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Abstract

The Ribaucour transformation is applied to the family of Lagrangian sub-
manifolds of dimension n and nonzero constant sectional curvature c of com-
plex space forms of complex dimension n and constant holomorphic sectional
curvature 4c. As a consequence, a process is obtained to generate a new
family of such submanifolds starting from a given one. In particular, explicit
parametrizations in terms of elementary functions of examples with arbitrary
dimension and curvature are provided. A permutability formula is derived
which provides a simple algebraic procedure to construct further examples
once two Ribaucour transforms of a given submanifold are known. The ana-
lytical counterparts of the above results are also discussed.

1 Introduction

An isometric immersion f : Mn → M̃m of an n-dimensional Riemannian manifold
into a Kaehler manifold of complex dimension m is said to be totally real if the almost
complex structure of M̃m carries each tangent space of Mn into its corresponding
normal space. If in addition n = m then f is said to be Lagrangian.

The simplest examples of Lagrangian submanifolds of complex space forms M̃n(4c)
of constant holomorphic sectional curvature 4c are the totally geodesic real space
forms Mn(c) of constant sectional curvature c. The family of non-totally geodesic
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Lagrangian isometric immersions f : Mn(c) → M̃n(4c) has been recently investi-
gated in [CDVV] and [DT3], the latter being devoted only to the flat case. Two
general problems form the core of the investigation. First, to get a satisfactory de-
scription of the family, with an eye towards some sort of classification. Second, to
construct explicit examples.

The main result in [CDVV] establishes a correspondence between elements of the
family and certain types of twisted product decompositions of simply-connected Rie-
mannian manifolds of constant sectional curvature c. This is then used to attack the
second problem. For a special type of such twisted product decompositions, namely,
the conformally flat ones, the associated Lagrangian submanifolds are explicitly de-
termined. However, although some interesting submanifolds are produced with this
method, no examples with constant sectional curvature c ≥ 0 and dimension n > 2
are obtained besides the flat Clifford tori.

A different approach is used in [DT3]. First, the general correspondence ob-
tained in [DT1] between flat n–dimensional submanifolds with flat normal bundle
in complex flat space Cn and solutions of a certain system of PDE’s is considered.
Then, the solutions associated to flat Lagrangian submanifolds are characterized.
This paves the way for the Ribaucour transformation, extended from surface theory
to higher dimensions in [DT2], to be applied. It is shown that the set of Ribaucour
transforms of a given flat Lagrangian n–dimensional submanifold of Cn contains an
(n+1)–parameter family of submanifolds in the same class, which admit explicit
parametrizations in terms of solutions of a completely integrable linear first order
system of PDE’s. In particular, non-trivial examples are produced in any dimension.

In this paper we show that a similar program can be carried out to the non-flat
case. Our main achievement is a process to generate parametrizations of a family
of Lagrangian isometric immersions f : Mn(c) → M̃n(4c) starting from a given
one, which are given in terms of solutions of a linear first order system of PDE’s.
In particular, parametrizations in terms of elementary functions of examples with
arbitrary dimension and curvature are provided. An outline of the paper is given
below.

Totally real submanifolds of complex space forms have been shown by Reckziegel
([Re1]) to be precisely the ones that admit horizontal lifts into the bundle space of
the Hopf fibrations. A detailed study was made in [Re2] of horizontal isometric
immersions into the bundle space of the canonical fibration of a general Sasakian
manifold, in particular the Hopf fibration onto complex projective space. In §2 we
show how some of these results can be adapted to the Hopf fibration of anti-de-
Sitter space time onto complex hyperbolic space and provide a brief and unified
account of both cases. As a result, the investigation of the aforementioned problems
for Lagrangian submanifolds is reduced to the investigation of similar questions for
horizontal n-dimensional submanifolds with constant sectional curvature c of either
the Euclidean sphere or the anti-de-Sitter space time of dimension 2n + 1 and the
same curvature c, according to c > 0 or c < 0, respectively. These submanifolds can
be shown to have flat normal bundle (cf. Corollary 2 below), thus their study fits
into the general theory of constant curvature submanifolds with flat normal bundle
of pseudo-Riemannian space forms. We then make use of the fact that submanifolds
in this last class are in correspondence with solutions of certain systems of PDE’s (cf.
[DT1]– [DT3] and Theorem 4 below) and characterize in §3 those solutions which
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are associated to horizontal isometric immersions.
At this point the Ribaucour transformation comes into play. We show in §4

that the set of Ribaucour transforms of a given n–dimensional horizontal subman-
ifold of constant sectional curvature c of either the Euclidean sphere or the anti-
de-Sitter space time of dimension 2n + 1 and the same curvature c contains an
(n+1)–parameter family of submanifolds in the same class, which can be parametrized
in terms of solutions of a completely integrable linear first order system of PDE’s.
The analytical counterpart of this result is a process to generate a family of new
solutions of the associated PDE’s from a given one.

In §5 we derive a permutability formula which provides a simple algebraic pro-
cedure to construct further examples once two Ribaucour transforms of a given
submanifold are known. This has also an analytical interpretation in terms of the
associated PDE’s.

In the last section, we apply our method to construct, as far as we know,
the first explicit examples of non-totally geodesic Lagrangian isometric immersions
f : Mn(c)→ M̃n(4c) with c > 0 and n > 2, as well as similar examples for c < 0.

2 The Hopf fibrations and horizontal isometric immersions

Let Cn+1
ε denote the complex number (n + 1)–space endowed with the pseudo-

Euclidean metric

gε = εdz1dz̄1 +
n+1∑
j=2

dzjdz̄j, ε = ±1,

and let

S2n+1(c) = {z ∈ Cn+1
ε : gε(z, z) =

1

c
, εc > 0}

stand for either the standard Euclidean sphere or the anti–de–Sitter space time of
dimension (2n+1) and constant sectional curvature c, according to ε = 1 or ε = −1,
respectively. The complex numbers act on Cn+1

ε by

z = (z1, . . . , zn+1) −→ λz = (λz1, . . . , λzn+1).

