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Abstract

We consider the principal configurations associated to smooth vector fields
ν normal to a manifold M immersed into a euclidean space and give conditions
on the number of principal directions shared by a set of k normal vector fields
in order to guaranty the umbilicity of M with respect to some normal field
ν. Provided that the umbilic curvature is constant, this will imply that M

is hyperspherical. We deduce some results concerning binormal fields and
asymptotic directions for manifolds of codimension 2. Moreover, in the case
of a surface M in R

N , we conclude that if N > 4, it is always possible to
find some normal field with respect to which M is umbilic and provide a
geometrical characterization of such fields.

1 Introduction

Given an n-manifold M of codimension k in euclidean space, any normal field ν on
M defines a system of curvature lines that we call principal configuration associated
to ν. For each ν-principal direction we have an associated ν-principal curvature. A
point p of M is said to be ν-umbilic if the n principal curvatures coincide at p. Such
points are critical points of the ν-principal configuration. The manifold M is called
ν-umbilic provided all its points are ν-umbilic. In this case we say that the ν-umbilic
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configuration is trivial (in the sense that all the curvature lines reduce to critical
points). The behaviour of these systems in the case of surfaces immersed in R

4 was
analyzed in [17]. A generic surface immersed in R

4 admits a family of principal
configurations [14]. Nevertheless, it was proven in [16] that the ν-umbilicity of the
surface is equivalent to having a fixed principal configuration associated to every
normal field η 6= ν.

Our aim in this paper is to generalize this result to the case of n-manifolds, n ≥ 2,
immersed in euclidean space with codimension k ≥ 2. To do this, we observe that if
Sνi
, i = 1, 2, are the shape operators associated to normal fields νi, i = 1, 2, on M ,

the νi-configurations coincide if and only if Sν1
and Sν2

have the same eigenvectors.
Based on this fact we can show that

If M is a generic n-manifold of codimension k ≥ 2 with a unique non-trivial
principal configuration, then there exists some normal field ν (locally defined at each
point) on M such that M is ν-umbilical.

Moreover, this requirement can be weakened in the following sense: Depending
on the relative values of the dimension n and the codimension k of M , it is sufficient
to ask that k linearly independent normal fields on M share just a certain number
δ(n, k) ≤ n of curvature lines. This number decreases with k (see Section 3). In
fact, a moment arrives in which it becomes zero, so we can conclude:

Provided M is immersed with high enough codimension, then it is always possible
to find (locally at every point) some subbundle U of NM such that M is ν-umbilical
for any section ν of the subbundle U .

In particular we have:
A generic n-manifold M immersed in R

1

2
n(n+3) admits an everywhere locally

defined normal field ν such that M is ν-umbilical.
We must drive the attention to the fact that the linear subspace, N1M , spanned

by the second fundamental form in the normal space, NM , at each point of an n-
manifold M , has at most dimension 1

2
n(n+ 1). This, clearly, implies that, provided

M is immersed in R
N with N > 1

2
n(n + 3), there exists a subbundle of NM all

whose sections make M umbilical with vanishing associated curvature. Now, the
subtlety of our result consists in guaranteing the umbilicity with respect to normal
fields with non necessarily vanishing associated curvature, even when M is immersed
with codimension 1

2
n(n+ 1).

We analyze with more detail the following two situations:
a) Submanifolds of codimension 2 (Section 4): In this case we see that having
a unique non-trivial configuration is a sufficient and necessary condition for ν-
umbilicity. We observe that this provides an exact generalization of our previous
result for surfaces in 4-space [16].

b) Surfaces immersed in R
N , N ≥ 5 (Section 5): We study their ν-umbilicity prop-

erties in terms of the curvature ellipse at each point. The concept of curvature
ellipse at a point of a surface in R

N was first introduced by [11] and has also been
studied in [5] and [12]. We characterize geometrically the U -subbundle for which
M is umbilical as the (N − 4)-subbundle of NM which is orthogonal to the plane
determined by the curvature ellipse at each point.

We point out that different properties of U -umbilic submanifolds have been stud-
ied by B. Y. Chen and K. Yano (see for instance [1], [2] and [3]). In particular, they
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have proven that umbilicity with respect to a parallel normal field is equivalent to
hypersphericity.

2 Curvature lines associated to a normal vector field

Let M be a smooth oriented manifold of dimension n immersed in R
N , N = n+ k,

with the Riemannian metric induced by the standard Riemannian metric of R
N .

For each p ∈ M , consider the decomposition TpR
N = TpM ⊕ NpM , where NpM is

the orthogonal complement of TpM in R
N . Let ∇̄ be the Riemannian connection of

R
N . Given local vector fields X, Y on M , let X̄, Ȳ be some local extensions to R

N .
The tangent component of the Riemannian connection in R

N is the Riemannian
connection of M : ∇XY = (∇̄X̄ Ȳ )>.

Let X (M) and N (M) be the space of the smooth vector fields tangent to M
and the space of the smooth vector fields normal to M , respectively. Consider the
second fundamental map

α : X (M) × X (M) → NM, α(X, Y ) = ∇̄X̄ Ȳ −∇XY.

This map is symmetric and bilinear.
Let p ∈M and ν ∈ N (M), ν 6= 0, and define the function

Hν : X (M) × X (M) → F(M), Hν(X, Y ) =< α(X, Y ), ν > .

