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Abstract

Our main result (Theorem 1) follows that any infinite-dimensional sub-
space F of a non-archimedean metrizable locally convex space E with an or-
thogonal basis (en) contains a basic orthogonal sequence equivalent to a block
basic orthogonal sequence relative to (en) (Proposition 2). Hence any infinite-
dimensional non-archimedean metrizable locally convex space F possesses a
basic orthogonal sequence equivalent to a block basic orthogonal sequence
relative to an orthogonal basis in c

N
0 (Corollary 3).

Introduction

In this paper all linear spaces are over a non-archimedean non-trivially valued field
K which is complete under the metric induced by the valuation | · | : K → [0,∞).
For fundamentals of locally convex Hausdorff spaces (lcs) and normed spaces we
refer to [2], [4] and [3]. Orthogonal bases and basic orthogonal sequences in locally
convex spaces are studied in [1], [6] and [8].

Any infinite-dimensional Banach space of countable type is isomorphic to the
Banach space c0 of all sequences in K converging to zero (with the sup-norm) ([3],
Theorem 3.16), so it has an orthogonal basis.

There exist infinite-dimensional Fréchet spaces of countable type without a Schau-
der basis (see [7]). Nevertheless, any infinite-dimensional metrizable lcs E of finite
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type has an orthogonal basis ([1], Theorem 3.5). Moreover, any infinite-dimensional
metrizable lcs E possesses a basic orthogonal sequence ([6], Theorem 2). It is also
known that any bounded non-compactoid subset in a lcs E contains a basic orthog-
onal sequence in E ([1], Theorem 2.2).

In this note we are interested in the selection of basic orthogonal sequences in
metrizable locally convex spaces.

Using the stability theorem for basic orthogonal sequences in metrizable lcs ([8],
Corollary 2), we show our main result: Let E be a metrizable lcs with an orthogonal
basis (en) and let (fn) be the sequence of coefficient functionals associated with
the basis (en). If (yn) ⊂ E, yn 6→ 0 and limn fj(yn) = 0 for any j ∈ N, then (yn)
has a subsequence (yin) which is a basic orthogonal sequence equivalent to a block
basic orthogonal sequence relative to (en) (Theorem 1). It follows that any infinite-
dimensional subspace F of a metrizable lcs E with an orthogonal basis (en) contains
a basic orthogonal sequence equivalent to a block basic orthogonal sequence relative
to (en) (Proposition 2). Thus any infinite-dimensional metrizable lcs F has a basic
orthogonal sequence equivalent to a block basic orthogonal sequence relative to an
orthogonal basis in cN

0 (Corollary 3).

Preliminaries

Let E, F be locally convex spaces. A map T : E → F is called an isomorphism if T
is linear, one-to-one, surjective and the maps T, T−1 are continuous.

A sequence (xn) in a lcs E is equivalent to a sequence (yn) in a lcs F if there exists
an isomorphism T between the linear spans of (xn) and (yn), such that Txn = yn

for all n ∈ N.

A sequence (xn) in a lcs E is a Schauder basis in E if each x ∈ E can be
written uniquely as x =

∑∞
n=1 αnxn with (αn) ⊂ K and the coefficient functionals

fn : E → K, x → αn (n ∈ N) are continuous.

By a seminorm on a linear space E we mean a function p : E → [0,∞) such
that p(αx) = |α|p(x) for all α ∈ K, x ∈ E and p(x + y) ≤ max{p(x), p(y)} for all
x, y ∈ E. A seminorm p on E is a norm if ker p := {x ∈ E : p(x) = 0} = {0}.

Let p be a seminorm on a linear space E. A sequence (xn) ⊂ E is 1-orthogonal

with respect to p if p(
∑n

i=1 αixi) = max1≤i≤n p(αixi) for all n ∈ N and α1, . . . , αn ∈
K.

Let E be a metrizable lcs.

The set of all continuous seminorms on E is denoted by P(E). A non-decreasing
sequence (pk) ⊂ P(E) is a base in P(E) if for every p ∈ P(E) there exists k ∈ N

with p ≤ pk.

