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Abstract

For realcompact spaces X and Y we give a complete description of the
linear biseparating maps between spaces of vector-valued continuous functions
on X and Y in two cases: the spaces of all continuous functions and the spaces
of bounded continuous functions. With similar techniques we also describe the
linear biseparating maps defined between some other families of spaces, in
particular spaces of vector-valued uniformly continuous bounded functions.

1 Definitions and notation

All results given in this paper are valid both in the real and complex contexts.
K will denote the scalar field, that is, K = R or C.

Throughout the paper E and F will be K-normed spaces.

For a completely regular space X, C(X, E) and Cb(X, E) denote the spaces of
E-valued continuous functions and bounded continuous functions on X, respectively.
We assume that C(X,E) and Cb(X,E) are endowed with the compact-open topology
and the sup norm, respectively. When E = K, C(X) := C(X, K) and Cb(X) :=
Cb(X, K).

On the other hand, if X is also a complete metric space, Cu
b (X, E) denotes the

space of uniformly continuous bounded functions defined on X, taking values in E,
which we assume endowed with the sup norm. In this case, Cu

b (X) := Cu
b (X, K).

∗Research partially supported by the Spanish Dirección General de Investigación Cient́ıfica y
Técnica (DGICYT, PB98-1102).

Received by the editors May 2001.
Communicated by F. Bastin.
2000 Mathematics Subject Classification : Primary 46E40; Secondary 47B33, 47B38, 54D60.
Key words and phrases : Biseparating map, Banach-Stone theorem, realcompact space, spaces

of countinuous functions, spaces of uniformly continuous functions.

Bull. Belg. Math. Soc. 10 (2003), 247–258



248 J. Araujo

Also, if e ∈ E, then ê denotes the constant function from X to E taking the value
e. For D ⊂ X, clD denotes the closure of D in X. Given D ⊂ X and f ∈ C(X),
for α ∈ K, f ≡ α on D means that f(x) = α for every x ∈ D; in the same way, if
f1, f2 : X → E, f ≡ g on D means that f1(x) = f2(x) for every x ∈ D. Also, for
f ∈ C(X), 0 ≤ f ≤ 1 means that f(x) ∈ R and 0 ≤ f(x) ≤ 1 for every x ∈ X.

As for the spaces of linear functions, we will denote by L′(E, F ) and by L(E, F )
the sets of (not necessarily continuous) linear maps and continuous linear maps from
E to F , respectively.

Recall that the strong operator topology in L(E, F ) is the topology defined by
the basic set of neighborhoods

N(S; D, ε) := {R ∈ L(E, F ) : ‖(R− S)(x)‖ < ε ∀x ∈ D}

where D is an arbitrary finite subset of E, and ε > 0 arbitrary. Consequently
this topology is characterized by the property that (Sα)α∈Λ in L(E, F ) converges to
S ∈ L(E, F ) if and only if (Sα(x)) converges to Sx for every x ∈ E (see [9, p. 476]).

Unless otherwise stated we will assume that L(E, F ) is endowed with the strong
operator topology.

Throughout the paper the word ”homeomorphism” will be synonymous with
”surjective homeomorphism”.

The contexts. Our results will be valid (with the same proof) for different
kinds of spaces. For this reason we first consider different contexts to work in.

From now on we will assume that we are in one of the following six contexts.
All definitions, results and comments given in this paper apply to these six contexts
unless otherwise stated.

• Context 1. X and Y are realcompact. A(X, E) = C(X, E), A(Y, F ) =
C(Y, F ), and B := Cb(X).

• Context 2. E and F are infinite-dimensional. X and Y are realcompact.
A(X, E) = Cb(X, E), A(Y, F ) = Cb(Y, F ), and B := Cb(X).

• Context 3. X and Y are completely regular, and all points of X and Y are
Gδ-points. A(X, E) = C(X, E), A(Y, F ) = C(Y, F ), and B := Cb(X).