This function is symmetric and bilinear. The second fundamental form of M with
respect to ν at p is the associated quadratic form

IIν : X (M) → F(M), IIν(X) = Hν(X,X).

Recall the shape operator

Sν : X (M) → X (M), Sν(X) = −(∇̄X̄ ν̄)
>,

where ν̄ is a local extension to R
N of the normal vector field ν at p and > means the

tangent component. This operator is self-adjoint and for any X, Y ∈ TpM satisfies
the following equation: < Sν(X), Y >= Hν(X, Y ). So, the second fundamental
form with respect to ν can be expressed by IIν(X) =< Sν(X), X >. Thus for
each p ∈ M , there exists an orthonormal basis of eigenvectors of Sν ∈ TpM . The
corresponding eigenvalues k1, . . . , kn are the ν-principal curvatures. Let Uν be the
subset of ν-preumbilic points of M , i.e., Uν is made of all the points at which
at least two ν-principal curvatures coincide. We denote Uν(ki1 , ..., kir) = {p ∈ Uν :
ki1(p) = · · · = kir(p)}, r = 2, ..., n. A point lying in Uν(k1, ..., kn) is called ν-umbilic.
Given p ∈ M − Uν , there are n ν-principal directions defined by the eigenvectors
of Sν . Provided M − Uν is open, this setting determines fields of directions on
M −Uν which are smooth and integrable. The integrals of these fields are n families
of orthogonal curves on M − Uν , called ν-principal lines of curvature. These n
orthogonal foliations of M − Uν , together with the decomposition {Uν(ki1, ..., kir)}
of Uν form the ν-principal configuration of M . In fact, the points of Uν(ki1 , ..., kir)
can be seen as the critical points for the ij-th foliation, j = 1, ..., r, whereas, the
ν-umbilic are critical points for the n foliations.
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We observe that for most pairs (M, ν), where ν is a normal field over M , the
subset M − Uν is open and dense in M . To see this we suppose that M is locally
given by an immersion f : R

n → R
n+k and consider the distance squared functions

family,
d : R

n × R
n+k −→ R

(x, a) 7−→ da(x) = ‖f(x) − a‖2.

It is easy to see that x is a critical point of da if and only if a − f(x) ∈ Nf(x)M .
Moreover, given a unit normal field ν, defined in a neighbourhood of p = f(x0), it
can be shown that p ∈ Uν(ki, kj), for some i 6= j, if and only if x0 is a singularity of
corank at least 2, either of the function dp+ 1

λ
ν(p) with λ = ki(p) = kj(p) when λ 6= 0,

or of the height function in the direction ν(p), fν(p)(x) = 〈x, ν(p)〉, when λ = 0.
Here, by the corank of a function at a point x0 we mean the corank of its Hessian
matrix at x0. It follows from Looijenga’s genericity theorem ([6], see also [10] for
an alternative version of this result) that there exists a residual subset I(M) of the
space of immersions of M in R

n+k (provided with the Whitney C∞-topology) such
that the family d associated to any immersion of this subset is structurally stable.
In this case, it follows from standard methods of Singularity Theory developed in
[6] (see also [15]) that the focal subset of M :

F(M) = {(x, a) ∈ NM : x is a degenerate singularity of da},

is a stratified subset, whose local structure at a point (x, a) is equivalent to the one
induced by the Looijenga’s stratification of the space, C∞(M), of smooth functions
on M on a transversal slice to the orbit of the function da under the action of
the group, Dif(M) × Dif(R), of smooth diffeomorphisms pairs on C∞(M). In
particular, this implies that the subset

Σ2 = {(x, a) ∈ NM : x is a singularity of da with corank ≥ 2}

is a stratified subset of codimension 3 in NM . Consider now the cone over Σ2:

C(Σ2) = {(x, βa) ∈ NM, for a ∈ Σ2 and β ∈ R − {0}}.

This is a stratified subset of codimension 2 in NM . Clearly, we have that p =
f(x) ∈ Uν if and only if (x, ν(x)) ∈ C(Σ2). Then the Elementary Transversality
Theorem ([4]) implies that, given any immersion of M lying in I(M), there is a
residual subset of the space, N (M), of C∞-sections of the normal bundle NM →M ,
with the Whitney C∞-topology, such that any normal field in this subset meets
transversally each stratum of C(Σ2). Clearly, given such a normal field, we have
that Uν = ν−1(C(Σ2)) is a stratified subset of codimension 2 in M . Consequently,
Uν has measure zero in M and hence M − Uν is an open and dense submanifold.

The differential equation of ν-lines of curvature is

Sν(X(p)) = λ(p)X(p). (1)

Suppose that (φ, U) is a local chart on M with corresponding local coordinates
(u1, . . . , un). Let gij =< φui

, φuj
>, where φuk

= dφ( ∂
∂uk

), k = i, j, are the coeffi-
cients of the first fundamental form in this coordinate chart. The coefficients of the
second fundamental form are
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Ḡν
ij = − < α(φui

, φuj
), ν >,

= − < φui
, νuj

>= − < φuiuj
, ν >= Ḡν

ji. (2)

Assume that (gij) = (gij)
−1 is the inverse of the metric. Thus, define

Gν
ij =

n
∑

k=1

Ḡν
ikg

kj. (3)

We write the tangent component of νuj
as νT

uj
= a1jφu1

+ · · ·+ anjφun
. Then the

shape operator in this basis has the expression

Sν = (aij).

