$$
\left\{\begin{array}{l}
L_{z} z=\left(t_{0}+\varepsilon\right) \frac{h^{\prime \prime}(s)}{2}\left(u_{n}-u_{n-1}\right)^{2}+r(\nabla(z)) \text { in } \Omega \\
z=0 \quad \text { in } \partial \Omega
\end{array}\right.
$$

where $L_{z}:=L_{u_{n}, \nabla u_{n}, z+u_{n}}$ and defining an operator $T: C^{1}(\bar{\Omega}) \rightarrow C^{1}(\bar{\Omega})$ we obtain for $\|z\|_{1, \infty} \leq \bar{R} \leq c_{0} R$:

$$
\|T z\|_{1, \infty} \leq c_{0} c\left(c(\varepsilon)^{2^{n}-1} \varepsilon\left\|h\left(u_{0}\right)\right\|_{p}+\bar{c} \bar{R}^{2}\right)
$$

Then, it suffices to consider for example $\varepsilon \leq\left(c_{0} R\right)^{2}$ such that $c(\varepsilon) \ll 1$ and

$$
c_{0} c\left(\left\|h\left(u_{0}\right)\right\|_{p}+\bar{c}\right) \sqrt{\varepsilon} \leq 1
$$

since in that case taking $\bar{R}=\sqrt{\varepsilon}$ we obtain $\|T z\|_{1, \infty} \leq \bar{R}$, and the existence of u_{n+1} can be deduced from Schauder theorem.

Furthermore, as $\left\|u_{n+1}-u_{n}\right\|_{2, p} \leq c(\varepsilon)^{2^{n}-1}\left\|u_{1}-u_{0}\right\|_{2, p},\left\{u_{n}\right\}_{n \in \mathbb{N}}$ is a Cauchy sequence in $W^{2, p}(\Omega)$, and the proof is complete.

Remark:

A sequence $\left\{u_{n}\right\}_{n \in \mathbb{N}}$ may be also defined recursively by the linear problems

$$
\left\{\begin{array}{l}
Q_{u_{n}} u_{n+1}=\left(t_{0}+\varepsilon\right)\left(h^{\prime}\left(u_{n}\right)\left(u_{n+1}-u_{n}\right)+h\left(u_{n}\right)\right) \quad \text { in } \Omega \\
u_{n+1}=g \quad \text { in } \partial \Omega
\end{array}\right.
$$

In this case, convergence can be guaranteed for ε small enough if $\left\|u_{0}\right\|_{2, p}$ is small.

References

[1] Adams R. A., Sobolev Spaces. Academic Press, 1975.
[2] Amster P., Mariani, M.C, Rial, D.F, Existence and uniqueness of H-System's solutions with Dirichlet conditions. To appear in Nonlinear Analysis, Theory, Methods, and Applications.
[3] Brézis H. and Coron J.M., Multiple solutions of H- system and Rellich's conjeture. Comm. Pure Appl. Math. 37 (1984), 149-184.
[4] Do Carmo M., Differential Geometric of Curves and Surfaces. Prentice-Hall, 1976.
[5] Gilbarg D., Trudinger, N. S. : Elliptic partial differential equations of second order, Springer- Verlag (1983).
[6] Goldstein Costa D., Tópicos em Analise não Linear e Aplicacões as Ecuacões Diferenciais. I.M.P.A., 1986.
[7] Hildebrandt S., On th Plateau problem for surfaces of constant mean curvature. Comm. Pure Appl. Math. 23 (1970), 97- 114.
[8] Hsiao G., Lectures on variational methods for boundary integral equations: theory and applications. Publicaciones de la primera escuela de verano del Fondap en Matemáticas Aplicadas, Univ. de Concepción, Chile, 1998.
[9] Lami Dozo E. and Mariani M.C., A Dirichlet problem for an H-system with variable H. Manuscripta Mathematica 81 (1993), 1-14.
[10] Lami Dozo E. and Mariani M.C., Solutions to the Plateau problem for the prescribed mean curvature equation via the mountain pass lemma. Studies un Applied Mathematics 96 (1996), 351-358.
[11] Osserman R., A survey of minimal surfaces, Van Nostrand Reinhold Company, 1969.
[12] Struwe M., Plateau's Problem and the calculus of Variations. Math. Notes 35, Princeton University Press. Princeton 1989.
[13] Struwe M., Non uniqueness in the Plateau problem for surfaces of constant mean curvature, Arch. Rat. Mech. Anal. 93 (1986), 135-157.

Dpto. de Matemática, Fac. de Cs. Exactas y Naturales, UBA. PAB I, Cdad. Universitaria, 1428. Capital, Argentina.

Address for correspondence: Prof. M. C. Mariani, Dpto. de Matemática, Fac. de Cs. Exactas y Naturales, UBA. PAB I, Cdad. Universitaria, 1428. Capital, Argentina.
email: mcmarian@dm.uba.ar

[^0]: Received by the editors May 1999.
 Communicated by J. Mawhin.

