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Abstract

In this paper we give a qualitative and quantitative description of the set
of continuous functions h for which the resonant boundary value problem

−u′′(x)− u(x) + g(u(x)) = h(x), x ∈ [0, π],
u(0) = u(π) = 0,

has solution. Here, g is a continuous and bounded function (not identically
zero), with primitive G satisfying the following hypothesis: there exist se-
quences {xn} → +∞, {yn} → +∞ such that G(xn) → sup {G(t) : t ≥
0}, G(yn) → inf {G(t) : t ≥ 0}. In particular, this is the case if g is con-
tinuous and bounded and G is an almost periodic function. A noteworthy
example, from the point of view of the applications to some problems in Me-

chanics, is when the function g is of the form g =
n

∑

i=1

gi, where each function

gi is a continuous periodic function with period Ti and with zero mean value,

i.e.,

∫ Ti

0
gi(t) dt = 0, 1 ≤ i ≤ n. In the proofs we use the Liapunov-Schmidt

reduction, the shooting method and a detailed study of the oscillatory prop-
erties of the integral expressions associated to the bifurcation equation.
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1 Introduction

Nonlinear boundary value problems of the form

−u′′(x)− u(x) + g(u(x)) = h(x), x ∈ [0, π],
u(0) = u(π) = 0,

(1.1)

where g : IR → IR is a continuous and bounded function satisfying some additional
oscillatory properties, and h ∈ C[0, π], are very important in the applications ([13]).
Let us remark that (1.1) is a resonant problem at the principal eigenvalue, with
bounded nonlinearity. For example, if g is a periodic function with zero mean value,
(1.1) models the motion of a clock pendulum ([12]).
From the pioneer work by Dancer ([8]), for the special function g(u) = sin u, and
Ward ([17]), for general periodic nonlinearities with zero mean value, different au-
thors have contributed to the study of this significant case (i.e., the case where g
is periodic and with zero mean value), providing answers to the question on the
existence and multiplicity of solutions of (1.1) ([3], [5], [15], [16]). Nevertheless, it
must be pointed out that some important questions remains open, above all those
related to the possible extension of the results to partial differential equations.
A more complicated situation is when the nonlinear term g is a finite sum of pe-
riodic functions. It must be emphasized that this may be of great interest in the
application. For instance, this may be the case of a mechanical system formed by
two pendulum which are connected by a chain-pinion system ([14]. Here the nonlin-
earity g is given by an expression of the form g(u) = sin u+sin(λu), where λ ∈ IR+.
Obviously, if λ is not a rational number, this function is not periodic. In this paper
we study this kind of problems, showing that, from the qualitative point of view, the
conclusion about the solvability of (1.1) is like the case when g is a periodic function
with zero mean value. In the proofs we use the Liapunov-Schmidt reduction, but
after applying this method, the main difficulty is to prove that the bifurcation equa-
tion changes its sign. If g is periodic and with zero mean value, this difficulty may
be overcome by using some ideas about connectivity ([1], [5]) and the fact that there
exist sequences {xn} → +∞, {yn} → +∞ such that the function G, a primitive of
g, satisfies G(xn) = max {G(t) : t ≥ 0}, G(yn) = min {G(t) : t ≥ 0}. However, if
g is a finite sum of periodic functions, the previous property is not necessarily true
(think, for instance in the function g(u) = sin u + sin(

√
2 u)). The problem here

is how to compare the different terms in the bifurcation equation. This way seems
really difficult. Instead of it, we adopt in this paper a different point of view, doing
a detailed analysis of the global oscillatory properties of g. In fact, we consider more
general situations where g is a continuous and bounded function, and its primitive
G fulfills the following condition: there exist sequences {xn} → +∞, {yn} → +∞
such that G(xn) → sup {G(t) : t ≥ 0}, G(yn) → inf {G(t) : t ≥ 0}. In particular,
this last condition is true if G is an almost periodic function and includes the case
where g is a finite sum of periodic functions with zero mean value ([9]). In the last
section of the paper we use the shooting method for obtaining some quantitative
estimations which may be helpful to decide, in concrete examples, if (1.1) has solu-
tion. It seems that this type of questions has not been previously considered in the
literature for problems like (1.1), even in the case of periodic nonlinearities.
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2 Qualitative description of the range

Let us consider the bvp (1.1) where, from now on, the function g : IR → IR is
bounded and continuous. Every function h ∈ C[0, π] has a (unique) decomposition
h(x) = a sin x + h̃(x), x ∈ [0, π], such that

∫ π
0 h̃(x) sin(x)dx = 0. Then, the bvp

(1.1) may be written in the form:

−u′′(x)− u(x) + g(u(x)) = a sin x + h̃(x), x ∈ [0, π],
u(0) = u(π) = 0.