To obtain the expression of the coefficients aij, we consider

−Ḡν
ji =< φui

, νuj
>= a1jgi1 + · · · + anjgin = a1jg1i + · · ·+ anjgni.

Therefore we get the following equation:

−(Ḡν
ij) = (Sν)

T (gij).

Thus, we have

(Sν)
T = −(Ḡν

ij)(g
ij) = −(Gν

ij). (4)

In order to obtain the differential equation of ν-lines of curvature in local coordinates
and considering that Sν is symmetric, we write the system Sν(u) = λ(u) as

Gν
11u̇1 + · · ·+Gν

1nu̇n = λu̇1,

Gν
21u̇1 + · · ·+Gν

2nu̇n = λu̇2,
...

Gν
n1u̇1 + · · ·+Gν

nnu̇n = λu̇n. (5)

The matrix (Gν
ij(u)) is a multiple of the identity, if and only if u is a ν-umbilic.

3 ν- umbilicity and lines of curvature

Given a normal field ν on a manifold M , we say that M is ν-umbilical if each
point of M is ν-umbilic. We next analyze sufficient conditions on M to ensure that
it is ν-umbilical. More precisely, we see that the fact that a certain number of
linearly independent normal fields share a certain number of principal lines implies
the existence of some normal field ν such that M is ν-umbilic.
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Suppose that M is an n-manifold immersed in R
n+k through an immersion φ,

and that ν1, ..., νk are k linearly independent normal fields on M . For any linear
combination, ν =

∑k
l=1 λlνl, we have that

Gν
ij = G

∑k

l=1
λlνl

ij =
n

∑

m=1

(Ḡ
∑k

l=1
λlνl

im gmj),

=
n

∑

m=1

< α(φui
, φum

),
k

∑

l=1

λlνl > gmj,

=
k

∑

l=1

λl(
n

∑

m=1

Ḡνl

img
mj) =

k
∑

l=1

λlG
νl

ij .

The matrix (Gν
ij) is a multiple of the identity, or equivalently, M is ν-umbilic

provided (λ1, . . . , λk) ∈ R
k is a non-trivial solution of the following linear system of

1
2
(n+ 2)(n− 1) equations:

k
∑

l=1

λl(G
νl

11 −Gνl

22) = 0,

...
k

∑

l=1

λl(G
νl

11 −Gνl
nn) = 0,

k
∑

l=1

λlG
νl

ij = 0, i < j.

Notice that the first (n− 1)-equations are determined by the fact that the diag-

onal coefficients must be equal, while the other n(n−1)
2

equations correspond to the
fact that the upper triangle coefficients must vanish. Since Sν is symmetric these
equations guarantee that M is ν-umbilic. In the following argument, in order to
study the existence of the solution of this system, we shall consider the dependence
of the coefficients of this system on the immersion φ.

Denote by ∆φ the matrix of this system, and by {∆φ
i }m

i=1 the different minors of
maximal order (=min {1

2
(n + 2)(n − 1), k}) of ∆φ. It follows from expression (4)

that the coefficients of ∆φ are given in terms of the first and the second derivatives
of the immersion φ. The rank of ∆φ is not maximum at a given point p provided
all the determinants of all these minors vanish at p. This condition is thus deter-
mined by polynomial equations, in the first and second derivatives of φ, given by
det (∆φ

i ) = 0, i = 1, ..., m. Such equations determine a closed algebraic variety, Γ,
in the space, J2(M,Rn+k), of 2-jets of maps from M to R

n+k. A consequence of the
Thom Transversality Theorem ([4]) is that the subset of immersions of M (locally
given as φ(Rn)) in R

n+k, for which the 2-jet extension, j2φ : R
n → J2(M,Rn+k),

is transversal to Γ, is open and dense in the set of all immersions of R
n in R

n+k

with the Whitney C∞- topology. We shall call generic immersions those having this
property. Clearly, if φ is a generic immersion, or in other words, M is a generic n-
manifold in R

n+k, the subset M ′ = {p ∈M : rank∆ < min{1
2
(n+2)(n−1), k}} is a

closed stratified subset whose codimension inM is equal to that of Γ in J2(M,Rn+k).
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Since Γ is given by at least one polynomial equation, we have that it has at least
codimension one and thus, M −M ′ is an open and dense submanifold of M .

Moreover, the above is a homogeneous linear system of 1
2
(n+2)(n−1) equations

in k variables. So, we can find non-trivial solutions provided the number of linearly
independent equations is smaller than that of variables. In particular, this happens
in case that

(n+ 2)(n− 1) < 2k.

We observe that the coefficients of this system are smooth functions and so are
their solutions all over the submanifold M −M ′.

Lemma 3.1. Suppose that M is a generic n-manifold immersed in R
n+k, n > 3 and

that k > 1
2
(n+2)(n− 1). Then M ′ is empty. In the case of a generic surface in R

5,
we have that M ′ is made of isolated points in M .

Proof: If n = 2, k = 3, we have that ∆ is a (2×3)-matrix. So, Γ has codimension
2 in J2(M,R5) and, since M is generic, so has M ′ in M . But this means that M ′

must be made of isolated points. It follows analogously that, for n = 2, k ≥ 4, M ′

has codimension at least 3 in M and hence must be empty. On the other hand,
when n ≥ 3, we have that 1

2
(n+ 2)(n− 1) ≥ n + 2 and thus, k > n+ 2. Therefore,

codim Γ ≥ n+ 1. And then it follows from the genericity of M , that M ′ must have
codimension n+ 1 in M and thus, be empty. �

As a consequence of all these considerations, we can state:

Theorem 3.2. Given a generic n-manifold M immersed in R
1

2
n(n+3), n ≥ 3, it is

possible to find some locally defined smooth normal field ν at every point of M , such
that M is ν-umbilical.