The quotient space M̃n(4c) of S2n+1(c) under the identification induced by this action
is the complex projective space CPn(4c) or the complex hyperbolic space CHn(4c)
of complex dimension n and constant holomorphic sectional curvature 4c, according
to c > 0 or c < 0, respectively. Let π : S2n+1(c)→ M̃n(4c) denote the quotient map,
J̃ the complex structure on Cn+1

ε defined by multiplication by i and φ its projection
onto the tangent bundle of S2n+1(c). Then, the complex structure J on M̃n(4c) is
given by

J ◦ π∗ = π∗ ◦ φ.

Let ∇ be the connection on S2n+1(c). Then, it is easily checked that the following
properties are satisfied by the tensor φ and the unit structure vector field ξ = J̃η,

where η/
√
|c| is the position vector on S2n+1(c):

φξ = 0, 〈φ, ξ〉 = 0, ∇ξ =
√
|c|φ. (1)

φ2X = −X + ε〈X, ξ〉ξ. (2)
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〈φX, φY 〉 = 〈X, Y 〉+ ε〈X, ξ〉〈Y, ξ〉. (3)

∇XφY = φ∇XY − ε
√
|c|(〈X, Y 〉ξ − 〈Y, ξ〉X). (4)

An isometric immersion f : M → S2n+1(c) of a Riemannian manifold is said to be
horizontal (or C-totally-real , or an integral submanifold) if ξ is everywhere normal
to TM along f . In Theorem 1 below we put together all the properties of horizontal
isometric immersions f : M → S2n+1(c) that will be needed in the sequel. Most of
them are stated and proved in [Re2] for the case ε = 1 = c, but the proofs carry
over with slight modifications to the general case. They are included here for the
convenience of the reader.

Theorem 1. Let f : M→ S2n+1(c) be a horizontal isometric immersion. Then the
following holds:
i) f is anti-invariant with respect to φ, that is, φ carries each tangent space of M
into its corresponding normal space.
ii) The second fundamental form αf : TM × TM → TM⊥ of f takes its values in
the subbundle orthogonal to ξ and satisfies

φαf(X, Y ) = −AφYX, for all X, Y ∈ TM, (5)

where Aζ stands for the shape operator in the normal direction ζ.
iii) The normal connection and normal curvature tensor of f satisfy

∇⊥XφY = φ∇XY − ε
√
|c|〈X, Y 〉ξ

R⊥(X, Y )ξ = 0 (6)

〈R⊥(X, Y )φZ, φW 〉 = 〈R(X, Y )Z, W 〉 − c(〈X, W 〉〈Y, Z〉 − 〈X, Z〉〈Y, W 〉)

Proof: It follows easily from (1)–(3) and the Gauss equation that

〈αf (X, Y ), ξ〉 =
√
|c| 〈X, φY 〉

for all tangent vectors X, Y . Since the term on the left-hand-side is symmetric and
that on the right-hand-side is anti-symmetric, we conclude that both terms vanish.
This proves i) and the first half of ii). By comparing the tangent and normal
components of (4) we get (5) and the first of formulas (6). The second follows
from the Ricci equation and Aξ = 0. Finally, the last of equations (6) follows by
a straightforward computation using the first one together with equations (1) and
(3). �

Part iii) of Theorem 1 has the following immediate consequence.

Corollary 2. A horizontal isometric immersion f : Mn → S2n+1(c) has flat normal
bundle if and only if Mn has constant sectional curvature c.

The next result shows that studying Lagrangian isometric immersions g : M →
M̃n(4c) is equivalent to doing the same for horizontal isometric immersions f : M →
S2n+1(c). We refer to [Re1] or [Re2] for a proof.
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Theorem 3. [Re1] If f : M → S2n+1(c) is horizontal then g = π ◦ f is Lagrangian.
Conversely, let g : M → M̃n(4c) be a Lagrangian isometric immersion and let
(x0, y0) ∈ M × S2n+1(c) be some initial data with g(x0) = π(y0). Then, there exist
a Riemannian manifold M̂ , an isometric covering map τ : M̂ → M , a horizontal
isometric immersion f̂ : M̂ → S2n+1(c) and a point x̂ ∈ M̂ such that π ◦ f̂ = g ◦ τ ,
τ (x̂) = x0 and f(x̂) = y0.

3 Horizontal submanifolds of constant sectional curvature

Given an isometric immersion f : Mn → QN
s (c) of a Riemannian manifold into a

pseudo–Riemannian space form of constant sectional curvature c and index s, we
denote by Nf

1 (x) the first normal space of f at x ∈ Mn, which is the subspace of
TxM

⊥ spanned by the image of the second fundamental form αf at x. We say that

Nf
1 (x) is nondegenerate if Nf

1 (x) ∩ Nf
1 (x)⊥ = {0}. We also denote by νf (x) the

index of relative nullity of f at x, defined as the dimension of the kernel of αf at x.
From now on we deal for simplicity only with submanifolds whose index of relative
nullity is everywhere vanishing.

The following result was proved in [DT1] for Lorentzian space forms as ambient
spaces (cf. Proposition 4, Lemma 5 and Theorem 7). We take the opportunity
to point out that the statement of Proposition 4 contains an unnecessary extra
assumption.

Theorem 4. Assume that Mn(c) is simply connected and let f : Mn(c) → QN
s (c)

be an isometric immersion with flat normal bundle and νf ≡ 0. If s ≥ 1, suppose

further that Nf
1 is nondegenerate everywhere. Then N ≥ 2n and there exist a global

principal coordinate system (u1, . . . , un) on Mn(c), an orthonormal normal frame
ξ1, . . . , ξN−n and smooth functions v1, . . . , vn > 0 and hir, 1 ≤ i ≤ n, n + 1 ≤ r ≤
N − n, such that

ds2 =
∑
i

v2
i du2

i , αf (
∂

∂ui
,

∂

∂uj
) = viδijξi (7)

and

∇ ∂
∂ui

Xj = hjiXi, ∇⊥∂
∂ui

ξs = hisξi, 1 ≤ i 6= j ≤ n, 1 ≤ s 6= i ≤ N − n, (8)

where Xi = (1/vi)∂/∂ui and hij = (1/vi)∂vj/∂ui for i 6= j. Moreover, the pair (v, h),
where v = (v1, . . . , vn) and h = (his), satisfies the completely integrable system of
PDEs

(I)


i)

∂vi
∂uj

= hjivj, ii)
∂hij
∂ui

+
∂hji
∂uj

+
∑
k

hkihkj + cvivj = 0,

iii)
∂his
∂uj

= hijhjs, iv) εj
∂hij
∂uj

+ εi
∂hji
∂ui

+
∑
s

εshishjs = 0,

where always i 6= j, {k, s} ∩ {i, j} = ∅ and εs = 〈ξs, ξs〉.
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Conversely, let (v, h) be a solution of (I) on an open simply connected subset
U ⊂ Rn such that vi 6= 0 everywhere. Then there exists an immersion f : U →
QN
s (c) with flat normal bundle, νf ≡ 0, nondegenerate first normal bundle of rank

n and induced metric ds2 =
∑
i v

2
i du2

i of constant sectional curvature c.