(2.2)

Let V denote the Banach space V = C([0, π], IR), with the norm ‖v‖0 = max
x∈[0,π]

|v(x)|,
for any v ∈ V. By U we denote the Banach space U = {u ∈ V : u(0) = u(π) = 0}
with the same norm. If we define the operators

L : dom L → V, dom L = U ∩ C2[0, π], Lu = −u′′ − u, ∀ u ∈ dom L,

and

N : U → V, (Nu)(x) = a sin x + h̃(x)− g(u(x)), ∀ u ∈ U, ∀ x ∈ [0, π],

then, problem (2.2) is equivalent to the operator equation

Lu = Nu. (2.3)

It is very well known that L is a linear Fredholm mapping of index zero, so that there
exist continuous projections P : U → U and Q : V → V, such that Im P = ker L,
Im L = ker Q and (2.3) is equivalent to the alternative system

ũ = K(I −Q)N(c sin(.) + ũ) (auxiliary equation) , (2.4)

QN(c sin(.) + ũ) = 0 (bifurcation equation) , (2.5)

where K is the inverse of the mapping L : dom L ∩ ker P → Im L and any u ∈ U
is written in the form u(x) = u(x) + ũ(x) = c sinx + ũ(x), c ∈ IR,
∫ π

0
ũ(x) sin xdx = 0.

Applying the Schauder fixed point theorem, we get that for any fixed c ∈ IR, there
exists at least one solution ũ ∈ ker P of (2.4) ([10]).
Denote by Σ the “solution set”of equation (2.4), i.e.,

Σ = {(c, ũ) ∈ IR× ker P : ũ = K(I −Q)N(c sin(.) + ũ)}.

Taking into account that

Qv(x) =
(

2

π

∫ π

0
v(x) sin x dx

)

sin x, ∀ v ∈ V,

the bifurcation equation (2.5) becomes

a =
2

π

[
∫ π

0
g(c sinx + ũ(x)) sin x dx

]

. (2.6)
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Hence, for a given h̃, bvp (2.2) has solution if and only if a belongs to the range of

the function Γ : Σ → IR, defined by Γ(c, ũ) =
2

π

∫ π

0
g(c sinx + ũ(x)) sin x dx. It is

very well known ([1], [4]) that Γ(Σ) is a bounded interval, which may be denoted by
Ih̃. Moreover, if we define

p1 : Σ → IR, p2 : Σ → ker P, by p1(c, ũ) = c, p2(c, ũ) = ũ, ∀ (c, ũ) ∈ Σ,

then, since g is bounded, we deduce from (2.4) that there is a constant M > 0,
independent of c ∈ IR, such that

‖ũ‖0 ≤ M, ‖(ũ)′‖0 ≤ M, ‖(ũ)′′‖0 ≤ M, ∀ ũ ∈ p2(Σ). (2.7)

We may use similar ideas as in [3] (Lemma 3) or in [15] (formula (24)), to prove the
following lemma, where an equivalent expression for Γ(c, ũ) is given. This expression
will allow us to study its sign.

Lemma 2.1. If G is a primitive of g, then there exists c0 > 0 (depending only on
the constant M in (2.7)) such that if (c, ũ) ∈ Σ with c ≥ c0, we have

Γ(c, ũ) =

(2.8)

=
∫ π

0
[−G(c sin x + ũ(x)) + G(‖c sin(.) + ũ(.)‖0)]

c + cos x ũ′(x)− sin x ũ′′(x)

(c cos x + ũ′(x))2
dx.