A sequence (xn) ⊂ E is 1-orthogonal with respect to (pk) ⊂ P(E) if (xn) is 1-
orthogonal with respect to pk for every k ∈ N. A sequence (xn) ⊂ (E \{0}) is a basic

orthogonal sequence in E if it is 1-orthogonal with respect to some base (pk) in P(E)
(this concept coincides with the one given in [8] in the general context of lcs). A
basic orthogonal sequence in a subspace F of E is a basic orthogonal sequence in E
([1], Remark 1.2). A linearly dense basic orthogonal sequence in E is an orthogonal

basis in E. Any orthogonal basis in E is a Schauder basis ([1], Proposition 1.4) and
any Schauder basis in a Fréchet space is an orthogonal basis ([1], Proposition 1.7).
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Let (xn) be a basic orthogonal sequence in E. Let (kn) ⊂ N be an increasing
sequence and let (αn) ⊂ K with maxkn≤i<kn+1

|αi| > 0 for any n ∈ N. Put yn =
∑kn+1−1

i=kn

αixi, n ∈ N. The sequence (yn) is said to be a block basic orthogonal sequence

relative to (xn).
E is of finite type if for any p ∈ P(E) the quotient space (E/ ker p) is finite-

dimensional.
E is of countable type if it contains a linearly dense countable subset (this notion

agrees with the one of lcs of countable type given in [4]).
A Fréchet space is a metrizable complete lcs.
Let (xn) be a sequence in a Fréchet space F . The series

∑∞
n=1 xn is convergent

in F if and only if lim xn = 0.

Results

We start with the following.

Theorem 1. Let E be a metrizable lcs with an orthogonal basis (en) and let (fn)
be the sequence of coefficient functionals associated with the basis (en). If (yn) ⊂
E, yn 6→ 0 and limn fj(yn) = 0 for any j ∈ N, then (yn) has a subsequence (yin)
which is a basic orthogonal sequence equivalent to a block basic orthogonal sequence

relative to (en).

Proof. The basis (en) is 1-orthogonal with respect to some base (pk) in P(E).
Without loss of generality we can assume that infn p1(yn) ≥ 1. By induction we can
construct two increasing sequences (dn), (tn) ⊂ N with d1 = t1 = 1 such that for any
n ∈ N we have

(∗) max
1≤k≤n

max
j∈(N\{tn+1,...,tn+1})

pk(fj(ydn+1
)ej) < 1.

Indeed, assume that for some m ∈ N we have already chosen d1, t1, . . . , dm, tm ∈ N

with 1 = d1 < · · · < dm, 1 = t1 < · · · < tm such that for any n ∈ N with n < m holds
(∗). Since limn fj(yn) = 0 for any j ∈ N, there is dm+1 ∈ N with dm+1 > dm such that
max1≤k≤m max1≤j≤tm pk(fj(ydm+1

)ej) < 1. Clearly limj fj(ydm+1
)ej = 0. Hence there

is tm+1 ∈ N with tm+1 > tm such that max1≤k≤m maxj>tm+1
pk(fj(ydm+1

)ej) < 1.

Put in = dn+1 and xn =
∑tn+1

j=tn+1 fj(yin)ej for n ∈ N. Using (∗) and the inequality
infn p1(yn) ≥ 1 we obtain maxtn+1≤j≤tn+1

|fj(yin)| > 0, n ∈ N. Then (xn) is a block
basic orthogonal sequence relative to (en); of course, it is 1-orthogonal with respect
to (pk). Let k, n ∈ N with k ≤ n. By (∗) we get

pk(xn − yin) = pk(
tn∑

j=1

fj(yin)ej +
∞∑

j=tn+1+1

fj(yin)ej) =

max
j∈(N\{tn+1,...,tn+1})

pk(fj(yin)ej) < 1 ≤ pk(yin).

By the strong triangle inequality for pk we have pk(xn) = pk(yin). Thus pk(xn−yin) <
pk(xn) for all k, n ∈ N with k ≤ n. By [8], Corollary 2, (yin) is a basic orthogonal
sequence equivalent to (xn). �
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Using Theorem 1 we get

Proposition 2. Let E be a metrizable lcs with an orthogonal basis (en). Then any

infinite-dimensional subspace F of E contains a basic orthogonal sequence equivalent

to a block basic orthogonal sequence relative to (en).

Proof. Consider two cases.