Proof: Let X1, . . . , Xn be an orthonormal principal frame for f . By the Gauss
equations and the assumption on nondegeneracy of Nf

1 when s ≥ 1, the vectors
ηi = αf(Xi, Xi), 1 ≤ i ≤ n, are pairwise orthogonal and ‖ηi‖ 6= 0 for 1 ≤ i ≤ n.
Set ηi = v−1

i ξi, where vi > 0 and ξ1, . . . , ξn are orthonormal. The Codazzi equations
yield

∇XiXj = v−1
i Xj(vi)Xi and ∇⊥Xiξj = v−1

i Xi(vj)ξi, i 6= j. (9)

It follows from the first equation that [viXi, vjXj ] = 0 for i 6= j, hence there exists
a coordinate system (u1, . . . , un) on Mn(c) with ∂/∂ui = viXi for 1 ≤ i ≤ n. Then,
(9) gives the first equations in (8) and also the second ones for 1 ≤ s 6= i ≤ n. On
the other hand, an easy calculation using the second equations in (9) shows that

the normal connection of f induces a flat connection on Nf
1

⊥
. The second equation

in (8) for n + 1 ≤ s 6= i ≤ N − n follows by choosing ξn+1, . . . , ξN−n to be a parallel

orthonormal frame of Nf
1

⊥
with respect to this connection. Using (8) to express

that ds2 =
∑
i v

2
i du2

i has constant sectional curvature c and that f has flat normal
bundle yields ii), iii) and iv) of system (I).

For the converse, we consider on U the metric ds2 =
∑
i v

2
i du2

i , and verify from
i), ii) and iii) that it has constant sectional curvature c. Set Mn(c) = {U, ds2}.
To conclude the proof from the Fundamental Theorem of Submanifolds, consider
the trivial vector bundle E = Mn(c)× RN−n, where RN−n = span{e1, . . . , eN−n} is
endowed with the inner product

〈es, es′〉 = εsδss′.

The compatible vector bundle connection ∇′ defined by

∇′∂/∂uies = hisei, i 6= s,

is flat from equations iii) and iv). Define α ∈ C∞(Hom(TM × TM, E)) by

α

(
∂

∂ui
,

∂

∂uj

)
= viδijei. (10)

Clearly, α satisfies the Gauss equations. The Codazzi equations follow from i) and
the Ricci equations are satisfied because ∇′ is flat and α is orthogonally diagonaliz-
able. �

If f : Mn(c) → S2n+1(c) is an isometric immersion with flat normal bundle,
νf ≡ 0 and nondegenerate first normal spaces everywhere when c < 0, then Nf

1

is a vector subbundle of rank n of TfM
⊥ which is everywhere either Riemannian

or Lorentzian. For the isometric immersions we are most interested in, namely,
horizontal isometric immersions, the first possibility always holds. In fact, by part ii)
of Theorem 1, in this case Nf

1 is precisely the vector subbundle of TfM
⊥ orthogonal

to the structure vector field ξ. It will be convenient to have Theorem 4 explicitly
restated for this particular case.
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Corollary 5. Assume that Mn(c) is simply connected and let f : Mn(c)→ S2n+1(c)
be an isometric immersion with flat normal bundle, νf ≡ 0, and Riemannian first
normal bundle when c < 0. Then there exist a global principal coordinate system
(u1, . . . , un) on Mn(c), a smooth orthonormal normal frame ξ1, . . . , ξn+1 and smooth
functions v1, . . . , vn > 0, ρ1, . . . , ρn such that

ds2 =
∑
i

v2
i du2

i , αf (
∂

∂ui
,

∂

∂uj
) = viδijξi

and

∇ ∂
∂ui

Xj = hjiXi, ∇⊥∂
∂ui

ξj = hijξi, i 6= j, ∇⊥∂
∂ui

ξn+1 = ρiξi, (11)

where Xi = (1/vi)∂/∂ui and hij = (1/vi)∂vj/∂ui for i 6= j. Moreover, the triple
(v, h, ρ), where v = (v1, . . . , vn), h = (hij) and ρ = (ρ1, . . . , ρn), satisfies the com-
pletely integrable system of PDEs

(II)



i)
∂vi
∂uj

= hjivj, ii)
∂hik
∂uj

= hijhjk, iii)
∂ρi
∂uj

= hijρj,

iv)
∂hij
∂ui

+
∂hji
∂uj

+
∑
k

hkihkj + cvivj = 0,

v)
∂hij
∂uj

+
∂hji
∂ui

+
∑
k

hikhjk + ερiρj = 0, ε = c/|c|, i 6= j 6= k 6= i.

Conversely, let (v, h, ρ) be a solution of (II) on an open simply connected subset
U ⊂ Rn such that vi 6= 0 everywhere. Then there exists an immersion f : U →
S2n+1(c) with flat normal bundle, νf ≡ 0, Riemannian first normal bundle of rank n
and induced metric ds2 =

∑
i v

2
i du2

i of constant sectional curvature c.

We call (v, h, ρ) the associated triple to f : Mn(c) → S2n+1(c). Our next result
characterizes the triples associated to horizontal isometric immersions.

