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Abstract

Let k be a field of characteristic zero equipped with an absolute value |·|.
Let φ1(x, y) = φ2(x, y) = . . . = φl(x, y) = 0 be a system of formal power series
equations in variables x = (x1, . . .xn), y = (y1, . . . ym) with coefficients in k.
The notion of {Mk}-summability of formal power series is defined relative
to a sequence {Mk}∞k=0 of positive real numbers. Under certain Jacobian
conditions on the φi’s, it is shown the {Mk}-summability of the φi’s implies
{Mk}-summability of any of its formal power series solutions y = f(x). In
particular, if the φi’s are convergent, then so are its formal solutions. This
result generalizes the author’s earlier work on formal solutions of systems of
analytic equations.

1 Introduction

It is well known that a formal power series solution of a nonzero convergent power
series equation is convergent. In [11], the author proved a generalization of this
result to systems of equations. A natural question, then, is what kind of properties
of formal equations are preserved in their formal solutions? In this note we consider
properties of systems of equations which are more general than convergence.

Let k be field of characteristic zero equipped with an absolute value |·|. Let Fn

= F(x), x = (x1, x2, . . . , xn) , denote the ring of formal power series in n variables
with coefficients in k . Let {Mk} be a sequence of positive real numbers satisfying

M2
k ≤ Mk−1Mk+1, ∀k, (logarithmic convexity) (1)
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∃ρ > 1,Mk ≤ ρkMk−1, ∀k. (differentiablity) (2)

We say that a formal power series f(x) =
∑
α fαx

α ∈ Fn is {Mk} -summable if there
are constants C = Cf > 0, R = Rf > 0 such that

|fα| ≤ CR|α|M|α| , ∀α ∈ Nn, |α| = α1 + ...+ αn. (3)

Let Fn {Mk} or F(x) {Mk} denote the subset of Fn consisting of all {Mk}-summable
series. The condition (1) implies, see [12],

MkMj ≤ Mj+k, ∀j, k, (4)

which in turn implies that Fn {Mk} forms a subring of Fn. (2) makes Fn {Mk} closed
under the formal differentiation of power series. Since Fn {Mk} = Fn {λMk} for any
0 6= λ ∈ k, we may assume that M0 = 1. Clearly Fn {Mk} contains the polynomial
ring over k. The elements of Fn {(k!)ν} , ν > 0, are called Gevrey expansions of order
ν. The ring Fn {k!} is precisely the ring of convergent power series. The Gevrey
expansions are important in asymptotic analysis and the theory of multisummable
series. See ([1],[13]). Another motivation for studying {Mk}-summable series comes
from the ultradifferentiable function theory: A function f ∈ C∞(Rn) is said to
be in the ultradifferentiable class C {Mk} (Rn) if for every compact set K ⊂ Rn
there are constants C > 0, R > 0 such that |∂αf(x)| ≤ CR|α|M|α|, ∀α ∈ Nn,x ∈
K. Ultradifferentiable classes occur naturally in partial differential equations and
harmonic analysis. For a detailed study of ultradifferentiable functions see [7]. If
the Taylor expansion (at p) map Tp : C {Mk} (Rn) → Fn {Mk} is an injective ring
homomorphism for every p, then the class C {Mk} (Rn) is called quasi-analytic..
The problem of determining conditions on {Mk} under which this Taylor map is
surjective for every p is known as the Carlson problem. See e.g.[8].

In Section 2, the implicit function theorem for the ring Fn {Mk} is established.
The method of proof is constructive and fairly standard, see e.g. [1],[5]. The author
is not aware of any constructive proof in the literature of even the formal implicit
function theorem, so, for the sake of self containment of the exposition, the detailed
proof for the implicit function theorem for {Mk}-summable series is given here. The
main result, Theorem 3.1 is proved in Section 3. As corollaries of this theorem, we
obtain generalizations to {Mk}-summable systems of various known results about
analytic systems. The author wishes to thank Professor V. Thilliez for providing
an example that shows that Theorem 3.1 does not generalize to systems of C∞

equations. Section 4 contains this example and also some remarks.

