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Abstract

Higher dimensional wavelets are constructed in the framework of Clif-
ford analysis by taking the Clifford-monogenic extension of specific functions.
Clifford-monogenic functions are direct higher dimensional generalizations of
holomorphic functions in the complex plane. In this way also new generalized
polynomials, the so-called Clifford-Laguerre polynomials, are obtained.

1 Introduction

The wavelet transform has become quite a standard tool in numerous research
and application domains and its popularity has increased rapidly over the last few
decades.
The main idea in wavelet theory is to analyse a signal according to scale. Wavelets
are functions that oscillate like a wave in a limited portion of time or space and
vanish outside of it, i.e. they are wave-like but localized functions. One chooses a
particular wavelet, dilates or contracts it (to meet a given scale) and shifts it, while
looking into its correlations with the analyzed signal. The signal correlations with
wavelets dilated to large scales reveal gross (”rude”) features, while at small scales
fine signal structures are discovered.
In such a scanning through a signal, the scale and the position can vary continuously
or in discrete steps. The former gives rise to the continuous wavelet transform (ab-
breviated CWT), the latter to the discrete wavelet transform (abbreviated DWT).
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The CWT and DWT enjoy more or less opposite properties and both have their
specific field of application. The CWT is a successful tool for the analysis of signals
and feature detection in signals, while the DWT provides a powerful technique for
e.g. data compression and signal reconstruction. This paper deals with the CWT.
For a standard introduction to wavelet analysis we refer the reader to [7].
Wavelets constitute a family of functions derived from one single function called
the mother wavelet. The mother wavelet ψ(x) generates the other wavelets of the
family by change of scale a (i.e. by dilation) and by change of position b (i.e. by
translation):

ψa,b(x) =
1√
a
ψ

(
x− b

a

)
, a > 0, b ∈ R.

In the theory some conditions on the mother wavelet ψ are needed. We request ψ
to be an L2-function (finite energy) which is well localized both in the time domain
and in the frequency domain. Moreover it has to satisfy the so-called admissibility
condition:

Cψ :=
∫ +∞

−∞

|ψ̂(u)|2

|u|
du < +∞,

where ψ̂ denotes the Fourier transform of ψ. In the case where ψ is also in L1, this
admissibility condition implies ∫ +∞

−∞
ψ(x)dx = 0,

hence ψ must be oscillating.
In practice, applications impose additional requirements, among which a given num-
ber of vanishing moments:∫ +∞

−∞
xnψ(x)dx = 0, n = 0, 1, . . . , N.

This means that the corresponding CWT:

F (a, b) = < ψa,b, f >

=
1√
a

∫ +∞

−∞
ψ

(
x− b

a

)
f(x)dx

will filter out polynomial behaviour of the signal up to degree N , making it adequate
at detecting singularities.
When considering two L2-functions f and g with CWT respectively F and G, the
following inner product may be introduced:

[F,G] =
1

Cψ

∫ +∞

−∞

∫ +∞

0
F (a, b)G(a, b)

da

a2
db.

Taking into account the above mentioned admissibility condition for the mother
wavelet ψ, the corresponding Parseval formula is readily obtained:

[F,G] =< f, g > .
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In other words, as a consequence of the admissibility condition the CWT is an
isometry from the space of signals into the space of transforms.
This implies the existence of the inverse transform:

f(x) =
1

Cψ

∫ +∞

−∞

∫ +∞

0
F (a, b)ψa,b(x)

da

a2
db,

which means that the signal f(x) may be reconstructed exactly from its transform
F (a, b). In other words, the CWT provides a decomposition of the signal in terms
of the analyzing wavelets ψa,b with coefficients F (a, b).
The CWT may be extended to higher dimension while still enjoying the same prop-
erties as in the one dimensional case. Many wavelets are available for practical
applications, often linked to a specific problem. Special attention should be paid to
the two dimensional CWT

F (a, b, θ) =
1

a

∫
R2
ψ

(
r−θ(x− b)

a

)
f(x)dx

where now the mother wavelet ψ is not only translated by b ∈ R2 and dilated by
a > 0, but also rotated by an angle θ ∈ [0, 2π[ (see [1]). It is an efficient tool for
detecting oriented features of the signal provided the mother wavelet ψ contains
itself an intrinsic orientation.
The aim of this paper is to construct higher dimensional wavelets in the framework
of Clifford analysis. Clifford analysis deals with so-called monogenic functions; these
are direct higher dimensional generalizations of holomorphic functions in the com-
plex plane (see section 2).
Starting point is a specific real-analytic function in an open region of Rm, which is
monogenically extended to an appropriate domain in Rm+1. Expressing the mono-
genicity of this extension leads to a recurrence relation for new special functions,
most of which may be used as mother wavelets.
This technique was already successfully applied for constructing wavelets on the ba-
sis of the Clifford generalizations of the Hermite polynomials and the Gegenbauer
polynomials (see [4], [5] and [3]).
In this paper we first construct the so-called Clifford-Laguerre polynomials, a cer-
tain generalization to Clifford analysis of the traditional Laguerre polynomials on the
real line (section 3). After establishing an orthogonality relation for these Clifford-
Laguerre polynomials, we select some of them to be candidates for mother wavelets
(section 4). The corresponding CWT follows readily (section 5).