Theorem 6. The isometric immersion f : Mn(c) → S2n+1(c) is horizontal if and
only if its associated triple (v, h, ρ) satisfies

hij = hji and ρi =
√
|c|vi. (12)

Proof: Assume first that f : Mn(c) → S2n+1(c) is horizontal. Let X1, . . . , Xn be an
orthonormal tangent frame of principal directions and ξ1, . . . , ξn+1 an orthonormal
normal frame as in Corollary 5. We easily obtain from part ii) of Theorem 1 that,
up to signs, φXi = ξi and ξn+1 = ξ ◦ f . It now follows from (11) and the first of
formulas (6) that

hij = 〈∇⊥∂
∂ui

ξj, ξi〉 = 〈∇⊥∂
∂ui

φXj, φXi〉 = 〈∇ ∂
∂ui

Xj , Xi〉 = hji.

and

ρi = 〈∇⊥∂
∂ui

ξn+1, ξi〉 = 〈∇⊥∂
∂ui

ξ, φXi〉 = −〈∇⊥∂
∂ui

φXi, ξ〉 =
√
|c|vi.
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Conversely, assume that the solution (v, h, ρ) of system (II) associated to f : Mn(c)→
S2n+1(c) satisfies (12). Let F = i ◦ f be the composition of f with the umbilical in-
clusion i of S2n+1(c) into the underlying flat space Cn+1

ε . Define a complex structure
J̃ on TM ⊕ TFM⊥ by setting

J̃Xi = ξi, J̃(
√
|c|F ) = ξn+1.

Denote by ∇̃ the derivative in Cn+1
ε . Then, using the symmetry of h and (11), it is

easy to verify that

∇̃XiJ̃Xj = J̃ ∇̃XiXj and ∇̃XiJ̃ξj = J̃ ∇̃Xiξj.

On the other hand, using that ρi =
√
|c|vi we get from (11) that

∇̃XiJ̃(
√
|c|F ) = ∇̃Xiξn+1 =

√
|c|ξi = J̃(

√
|c|Xi) = J̃ ∇̃Xi

√
|c|F.

Therefore, J̃ is parallel with respect to ∇̃ along F , hence it is the restriction to
TM⊕TFM⊥ of an almost complex structure in Cn+1

ε . Clearly, f : Mn(c)→ S2n+1(c)
is horizontal with respect to its projection onto the tangent bundle of S2n+1(c). �

Corollary 7. Let Mn(c) be simply connected and let f : Mn(c) → S2n+1(c) be a
horizontal isometric immersion with νf ≡ 0. Then there exists a global principal
coordinate system (u1, . . . , un) on Mn(c) with

ds2 =
∑
i

v2
i du2

i , vi > 0 and αf (
∂

∂ui
,

∂

∂uj
) = δijφ

∂

∂ui
,

where v = (v1, . . . , vn) and h = (hij) satisfy the completely integrable system of
PDEs

(III)


i)

∂vi
∂uj

= hjivj, ii)

(∑
k

∂

∂uk

)
hij + cvivj = 0,

iii)
∂hij
∂uk

= hikhjk, hij = hji, i 6= j 6= k 6= i.

Conversely, let (v, h) be a solution of (III) on an open simply connected subset
U ⊂ Rn such that vi 6= 0 everywhere. Then there exists a horizontal immersion
f : U → S2n+1(c) with νf ≡ 0 and induced metric ds2 =

∑
i v

2
i du2

i of constant
sectional curvature c.

Remarks 8. 1) The main result in [CDVV] mentioned in the introduction can be
derived from Corollary 7. In fact, let U = v1I1 × · · · ×vn In be a twisted product of
intervals and let ω =

∑
i vidui be the associated twistor one–form defined in [CDVV].

Then, ω being closed is equivalent to the symmetry of h = (hij). Moreover, under
this assumption U has constant sectional curvature c if and only if the pair (v, h)
satisfies system (III).

2) Orthogonal coordinate systems in euclidean space whose associated pairs (v, h)
satisfy system (III) with c = 0 were named E-systems by Bianchi ([Bi]), after
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Egorov who first studied them. It was shown in [DT3] that E-systems are precisely
the principal coordinate systems of Lagrangian isometric immersions f : Mn(0) →
Cn with νf ≡ 0. On the other hand, it follows from Corollary 7 that orthogonal
coordinate systems whose associated pairs (v, h) satisfy (III) for an arbitrary c ∈ R
are precisely the principal coordinate systems of horizontal isometric immersions
f : Mn(c)→ S2n+1(c) with νf ≡ 0.

Let (v, h) be a solution of system (III) on an open simply connected subset
U ⊂ Rn with vi 6= 0 everywhere. In order to determine the corresponding horizontal
isometric immersion f : Mn(c) → S2n+1(c) or, equivalently, to determine F = i ◦
f : Mn(c)→ Cn+1

ε , one has to integrate the system of PDE’s

(IV )


i)

∂F

∂ui
= viXi, ii)

∂Xi

∂uj
= hijXj , i 6= j,

iii)
∂Xi

∂ui
= −

∑
k 6=i

hkiXk + iXi − cviF,

with initial conditions (F (u0), X1(u0), . . . , Xn(u0)) at some point u0 ∈ U chosen so
that

〈Xi(u0), Xj(u0)〉 = 〈iXi(u0), Xj(u0)〉 = 0, i 6= j, 〈Xi(u0), Xi(u0)〉 = 1,

〈F (u0), Xi(u0)〉 = 〈iF (u0), Xi(u0)〉 = 0 and 〈F (u0), F (u0)〉 =
1

c
.

It is in general a difficult task both to find a solution of the nonlinear system
(III) and to integrate the corresponding system (IV ). Nevertheless, the difficul-
ties involved in both steps were overcome in [CDVV] for solutions of system (III)
satisfying v1 = · · · = vn. However, it turns out that for n ≥ 3 no such solutions
exists if c > 0 and the only one with c = 0 is the trivial solution vi = constant for
1 ≤ i ≤ n. In the latter case, the associated submanifolds are Clifford tori. In the
next section, we develop an alternative way of producing examples, by making use
of the Ribaucour transformation.

4 The Ribaucour transformation

Classically, two surfaces in R3 are said to correspond by a Ribaucour transformation
when they are related by a diffeomorphism preserving lines of curvature such that
the normals at corresponding points intersect at a point equidistant to them. The
surfaces can then be viewed as the focal surfaces of the 2–parameter congruence of
spheres with centers at the intersecting points and with the common distances to
corresponding points as radii.