2 Basic Algebra; the Implicit Function Theorem

General references for this section are [3] and [4]. For

ξ =
(
ξ(1), ξ(2), . . . , ξ(n)

)
∈ kn, put ‖ξ‖ = max1≤j≤n

∣∣∣ξ(j)
∣∣∣. For f ∈ Fn, we write

f(x) :=
∞∑
µ=0

f (µ)(x), where f (µ)(x) :=
∑

α∈Nn,|α|=µ

(
µ

α

)
fαx

α. (5)

Let f̃ (µ)(ξ1, ξ2 , · · · , ξµ) denote the unique symmetric µ-linear form such that

f̃ (µ)(x,x, · · · ,x) = f (µ)(x). ( The form 1
µ!
f̃ (µ)( ξ1, ξ2, · · · , ξµ) is called the µ-th formal
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Fréchet derivative of f at 0.) It follows that f ∈ F(x) {Mk} if and only if there are
constants C > 0 and R > 0 such that∣∣∣f (µ)(x)

∣∣∣ ≤ CRµMµ ‖x‖µ , ∀µ ≥ 0, ∀x ∈ kn, (6)

which is equivalent to∣∣∣f̃ (µ)(ξ1, ξ2 , · · · , ξµ)
∣∣∣ ≤ CRµMµ ‖ξ1‖ · ‖ξ2‖ · · · · · ‖ξµ‖ , ∀ξ1, ξ2, · · · , ξµ ∈ k

n
. (7)

Units in Fn {Mk} are precisely the units in Fn :

Lemma 2.1. f ∈ Fn {Mk} is a unit ⇔ f(0) 6= 0.

Proof. The necessity part is obvious. So we need only to prove the sufficiency part.

Let g(x) =
∑∞
µ=0 g(µ)(x) be a formal power series such that g(x) · f(x) = 1. We

will show that g ∈ F {Mk} (x). We have

g(0) · f (0) = 1, and
k∑
i=0

g(i)(x) · f (k−i)(x) = 0, k ≥ 1.

Assume without loss of generality that f (0) = 1. Let C > 1, R > 0 be such that
(6) is satisfied. We claim that∣∣∣g(k)(x)

∣∣∣ ≤ C ((C + 1)R)kMk ‖x‖k , ∀k. (8)

(8) clearly holds for k = 0 since g(0) = 1 and M0 = 1. By induction on k, we have

∣∣∣g(k)(x)
∣∣∣ ≤ k−1∑

i=0

∣∣∣g(i)(x)
∣∣∣ ∣∣∣f (k−i)(x)

∣∣∣
≤

k−1∑
i=0

C ((C + 1)R)iMiCR
k−iMk−i ‖x‖k

≤ C2RkMk ‖x‖k
k−1∑
i=0

(C + 1)i (by (4))

≤ C ((C + 1)R)kMk ‖x‖k .

Lemma 2.2. If Φ(x) = (φ1(x), φ2(x), · · ·φm(x)) ∈ Fm(x) {Mk} and h(y) ∈ F(y) {Mk},
then Ψ(x) = h(Φ(x)) ∈ F(x) {Mk} .

Proof. The homogenous polynomials ψ(ν)’s can computed as follows. See [2], [4].

ψ(1)(x) = h̃(1) ◦ φ(1)(x), and for ν > 1,

ψ(ν)(x) =
ν∑

µ=1

∑
α∈Nµ,|α|=ν

h̃(µ)
(
φ(α1)(x), φ(α2)(x), · · · , φ(αµ)(x)

)
. (9)



422 T. S. Neelon

By using (2), we may choose constants C > 0 and R > 0 such that (7) is satisfied

for h and
∣∣∣φ(k)
j (x)

∣∣∣ ≤ CRk−1Mk−1 ‖x‖k, ∀j, ∀k ≥ 1. By (9), we have

∣∣∣ψ(ν)(x)
∣∣∣ ≤ ν∑

µ=1

∑
α∈Nµ,|α|=ν

CRµMµ

∏
1≤i≤µ

max
1≤j≤m

∣∣∣φ(αi)
j (x)

∣∣∣
≤

ν∑
µ=1

∑
α∈Nµ,|α|=ν

CRµMµ

∏
1≤i≤µ

CRαi−1Mαi−1 ‖x‖αi

≤ CRνMν ‖x‖ν
ν∑
µ=1

(
ν + µ− 1

µ− 1

)
Cµ

≤ C (CR ‖x‖)νMν

(
2ν

ν − 1

)
≤ C (4CR)νMν ‖x‖ν .

Now, we prove the Implicit Function Theorem.

Theorem 2.3. Let F(x,y) ∈ Fm(x,y){Mk} , x =(x1, x2, · · · , xn) ,
y =(y1, y2, · · · , ym) . If F(0, 0) = 0 and

det

[
∂F

∂y

]
m×m

(0, 0) 6= 0 (10)

then there is a unique g(x) ∈ Fm(x) {Mk} , g(0) = 0, such that
F(x, g(x)) ≡ 0.