Remark 3.3. In the case of a generic surface immersed in R
n≥5 we can find such a

field ν, locally defined at each point of M except by a subset M ′ of isolated points.
We analyze this fact, from the geometrical viewpoint, in Section 5.

Remark 3.4. When the vector field ν is parallel and globally defined, Chen and
Yano’s result ([1]) implies that M is hyperspherical.

Moreover, we consider the following:

Definition 3.5. Given a subbundle U of NM , we say that M is U-umbilical provided
that it is ν-umbilical for any section ν of the subbundle U .

Now, if φ is a generic immersion of the n-manifold M into 1
2
n(n + 3) + l-

dimensional euclidean space, we have that for k = l + 1, there exist k solutions
of the system defined by ∆φ. So we can assert:

Theorem 3.6. Given any n-dimensional generic manifold M in R
1

2
n(n+3)+l we can

always find some rank (l+1) subbundle U (locally defined at each point of M)of NM ,
such that M is U- umbilical.
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We observe that, from the global viewpoint, we may not have as many linearly
independent normal fields as the codimension of M allows. For instance, for an
orientable compact surface embedded in R

4, we may just ensure the existence of one
global non-vanishing section of the normal bundle. On the other hand, it is possible
to find non-orientable surfaces in R

4 without globally defined normal fields ([13]).

Suppose now that the k fields ν1, ..., νk share r < n linearly independent principal
directions at a given point p ∈ M . We can choose a coordinate system centered at
p having these r directions as the tangents to the first coordinate lines. Clearly, the
first r rows of the matrix Sνs

diagonalize in this system, for s = 1, ..., k. Therefore,
Gνs

ij = 0, for s = 1, ..., k, i = 1, ..., r and i < j ≤ n. In other words, we have that
(n−1)+(n−2)+ ...+(n− r) = 1

2
r(2n− r+1) of the equations of the above system

are identically zero on M . So we are left with at most 1
2
(n+2)(n−1)− 1

2
r(2n−r+1)

linearly independent equations in the system. Now, in order to ensure the existence
of a non-trivial solution, we must ask that the number, k, of unknowns be strictly
bigger than 1

2
(n+ 2)(n− 1) − 1

2
r(2n− r + 1). So we can assert:

Lemma 3.7. Suppose that M is a generic n-manifold immersed in R
n+k and that

we can find k linearly independent normal fields, ν1, ..., νk, sharing r < n linearly
independent principal directions all over M . Let r be a natural number satisfying

k +
1

2
r(2n− r + 1) >

1

2
(n+ 2)(n− 1).

Then it is possible to find some locally defined smooth normal field ν at every point
of M , such that M is ν-umbilical.

Theorem 3.8. Suppose that there are k linearly independent normal fields over an
n-dimensional manifold M , sharing δ(n, k) linearly independent principal directions
at each point of M , where δ ranges as in the table below. Then there exists some
smooth vector field ν normal to M for which M is ν-umbilical, locally defined at
each point of M .

n\k 2 3-5 6-9 10-14 15-20 21-27 ...
2 1 0 · · · · · · · · · · · · · · ·
3 2 1 0 · · · · · · · · · · · ·
4 3 2 1 0 · · · · · · · · ·
5 4 3 2 1 0 · · · · · ·

Proof: It follows from calculating the adequate values of r for the different choices
of n and k according to the above lemma. In fact, for a given n, we have that
δ(n, k) = 0 if and only if k ≥ 1

2
n(n+ 1). Moreover, it can be seen that for a fixed k,

δ(n + 1, k) = δ(n, k) + 1. �

Remark 3.9. Notice that δ(n, k) is the minimal number of lines of curvature that
must be shared by the k (maximun number of linearly independent) generic normal
fields over M . By appliyng the same arguments, we see that in some cases it is
possible to replace the number k by a smaller one, l, provided we substitute the
number δ(n, k) by an appropriate higher one δ(n, k, l).
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Remark 3.10. Suppose that the k normal fields ν1, ..., νk are generic, in the sense
that the subsets Uνi

, i = 1, ..., k, have measure zero in M . In this case, we can
substitute the requirement that they share δ(n, k) linearly independent principal
directions at each point of M by the condition of sharing δ(n, k) curvature lines over
the open dense submanifold M − ⋃k

i=1 Uνi
. It can be shown that there is an open

and dense subset of immersions of an n-manifold M in R
n+k (with the Whitney

C∞-topology), for which the immersed submanifold admits k linearly independent
generic normal fields.

4 Submanifolds of codimension 2

Suppose that M is a generic n-manifold in R
n+2, then the ν-umbilicity result above

can be expressed as follows:

Theorem 4.1. M is ν-umbilical if and only if all the normal fields η 6= ν on M
have the same principal directions all over M .