Analogously, if (c, ũ) ∈ Σ and c ≤ −c0, then

Γ(c, ũ) =

(2.9)

=
∫ π

0
[−G(c sin x + ũ(x)) + G(−‖c sin(.) + ũ(.)‖0)]

c + cos x ũ′(x)− sin x ũ′′(x)

(c cos x + ũ′(x))2
dx.

Also, from the properties of the function sin(.) and (2.7), it is easily proved that if
c0 is sufficiently large, then

c(c sin x + ũ(x)) > 0, ∀ x ∈ (0, π), ∀ (c, ũ) ∈ Σ : |c| ≥ c0. (2.10)

Now, with the purpose of stating and proving the main result of this section, we
introduce an additional hypothesis on G:

∃ {xn} → +∞, ∃ {yn} → +∞, such that
G(xn) → sup {G(t) : t ≥ 0}, G(yn) → inf {G(t) : t ≥ 0} (2.11)

where in the previous assumption, the quantities sup {G(t) : t ≥ 0} and inf {G(t) :
t ≥ 0} are not necessarily finite numbers.
The main result of this section is given by the following theorem. Remember that
for a given function h̃, Ih̃ is the set of values a for which (2.2) has solution.
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Theorem 2.2. Let us consider the bvp (2.2), where g is continuous and bounded,
not identically zero and G satisfies (2.11). Then, for any given h̃, the interval Ih̃

contains negative and positive values. Moreover, for each given natural number n,
there is an εn > 0 (depending on n, g and h̃), such that (2.2) has at least n solutions
if 0 < |a| ≤ εn. Finally, if a = 0, (2.2) has infinitely many solutions.

Proof. We prove that Ih̃ contains positive values. In an analogous way it is possible
to prove that it also contains negative values.
We distinguish three cases:
Case 1: S ≡ sup {G(t) : t ≥ 0} is not achieved at [0, +∞).
Case 2: S is achieved at [0, +∞) and the set A = {x ≥ 0 : G(x) = S} is not a
bounded set.
Case 3: S is achieved at [0, +∞) and the set A = {x ≥ 0 : G(x) = S} is a bounded
set.
In both cases, 1 or 2, it is easily proved the following property:

∃ x ≥ c0 + M : G(x) = max
[0,x]

G (2.12)

and moreover, G is not a constant function in [0, x]. In fact, (2.12) is trivial if we
are in case 2. If we are in case 1, then S1 ≡ max[0,c0+M ] G < S. From (2.11) we
deduce the existence of t1 > c0 + M such that G(t1) > S1. Let x1 ∈ [0, t1] be such
that G(x1) = max[0,t1] G. Then x1 > c0 + M, G(x1) = max[0,x1] G and G is no
constant in [0, x1].
Property (2.12) allows to prove that Γ(Σ) contains positive values. This fact is
established in the next lemma.

Lemma 2.3. If g is continuous and bounded and there exists some x satisfying
(2.12) and G is not a constant function in [0, x], then ∃ (c, ũc) ∈ Σ : Γ(c, ũc) > 0
and |c− x| ≤ M .

Proof. Since (2.2) is a resonance problem at the principal eigenvalue and the nonlin-
earity g is bounded, it is possible to prove the existence of a connected subset Σ1 of Σ
such that p1(Σ1) = [x−M, x+M ] ([1]). Let us denote r = x−M ≥ c0, s = x+M and
choose (r, ũr), (s, ũs) ∈ Σ1. Then ‖r sin(.)+ũr(.)‖0 ≤ r+M = x, ‖s sin(.)+ũs(.)‖0 ≥
s − M = x. Therefore, ∃ (c, ũc) ∈ Σ1 : ‖c sin(.) + ũc(.)‖0 = x. Consequently, from
(2.8), we obtain Γ(c, ũc) > 0.

Let us suppose now that we are in case 3. Then, if t0 = sup A, we have G(t0) = S
and G(t) < S, ∀ t > t0. Since the constant M given in (2.7) may be chosen arbitrary
large, it is not restrictive to assume the following property

∃ t0 < c0 + M such that G(t0) = S and G(t) < S, ∀ t ≥ c0 + M (2.13)

Now, property (2.13) allows to prove that Γ(Σ) contains positive values. This fact
is established in the next lemma.