Proof. By the formal implicit function theorem, there is a unique g(x)
∈Fm(x) such that F(x, g(x)) ≡ 0. By differentiating F(x, g(x)) ≡ 0, which we are
allowed to because of (2), and by using Lemma 2.1 along with the hypothesis (10),
we see that y = g(x) satisfies the matrix equation,

[
∂y

∂x

]
m×n

· x = [H(x,y)]m×n · x :=−
[
∂F

∂y

]−1

m×m
·
[
∂F

∂x

]
m×n
· x,

where the entries of [H(x,y)] are in F(x,y) {Mk} .
By substituting y = g(x) and by using the notation in (5), we rewrite this equa-

tion as
∞∑
ν=1

νg(ν)(x) =
∞∑
ν=1

H(ν−1)(x, g(x)) · x. (11)

Put Φ(x) = (x, g(x)). Let C > 1 and R > 0 be such that

∥∥∥H̃(µ)(ξ1, ξ2, · · · , ξµ)
∥∥∥ ≤ CRµMµ

µ∏
ν=1

‖ξν‖ , ∀ξ1, ξ2, · · · , ξµ ∈ k
n+m

,

and
∥∥∥g(1)(x)

∥∥∥ ≤ 1

2
C ‖x‖ , ∀x ∈kn.

We claim that ∥∥∥g(k)(x)
∥∥∥ ≤ C [−CR]k−1 Mk−1

(
1
2

k

)
‖x‖k , ∀k. (12)
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We prove the claim by induction on k. Since (12) clearly holds for k = 1, assume

that it holds for k ≤ ν. This implies that the coefficients φ
(k)
j (x) in the expansion of

j-th component of Φ also satisfy (12) for k ≤ ν. Now by applying (9), we have1

∥∥∥(ν + 1)g(ν+1)(x)
∥∥∥

≤
 ν∑
µ=1

∑
α∈Nµ,|α|=ν

CRµMµ

∏
1≤i≤µ

max
1≤j≤m

∥∥∥φ(αi)
j (x)

∥∥∥
 ‖x‖

≤
 ν∑
µ=1

∑
α∈Nµ,|α|=ν

CRµMµ

∏
1≤i≤µ

C [−CR]αi−1Mαi−1

(
1
2

αi

)
‖x‖αi

 ‖x‖
≤ ‖x‖ν+1

ν∑
µ=1

∑
α∈Nµ,|α|=ν

CRµMµC
µ [−CR]ν−µMν−µ

∏
1≤i≤µ

(
1
2

αi

)

≤ C [CR]νMν ‖x‖ν+1
ν∑

µ=1

∑
α∈Nµ,|α|=ν

[−1]ν−µ
∏

1≤i≤µ

(
1
2

αi

)

= C [−CR]νMν(ν + 1)

(
1
2

ν + 1

)
‖x‖ν+1 .

The last equality follows from the next lemma.

Lemma 2.4. (cf. [5])

ν∑
µ=1

∑
α∈Nµ,|α|=ν

(−1)
ν−µ ∏

1≤i≤µ

(
1
2

αi

)
= (−1)ν(ν + 1)

(
1
2

ν + 1

)

Proof. Let

g(t) =
∞∑
j=1

(
1
2

j

)
(−1)j−1tj and f(x) =

∞∑
k=0

xk.

Since g(t) and f(x) are Taylor expansions at 0 of functions 1−
√

1− t and 1
1−x ,

respectively, we have g′(t) = f [g(t)]. By using (9), we see by comparing coefficients
of tν that

(ν + 1)

(
1
2

ν + 1

)
(−1)ν =

k∑
µ=1

∑
α∈Nµ,|α|=ν

µ∏
r=1

(
1
2

αr

)
(−1)αr−1

=
ν∑
µ=1

∑
α∈Nµ,|α|=ν

(−1)ν−µ
µ∏
r=1

(
1
2

αr

)
.

3 Solutions of {Mk}-Summable Equations

Let I ⊂ F(x,y) {Mk} , x = (x1, x2, . . . , xn) , y = (y1, y2, . . . , ym) , be a nonzero
ideal. Define Jacm(I) to be the ideal in F(x,y) {Mk} generated by I and all m×m
minors of Jacobians ∂(φ1, φ2, . . . , φm)/∂(x,y), where φ1, φ2, . . . , φm ∈ I. Set I0 =
I, Ik+1 = Jacm(Ik) for all k ≥ 0, and I∞ = ∪∞k=0Ik. Since Ik ⊆ Ik+1, ∀k, I∞ is

1We don’t need to use the formal implicit function theorem for the existence of g. Instead we
can define g(ν)’s inductively by using (11) and the formula (9).
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an ideal. If f = (f1,f2, ..., fm )∈ Fm(x), f(0) = 0, then y = f(x) is called a formal
solution of the ideal I if

φ(x, f(x)) ≡ 0, ∀φ ∈ I. (13)

Let J denote the ideal in F = F(x,y) generated by yj − fj(x) , 1 ≤ j ≤ m.

