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1 Introduction

A twisted cubic C of PG(3, q), the 3–dimensional projective space over the Galois
field GF (q), is given in its canonical form by

C = {P (t) = (t3, t2, t, 1), t ∈ GF (q) ∪ {∞}},

where t = ∞ gives the point (1, 0, 0, 0). Twisted cubics over Galois fields were
introduced and studied by Segre [17], [18]. Further properties were investigated by
Hirschfeld [12], [13]. The main property of a twisted cubic of PG(3, q) is that it is
a maximal arc [10, 21.2], namely it is a set of q + 1 points of PG(3, q), no four of
which are coplanar.

However, twisted cubics are also interesting because of their connection with
spreads and partial spreads of PG(3, q).

In PG(3, q), a spread S is a set of q2 + 1 lines, no two of which intersect. A
partial spread P is a set of mutually skew lines, and if |P| = s, then P is also called
a s–span. Hence, a (q2 + 1)–span is a spread of PG(3, q).

In [3] it was shown that in PG(3, q), (q + 1, 3) = 1, if C is a twisted cubic, then
the set S of lines consisting of the imaginary chords of C, the imaginary axes of the
osculating developable of C and the tangents to C form a spread.

In particular, it is easily seen that the tangents to C form a (q + 1)–span [10,
Theorem 21.1.9] (actually the proof works for any field). For further results on
twisted cubics over Galois fields see also [4].
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In this paper we are mainly interested in curves X of PG(3,K), where K is an
algebraically closed field of characteristic p ≥ 0, satisfying the following condition.

Tangent lines to X at distinct smooth points are skew. (1.1)

If we assume that K is the algebraic closure of GF (q), the condition (1.1) means that
tangent lines to X at GF (q)–rational points will form a (partial) spread of PG(3, q).
We will see, under suitable assumptions, that if X satisfies condition (1.1), then X
must necessarily be a twisted cubic, giving in this manner a characterization of
twisted cubics.

Also an infinite family of curves of PG(3,K), distinct from twisted cubics and
satisfying property (1.1), is found.

2 Definitions and Preliminaries

We work over an algebraically closed field K of characteristic p ≥ 0.
Let X ⊂ PG(3,K) be an integral curve of degree d ≥ 3. Let PG(3,K)∗ be the

dual projective space of PG(3,K). Let

X ∗ = {H ∈ PG(3,K)∗|H tangent to X at a smooth point P ∈ X}

be the dual of X and also let Z(X ) be the set

{(P, H) ∈ Xreg × PG(3,K)∗|H tangent to X at the smooth point P ∈ X}.

It follows that X ∗ is the image of Z(X ) under the projection pr2 : PG(3,K) ×
PG(3,K)∗ → PG(3,K)∗.

The curve X is said to be reflexive if Z(X ∗) = Z(X) via the identification
PG(3,K)∗∗ = PG(3,K) [7].

Let {bi}0≤i≤3 be the order sequence of X [19]. Hence b0 = 0, b1 = 1 and
d ≥ b3 > b2 > 1. We have that X is reflexive if and only if b2 = 2 and p 6= 2 [7, 3.5].
The integer b2 is the order of contact of X with its tangent line at a generic point of
X [9, Prop. 4]. The integer b3 is the order of contact of X with its osculating plane
at a generic point of X .

It is known that b2 = 2 and b3 = 3 if the characteristic p of K is zero. If this is
the case, X is said to be classical. [15]. Also, if p > 0 and b2 > 2 or p = 2, then it
can be proven that there exists an integer e ≥ 1 such that b2 = pe [7], and the curve
is said to be non–reflexive.

Remark 2.1. Let Y be the normalization of X . Fix a general point P ∈ X and let
π : Y → PG(1,K) be the morphism induced by the projection of X onto PG(1,K)
from the tangent line to X at P , which we will denote by TPX . The morphism π is
not separable, i.e. its differential at a generic point is zero if and only if X is strange
(X is said to be strange if all its tangent lines at smooth point pass through a fixed
point called the center or the nucleus). Also X is strange if and only if its tangent
developable is a cone. The morphism π has degree d− b2 and it ramifies at P if and
only if b3 > b2 + 1.
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3 The Main Result

In this section we will characterize twisted cubics of PG(3,K) (PG(3, q)) as ex-
plained in the Introduction.

Theorem 3.1. Let X ⊂ PG(3,K) be a smooth degree d curve such that for a general
point P ∈ X there is no tangent line to X at a point Q 6= P , with TPX ∩ TQX 6= ∅.
Then X ≡ PG(1,K), and either d = 3 and X is a twisted cubic, or d = pe + 1 and
X is projectively equivalent to the rational curve D with the parametrization

(w0, w1)→ (wpe+1
0 , wpe

0 w1, w0w
pe

1 , wpe+1
1 ). (3.1)

Conversely, any two tangent lines to X , where X is one of the above curves, are
skew. If X is the the curve D, we also require pe ≥ 4.