Lemma 2.4. If g is continuous and bounded and (2.13) is satisfied, then ∃ (c, ũc) ∈
Σ : Γ(c, ũc) > 0.
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Proof. Let c̄ > 0 be such that
c̄−M

c0 + M
> 2 (2.14)

and choose ε > 0 such that G(t) < S − 4ε, ∀t ∈ [c0 + M, c̄]. Let ĉ > 0 be satisfying
the following properties:

(a) c̄−M
x < 1/2 ∀x ≥ ĉ−M

(b)

x− 2M
(x + M)2

x + 2M

(

√
3

2
x−M)2

> 1/2 ∀x ≥ ĉ−M

(c) G(ĉ) ≥ S − ε































































(2.15)

Think that (a) and (b) are fulfilled if ĉ is sufficiently large. Moreover, property (c)
may be established from (2.11).
Let δ > 0 be such that G(t) < S− δ, ∀ t ∈ [c0 +M, ĉ] and let us define c̃ = min{x ≥
c0 + M : G(x) ≥ S − δ} > ĉ.
Clearly we have the following property

c̃ satisfies (2.15)( as ĉ) and G(c̃) ≥ G(x), ∀x ∈ [c0 + M, c̃] (2.16)

As in cases 1 and 2, let Σ1 ⊂ Σ be a connected subset such that p(Σ1) = [c̃−M, c̃ +
M ]. Then, there exists (c, ũc) ∈ Σ1, ‖c sin(·) + ũc(·)‖0 = c̃, |c − c̃| ≤ M . Next, we
will prove that Γ(c, ũc) > 0.
First, it is known ([3]) that ∃ α ∈ [π

4
, 3π

4
] such that the function c sin(·)+ũc(·) attains

its maximum only in the point α.Then,

Γ(c, ũc) =
∫ π

0
H(t)dt =

∫ α

0
H(t)dt +

∫ π

α
H(t)dt = I1 + I2

where

H(t) = [−G(c sin(t) + ũc(t)) + G(‖c sin(.) + ũc(.)‖0)] ·
c + cos(t)ũ′c(t)− sin(t)ũ′′c(t)

(c cos(t) + ũ′c(t))
2

Let us prove that I1 > 0. To see this, let us define x0 = arcsin( c0+2M
c

), x1 =
arcsin( c̄−M

c
) (x0 < x1 < π

6
from (2.14) and (2.15), (a)). Then,

I1 =
∫ x0

0
H(t)dt +

∫ x1

x0

H(t)dt +
∫ α

x1

H(t)dt

Let us study these three integral terms .

1. From (2.15), (c) and the inequality x0 < π
6
, we obtain

∫ x0

0
H(t) dt ≥

∫ x0

0
(−ε ) · c + cos(t)ũ′c(t)− sin(t)ũ′′c(t)

(c cos(t) + ũ′c(t))
2 dt

≥ −ε · (c + 2M)x0

(c cos(x0)−M)2 ≥ −ε · (c + 2M)x0

(c
√

3/2−M)2
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2. Since

x0 < t < x1 ⇒
c0 + 2M

c
< sin(t) <

c̄−M

c
⇒ c0 + 2M < c sin(t) < c̄−M ⇒

c0 + M < ũc(t) + c sin(t) < c̄

we deduce that if t ∈ [x0, x1] then G(ũc(t) + c sin(t)) < S − 4ε; also, from
(2.15), (c), G(c̃) ≥ S − ε. Therefore,

∫ x1

x0

H(t) dt ≥
∫ x1

x0

3ε · c− 2M

(c + M)2 dt = 3ε
c− 2M

(c + M)2 (x1 − x0)

3. Lastly, since G(c̃) ≥ G(x), ∀x ∈ [c0 + M, c̃], we have
∫ α

x1

H(t) dt ≥ 0

Just to conclude that I1 > 0, it is sufficient to check that x1 − x0 ≥ x0. But this
last relation is trivial, since

1/2 >
c̄−M

c
> 2 · c0 + 2M

c

Now, taking into account that the function arcsin(.) is increasing in [0, 1/2] and that
arcsin(2t) ≥ 2 arcsin(t) in this interval, we obtain x1 ≥ 2x0.