This notion was extended in [DT2] for isometric immersions f : Mn → QN
s (c) as

follows. First, two isometric immersions f : Mn → RNs := QN
s (0) and f̃ : M̃n → RNs

are said to be related by a Ribaucour transformation (or f̃ is a Ribaucour transform
of f) when there exist a vector bundle isometry P : f∗TRNs → f̃∗TRNs covering a
diffeomorphism Ψ: Mn → M̃n, a smooth section ω ∈ Γ((f∗TRNs )∗) and a symmet-
ric tensor D on Mn such that ‖f − f̃ ◦Ψ‖ 6= 0 everywhere,
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(a) P(Z)− Z = ω(Z)(f − f̃ ◦Ψ), for all Z ∈ Γ(f∗TRNs ),

and

(b) P ◦ f∗ ◦D = f̃∗ ◦Ψ∗.

When c 6= 0, let i : QN
s (c)→ RN+1

s+ε0
be an umbilical inclusion, where ε0 = 1 or 0,

according to c < 0 or c > 0, respectively. Set F = i◦f and F̃ = i◦ f̃ . Then f̃ is said
to be a Ribaucour transform of f if F̃ is a Ribaucour transform of F determined by
a 4-tuple (Ψ,P , D, ω) such that P(F ) = F̃ ◦ Ψ and ω(F ) = −1. Geometrically, it
is easy to verify that for any Z ∈ Tf(x)QN

s (c) the geodesics in QN
s (c) through f(x)

and f̃(Ψ(x)) tangent to Z and P(Z), respectively, intersect at a point which is at a
common distance to f(x) and f̃ (Ψ(x)).

The following result was proved in [DT2].

Theorem 9. Let f : Mn → QN
s (c̃) be an isometric immersion with a Ribaucour

transform f̃ : M̃n → QN
s (c̃). Then there exist ϕ ∈ C∞(M) and β ∈ T⊥f M satisfying

αf(∇ϕ, X) +∇⊥Xβ = 0 for all X ∈ TM, (13)

such that

F̃ ◦Ψ = F − 2ϕν(F∗∇ϕ + β + c̃ϕF ), ν−1 = ‖∇ϕ‖2 + 〈β, β〉+ c̃ϕ2. (14)

Conversely, for (ϕ, β) satisfying (13), let U ⊂ Mn be an open subset where D =
I − 2ϕν(Hess ϕ − Af

β + c̃ϕI) is invertible and let F̃ be defined on U by (14) with

Ψ = id . Then F̃ = i ◦ f̃ , where f̃ is a Ribaucour transform of f |U .

Moreover, suppose that Mn has constant sectional curvature c. If also M̃n has
constant sectional curvature c and n ≥ 3, then there exists C ∈ R such that

Hess ϕ− (1− C)Af
β + (c̃ + C(c− c̃))ϕI = 0 (15)

and

ν−1 − C(〈β, β〉 − (c− c̃)ϕ2) = 0. (16)

Conversely, if (ϕ, β) satisfies (15) then the left hand side of (16) is a constant K ∈ R.
If initial conditions in (15) are chosen so that K = 0 then also M̃n has constant
sectional curvature c.

Theorem 9 yields the following for isometric immersions f : Mn(c) → QN
s (c) as

in Theorem 4. For simplicity of notation, we agree that the indexes i, j always range
on {1, . . . , n} and s on {1, . . . , N − n}.

Theorem 10. Any Ribaucour transform f̃ : M̃n(c)→ QN
s (c) of f is given by

F̃ ◦Ψ := i ◦ f̃ ◦Ψ = F − 2ϕν(
∑
i

γiF∗Xi +
∑
s

βsξs + cϕF ), (17)
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where (ϕ, γ, β) := (ϕ, γ1, . . . , γn, β1, . . . , βN−n) is a solution of the completely inte-
grable linear system of first order

R0 =



i)
∂ϕ

∂ui
= viγi, ii)

∂γj
∂ui

= hjiγi, i 6= j,

iii)
∂γi
∂ui

= (1− C)βi −
∑
j 6=i

hjiγj − cviϕ, C ∈ R,

iv) εs
∂βs
∂ui

= εihisβi, s 6= i, v)
∂βi
∂ui

= −γi −
∑
s6=i

hisβs,

and ν−1 :=
∑
i γ

2
i +

∑
s εsβ

2
s + cϕ2 satisfies

ν−1 − C
∑
s

εsβ
2
s = 0. (18)

Furthemore, the pair (ṽ, h̃) associated to f̃ is given by

ṽi = vi +
2ϕεiβi∑
s εsβ2

s

, h̃is = his +
2εsγiβs∑
s εsβ2

s

. (19)

Conversely, for any solution (ϕ, γ, β) of R0 the left hand side of (18) is a constant
K ∈ R. Assume that initial conditions in R0 have been chosen so that K = 0, let U
be an open subset where ṽi 6= 0, 1 ≤ i ≤ n, and let F̃ be defined by (17) with Ψ = id.
Then F̃ = i ◦ f̃ , where f̃ is a Ribaucour transform of f |U whose induced metric has
constant sectional curvature c.

Proof: By Theorem 9, we have that F̃ = i ◦ f̃ is given by

F̃ ◦Ψ = F − 2ϕν(F∗∇ϕ + β + cϕF ), ν−1 = ‖∇ϕ‖2 + 〈β, β〉+ cϕ2, (20)

where (ϕ, β) satisfies (13),

Φ := Hessϕ− Af
β + cϕI = −CAf

β (21)

and

ν−1 − C〈β, β〉 = 0. (22)

Set ∇ϕ =
∑
i γiXi and β =

∑
s βsξs. Then (20) takes the form (17) with ν−1 =∑

i γ
2
i +

∑
s εsβ

2
s + cϕ2 and (22) reduces to (18). Equation i) of R0 merely expresses

the definition of the γi’s in coordinates, whereas (13) reduces to iv) and v). On the
other hand, (13) is equivalent to F∗ = F∗Φ, where F = F∗∇ϕ + β + cϕF . Thus,
ω = F∗Φ is a closed one–form on Mn(c) with values in RN+1

s+ε0
. Since

dω(X, Y ) = F∗(∇XΦY −∇YΦX − Φ[X, Y ]) + αF (X, ΦY )− αF (ΦX, Y ),

it follows that Φ is a Codazzi tensor on Mn(c) such that

αf(X, ΦY ) = αf (ΦX, Y ) for all X, Y ∈ TM.
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Thus, ∂/∂u1, . . . , ∂/∂un diagonalize Φ. An easy computation shows that

Φ

(
∂

∂ui

)
=

∂γi
∂ui
− βi +

∑
j 6=i

hjiγj + cviϕ

Xi +
∑
j 6=i

(
∂γj
∂ui
− hjiγi

)
Xj, (23)

hence equation (21) reduces to ii) and iii). This completes the proof of the first
assertion.