Proof. We divide the proof into three steps.
Step 1. Here we assume that X has classical order sequence, i.e. bi = i, i = 2, 3.
Let g be the genus of X . Fix a general point P ∈ X and let π : X → PG(1,K) be
the morphism induced by the projection of X from the line TPX . Since b2 = 2, π
is a degree d − 2 morphism (Remark 2.1). By the last assertion of Remark 2.1, for
a general point P , the morphism π has differential not zero. Hence the differential
of π at a general point of X is not zero, i.e. π is separable. Thus we may apply the
Riemann–Hurwitz formula [6, Cor. 2.4] and obtain that the ramification divisor of
π has degree 2d − 6 + 2g. Since b3 = b2 + 1 and P is general, every ramification
point of π corresponds either to a smooth point Q of X with TPX ∩ TQX 6= ∅, or
to a cusp of X . Hence we have 2d − 6 + 2g = 0. Since d ≥ 3 and g ≥ 0, we obtain
g = 0 and d = 3. Hence X is a twisted cubic, as wanted.

Step 2. Here we assume b2 = pe and b3 = pe + 1. Let g be the genus of X . Fix
a general point P ∈ X and let π : X → PG(1,K) be the morphism induced by
the projection of X from the line TP (X ). Since b2 = pe, π is a morphism of degree
d− b2. Since the general tangent line to X does not intersect TPX , the morphism π
is separable (see Remark 2.1). Hence, we may apply the Riemann–Hurwitz formula
and obtain that, counting multiplicities, the ramification divisor of π has degree
2d−2pe+2g−2. Since b3 = b2 +1 and X is smooth, every point on the ramification
divisor of π corresponds to a point Q ∈ X , Q 6= P , such that TPX ∩ TQX 6= ∅ (see
Remark 2.1). Hence 2d − 2pe + 2g − 2 = 0 and so d = pe + 1 and g = 0. It follows
that X ≡ PG(1,K). We choose homogeneous coordinates x0, . . . , x3 on PG(3,K)
such that P = (1, 0, 0, 0), TPX = {x2 = x3 = 0} and {x3 = 0} is the osculating
plane to X at P . Hence, taking affine coordinates Xi = xi/x0, i = 1, 2, 3, X has a
parametrization (t, αtp

e
, βtp

e+1), with α 6= 0, β 6= 0. Again, passing to homogeneous
coordinates, we obtain X = D, as wanted.

Step 3. Now we assume b3 ≥ b2 + 2. From the Riemann–Hurwitz formula and the
assumptions one finds 2g − 2 = 2(d− b2) + (b3− b2− 1). Hence 2d− 2b2 − 2 + 2g =
b3 − b2 − 1. From d ≥ b3, we have that 2(b3 − b2) − 2 + 2g ≤ b3 − b2 − 1. This is a
contradiction as b3 − b2 > 1.

The viceversa comes from [10, 21.1.9] and the following remark. �
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Remark 3.2. Fix integers p,e,d with p prime, e > 0 and pe < d < 2pe. Let
X ⊂ PG(3,K) be any integral degree d curve with order sequence {bi}0≤i≤3 and
b2 = pe. Fix P, Q ∈ Xreg with TPX 6= TQX ; for a general point P ∈ X this is the
case for every Q ∈ Xreg.

Assume TPX∩TQX 6= ∅ and let H be the plane spanned by TPX and TQX . Since
TPX ∩ X (resp. TQX ∩ X ) contains at least a 0–dimensional subscheme of length
pe with P (resp. Q) as support, and d < 2pe, this is impossible. The possibility
d = 2pe − 1 does not occur because in this case we would find a plane intersecting
the curve in a 0–dimensional subscheme of length at least 2pe, which is more than
the degree of the curve. In particular, if d ≤ 2pe−1 (but also in several other cases),
we are sure that for a general point P ∈ X no tangent line to a smooth point of X
may intersect TPX .

Remark 3.3. The proof of Theorem 3.1 works in the same way if instead of assum-
ing that X is smooth, we assume only that the normalization map f : Y → X is
unramified, i.e. X has no cusps, or equivalently, that for every A ∈Sing(X ) (if any)
all the formal branches of X at A are smooth. Note that the normalization map
may be unramified even if some of these formal branches have the same tangent line
(e.g. if A is a tacnode or a higher order tacnode of X ).