• Context 4. E and F are infinite-dimensional. X and Y are completely
regular, and all points of X and Y are Gδ-points. A(X, E) = Cb(X, E),
A(Y, F ) = Cb(Y, F ), and B := Cb(X).

• Context 5. X and Y are completely regular and first countable. A(X, E) =
Cb(X, E), A(Y, F ) = Cb(Y, F ), and B := Cb(X).

• Context 6. X and Y are complete metric spaces. A(X,E) = Cu
b (X, E),

A(Y, F ) = Cu
b (Y, F ), and B := Cu

b (X).

This means that when we refer to spaces X, Y , A(X, E), A(Y, F ), B, we assume
that all of them are included at the same time in one of the above six contexts.
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Remarks.
1. Notice that every first countable completely regular space satisfies the prop-

erty that all its points are Gδ-points. This means that Contexts 4 and 5 above are
not disjoint. In fact, if we are in Context 5 and E and F are infinite-dimensional,
then we are also in Context 4. On the other hand, we can be in Context 4 but not
in Context 5, if X is a completely regular space consisting of Gδ-points which is not
first countable (see for instance [11, 4M]).

2. Some other natural contexts will be analyzed in Remark 4 after Corollary 3.6.
We will see that our results cannot be extended in general to them.

Definition 1.1. Given f ∈ A(X, E), we define the cozero set of f as

c(f) := {x ∈ X : f(x) 6= 0}.

Definition 1.2. A map T : A(X, E) → A(Y, F ) is said to be separating if it is
additive and c(Tf) ∩ c(Tg) = ∅ whenever f, g ∈ A(X, E) satisfy c(f) ∩ c(g) =
∅. Besides T is said to be biseparating if it is bijective and both T and T−1 are
separating.

Equivalently, we see that an additive map T : A(X,E) → A(Y, F ) is sepa-
rating if ‖(Tf)(y)‖ ‖(Tg)(y)‖ = 0 for all y ∈ Y whenever f, g ∈ A(X, E) satisfy
‖f(x)‖ ‖g(x)‖ = 0 for all x ∈ X.

2 Introduction

(Bi)separating linear maps between spaces of scalar-valued continuous functions
have drawn attention of researchers recently. In general, they can be described as
weighted composition maps (see for instance [1], [4], [5], [6], [8], [10], [13] and [14]).
As a result, automatic continuity for this kind of maps is obtained as a corollary.

As for spaces of vector-valued continuous functions, a similar approach is taken
for biseparating linear maps in [12] and [3], where a description as weighted com-
position maps is obtained when topological spaces X and Y are compact or locally
compact.

In this paper, we do not make any assumption of (local) compactness of X and
Y . We assume realcompactness (or other properties) instead. Notice at this point
that the class of realcompact spaces is fairly large since it includes, apart from that
of compact spaces, the class of subsets of Euclidean spaces and even the class of
all metric spaces of nonmeasurable cardinal (see for instance [11, p. 232]). When
dealing with realcompact spaces we obtain a representation of biseparating linear
maps similar to that given in the compact setting. Special mention deserves the fact
that this description of biseparating linear maps as weighted compositions apply
even when they are just defined between spaces of bounded continuous functions
Cb(X, E) and Cb(Y, F ), that is, in Contexts 2, 4 and 5 (see Theorem 3.5).

On the other hand, we also mention that the requirements of realcompactness
on our spaces is in general necessary for the descriptions we provide. If X or Y are



250 J. Araujo

not realcompact, the biseparating linear maps may not admit such representations.
An example can be given even in a very explicit situation:

Example. Assume that X is not realcompact (for instance X = W (ω1) := {σ :
σ < ω1}, where ω1 denotes the first uncountable ordinal (see [11, 5.12]), and E = l2.
Since l2 is separable, it is realcompact (see [11, 8.2]). Consequently each bounded
continuous map f : X → l2 can be extended to a continuous map fυX : υX → l2

defined in the realcompactification υX of X, which is also bounded. In this way
we can define a biseparating map from Cb(X,E) onto Cb(υX,E). Clearly this map
does not admit a description as the one given in Theorem 3.5.