It was shown in [DT2] that the second fundamental forms of F̃ and F are related
by

α
F̃
(Ψ∗X, Ψ∗Y ) = P (αF (DX, Y ) + 2ν〈ΦX, DY 〉(β + cϕF )) , (24)

where P = I−2νFF∗ is the vector bundle isometry between the pulled–back bundles
and D = I − 2ϕνΦ. Hence, u1, . . . , un are also principal coordinates for f̃ and the
coordinate vector fields of f and f̃ are related by

Ψ∗(∂/∂ui) = (∂̃/∂ui) ◦Ψ, 1 ≤ i ≤ n.

By (21), we have that

Φ(∂/∂ui) = −Cεiβi. (25)

Using (22), we obtain that

D(∂/∂ui) = ṽiXi, (26)

hence the first of formulas (19) follows from

F̃∗((∂̃/∂ui) ◦Ψ) = F̃∗Ψ∗(∂/∂ui) = PF∗D∂/∂ui = ṽiPf∗Xi.

Let ξ̃1, . . . , ξ̃N−n be the orthonormal normal frame for f̃ given by Theorem 4.
We claim that

ξ̃s = P(ξs − 2〈β, β〉−1εsβsβ). (27)

Using (7), (24) and P(F ) = F̃ , we have for 1 ≤ i ≤ n that

ṽiξ̃i = α
f̃

(
∂̃

∂ui
,

∂̃

∂ui

)
= α

F̃

(
∂̃

∂ui
,

∂̃

∂ui

)
+ c〈 ∂̃

∂ui
,

∂̃

∂ui
〉F̃ (28)

= P
(
αF

(
D

∂

∂ui
,

∂

∂ui

)
+ 2ν〈Φ ∂

∂ui
, D

∂

∂ui
〉(β + cϕF ) + cṽ2

iF

)
,

We conclude from (25), (26) and (28) that (27) holds for 1 ≤ i ≤ n.
On the other hand, by part i) of Corollary 27 in [DT2] we have that ∇⊥XPξ =

P∇⊥Xξ for all X ∈ TM and ξ ∈ TfM
⊥. Moreover, ∇⊥∂/∂uiβ = −γiξi by (13) and (7).

Using also equation iv) of R0 and (8), we easily get that

∇⊥∂/∂ui(ξs − 2〈β, β〉−1εsβsβ) = (his + 2〈β, β〉−1εsγiβs)(ξi − 2〈β, β〉−1εiβiβ),

which proves our claim and shows that h̃is is given by (19) for any 1 ≤ i ≤ n and
1 ≤ s ≤ N − n, s 6= i. Finally, the converse follows from Theorem 9 and the fact
that D is invertible wherever ṽi 6= 0, 1 ≤ i ≤ n. �
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Corollary 11. Let (v, h) and (ϕ, γ, β) be solutions of (I) and R0, respectively. Then
(ṽ, h̃) given by (19) is a new solution of (I).

Proof: Assume first that (v, h) and (ϕ, γ, β) are defined on a simply connected open
subset U where vi, ṽi are nowhere vanishing for 1 ≤ i ≤ n. By Theorem 4 there
exists an immersion f : U → QN

s (c) with (v, h) as associated pair. By Theorem 10,
(ϕ, γ, β) gives rise to a Ribaucour transform f̃ : U → QN

s (c) of f whose associated
pair is (ṽ, h̃). Then (ṽ, h̃) is a new solution of (I) by Theorem 4. The general case
can be verified by a direct computation. �

Corollary 12. Let f : Mn(c)→ S2n+1(c) be as in Corollary 5. Then any Ribaucour
transform f̃ : M̃n(c)→ S2n+1(c) of f is given by

F̃ ◦Ψ = i ◦ f̃ ◦Ψ = F − 2ϕν(
∑
i

(γiF∗Xi + βiξi) + ψξn+1 + cϕF ), (29)

where (ϕ, ψ, γ, β) := (ϕ, ψ, γ1, . . . , γn, β1, . . . , βn) is a solution of the completely in-
tegrable linear system of first order

R1 =



i)
∂ϕ

∂ui
= viγi, ii) ε

∂ψ

∂ui
= ρiβi, iii)

∂γj
∂ui

= hjiγi, i 6= j,

iv)
∂γi
∂ui

= (1− C)βi −
∑
j 6=i

hjiγj − cviϕ, C ∈ R,

v)
∂βj
∂ui

= hijβi, i 6= j, vi)
∂βi
∂ui

= −γi −
∑
j 6=i

hijβj − ρiψ,

and ν−1 :=
∑
i(γ

2
i + β2

i ) + εψ2 + cϕ2 satisfies

ν−1 − C(
∑
i

β2
i + εψ2) = 0. (30)

Furthemore, the triple (ṽ, h̃, ρ̃) associated to f̃ is given by

ṽi = vi +
2ϕβi∑

i β
2
i + εψ2

, h̃ij = hij +
2γiβj∑

i β
2
i + εψ2

, ρ̃i = ρi +
2εγiψ∑
i β

2
i + εψ2

. (31)

Conversely, for any solution (ϕ, γ, β) of R1 the left hand side of (30) is a constant
K ∈ R. Assume that initial conditions in R1 have been chosen so that K = 0,
let U be an open subset where ṽi 6= 0, 1 ≤ i ≤ n, and let F̃ be defined by (29).
Then F̃ = i ◦ f̃ , where f̃ is a Ribaucour transform of f |U whose induced metric has
constant sectional curvature c.