However, it would be interesting to have the analogue of Theorem 3.1 for singular
curves. In this case, the Hasse–Weil bound [11, 2.9] for the number N of GF (q)–
rational points, gives

N ≤ q + 1 + 2g
√

q,

and so if our curve X satisfies property (1.1) one could obtain s–span of PG(3, q),
with s > q + 1.

Remark 3.4. Here we show the existence of a large number of space curves satis-
fying all the assumptions of Remark 3.2.

All the possible order sequences of projective curves are “known”.
A sequence {bi}0≤i≤3 is the order sequence of a curve if and only if the p–adic

criterion, stated for instance in the introduction of [8] is satisfied ; for the proof of
the necessity of the p–adic criterion, see [19, Cor. 1.9]; for the existence part when
the p–adic criterion is satisfied use a a monomial curve t → (tb0, . . . , tbN ) as in the
introduction of [8].

The example just given shows that for every prime p, for every integer e ≥ 0
and for every integer b3 > 2 such that the order sequence {bi}1≤i≤3 satisfies the
p–adic criterion, we may find a rational singular curve of degree b3 with b2 = pe. For
instance we may take b3 = b2 + 1. If b3 ≤ 2pe − 2, this is an example satisfying all
the assumptions of Remark 3.2. Notice that we find singular curves with the same
order sequence and degree as the smooth curve D considered in Theorem 3.1.

Remark 3.5. Assume K = GF (q), q = 2h. Then

C(2n) = {P (t) = (tm+1, tm, t, 1), t in GF (q) ∪ {∞}},
with m = 2n is a (q + 1)–arc of PG(3, q) if and only if (n, h) = 1[10]. Also, C(2n) is
a twisted cubic if and only if n = 1 or n = h− 1.

Regarding C(2n) as curve (over the algebraic closure of GF (q)) we obtain another
example for Theorem 3.3. On the other hand, from [3, Lemma 5] the set of tangent
lines to C(2n) is a (q + 1)–span and form a regulus of a hyperbolic quadric [10].



Curves of PG(3, K) 391

Remark 3.6. All strange curves in PG(n,K), n ≥ 3 are completely described in
[1]. In particular, [1] contains a complete description of all space curves (without
any restriction on their singularities) and such that their tangent developable is a
quadric cone.

Moreover, the methods of [1] give the corresponding result for a smooth quadric
surface. We will write explicitly this description.

Let H = PG(1,K) × PG(1,K) ⊂ PG(3,K) be a smooth quadric surface (hy-
perbolic quadric) and let π : PG(1,K) × PG(1,K) → PG(1,K) be the projection
onto the first factor. We will use bihomogeneous coordinates (w0, w1, z0, z1) on
PG(1,K)×PG(1,K), i.e. we will use homogeneous coordinates (w0, w1) on the first
factor and homogeneous coordinates (z0, z1) on the second factor.

Every curve X ⊂ PG(1,K)× PG(1,K) (even not irreducible or unreduced) has
a bidegree, say (a, b) (see [6, Chapter III ex. 5.6]), and X may be described by
an equation (unique up to a non–zero multiplicative constant) f(w0, w1, z0, z1) = 0
with f a homogeneous polynomial of degree a in the variables w0, w1 and of degree
b in the variables z0, z1. The curve X is union of disjoint lines if and only if ab = 0.
From now on we assume that X has no multiple component. Every tangent line to
a smooth point of X is contained in the quadric H as a line of the form π−1(P ),
P ∈ PG(1,K), if and only if the restriction of π to every irreducible component D
of X is not separable. In particular, p :=char(K) > 0. Let f be the bihomogeneous
equation of X .

The proof of [2, Sec. 3, Cor. 1], shows that this is the case if and only if every
monomial of f contains both w0 and w1 with exponents divisible by p. Fix an integer
e ≥ 1 and set r := pe. If all these exponents are divisible by r, then the tangent line
to X at every smooth point Q of X has order of contact at least r with X at Q, i.e.
(assuming X irreducible) X has b1 ≥ r. If X is irreducible and r is the maximal
integer with that property, then indeed r = b1.

Example 3.7. Here we assume char(K)= p > 0.
Recall that the Hirzebruch surface F1 has an embedding into PG(4, K) as a

minimal degree rational normal scroll [6, V, Cor. 2.19], and that the unique section
A of F1 with self–intersection −1 is sent by this embedding into a plane conic A′.

Let S be the cubic surface with a double line obtained by projecting the smooth
rational scroll F1 ⊂ PG(4,K) from a general point of the plane spanned by A′.
Hence S is ruled by lines and we will describe explicitly all integral space curves
with S as tangent developable.

The description here is related to the description given in [1, 2.0] for a similar
problem.

Any such curve is the image by the linear projection F1 → S of an integral curve
Y ⊂ F1 such that all the lines of the ruling π : F1 → PG(1,K) are tangent to Y .