To prove that I2 > 0, we may define y0 = π−x0, y1 = π−x1 and then, to decompose
I2 in the form

I2 =
∫ y1

α
H(t)dt +

∫ y0

y1

H(t)dt +
∫ π

y0

H(t)dt

Then, an analogous reasoning to the previous one allows to demonstrate that I2 > 0.
By using the sequence {yn} of the hypothesis (2.11), instead of {xn}, it is possible
to prove, in an analogous way, that Γ(Σ) contains negative values.

The results related to the multiplicity of solutions may be demonstrated by using the
following ideas. Let us denote by the same letter c1, the constant x of (2.12) and the
constant ĉ of (2.15). Then, the conclusion of the previous reasonings is that there
exists a connected subset Σ1 of Σ such that p1(Σ1) = [c1−M, c1+M ] and (c, ũc) ∈ Σ1

with |c1 − c| ≤ M such that Γ(c, ũc) > 0. Let us denote by d1 the corresponding
constant obtained from the hypothesis (2.11) by using the sequence {yn}. Without
loss of generality we may assume that d1 ≥ c1. Then, if Π1 is a connected subset
of Σ such that p1(Π1) = [c1 − M, d1 + M ], we obtain that Γ(Π1) ⊃ [−ε1, ε1], with
ε1 > 0. Repeating all the previous process but with the constant d1 + 2M instead
of c0, we obtain the existence of a connected subset Π2 of Σ such that Π1 ∩ Π2 = ∅
and Γ(Π2) ⊃ [−ε2, ε2]. If |a| ≤ min{ε1, ε2}, (2.2) has, at least, two solutions. It is
now clear how to obtain n solutions if |a| is sufficiently small and infinitely many
solutions if a = 0.
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Remark.It is clear that the method of the proof may be used in other situations.
For instance, the same result may be obtained if the hypothesis (2.11) is replaced
by

∃ {xn} → −∞, ∃ {yn} → −∞, such that
G(xn) → sup {G(t) : t ≥ 0}, G(yn) → inf {G(t) : t ≥ 0} (2.17)

Next, we show that the conditions of Theorem 2.2 are fulfilled in the important case
where g is continuous and bounded and G is an almost periodic function. Let us
remember that a continuous function f : IR → IR is said to be almost periodic (a.p.)
if for any ε > 0 there is a L = L(f, ε) > 0 such that in any interval of length L there
is an element t such that |f(x + t)− f(x)| < ε, ∀ x ∈ IR ([9], [11]).

Corollary 2.5. Let g be a continuous and bounded function such that G is a
nonconstant almost periodic function. Then the conclusion of Theorem 2.2 is true.

Proof. If G is a.p., then S ≡ sup {G(t) : t ≥ 0} is finite. Moreover, if ε > 0 is given,
there is x = x(ε) such that |S − f(x)| < ε. Also, by using the definition of a.p.

function, there exists t(ε) ∈ [
1

ε
,
1

ε
+ L] verifying |f(x)− f(x + t(ε))| < ε. Therefore,

|f(x + t(ε))− S| < 2ε. Taking ε = 1/n, n ∈ IINI, we obtain the sequence {xn} of the
hypothesis (2.11). In an analogous way may be obtained the sequence {yn}.

Since continuous periodic functions are almost periodic functions and also f, g a.p.
imply f + g a.p. ([9], [11]), we have the following significant corollary.

Corollary 2.6. Let us consider the bvp (2.2) where the function g is a not iden-

tically zero function of the form g =
n

∑

i=1

gi and each function gi, 1 ≤ i ≤ n is

Ti-periodic and with zero mean value, i.e.,
∫ Ti

0
gi(u) du = 0. Then, the conclusion

of the Theorem 2.2 is true. Moreover, in this case the interval Ih̃ is closed.

Proof. In this case, G =
n

∑

i=1

Gi where each Gi, 1 ≤ i ≤ n, is periodic. Also, by using

the Riemann-Lebesgue lemma, it is easily deduced that Ih̃ is closed.