In a much more general setting, (not necessarily linear) biseparating maps are
studied in [2] for a large family of spaces. Applied to our Contexts 1, 2, 5 and 6, it
is proved there that the existence of a biseparating map from A(X, E) onto A(Y, F )
leads to the existence of a homeomorphism h : Y → X.

As for Contexts 3 and 4, the existence of a biseparating map between A(X, E)
and A(Y, F ) ensures the existence of a homeomorphism h from the realcompactifi-
cation of Y onto the realcompactification of X. On the other hand, as in [11, 9.7],
since the only Gδ-points in the realcompactifications of X and Y are those of X and
Y , respectively, we conclude that h is a homeomorphism from Y onto X.

So in all our Contexts 1–6, we have a homeomorphism h : Y → X. Among the
properties of this map h (called support map) we have the following:

Lemma 2.1. ([2, Lemma 4.4]) Let T : A(X, E) → A(Y, F ) be a biseparating map.
Suppose that h(y) = x for some y ∈ Y , and that f ∈ A(X, E) satisfies f ≡ 0 on a
neighborhood of x. Then Tf ≡ 0 on a neighborhood of y.

Corollary 2.2. ([2, Corollary 3.3]) Assume that we are in Context 6. If T :
A(X, E) → A(Y, F ) is a biseparating map, then h : Y → X is a uniform homeo-
morphism (that is, both h and h−1 are uniform maps).

3 Representation of linear biseparating maps

We start this section with two lemmas.

Lemma 3.1. Let α, β ∈ R satisfy 0 < α < β. Suppose that f : X → [0, +∞) belongs
to B, and that the sets U := {x ∈ X : f(x) < α} and V := {x ∈ X : f(x) < β} are
both nonempty and different. Then there exists g ∈ B such that 0 ≤ g ≤ 1, g ≡ 1
on U , and g ≡ 0 on X − V .

Proof. Let us define f1 : X → [0, +∞) as f1(x) := min{f(x), β}, and f2 : X →
[0,∞) as f2(x) := max{f1(x), α}. It is easy to check that f1, f2 ∈ B. On the other
hand, f2(x) ∈ [α, β] for every x ∈ X, f2 ≡ α on U , and f2 ≡ β on X − V . Finally
we define

g(x) :=
β − f2(x)

β − α

for every x ∈ X, and we are done. �
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Lemma 3.2. Let x0 ∈ X and f ∈ A(X, E) satisfy that f(x0) = 0, and that f is not
constant on any neighborhood of x0. Then there exists a strictly decreasing sequence
(λn) in (0, +∞) convergent to 0 such that all elements in the sequence

({x ∈ X : ‖f(x)‖ < λn})

are different.

Proof. For α ∈ R, α > 0, let us define Uα := {x ∈ X : ‖f(x)‖ < α}. Notice that
to prove the lemma, it is enough to show that if α > 0, then there exists β ∈ R with
0 < β < α/2 such that the sets Uα and Uβ are different. Suppose on the contrary
that if 0 < β < α/2, then Uβ = Uα. This implies clearly that, if 0 < β < α/2
and ‖f(x)‖ < α, then ‖f(x)‖ < β. Taking into account that Uβ ⊂ Uα/2 ⊂ Uα, we
deduce that if ‖f(x)‖ < α, then f(x) = 0, that is, f ≡ 0 on Uα. This contradicts
the assumption that f is not constant on any neighborhood of x0. �

Thanks to these basic results, we can prove the following proposition.

Proposition 3.3. Suppose that T : A(X, E) → A(Y, F ) is biseparating and that

f(h(y)) = 0

for some f ∈ A(Y, F ) and y ∈ Y . Then (Tf)(y) = 0.