Theorem 3.1. If y = f(x) ∈ Fm(x) is a formal solution of a nonzero ideal
I ⊂ F(x,y) {Mk} such that I∞ " J , then f ∈ F(x) {Mk} .
Proof. Without loss of generality we may assume that k is complete. Indeed,
suppose that the result is true when k is complete. By treating the components
of f( x), and the elements of I as power series over the completion of k , we
can conclude that the components of f( x) satisfy (3). The variable transformation
(x, y) → (x,y − f(x)) shows that J is a prime ideal of height m, and by (13),
we have I0 ⊆ J . Let k ≥ 0 be the integer such that Ik ⊆ J but Ik+1 " J .
Let the ideal Îk in F denote the completion of the ideal Ik, and let FJ denote the
localization of the ring F = F(x,y) at J . We have, see e.g. [15],

Ik ⊆ J ⇒ Îk ⊆ J ⇒ ht(Îk FJ ) ≤ ht(J FJ ) = ht(J ) = m.

Since Ik+1 " J , there exist φ1, φ2, . . . , φm ∈ Ik such that the rank modulo J of
Jac(φ1, φ2, . . . , φm) is m. Hence by the Jacobian Criterion for simple points, see e.g.
[9, Theorem 30.4], we have m ≤ht(ÎkFJ ) . Hence ht(ÎkFJ ) =ht(JFJ ).

This implies that J must be a minimal prime ideal belonging to Îk. Now,
it is a consequence of the Zariski-Nagata Theorem, see e.g. [6, p 89], that every
minimal prime ideal belonging to the completion Îk is of the form ℘̂ = ℘F where
℘ is a minimal prime ideal belonging to Ik. Hence, there is a prime ideal ℘ in
F(x,y) {Mk} such that Ik ⊆ ℘, and ℘̂ = J .

Let p1, p2, . . . , pl ∈ F(x,y) {Mk} be a set of generators of ℘. Then, since ℘̂ =
℘F = J , there exist aik ∈ F, 1 ≤ i, k ≤ m, such that

yi − fi(x) =
l∑

k=1

aikpk, 1 ≤ i ≤ m.

By differentiating the above equations with respect to yj, for each j , 1 ≤ j ≤ m,
and by setting (x,y) = 0, we get the matrix equation

Im×m = (aik(0, 0))m×l ·
(
∂pk
∂yj

(0, 0)

)
l×m

.

Hence, by reordering the pi’s, if necessary, we may assume that the Jacobian deter-
minant Jacy (p1, p2, . . . , pm) (0, 0) 6= 0.

Now, Theorem 2.3 yields g(x) = (g1(x), g2(x), . . . , gm(x)) ∈ Fm(x) {Mk} such
that

pi =
m∑
k=1

αik(yk − gk), αik ∈ F(x,y) {Mk} , 1 ≤ i ≤ m.

Since αik(0, 0) = ∂pi
∂yk

(0, 0), the matrix (αik) is invertible, and hence

(p1, p2, . . . , pm)F(x,y) {Mk} = (y1 − g1, . . . , ym − gm)F(x,y) {Mk} .
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Since (y1 − g1, . . . , ym − gm) generates a prime ideal of height m contained in ℘ and
ht(℘) =ht(℘̂) = m (see [15]), we have ℘ = (y1 − g1, . . . , ym − gm). Since J = (y−g)F,
there exist bik ∈ F,1 ≤ i, k ≤ m , such that

y − f(x) = B · (y − g(x)), B = (bik)m×m , .

By setting y = g(x) in the above identity, we get g = f . �

Corollary 3.2. Let f(x) ∈ Fm(x), f(0) = 0, and Φ(x,y) =
(φ1(x,y), φ2(x,y), . . . , φm(x,y)) ∈ F(x,y) {Mk} . If the following two conditions are
satisfied,

(i) Φ(x, f(x)) ∈ F(x) {Mk} ,

(ii) det

[
∂Φ

∂y

]
(x, f(x)) is a nonzero power series,

then f(x) ∈ F(x) {Mk}.