Remark.Under the conditions of the previous corollary, and if the constant a is
equal to zero in (2.2), the functional Φ : H1

0 (Ω) → IR defined by

Φ(u) =
∫ π

0

[

1

2
((u′)2 − u2) + G(u)− hu

]

dt

is bounded from below (H1
0 (Ω) is the usual Sobolev space), but it is not coercive.

Also, it does not satisfy, in general, the (P − S)m (Palais-Smale condition), where
m = inf H1

0
(Ω) Φ (see [2]). However, taking into account some ideas from [3], it can

be proved (under more general hypotheses that those of the previous corollary) that
Φ attains its infimum. This result, which is interesting from the point of view of
the applications, does not seem trivial, since some fundamental properties used in
[3] are not valid in the present situation. It will be shown elsewhere.
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3 Quantitative estimations

Theorem 2.2 provides a qualitative description of the range of the operator −u′′(x)−
u(x)+g(u(x)) under the boundary conditions u(0) = u(π) = 0. However, this result
is not completely satisfactory from the point of view of the possible applications
to concrete situations, since it does not give any quantitative estimation of the
interval Ih̃. In this section we show some ideas about this problem. For clarity of
the exposition, we restrict ourselves to the case of locally lipschitz and periodic
nonlinearities, with zero mean value, but it is obvious that we can deal with more
general situations. In the proofs, we combine the use of the shooting method with
some formula of the previous section.
Let us consider the bvp (2.2) where g : IR → IR is a nontrivial locally lipschitzian
function, T -periodic and with zero mean value; a ∈ IR and h̃ ∈ C[0, π] satisfies
∫ π
0 h̃(x) sin x dx = 0. If (2.2) has solution u, then (2.6) is satisfied for the function

u, so that

|a| ≤ 4

π
max

IR
|g| ≡ R (3.18)

We assume the previous restriction from now on.
The initial value problem

−u′′(x)− u(x) + g(u(x)) = a sin x + h̃(x), x ∈ [0, π],
u(0) = 0, u′(0) = r,

(3.19)

has, for any given real number r, a unique solution ur
a ∈ C2(IR) which depends

continuously on a and r. Also, it is trivially checked ([7]) that ur
a is given by the

relation
ur

a(x) = r sin(x) + ũr
a(x) (3.20)

where

ũr
a(x) = − cos(x)

∫ x

0
sin(t)[h(t)− g(u(t))] dt

+ sin(x)
∫ x

0
cos(t)[h(t)− g(u(t))] dt

and h(x) = a sin x + h̃(x). Moreover, ur
a satisfies (2.2) if and only if ur

a(π) = 0, or
equivalently

a =
2

π

∫ π

0
g(ur

a(x)) sin x dx (3.21)

Therefore, if for any fixed real number a satisfying (3.18), we define the mapping

Γa : IR → IR

by

Γa(r) =
2

π

∫ π

0
g(ur

a(x)) sin(x)dx,

(2.2) has solution if and only if a ∈ Im Γa.
If for a given function h̃, we denote p = maxIR |g|+ R + max[0,π] |h̃| (p = p(g, h̃)),
then

|ũr
a(x)| ≤ 4p, |(ũr

a)
′(x)| ≤ 4p, |(ũr

a)
′′(x)| ≤ 5p, ∀ x ∈ [0, π], (3.22)
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Since the function G, primitive of g, is also a T -periodic function, there exists some
value α > (5

√
2 + 4)p such that

G(α) = Max{G(x) : x ∈ IR} (3.23)

We choose G such that it has also mean value zero. Let us fix some value α >
(5
√

2 + 4)p, α > T, satisfying (3.23).
Now, we obtain an estimation (which depends on such α, g and h̃) of the positive
range of the function Γa, for any fixed real number a satisfying (3.18). Similar ideas
may be used to estimate the negative range.

Lemma 3.7. Let α > (5
√

2 + 4)p be such that (3.23) is satisfied and

εα =
2

π
Min

{

r − 5
√

2p

(r + 4p)3 : r ∈ {α− 4p, α + 4p}
}

(max
IR

G)(y − x)

where [x, y] ⊂ [0, T ] is any interval such that G(t) ≤ 0 ∀ t ∈ [x, y]. Then, if
a ∈ [0, εα], (2.2) has solution.