Proof. By Lemma 2.1, the result holds if f ≡ 0 on a neighborhood of h(y). Thus
we can assume that f is not constant on any neighborhood of h(y). According to
Lemma 3.2, we can construct a strictly decreasing sequence of positive numbers (λn)
convergent to 0 such that the sequence of sets

({x ∈ X : ‖f(x)‖ < λn})

does not contain two equal elements. Taking a subsequent if necessary, we may
assume that λn ≤ 1/n3 for every n ∈ N. Define

Un := {x ∈ X : ‖f(x)‖ < λn}

for each n ∈ N. Notice that, by definition of Un, we have clUn+1 ⊂ Un, n ∈ N. It is
also easy to check that

{x ∈ X : 0 < ‖f(x)‖ < λ2} =

 ⋃
n∈N

(U4n − clU4n+3)

 ∪

 ⋃
n∈N

(U4n−2 − clU4n+1)

 .

It is clear from the fact that f is not constant on any neighborhood of h(y) that
h(y) ∈ cl{x ∈ X : 0 < ‖f(x)‖ < λ2}, so we have at least one of the following two
possibilities:

h(y) ∈ V1 := cl
⋃

n∈N
(U4n − clU4n+3)

or
h(y) ∈ V2 := cl

⋃
n∈N

(U4n−2 − clU4n+1).



252 J. Araujo

We assume without loss of generality that h(y) belongs to V1. Notice that in this
case

h(y) ∈ cl
⋃
n≥k

(U4n − clU4n+3)

for every k ∈ N.
By Lemma 3.1, we can construct a sequence (fn) in B such that, for every n ∈ N,

0 ≤ fn ≤ 1, c(fn) ⊂ U4n−1, and fn ≡ 1 on U4n.
Next we are going to see that g :=

∑∞
n=1 fnf belongs to A(X, E). First, it is easy

to check that each fnf belongs to Cb(X, E) if we are in Contexts 1 – 5, and belongs
to Cu

b (X,E) if we are in Context 6. Suppose now that Ē denotes the completion
of the normed space E. We have that, when endowed with the sup norm, Cb(X, Ē)
and Cu

b (X, Ē) are Banach spaces. On the other hand, since λn ≤ 1/n3, then

sup
x∈X

‖fnf(x)‖ ≤ 1/n2.

We deduce that g ∈ Cb(X, Ē) in Contexts 1 – 5, and g ∈ Cu
b (X, Ē) in Context 6,

that is, g ∈ A(X, Ē). To prove that g ∈ A(X,E), we just have to see that g(x) ∈ E
for every x ∈ X. For, take x ∈ X: if f(x) = 0, then g(x) = 0 ∈ E; if f(x) 6= 0, then
there exists a finite number of n ∈ N with ‖f(x)‖ > λn, so there is a finite number
of n ∈ N with x ∈ U4n−1; this clearly implies that there exists n0 ∈ N such that
fn(x) = 0 for every n > n0, and consequently

g(x) = f1(x)f(x) + f2(x)f(x) + . . . + fn0(x)f(x) ∈ E.

Notice also that, for n0 ∈ N, if x0 ∈ U4n0−clU4n0+3, then x0 /∈ U4(n0+k)−1 for every
k ∈ N. Consequently, since c(fn0+k) ⊂ U4(n0+(k−1))+3, then fn0+k(x0) = 0 for every
k ∈ N. On the other hand, it is clear that x0 belongs to the sets U4, U8, . . . , U4n0 ,
which implies that

1 = f1(x0) = f2(x0) = . . . = fn0(x0).

We deduce from the definition of g that g(x0) = n0f(x0). Then we conclude that
g ≡ nf on U4n − clU4n+3 for each n ∈ N.

Next suppose that (Tf)(y) = e0 ∈ F , e0 6= 0, and (Tg)(y) = e1 ∈ F . Consider
n1 ∈ N with

n1 ‖e0‖ /2 > ‖e1‖+ 1,

and an open neighborhood U(y) of y in Y such that h(U(y)) ⊂ U4n1 and

‖(Tf)(y′)‖ > ‖e0‖ /2

for every y′ ∈ U(y).
Taking into account that h is a homeomorphism and that h(y) belongs to cl

⋃
n≥k(U4n−

clU4n+3) for every k ∈ N, we can see that there exists k ∈ N, k ≥ n1, such that

h(U(y)) ∩ (U4k − clU4k−3) 6= ∅.