Proof: That M is ν-umbilical provided any other normal fields η 6= ν on M have
the same principal directions follows from the Theorem 3.8 above, for in this case
M must admit two linearly independent normal fields with n − 1 common linearly
independent principal directions. To see the converse suppose that M is ν-umbilical
and let η 6= ν. Consider the orthogonal frame for the normal bundle of M given by
ν and its orthogonal ν⊥. Then we can write, η = λ1ν + λ2ν

⊥. The corresponding
shape operator is given by,

Sη = Sλ1ν+λ2ν⊥ = λ1Sν + λ2Sν⊥ = λ1λνId+ λ2Sν⊥ ,

where λν is the curvature function associated to the field ν. This means that Sη and
Sν⊥ have the same eigenvectors and the result is proven. �

We shall now concentrate our attention on a special kind of normal fields, known
as binormal fields, on submanifolds of codimension 2 in IRn. These were introduced
in [9] and are defined as follows:

Given an embedding, f : M → R
n+2, of an n- manifold M , the family of height

functions on M associated to f is defined as

λ(f) : M × Sn+1 −→ R

(x, v) 7−→ 〈f(x), v〉 = fv(x).

For any fixed v ∈ Sn+1, we have a height function, fv, on M , that satisfies: fv

has a singularity at x ∈M if and only if v is a normal vector to f(M) at f(x). The
singularity type of the function fv at a point x characterizes the geometric contact
of the submanifold M at the point f(x) with the tangent hyperplane orthogonal
to the vector v (see [10]). We shall say that a hyperplane Hv with orthogonal
direction v has higher order contact with M at a point x if Hv is tangent to f(M)
at x and fv has a degenerate (i.e., non-Morse) singularity at x. By analogy with
the case of curves in R

3, where the binormal direction is precisely the unit vector
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whose corresponding height function has a degenerate singularity at the considered
point, each direction v corresponding to some height function fv having a degenerate
singularity at x is called binormal. The hyperplane that, being orthogonal to such
direction, passes through the point x is called osculating hyperplane of M at x. So,
the osculating hyperplanes of M are those whose contact with M is stronger in some
sense. Submanifolds of codimension two do not necessarily have binormals at every
point. Moreover, in case that they have, these do not need to be unique at every
point. Interesting examples of (non-compact) surfaces having no binormal directions
are given by minimal surfaces in 4-space ([8]). On the other hand, locally convex
surfaces in R

4, in the sense that they admit a locally support hyperplane at each
point, illustrate the case of manifolds having two binormal fields globally defined
([7]). In general, for a closed (compact without boundary) n-manifold M embedded
in R

n+2, it can be seen that (see [9]) :

a) if n is odd, all the points of M admit at least one binormal direction, and at
most n of them;

b) if n is even, there is always an open region of M all whose points admit at
least one binormal direction and at most n of them.

Suppose that b is a binormal vector for M at x, so x is a degenerate critical
point of the height function fb. In this case, the Hessian quadratic form H(fb)(x) is
degenerate over TxM and hence there exists some vector u ∈ TxM − {0} such that
H(fb)(x)(u) = 0. The vector u defines an asymptotic direction for M at x.

Each binormal direction has associated a unique asymptotic direction at each
point, except at the inflection points. These points are characterized as singulari-
ties of corank two of appropriate height functions, which leads to the fact that the
asymptotic directions at them fill a tangent plane. Under certain conditions on the
k-jet extension of the family of height functions, jkλ(f) : M × Sn+1 → Jk(M,R),
for a big enough k, we can guarantee that the inflection points form closed stratified
subsets of codimension 2 in M . Consequently, a binormal field defined by such an
immersion of M provides a unique asymptotic field on M whose critical points lie
in the set of inflection points. It follows from Looijenga’s theorem ([6]) that there
is a residual subset for the Whitney C∞-topology over the set of immersions of M
in R

n+2, for which the k-jet extension of the family of height functions satisfies the
above referred transversality conditions. On the other hand, any asymptotic field
comes from some binormal field and although in principle, asymptotic fields corre-
sponding to different binormal fields might coincide at some points, the fact that
two different binormals have coincident arcs of asymptotic lines is non-generic, in
the sense that it can be avoided by a small enough perturbation of the immersion.
Moreover, it can also be shown that, generically, two different binormal direction
fields may only coincide over zero measure sets. In what follows we shall under-
stand by generic manifolds those that are generic in the sense of Section 3 and also
verify appropriate transversality conditions, in the above sense, such that: i) their
inflection points lie in closed subsets of codimension at least 2, and ii) their binor-
mal fields determine different asymptotic directions at each non-inflection point over
which they are defined.

Given a binormal b, the principal curvature associated to one of the b-principal
directions is null. We have the following relation between the asymptotic direction
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associated to b and the b-principal direction with vanishing principal curvature:

Lemma 4.2. If b is a binormal field on M , then the asymptotic direction field
associated to b determines a b-principal direction field with vanishing principal b-
curvature in the following way: If the vector āb determines the asymptotic direction
associated to b and (gij) is the matrix of the metric, then ab = (gij)āb determines
the b-principal direction with vanishing b-principal curvature.

Proof: Given a normal field η on M , it is not difficult to check that, in local
coordinates given by the Monge form at any point of M , the Hessian matrix of
the height function fη at the given point coincides with the matrix (Ḡη

ij) whose
coefficients are described by equation (2). In the case of a binormal field b, we have
that the corresponding height function is degenerate and thus its Hessian has some
vanishing eigenvalue. Let āb be a non-null vector in the kernel of the Hessian of fb.
Then, equation (4) implies that ab = (gij)āb is in the kernel of Sb, namely, it is an
eigenvector of this operator. �

Remark 4.3. When the matrix of the metric at a point is a multiple of the identity,
an asymptotic direction with binormal b is a b-principal direction associated to a null
b-principal curvature. This is always the case for the isothermic coordinate charts
of M .