Proof. Let us choose r ∈ IR+ such that ‖r sin(·) + ũr
a(·)‖0 = α. Note that this is

always possible since ‖r sin(·) + ũr
a(·)‖0 → +∞, in a continuous way if r → +∞.

Also, r > 5
√

2p and ‖ũr
a‖2 ≡ max{‖ũr

a‖0, ‖(ũr
a)
′‖0, ‖(ũr

a)
′′‖0} < 5p. Taking into

account the Lemma 1 and Lemma 3 in [3], for δ = π/4, we have that since r > 5
√

2p,
the formulas given in our Lemma (2.1) of section 2 are valid. Consequently, if
u = r sin(.) + ũr

a(.), we obtain

∫ π

0
g(u(t)) sin(t)dt =

∫ π

0
[−G(u(t)) + G(α)] · r + cos(t)ũ′(t)− sin(t)ũ′′(t)

(r cos(t) + ũ′(t))2 dt ≥

≥ r − 5
√

2p

(r + 4p)2

∫ π

0
[G(α)−G(u(t))]dt

(think that max[0,π] | cos t| + | sin t| =
√

2). Since G has zero mean value, there
exists an interval I = [x, y] ⊂ [0, T ] such that G(t) ≤ 0 ∀ t ∈ [x, y]. Also, we know
that the function u takes all the values from 0 to α. Then, ∃ t0, t1 ∈ [0, π] verifying
u(t1) = y, u(t0) = x, u([t0, t1]) = [x, y]. By using the Mean Value Theorem we

have: t1 − t0 = y − x
u′(c)

≥ y − x
r + 4p . Consequently,

∫ π

0
g(u(t)) sin(t)dt ≥ r − 5

√
2p

(r + 4p)2

∫ t1

t0

[G(α)−G(u(t))] ≥ r − 5
√

2p

(r + 4p)2 max
IR

G)
y − x

r + 4p

Finally, taking into account that r ∈ [α−4p, α+4p] and that the function r − 5
√

2p
(r + 4p)3

has not relative minimum in the interior of this interval, we have the conclusion of
the lemma.
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Remarks.

1.- Lemma 1 and Lemma 3 in [3] are proved under the additional assumption
u(π) = 0, which is not necessarily satisfied here. But is is trivially deduced from the
proof given in [3] that this hypothesis is not necessary. The important fact, which
is satisfied here, is that the functions (ũr

a)
′, (ũr

a)
′′ are uniformly bounded in [0, π]

((3.22)).
2.- It is clearly deduced from the proof of the previous Lemma that if the function
G is negative in more than one interval [x, y], then we may improve the obtained
estimations. This is what happens in the following example.
3.- It is also possible to use the expression (2.6) to estimate the range of values a
for which (2.2) has solution. The ideas are practically the same, but the estimations
obtained by this method are, in general, worse than those which may be obtained
as previously, by using the shooting method (think that the bounds for ũ which are
derived from (2.4) are, in general, worse than those for ũr

a).

Example.Let us consider the following problem:

−u′′ − u + 1
2
sin(u) = a sin(x), x ∈ [0, π],
u(0) = u(π) = 0.

}

(3.24)

It is easily checked that in this case one may take R = 2/π, p =
π + 4

2π
, α = 3π

and [x, y] = [0, π
2
]. An elementary calculation shows that εα = 0.0004, so that

if a ∈ [0, εα], (3.24) has solution. However, it must be pointed out that, taking
into account the basic ideas of this section and the particular properties of the
concrete problem that we are considering, it is possible, in general, to obtain better
estimations than those which have been obtained for general problems. For instance,
in the case of (3.24), we may restrict the values of the constant a such that |a| < 10−1.
Then, we get a smaller value of p and, consequently, a bigger value of εα. More
precisely, if |a| < 10−1, then we may choose p = 0.6, α = 3π, [x, y] = [0, π

2
]. In

this case εα = 0.00131712. Also, let us note that we can improve the value of εα by
considering the union of intervals I = [0, π

2
] ∪ [3π

2
, 5π

2
] instead of the interval [0, π

2
].

It is clear that the proof of Lemma 3.7 is valid in this case.
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