Then if for y1 ∈ U(y), h(y1) belongs to U4k − clU4k−3, we have that g − kf is
constantly equal to zero in a neighborhood of h(y1). We deduce from Lemma 2.1
that Tg ≡ kTf on a neighborhood of y1, which implies that

‖(Tg)(y1)‖ = k ‖(Tf)(y1)‖ > ‖e1‖+ 1.

Since this can be done for every neighborhood of y, this behavior implies that
Tg is not continuous, which is not possible. We conclude that (Tf)(y) = 0. �
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To prove the next theorem, we need the following result, which can be found in
[2, Claim 1 in the proof of Theorem 3.1].

Lemma 3.4. Suppose that T : A(X, E) → A(Y, F ) is a biseparating map having
h : Y → X as its support map. Then h−1 : X → Y is the support map of T−1 :
A(Y, F ) → A(X, E).

Theorem 3.5.

• Suppose that T : A(X, E) → A(Y, F ) is a linear biseparating map. Then there
exist a homeomorphism h : Y → X and a map J : Y → L′(E, F ) such that

(Tf)(y) = (Jy)(f(h(y)))

for every f ∈ A(X, E) and y ∈ Y . The map J satisfies that Jy is bijective for
every y ∈ Y .

• On the other hand, if we are in Context 6, then h is also a uniform homeo-
morphism.

Proof. For each y ∈ Y , we define a linear map Jy : E → F as (Jy)(e) =
(T ê)(y). It is clear that, if h : Y → X is the support map, then for every y ∈ Y

and f ∈ A(X, E), f(h(y)) = ̂f(h(y))(h(y)), and by Proposition 3.3, (Tf)(y) =

(T ̂f(h(y)))(y), that is,
(Tf)(y) = (Jy)(f(h(y))).

Obviously Jy is linear. Next we prove that each Jy : E → F is bijective. Notice
first that since T−1 is also biseparating, the above representation can be applied to
T−1. On the other hand, by Lemma 3.4 the support map of T−1 is h−1. This implies
in particular that there exists K : X → L′(F, E) such that, for every g ∈ A(Y, F )
and x ∈ X,

(T−1g)(x) = (Kx)(g(h−1(x)).

Fix y ∈ Y and f ∈ F −{0}. Let x = h(y). Now take g ∈ A(Y, F ) with g(y) = f .
Then it is clear that f = g(y) = (T (T−1g))(y), that is,

f = (Jy)((T−1g)(x))

= (Jy)((Kx)(g(h−1(x))))

= (Jy)((Kx)(g(y)))

= (Jy)((Kx)(f)).

This implies that (Jy)(Kx) is the identity map on F . In the same way we can
prove that (Kx)(Jy) is the identity map on E. Consequently, Jy is bijective.

Finally, if we are in Context 6, the fact that h is a uniform homeomorphism
follows from Corollary 2.2. �

Next we are going to see that, when we deal with finite-dimensional E, some
properties regarding continuity can be obtained. The following result follows imme-
diately from Theorem 3.5.
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Corollary 3.6. Suppose that T : A(X, E) → A(Y, F ) is biseparating and linear,
and that E is finite-dimensional. Then E and F have the same dimension.

Remarks.
1. As a consequence of the last corollary, when E is finite-dimensional, the map

J : Y → L′(E, F ) given in Theorem 3.5 attains values in L(E, F ).
2. The existence of a nonlinear biseparating map T : C(X, E) → C(Y, F ) does

not imply in general that E and F are isomorphic as vector spaces, even if they
are finite-dimensional. Consider for instance E := K and F = K2. Take a Hamel
base U = {ai : i ∈ I} of E as a Q-linear space, where Q is the field of rational
numbers. Clearly V := {(ai, 0) : i ∈ I} ∪ {(0, aj) : j ∈ I} is a Hamel base of F as
a Q-linear space. Also it is easy to see that U and V have the same cardinal and
there exists a bijective map v : U → V. Then we can extend v by Q-linearity to
a bijection defined in the whole space E. Now suppose that X = {x} = Y . We

clearly have that T : C(X, E) → C(Y, F ) defined as T ê := v̂(e), for every e ∈ E, is
a biseparating map (which obviously is not K-linear).