Assume that two binormal fields b1 and b2 on M have the same principal configu-
rations and consider their corresponding principal directions associated to vanishing
principal curvatures, abi

, i = 1, 2, as in the previous lemma. Clearly, abj
, i 6= j

defines another principal direction for bi. Denote by ki, i, j ∈ {1, 2}, the bi-principal
curvature associated to the principal direction abj

, i 6= j. We observe that a point
p ∈ M at which k1(p) = k2(p) = 0 is an inflection point of M . So, we have that the
normal field

ν =
k2b1 + k1b2

|| k2b1 + k1b2 ||
,

is defined over the open dense submanifold, M̄ , determined by the complementary
of the inflection points in a generic manifold M . Theorem 4.1 above leads us to the
following:

Theorem 4.4. Let M be a generic n-manifold. Suppose that M has (at least) two
globally defined binormal fields, b1 and b2, sharing all their principal directions. Then
M̄ is ν-umbilical. Moreover, all the normal fields differing from ν at least over some
dense subset of M , have the same principal directions on M and thus, determine a
unique principal configuration.

On the other hand, if M has n different globally defined asymptotic fields, then
they are mutually orthogonal and coincide with this unique principal configuration.

Proof: We can assume that the curvature directions abi
, i = 1, 2, are different on

M̄ because otherwise k1(p) = k2(p) = 0. At each point of M̄ consider a coordinate
chart (φ, U) with a tangent basic frame {φui

, 1 ≤ i ≤ n}, such that φu1
is tangent

to the principal direction ab1 of b1, and φu2
is tangent to the principal direction ab2

of b2. Let G1
ij denote the coefficients of the shape operator Sb1 and G2

ij those of the
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shape operator Sb2 in this basis. Since φu1
and φu2

are eigenvectors of the shape
operators Sbk

, k = 1, 2, at each point of M̄ , we have that G1
22 = k1 and G2

11 = k2.
On the other hand, as b1 and b2 have the same lines of curvature, Theorem 3.6

implies that there is a smooth vector field ν, locally defined at each point, such that
M̄ is ν-umbilic. Let ν = 1

B
{λb1 + µb2}, where B =|| λb1 + µb2 || . Therefore,

Sν =
1

B
{λSb1 + µSb2} = kνId,

where kν is the ν-umbilic curvature.
The following system of equations holds at each point of the coordinate chart:

λG1
22 − µG2

11 = 0, (6)

λ(G1
kk −G1

22) + µG2
kk = 0, (7)

λG1
kk + µ(G2

kk −G2
11) = 0, k = 3, . . . , n,

λG1
ij + µG2

ij = 0, i > j. (8)

Equation (6) is obtained by observing that the b1-principal curvature vanishes along
the first coordinate curve and the b2-principal curvature vanishes along the second
coordinate line. In fact, we have that

λG1
22 = µG2

11 = kν .

By substituting these two equations in

λG1
kk + µG2

kk = kν ,

we obtain system (7). Finally, system (8) holds because Sν has null entrance func-
tions off its diagonal.

So the pair (λ, µ) defined by ν satisfies systems (6), (7) and (8). Furthermore,
since these systems are linear, they hold for any multiple of this pair too. Thus,
the line of solutions of system (6) is the set of solutions of systems (7) and (8). In
particular, the pair defined by

λ = G2
11 = k2, µ = G1

22 = k1,

satisfies the three systems and determines the coefficients of the normal field ν. And
hence we get that M̄ is ν-umbilic. The second statement follows as a consequence
of Theorem 4.1. �

We say that a submanifoldM of codimension 2 in R
n+2 is hyperspherical provided

that it lies in some (n + 1)-sphere. B. Y. Chen and K. Yano proved ([1]) that this
is equivalent to being ν-umbilical for some parallel normal field ν, where parallel
means that the normal component of the covariant derivative of ν vanishes at every
point. As a consequence we obtain the following:
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Corollary 4.5. Suppose that M is an n-manifold with two globally defined binormal
fields b1 and b2 having the same principal directions. Under the conditions of the
previous Theorem, assume also that the field

ν =
k2b1 + k1b2

|| k2b1 + k1b2 ||

is parallel. Then M is hyperspherical. Moreover, in this case M admits n globally
defined binormal fields whose corresponding asymptotic fields are mutually orthogo-
nal.

Proof: The hypersphericity follows from the previous theorem by applying the
result of B. Y. Chen and K. Yano to the field ν on M̄ . Since M̄ is dense in M ,
we get that M must lie in a hypersphere too. On the other hand, it was proven
in [9] that hyperspherical submanifolds of codimension 2 always have the maximum
number of asymptotic fields and these are mutually orthogonal. �

Remark 4.6. Surfaces in R
4 with the property of having everywhere defined asymp-

totic lines are locally convex [8]. It was proven in [16] that the two asymptotic fields
of a locally convex surface in R

4 are orthogonal if and only if M is ν-umbilical,
with ν = k2b1 + k1b2, where k1 and k2 are the non-vanishing principal curvatures
associated to the fields b1 and b2, respectively. Notice that since we can define on
M isothermic coordinates, the expression of the metric implies that asymptotic di-
rectios are bi-principal directions, i = 1, 2. In this case, the condition of parallelism
on ν is equivalent to asking that (k1

k2
+ k2

k1
+ 2cosθ)E = constant, where θ is the

angle between the two binormals at each point and E is the coefficient of the first
fundamental form in isothermic coordinates on M .