Corollary 13. Let (v, h, ρ) and (ϕ, ψ, γ, β) be solutions of (II) and R1, respectively.
Then (ṽ, h̃, ρ̃) given by (31) is a new solution of (II).

By putting Theorem 6 and Corollary 12 together we get a Ribaucour transfor-
mation for horizontal isometric immersions f : Mn(c)→ S2n+1(c), which is the main
result of this paper.
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Theorem 14. Let f : Mn(c)→ S2n+1(c) be a horizontal isometric immersion with
νf ≡ 0. Then any horizontal Ribaucour transform f̃ : M̃n(c) → S2n+1(c) of f is
given by

F̃ ◦Ψ = i ◦ f̃ ◦Ψ = F − 2D(D + i)ϕ

(D2 + 1)(
∑
i γ

2
i + cϕ2)

(∑
i

γiF∗Xi + cϕF

)
, (32)

where (ϕ, γ) := (ϕ, γ1, . . . , γn) is a solution of the completely integrable linear system
of first order

R2 =



i)
∂ϕ

∂ui
= viγi, ii)

∂γj
∂ui

= hjiγi, i 6= j,

iii)
∂γi
∂ui

= −Dγi −
∑
j 6=i

hjiγj − cviϕ, D 6= 0.

Moreover, the pair (ṽ, h̃) associated to f̃ is given by

ṽi = vi +
2Dϕ∑

i γ
2
i + cϕ2

γi, h̃ij = hij +
2D∑

i γ
2
i + cϕ2

γiγj . (33)

Conversely, given a solution (ϕ, γ) of R2, let U be an open subset where ṽi 6= 0 for
1 ≤ i ≤ n and let F̃ be defined on U by (32). Then F̃ = i◦ f̃ , where f̃ is a horizontal
Ribaucour transform of f |U whose induced metric has constant sectional curvature
c.

Proof: It follows from (31) and Theorem 6 that the Ribaucour transform f̃ of f is

also horizontal if and only if γiβj = γjβi and εγiψ =
√
|c|ϕβi for all i 6= j. Hence,

there must exist a function µ such that γj = µβj for all j and µψ = ε
√
|c|ϕ. We

claim that µ = D = constant. In fact, from equations iii) and iv) of system R1 and
symmetry of h, we get

hjiγi =
∂γj
∂ui

=
∂µ

∂ui
βj + µhijβi =

∂µ

∂ui
βj + hjiγi,

and our claim follows. We conclude from (30) that C > 1 and D2 = C − 1. The
remaining of the proof follows from Corollary 12. �

Corollary 15. Let (v, h, ρ) be a solution of (III) and let (ϕ, γ) be a solution of R2.
Then (ṽ, h̃) given by (33) is a new solution of (III).

5 The permutability formulas

Let f : Mn(c) → QN
s (c) be an isometric immersion as in Theorem 4 with (v, h) as

associated pair and let (ϕk, γ
k, βk), 1 ≤ k ≤ 2, be solutions of R0 with constants

Ck. The correspondent Ribaucour transforms f̃k : M̃n
k (c) → QN

s (c) of f are called
RCk-transforms of f . Denote by f̃(c1,c2) : M̃n

(c1,c2) → QN
s (c) the Ribaucour transform

of f determined by

(ϕ, γ, β) = c1(ϕ1, γ1, β1) + c2(ϕ2, γ2, β2), c1, c2 ∈ R,
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where M̃n
(c1,c2) stands for Mn with the metric induced by f̃(c1,c2). It follows from

(17) that f̃(c1,c2) = f̃(b1,b2) whenever (c1, c2) = λ(b1, b2) for some λ 6= 0. Thus

H = {f̃(c1,c2), c1, c2 ∈ R} defines a one-parameter family of Ribaucour transforms of
f , called the associated family to the solutions (ϕk, γ

k, βk).
The following permutability theorem is an immediate consequence of Theorem

35 in [DT2], where it was proved for flat ambient spaces.

Theorem 16. There exists another one–parameter family H̃ of immersions (called
the conjugate family to H), all of whose elements is a Ribaucour transform of
any element of H. Moreover, if C1 6= C2 then H̃ contains exactly one element
f̄ : M̄n(c)→ QN

s (c) that is a RCj -transform of f̃i, i 6= j, which is explicitly given by

F̄ = i ◦ f̄ = F − Γ(ϑ2ϕ1 + τ1ϕ2)F1 − Γ(ϑ1ϕ2 + τ2ϕ1)F2, (34)

where Fk =
∑
i γ

k
i F∗Xi +

∑
s βks ξs + cϕkF , ϑk = Ck

∑
s εs(β

k
s )

2, τ` = 2Cj(C` −
Cj)

−1(
∑
i γ

1
i γ

2
i + (1− C`)

∑
s εsβ

1
sβ

2
s + cϕ1ϕ2), ` 6= j and Γ = 2/(ϑ1ϑ2 − τ1τ2).

Analytically, this yields the following for solutions of the associated system (I).

Corollary 17. Let (v, h) be a solution of (I) and let (ϕk, γ
k, βk), 1 ≤ k ≤ 2, be

solutions of R0 with C1 6= C2. Then (v̄, h̄) defined by

v̄i = vi + C1β
1
i Γ(ϑ2ϕ1 + τ1ϕ2) + C2β

2
i Γ(ϑ1ϕ2 + τ2ϕ1),

h̄is = his + C1β
1
sΓ(ϑ2γ

1
i + τ2γ

2
i ) + C2β

2
sΓ(ϑ1γ

2
i + τ1γ

1
i ),

is a new solution of (I).

Theorem 16 yields a permutability theorem for horizontal isometric immersions
f : Mn(c) → S2n+1(c). A Ribaucour transform of f associated to a solution of R2

with a constant D 6= 0 is called a RD-transform of f .