3. It is quite natural to try to see if Theorem 3.5 can be given in new contexts
like the following (which are a mixture of Contexts 2 and 4 and Contexts 1 and 3,
respectively, where we replace the property that all points in X are Gδ-points with
the more general of being first countable):

• Context 7. E and F are infinite-dimensional. X is first countable and
completely regular, and Y is realcompact. A(X, E) = Cb(X, E), A(Y, F ) =
Cb(Y, F ), and B := Cb(X).

• Context 8. X is first countable and completely regular, and Y is realcompact.
A(X, E) = C(X, E), A(Y, F ) = C(Y, F ), and B := Cb(X).

The answer to this question in both contexts is negative, as it can be seen in the
example given in the Introduction (notice in particular that the set X in the example
is pseudocompact, and the set Y is compact, which means that Cb(X, E) = C(X, E)
and Cb(Y, F ) = C(Y, F )).

4. Finally, we can ask if in Context 4 the fact that E and F are infinite-
dimensional is necessary to obtain Theorem 3.5. If we drop all requirements on
the dimension of E and F , then we are in the following context.

• Context 9. X and Y are completely regular, and all points of X and Y are
Gδ-points. A(X, E) = Cb(X, E), A(Y, F ) = Cb(Y, F ), and B := Cb(X).

It turns out that Theorem 3.5 is no longer valid in Context 9. For, take X = N
and Y = N ∪ {σ}, where σ ∈ βN \ N. Clearly each f ∈ Cb(X) admits a continuous
extension f ′ : Y → K. The map T : Cb(X) → Cb(Y ) sending each f ∈ Cb(X) into
its extension f ′ ∈ Cb(Y ) is certainly biseparating and linear, but X and Y are not
homeomorphic (see [11, 4M]).
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4 Continuity and biseparating maps

In this section we give some corollaries concerning automatic continuity of bisepa-
rating maps, and a general description of the continuous linear biseparating maps.

Corollary 4.1. Suppose that T : A(X, E) → A(Y, F ) is biseparating and linear,
and that E is finite-dimensional. Then the map J : Y → L(E, F ) is continuous.

Proof. We have that E is finite-dimensional and, by Corollary 3.6, so is F . Since
we are dealing with the strong operator topology in L(E, F ), to prove that J is
continuous it is enough to show that, for every e ∈ E and y0 ∈ Y , if (yi)i∈I is a net
in Y which converges to y0 ∈ Y , then ((Jyi)(e))i∈I converges to (Jy0)(e). Notice
that, by the definition of J , this is equivalent to prove that ((T ê)(yi)) converges to
(T ê)(y0). This convergence follows from the fact that T ê is continuous, and we are
done. �

Remark. When E and F are finite-dimensional, so is L(E, F ). As a con-
sequence, all linear topologies in L(E, F ) coincide, and then the strong operator
topology and that of the norm are the same. This implies that, if E is finite-
dimensional and we consider the normed space L(E.F ), then J : Y → L(E, F ) is
also continuous.

Corollary 4.2. Suppose that T : A(X, E) → A(Y, F ) is biseparating and linear,
and that E is finite-dimensional. Then T (and T−1) is continuous.

Proof. Assume that we are in Contexts 1 or 3. To prove that T is continuous,
take a compact subset K of Y , and ε > 0. Since J : Y → L(E, F ) is continuous (see
Remark after Corollary 4.1), then

sup
y∈K

‖Jy‖ < +∞.

Suppose that for every x ∈ h(K),

‖f(x)‖ <
ε

supy∈K ‖Jy‖
.