5 ν-umbilicity of surfaces

It follows from Theorem 3.2, as pointed out in Remark 3.3, that generic surfaces in
R

N , N > 4, always admit normal fields for which they are umbilic. In this section,
we analyze this fact from the geometrical viewpoint.

Definition 5.1. Let M be a surface embedded in R
N , N ≥ 4. Given p ∈M , consider

the unit circle in TpM parametrized by the angle θ ∈ [0, 2π]. Denote by γθ the curve
obtained by intersecting M with the hyperplane at p composed by the direct sum of
the normal subspace NpM and the straight line in the tangent direction represented
by θ. Such curve is called the normal section of φ(M) in the direction θ. The
curvature vector η(θ) of γθ in p lies in NpM . Varying θ from 0 to 2π, this vector
describes an ellipse in NpM , called the curvature ellipse of M at p.

In fact, M can be locally given by an embedding f : R
2 → R

N . And if we
take isothermic coordinates {x, y} and an orthonormal frame {e1, e2, ..., eN} in a
neighbourhood of a point p = f(0, 0) ∈ M , in such a way that {e1, e2} is the
tangent frame determined by these coordinates and {e3, ..., eN} is a normal frame,
the matrix of the second fundamental form of M at p is given by
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αf (p) =









a1 b1 c1
...

aN−2 bN−2 cN−2









,

where

ai =
∂2f

∂x2
(0, 0) · ei+2 = Ḡ

νi+2

11 , bi =
∂2f

∂x∂y
(0, 0) · ei+2 = Ḡ

νi+2

12 ,

ci =
∂2f

∂y2
(0, 0) · ei+2 = Ḡ

νi+2

22 ,

for i = {1, · · · , N − 2}.
Then the curvature ellipse is the image of the affine map

η : S1 ⊂ TpM −→ NpM,

given by

θ 7−→ η(θ) =
N−2
∑

i=1

[

cos θ sin θ
]

.

[

ai bi
bi ci

]

.

[

cos θ
sin θ

]

· ei+2,

that is,

η(θ) = H +B cos 2θ + C sin 2θ,

where H = 1/2
∑N−2

i=1 (ai + ci)ei+2, B = 1/2
∑N−2

i=1 (ai − ci)ei+2 and C =
∑N−2

i=1 biei+2.

Example: Consider the surface M defined by the following immersion

ψ :
(

R
2, (0, 0)

)

−→
(

R
5, (0, · · · , 0)

)

(x, y) 7−→ (x, y, x2, y2, xy)
.

Straightforward computations show that the curvature ellipse ofM at p = ψ(0, 0)
is given by

η(θ) = (0, 0, 1, 1, 0) + (0, 0, 1,−1, 0)cos2θ+ (0, 0, 0, 0, 1)sin2θ.

This ellipse is contained in a plane with parametric equation (x, y, z, u, w) =
(0, 0, 1, 1, 0)+(0, 0, 1,−1, 0)λ+(0, 0, 0, 0, 1)ν. The figure below illustrates the position
of both, the ellipse and the plane with respect to the origin in the normal space of
M at p.

The curvature ellipse may degenerate into a segment or even a point at certain
points of M . We denote by Ep the vector subspace parallel to the affine hull of the
ellipse in NpM . Provided that this ellipse is non-degenerate at p the subspace Ep is
a plane. The next result tells us that the degenerate situation may be generically
avoided.
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Theorem 5.2. Given a surface M , there is an open and dense subset of immersions
of M in R

N (with the Whitney C∞-topology) such that,
a) If N ≥ 6, the curvature ellipse is non-degenerate at every point of M .
b) If N = 5, the curvature ellipse is non-degenerate at every point except at most at
isolated points.

Proof: We observe that the curvature ellipse at p degenerates into a segment if and
only if the vectors B = (a1 − c1, ..., aN−2 − cN−2) and C = (b1, ..., bN−2) are linearly
dependent. But this is equivalent to the vanishing ofN−3 quadratic equations in the
variables ai, bi and ci, which can be taken as coordinates in the jet space J2(M,RN).
The zeroes of these equations determine a stratified subset V of codimension n− 3
in J2(M,RN). And saying that the ellipse at a point p is degenerate, is equivalent
to ask that the image of the 2-jet map j2f : M → J2(M,RN) at p hits this subset.
Now, it follows from the Thom Transversality Theorem ([4]) that there is an open
and dense subset in the set of all the immersions of M in RRN , for which the map
j2f is transversal to V . Since the dimension of M is 2, transversality in this case
implies that j2f may only hit V at isolated points when N = 5 and at no point
when N > 5. �

According to the theorem above, we have that for a generic surface in R
5 it is

possible to find some normal field, locally defined at each point of an open and dense
submanifold M̄ of M , with the property that it is orthogonal to the normal plane Ep

at every point. Yet in the case that the surface is immersed in a higher dimensional
euclidean space R

N , we can define such a field in a neighbourhood of every point
of M . Moreover, there are at least N − 4 locally defined linearly independent fields
with this property. The (isolated) points of M ′ = M − M̄ , characterized by the
fact that the curvature ellipse degenerates into a segment, or a point, are called
semiumbilic ([13]).
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Examples: a) The following family of immersions

ψ :
(

R
2, (0, 0)

)

−→
(

R
5, (0, · · · , 0)

)

(x, y) 7−→ (x, x2, x3 + y, y2, ax3 + by4),

where a and b are constants, provides examples of surfaces without semiumbilics in
R

5.

b) Consider the smooth map

ξ : IR3 −→ IR6

(x, y, z) 7−→ (x2, y2, z2,
√

2xy,
√

2xz,
√

2yz).