Case 1: F is of finite type. Then F has an orthogonal basis (yn) ([1], Theorem
3.5). The basis (yn) is 1-orthogonal with respect to some base (qk) in P (F ). Since
dim(F/ ker qk) < ∞, k ∈ N, then the set {n ∈ N : qk(yn) > 0} is finite for all k ∈ N.
Hence for any (αn) ⊂ K the series

∑∞
n=1 αnyn is convergent in the completion F̃ of

F .

The basis (en) is 1-orthogonal with respect to some base (pk) in P (E). Clearly,
dim ker pk = ∞ for any k ∈ N; so for every (k, r) ∈ N×N there is n ∈ N with n > r
such that en ∈ ker pk. Thus there exist two increasing sequences (dn), (tn) ⊂ N such
that edn

∈ (ker ptn \ ker ptn+1
), n ∈ N. Then for any (αn) ⊂ K the series

∑∞
n=1 αnedn

is convergent in the completion H̃ of the closed linear span H of (edn
).

By the closed graph theorem ([2], Theorem 2.49) the linear maps
T : K

N → F̃ , (αn) →
∑∞

n=1 αnyn and S : K
N → H̃, (αn) →

∑∞
n=1 αnedn

are isomor-
phisms. It follows that the basic orthogonal sequence (yn) is equivalent to (edn

). Of
course, (edn

) is a block basic orthogonal sequence relative to (en).

Case 2: F is not of finite type. Then dim(F/ ker p) = ∞ for some p ∈ P(F ). Let
(fn) be the sequence of coefficient functionals associated with the basis (en). Put
U = {x ∈ F : p(x) < 1} and Fn =

⋂n
j=1 ker fj ∩ F, n ∈ N. Since dim(F/Fn) < ∞,

then (Fn \U) 6= ∅ for any n ∈ N. Let yn ∈ (Fn \U), n ∈ N. Clearly, (yn) ⊂ F, yn 6→ 0
and limn fj(yn) = 0 for any j ∈ N. By Theorem 1, (yn) contains a subsequence (yin)
which is a basic orthogonal sequence equivalent to a block basic orthogonal sequence
relative to (en). �

Since any metrizable lcs E of countable type is isomorphic to a subspace of the
Fréchet space cN

0 ([1], Remark 3.6) we get

Corollary 3. Any infinite-dimensional metrizable lcs contains a basic orthogonal

sequence equivalent to a block basic orthogonal sequence relative to an orthogonal

basis in cN

0 .

It is known that in a dual-separating Fréchet space E any bounded sequence
(yn) ⊂ E with yn 6→ 0 such that yn → 0 weakly, contains a subsequence (yin) which
is a basic orthogonal sequence (see [1], Corollary 3.3). Unfortunately, in a Fréchet
space E of countable type, if (yn) ⊂ E and yn 6→ 0, then yn 6→ 0 weakly ([4],
Theorem 4.4 and Proposition 4.11). Using the idea of the proof of Corollary 3.3, [1],
we show the following.

Proposition 4. Let E be a Fréchet space and let (fn) be a sequence of continuous

functionals on E such that
⋂∞

n=1 ker fn = {0}. Then any bounded sequence (yn) ⊂ E
with yn 6→ 0 such that limn fj(yn) = 0 for any j ∈ N contains a subsequence (yin)
which is a basic orthogonal sequence in E.
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Proof. By [1], Theorem 2.2 (see Introduction) it is enough to show that the
bounded subset Y = {yn : n ∈ N} of E is non-compactoid. Suppose, by contra-
diction, that Y is compactoid. Then the closed absolutely convex hull Z of Y is
complete metrizable absolutely convex and compactoid. Let F be the linear span of
(fn). Since the Hausdorff locally convex topology σ(E, F ) on E is weaker than the
original topology τ on E, then σ(E, F )|Z = τ |Z ([5], Theorem 3.2). Hence yn → 0,
a contradiction. �

Corollary 5. Let (xn) be a sequence in a Banach space E. If there is a sequence

(fn) of continuous functionals on E with
⋂∞

n=1 ker fn = {0} such that fn(xm) = δn,m

for all n, m ∈ N, then (xn) contains a subsequence (xin) which is a basic orthogonal

sequence in E.

The author wishes to thank the referee for useful remarks.
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