Now take y0 ∈ K. Since (Tf)(y0) = Jy0(f(h(y0))), it is straightforward to see that

‖(Tf)(y0)‖ ≤ ‖Jy0‖ ‖f(h(y0))‖
< ‖Jy0‖

ε

supy∈K ‖Jy‖
≤ ε.

Also, since h is a homeomorphism, h(K) is a compact subset of X, and the fact
that T is continuous follows.

Assume that we are in Contexts 2, 4, 5 or 6. We have that, given e ∈ E,

sup
y∈Y

‖(Jy)(e)‖ = sup
y∈Y

‖(T ê)(y)‖ < ∞.
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Since Jy belongs to L(E, F ) for every y ∈ Y , by the Uniform Boundedness
Principle (see for instance [7, Theorem 15.2]) we conclude that there exists M > 0
with supy∈Y ‖Jy‖ < M .

Now if f ∈ A(X, E) satisfies ‖f‖ ≤ 1, then

‖(Tf)(y)‖ = ‖(Jy)(f(h(y))‖ ≤ ‖Jy‖ < M

for every y ∈ Y . We conclude that T is continuous. �

In the case of continuous linear biseparating maps, we can say more, even if E
is not necessarily finite-dimensional.

Corollary 4.3. Suppose that T : A(X, E) → A(Y, F ) is a continuous linear bisep-
arating map. Then the map J given in Theorem 3.5 takes values in L(E, F ). Also
J : Y → L(E, F ) is continuous.

Proof. We first have to prove that Jy is continuous for each y ∈ Y . But this is
clear if we are in Contexts 2, 4, 5 or 6, because given any e ∈ E and y ∈ Y ,

‖(Jy)(e)‖ = ‖(T ê)(y)‖ ≤ ‖T‖ ‖e‖ .

On the other hand, if we are in Contexts 1 or 3, we have that, by definition of
continuity, for y ∈ Y , there exist a compact subset K of X and M > 0 such that,
whenever supx∈K ‖f(x)‖ ≤ 1, then ‖(Tf)(y)‖ ≤ M . As above, this implies that

‖(Jy)(e)‖ = ‖(T ê)(y)‖ ≤ M ‖e‖ .

On the other hand, the map J : Y → L(E, F ) is continuous, where L(E, F ) is
endowed with the strong operator topology. This can be proved as in Corollary 4.1.

�

Remarks.
1. A natural question is whether in Corollary 4.3 the word ”biseparating”

could be replaced by just ”separating and bijective”. In general, even assuming
continuity of the operator T , a representation as a weighted composition map is not
possible. In fact, in [12, Example 4.2], the authors provide an example of a separating
linear continuous map which is bijective but does not admit a representation as a
weighted composition map; namely, in their example, X = {0}, Y = {0, 1}, E = R2

endowed with the sup norm, and F = R, and T : C(X,E) → C(Y, F ) is defined
as T (a, b) := g ∈ C(Y, F ), with g(0) = a and g(1) = b. For some other interesting
results concerning separating continuous linear maps the reader is referred to that
paper.

2. When E is infinite-dimensional, a linear biseparating map need not be con-
tinuous, as it is easy to see in the following example. Consider E := c0, the space of
sequences converging to zero, and X = {x} = Y . Take U a Hamel base of c0 such
that every element of U has norm one. Consider V := {un : n ∈ N} a countable
subset of U and define Tu := u if u ∈ U−V and Tun = nun for un ∈ V. It is clear
that, by identifying each map in C({x}, c0) with its image, T can be extended by
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linearity to a (clearly biseparating) bijective map T : C({x}, c0) → C({x}, c0) which
is not continuous.

3. In the same way, if X is not realcompact, it is possible to give linear bisepa-
rating maps T : C(X) → C(Y ) which are not continuous (see for instance [5]).

4. A very interesting question, but not easy to deal with, is whether in Corol-
lary 4.2, the same conclusion can be reached if ”biseparating” is replaced by ”sep-
arating and bijective”. This would lead to the more general question of when a
separating bijective linear map is biseparating. Some partial results are known (see
for instance [1] and [6]), but the general question remains unsolved even for the case
E = K = F .
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