The restriction of ξ to an ellipsoid S = {(x, y, z) ∈ R
3 : ax2 + by2 + cz2 = 1},

where a, b and c are non-zero real numbers, provides an example of surface without
semiumbilics substantially contained in a hyperplane IR5 ⊂ R

6. In the particular
case of a = b = c, we have an immersion of the projective plane, known as the
Veronese surface. This surface is contained in a 4-sphere and the curvature ellipse
at each one of its points is a circle. Now, if we slightly translate S along one of the
axes, we have that its image by ξ is a surface without semiumbilics substantially
contained in IR6.

Theorem 5.3. Given any surface M immersed in R
N , N ≥ 5, suppose that ν is a

normal field which is orthogonal to Ep at every point. Then, M is ν-umbilical.

Proof: With the same notation as above, we have that, since ν(p) is orthogonal to Ep,
for all p, 〈ν, B〉 = 〈ν, C〉 = 0 at every point. But 〈ν, B〉 = Σn−2

i=1 (ai−ci)νi. And hence,
we have that Σn−2

i=1 aiνi = Σn−2
i=1 ciνi = λ. On the other hand, 〈ν, C〉 = Σn−2

i=1 biνi. But

from the definition of the ai, bi and ci it follows that Σn−2
i=1 aiνi = ∂2fν

∂x2 , Σ
n−2
i=1 biνi = ∂2fν

∂x∂y
,

Σn−2
i=1 ciνi = ∂2fν

∂y2 , where fν is the height function in the direction ν. Therefore, the
Hessian of fν is a diagonal matrix with the same function λ in the two entries of the
diagonal. And since this matrix coincides with that of the shape operator associated
to the normal field ν at each point, we can conclude that all the points are ν-umbilic.

�

Suppose that the curvature ellipse is non-degenerate at each point of a surface
M except perhaps at isolated (semiumbilic) points. We denote by E the rank 2
subbundle of NM whose fibre at each non-semiumbilic point p is the plane Ep. In
the case N = 5, E⊥ represents the corresponding orthogonal (line) subbundle of
NM . An immediate consequence of the Theorem 5.3 is the following:

Corollary 5.4. M −M ′ is E⊥-umbilic.

And now, from Chen’s results ([1]), we can conclude:

Corollary 5.5. If M is a surface in R
N , N ≥ 5, such that the subbundle E⊥ is

globally defined and there is some parallel normal field whose image lies in E⊥, then
M lies in a hypersphere.

For instance, in the case of the Veronese surface, V , defined above, we have that
the subbundle E is globally defined and E⊥ is a line bundle whose direction at each
point is given by the radial field of the 4- sphere that contains V .
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Definition 5.6. A normal field η on a surface M is called essential if η(p) ∈ Ep

for all non-semiumbilic points p ∈ M . The corresponding principal configuration is
also called essential.

We observe that not every surface admits globally defined essential normal fields.
In fact, any globally defined normal field over the Veronese surface must be perpen-
dicular to Ep at some points (see [13]).

Given a normal field ξ on M , we denote by Mξ the E- support of ξ, that is, the
closure of the region over which the E-component of ξ does not vanish.

Theorem 5.7. Let ξ be a normal field such that Mξ contains some open submanifold
of M . Then the ξ-principal configuration is essential over Mξ.

Proof: We observe that we can write ξ = η1 + η2, where η1 is a section of E⊥ and
η2 a section of E. The hypothesis on ξ implies that η2 is essential in the interior of
Mξ. Moreover, since all the points of M are umbilic for the field η1, we have that
ξ and η2 induce the same differential equation for the principal lines and thus have
the same principal configuration. �

Therefore we can say that all the principal configurations of M are exhausted
by the essential ones.

A surface M at which the curvature ellipse degenerates into a segment at every
point is said to be totally semiumbilic. In this case, E is a rank 1 subbundle of NM
and by using similar arguments as above, we can assert:

Corollary 5.8. All the non-umbilic normal fields on a totally semiumbilic surface
in R

N , N ≥ 5, share the same principal configuration.

A source of examples of totally semiumbilic surfaces is given by some translation
surfaces associated to curves in R

N . Given two curves γi : S1 → R
N , i = 1, 2, we

define the translation surface associated to γ1 and γ2 as the image of the map

Tγ1,γ2
: S1 × S1 −→ R

N

( s, t ) 7−→ 1
2
( γ1 (s) + γ2 (t) ).

It can be seen that, for most pairs (γ1, γ2), the corresponding surface is a torus
immersed with isolated double points if N = 4, 5 or embedded if N ≥ 6. Moreover,
in the particular case that the curves γ1 and γ2 are contained in orthogonal subspaces
of R

N , it can be shown that Tγ1,γ2
is a totally semiumbilical torus.
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