Theorem 18. Let H be the associated family to the RDk – transforms f̃k : M̃n
k (c)→

S2n+1(c) of f , 1 ≤ k ≤ 2, which are determined by solutions (ϕk, γ
k) of R2 with

D1 6= −D2. Then the conjugate family H̃ contains exactly one element f̄ : M̄n(c)→
S2n+1(c) which is also horizontal and a RDj -transform of f̃i, i 6= j. Moreover, f̄
is explicitly given by (34), where now Fk = (Dk + i)D−1

k (
∑
i γ

k
i f∗Xi + cϕkF ), ϑk =

(D2
k+1)D−2

k (
∑
i(γ

k
i )

2 +cϕ2
k) and τ` = −2(D2

j +1)D−1
j (D1 +D2)

−1(
∑
i γ

1
i γ

2
i +cϕ1ϕ2),

1 ≤ ` 6= j ≤ 2.

The analytical interpretation of the above result is given next.

Corollary 19. Let (v, h) be a solution of (III) and let (ϕk, γ
k), 1 ≤ k ≤ 2, be

solutions of R2 with D1 6= −D2. Then (v̄, h̄) defined by

v̄i = vi + D̄1γ
1
i Γ(ϑ2ϕ1 + τ1ϕ2) + D̄2γ

2
i Γ(ϑ1ϕ2 + τ2ϕ1),

h̄ij = hij + D̄1γ
1
i Γ(ϑ2γ

1
i + τ2γ

2
i ) + D̄2γ

2
i Γ(ϑ1γ

2
i + τ1γ

1
i ),

where D̄k = (1 + D2
k)/Dk, is a new solution of (III).
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6 The examples

We compute in this section explicit examples of horizontal isometric immersions
F : Mn(c) → S2n+1(c) ⊂ Cn+1

ε by applying the Ribaucour transformation to the
trivial solution of system (III) given by

v1 = B 6= 0, vi = 0, 2 ≤ i ≤ n, and h = 0. (35)

Although (35) is not associated to any isometric immersion, it does can be used to
generate non–trivial examples. First, notice that for the solution (35) system (IV )
reduces to

(V )


i)

∂F

∂u1

= BX1, ii)
∂F

∂ui
= 0, 2 ≤ i ≤ n, iii)

∂Xi

∂uj
= 0, i 6= j,

iv)
∂Xi

∂ui
= iXi, 2 ≤ i ≤ n, v)

∂X1

∂u1
= iX1 − cBF.

Therefore F = F (u1) satisfies the linear second–order differential equation

F ′′− iF ′ + cB2F = 0.

Set
∆ = 1 + 4cB2.

We will distinguish three cases, according to ∆ > 0, ∆ = 0 or ∆ < 0. Notice that
only the first case can occur when c > 0. In each case, a straightforward computation
shows that, for a convenient choice of initial conditions, the solution of (V ) is given
as follows. We denote by (E1, . . . , En+1) the canonical basis of Cn+1 over C.

I) ∆ > 0: 
F = F (u1) = C1e

ia1u1E1 + C2e
ia2u1E2,

X1 = X1(u1) =
i

B

(
a1C1e

ia1u1E1 + a2C2e
ia2u1E2

)
,

where

a1 =
1−
√

∆

2
, a2 =

1 +
√

∆

2
, εC2

1 =

√
∆ + 1

2c
√

∆
and C2

2 =

√
∆− 1

2c
√

∆
.

II) ∆ = 0: 
F = F (u1) =

e
1
2
iu1

2
√
−c

[(2i + u1)E1 + u1E2] ,

X1 = X1(u1) =
e

1
2
iu1

4B
√
−c

[iu1E1 + (2 + iu1)E2] .

III) ∆ < 0:
F = F (u1) = e

1
2
iu1(eau1V1 + e−au1V2), a =

1

2

√
−∆

X1 = X1(u1) =
e

1
2
iu1

B

[
(a +

i

2
)eau1V1 + (−a +

i

2
)e−au1V2

]
,
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where

Vj =
1

2
√
−c

(
1 + i

(−1)j√
−∆

)
E1 −

(−1)jB√
−∆

E2 1 ≤ j ≤ 2.

In all three cases,
Xi = Xi(ui) = eiuiEi+1, 2 ≤ i ≤ n.

Now, system R2 for the Ribaucour transformation becomes

R3 =


i)

∂ϕ

∂u1
= Bγ1, ii)

∂ϕ

∂ui
= 0, 2 ≤ i ≤ n, iii)

∂γj
∂ui

= 0, i 6= j,

iv)
∂γi
∂ui

= −Dγi, 2 ≤ i ≤ n, v)
∂γ1

∂u1

= −Dγ1 − cBϕ, D 6= 0.

Hence ϕ = ϕ(u1) satisfies the linear second–order differential equation

ϕ′′ + Dϕ′ + cB2ϕ = 0.

Set
∆̃ = D2 − 4cB2.

There are again three cases, according to ∆̃ > 0, ∆̃ = 0 or ∆̃ < 0. Clearly, the two
last cases can occur only for c > 0.

a) ∆̃ > 0: 
ϕ(u1) = A1e

λ1u1 + A2e
λ2u1, λi =

−D ±
√

∆̃

2
,

γ1(u1) =
1

B
(A1λ1e

λ1u1 + A2λ2e
λ2u1), A1, A2 ∈ R.

b) ∆̃ = 0: 
ϕ(u1) = e−

1
2
Du1(A1 + A2u1), A1, A2 ∈ R,

γ1(u1) =
e−

1
2
Du1

2B
(2A2 −DA1 −DA2u1).

c) ∆̃ < 0:
ϕ(u1) = e−

1
2
Du1 [A1 cos(ku1) + A2 sin(ku1)], k =

1

2

√
−∆̃, A1, A2 ∈ R,

γ1(u1) =
e−

1
2
Du1

2B
[(−DA1 + 2kA2) cos(ku1)− (DA2 + 2kA1) sin(ku1)].

In all cases,
γi = γi(ui) = Bie

−Dui, Bi ∈ R, 2 ≤ i ≤ n.

For F, Xi, ϕ and γi above, formula (32) provides a parametrization of non–trivial
examples of horizontal isometric immersions F̃ : Mn(c) → S2n+1(c) ⊂ Cn+1

ε . More-
over, the pair (ṽ, h̃) associated to F̃ is given by (33), thus (ṽ, h̃) is a solution of
system (III) defined by elementary functions.
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