We will describe “the equations” of all such curves Y . Fix homogeneous coordi-
nates x0, x1 on the base PG(1,K) and take another variable, say w (the coordinate
along the fibers taking as origin of the fiber the point of intersection of the fiber
with A). Give weight 1 to the variables x0 and x1, and weight −1 to the variable
w. Every curve of F1 is described by a unique polynomial (up to a multiplicative
constant) f(x0, x1, w) such that there is an integer t ≥ 0 with the property that for
every monomial λxa0x

b
1w

c of f with λ 6= 0 we have a + b− c = t, i.e. every monomial
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appearing in f has weight t.
The curve Y : f(x0, x1, w) = 0 is tangent to all lines of the ruling if and only

if c is divisible by p. More precisely, if we want that the the linear projection C of
Y into PG(3,K) has b2 = pe, we just assume that every c appearing in this way
is divisible by pe, and that pe is the maximal power of p with this property. Let
f : F1 → PG(2,K) be the blowing–down of A. Every curve Y just described, i.e.
every curve Y tangent at each smooth point to the fibers of the ruling, has as image
f(Y ) a strange plane curve of degree t with the point f(A) as center. Viceversa,
every such strange curve is the image of a unique curve Y such that, every fiber of
the ruling of F1 is tangent to Y .

Example 3.8. Here we assume p :=char(K) > 0.
As in [1, 2.0], we may extend the previous example and obtain for every integer

a ≥ 4 a singular rational ruled surface S ⊂ PG(3,K) with deg(S)= a, and such
that there are perfectly described (in terms of equations) curves C ⊂ S with S as
tangent developable. Such surface S will be a projection of a smooth minimal degree
rational normal scroll S ′ ⊂ PG(a + 1,K).

As abstract surface, S ′ is isomorphic to a Hirzebruch surface Fe and all integers
e, with e− a even and 0 ≤ e ≤ a− 2, may occur in this way. As in [1, 2.0] and the
above example, we introduce coordinates x0, x1 and w, and give weight 1 to x0 and
x1 and weight −c to w; we fix an integer t > 0 and consider polynomials f(x0, x1, w)
in which each monomial λxa0x

b
1w

c of f with λ 6= 0 of f has weight t; then f = 0 is
one of such curves if and only if, for each such monomial, p divides c.

In particular, we obtain large families of singular curves whose tangent devel-
opable has degree four.

Remark 3.9. Here we assume char(K)= 0.
We will check that the rational normal curve is the only integral curve X ⊂

PG(3,K) such that its tangent developable, say S, has degree four.
Fix any such X . Since an integral plane curve of degree four has at most three

singular points, the degree of the one–dimensional part of Sing(S) is at most three.
Thus to check that X is a rational normal curve, it is sufficient to check that S

is singular along X . Let π : Y → X be the normalization. Set L := π∗(OX (1)). Let
P 1(L) the principal bundle of order 1 of L in the sense of [16]. The rank 2 vector
bundle P 1(L) fits into an exact sequence

0→ ΩY ⊗ L→ P 1(L)→ L→ 0. (3.9)

Hence, if g is the genus of X and d the degree of X , we have deg(P 1(L))= 2g−2+2d.
Let F be the projectivization of P 1(L). There is a rational map (everywhere defined
except over the cusps of X , i.e. over the cuspidal locus of π) α : F → PG(3,K)
whose image is S and sending the fibers of the ruling f : F → X into the lines
tangent to X ; this is the reason for the classical formula deg(S)= 2g − 2 + 2d − κ,
where κ is the number of cusps (counting multiplicities) [5, p. 454].

Furthermore, there is an embedding, say β, of Y in F , induced by the surjection
in (3.9). Since a general line of S is tangent to X , we see that either all fibers of f
are tangent to β(Y) or f has differential of rank at most 1 at each point of β(Y) and
hence S is singular along X = α(β(Y)). Alternatively, by the Lefschetz principle we
may assume K = C, the field of complex numbers.
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Take a complex variable u on C and a local parametrization α : ∆ → C3 (∆
the unit disk of C). Then, the parametrization of S is given by x(u, v) : U → C3

(U an open neighborhood of 0 ∈ C2) with x(u, v) = α(u) + α′(u)v whose Jacobian
determinant vanishes when v = 0, i.e. at the points sent onto the curve X ; for more
details, see e.g. [14, pp. 216-217]. The same proof gives that if the ground field has
characteristic zero, no integral space curve has tangent developable of degree two or
three.
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Università di Trento
38050 Povo (TN), Italy
e-mail: ballico@science.unitn.it

Antonio Cossidente
Dipartimento di Matematica
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