Proof. If I =(Φ(x,y)− Φ(x, f(x))) , then (ii) implies that I1 " (y− f(x)), so The-
orem 3.1 applies. �

Corollary 3.3. Let I ⊂ F(x,y) {Mk} be a nonzero ideal. If 1 ∈ I∞, then any
formal solution of I is {Mk}-summable.

Proof. The ideal Jf is proper for any solution f, since by definition of a solution,
f(0) = 0. In particular, 1 /∈ J and the corollary follows. �

Corollary 3.4. Let 0 6= φ ∈ F(x1,x2, . . . , xn, t) {Mk}. If a formal power series
f(x1,x2, . . . , xn) is such that φ(x1,x2, . . . , xn, f(x1,x2, . . . , xn)) ≡ 0, then f ∈
F(x1,x2, . . . , xn) {Mk}.

Proof. φ 6= 0 implies that ψ(x1,x2, . . . , xn, t) := φ(x1,x2, . . . , xn, t+ f(0)) 6= 0. Then
f(x1,x2, . . . , xn) − f(0, 0, . . . 0) is a solution to ψ(x1,x2, . . . , xn, t) ≡ 0. If I is the
ideal generated by ψ, then I∞ is the ideal generated by all the derivative of ψ. Since
ψ 6= 0, some derivative of ψ has a nonzero constant term. Hence 1 ∈ I∞, Corollary
3.3 applies. �

The conditions in Theorem 3.1 and Corollary 3.2 are solution specific but the
condition in Corollary 3.3 is not. So, Corollary 3.3 is one of the correct general-
izations of Corollary 3.4 to systems of equations. Another result that follows from
the proof of Theorem 3.1, in which the condition does not depend on a particular
solution is given below.

Corollary 3.5. (cf.[15]) If y = f(x) ∈ Fm(x) is solution of a nonzero ideal I ⊂
F(x,y) {Mk} of height m, then f(x) ∈ Fm(x) {Mk} .
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4 Solutions of C∞ Equations

In the analytic case (i.e. Mk = k!, and k = R or C) by using Artin’s Approximation
Theorem the proof of Theorem 3.1 becomes elementary. See [11]. In the analytic
case a much stronger version of Theorem 3.1 holds (see [11] ): Any C∞ solution
y = f(x) of a nonzero ideal analytic ideal I such that I∞ " (y − f(x)) is analytic.
A natural question is then: Does every C∞ solution t=f(x) of a nonzero equation
Φ(x,t) = 0, Φ(x,t) ∈C {Mk} (Rn+1) necessarily belong to C {Mk} (Rn)? The answer
is no, as shown by the following example, due to Vincent Thilliez[14], in the case
n = 2.

Example 4.1. Let α > 0 be fixed. Define

h(u) =

{
0 if u = 0

exp
(
− 1
|u|1/α

)
if u 6= 0.

}

It is well known that there is a constant C > 0 such that for all l ∈ N,
∣∣∣h(l)(u)

∣∣∣ ≤
C l+1l!1+α, ∀u ∈ R. Hence the function Φ(x1, x2, t) := (x2

1 +x4
2)t−h(x2) ∈ C {l!1+α} .

Since h is flat at 0, the function f(x1, x2) = h(x2)
x2

1+x4
2
∈ C∞ (R2) , and t = f(x) is a

solution to Φ(x1, x2, t) = 0. Observe that for 0 ≤ x1 < x2
2, we can write

f(x) =
1

x4
2

[
h(x2)

1 + (x1/x2
2)

2

]
=
∞∑
j=0

(−1)jx2j
1

(
h(x2)

x
2(2j+2)
1

)
.

Now put x1 = 0,
∂2jf

∂x2j
1

(0, x2) = (−1)j (2j)!
h(x2)

x
2(2j+2)
1

.

By Stirling’s formula, we have∣∣∣∣∣∂2jf

∂x2j
1

(0,
1

j!α
)

∣∣∣∣∣ ≥ (const.)2j+1(2j)!1+2α.

Hence, for s < 2α, f does not belong to C{l!1+s}. in any neighborhood of 0 in R2.

Remark 4.1. Finally, we remark that one needs additional conditions on the se-
quence {Mk} in order that analogs of Lemma 2.1 and Theorem 2.3 hold in ultrad-
ifferentiable class C {Mk} . See [8],[12].

Addendum After this work was accepted for publication, the author received a pa-
per of A. Mouze[10] that proves Artin’s Approximation theorem for Fn {Mk} ,
where {Mk} satisfies conditions (1) and (2). Hence the Theorem 3.1 can be
proved in the same way as Theorem 1 of [11].
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