2 Clifford analysis

Clifford analysis (see e.g. [2] and [8]) offers a function theory which is a higher
dimensional analogue of the holomorphic functions of one complex variable.
Consider functions defined in Rm (m > 1) and taking values in the Clifford algebra
Rm or its complexification Cm. If (e1, . . . , em) is an orthonormal basis of Rm, the
non-commutative multiplication in the Clifford algebra is governed by the rule:

ejek + ekej = −2δj,k, j, k = 1, . . . ,m.
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Two anti-involutions on the Clifford algebra are important.
Conjugation is defined as the anti-involution for which

ej = −ej, j = 1, . . . ,m

with the additional rule
i = −i

in the case of Cm.
Inversion is defined as the anti-involution for which

e†j = ej, j = 1, . . . ,m.

In what follows Rk
m denotes the subspace of k-vectors, i.e. the space spanned by the

products of k different basis vectors.
The Euclidean space Rm is embedded in the Clifford algebras Rm and Cm by iden-
tifying (x1, . . . , xm) with the vector variable x given by

x =
m∑
j=1

ejxj,

whereas the Euclidean space Rm+1 is identified with R0
m⊕R1

m by considering (x0, x1, . . . , xm)
as x0 + x.
The product of two vectors splits up into a scalar part and a so-called bivector part:

xy = − < x, y > +x ∧ y

where

< x, y >=
m∑
j=1

xjyj

and

x ∧ y =
m∑
j=1

m∑
k=j+1

ejek(xjyk − xkyj).

In particular
x2 = − < x, x >= −|x|2.

The even subalgebra R+
m of the Clifford algebra Rm is defined by

R+
m =

∑
k even

⊕Rk
m.

The Clifford group Γ(m) of the Clifford algebra Rm, consists of those invertible
elements λ in Rm for which the action λxλ on a vector x ∈ R1

m is again a vector. Its
subgroup Γ+ is the intersection of Γ with the even subalgebra R+

m. The Spin-group
Spin(m) is the subgroup of Γ+ of those elements s ∈ Γ+ for which ss† = 1, or
equivalently

Spin(m) = {s = ω1 . . . ω2l; ωj ∈ Sm−1, j = 1, . . . , 2l, l ∈ N},

where Sm−1 denotes the unit sphere in Rm. The Spin-group is a two-fold covering
group of the rotation group SO(m). For T ∈ SO(m), there exists s ∈ Spin(m) such
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that T (x) = sxs, x ∈ Rm.
Two representations of Spin(m) on the space of Clifford valued functions in L2(Rm),
are the L-representation

L(s)f(x) = sf(sxs), s ∈ Spin(m)

and the H-representation

H(s)f(x) = sf(sxs)s, s ∈ Spin(m).

An Rm- or Cm-valued function F (x1, . . . , xm), respectively F (x0, x1, . . . , xm) is called
left-monogenic in an open region of Rm, respectively Rm+1, if in that region:

∂xF = 0, respectively (∂x0 + ∂x)F = 0.

Here ∂x is the Dirac operator

∂x =
m∑
j=1

ej∂xj
,

which splits the Laplacian in Rm:

∆m = −∂2
x,

whereas ∂x0 + ∂x is the Cauchy-Riemann operator for which

∆m+1 = (∂x0 + ∂x)(∂x0 + ∂x).

The notion of right-monogenicity is defined in a similar way, letting act the Dirac
operator or the Cauchy-Riemann operator from the right.
We denote by H(k) the set of harmonic homogeneous polynomials Sk of degree k in
Rm:

∆mSk(x) = 0 and Sk(tx) = tkSk(x),

usually called solid spherical harmonics.
If Ω ⊂ Rm is open, then an open neighbourhood Ω of Ω in Rm+1 is said to be
x0-normal if for each x ∈ Ω the line segment {x + t; t ∈ R} ∩ Ω is connected and
contains exactly one point in Ω.
Considering Rm as the hyperplane x0 = 0 in Rm+1, a real-analytic function f(x)
in an open connected domain Ω in Rm can be uniquely extended to a monogenic
function F (x0, x) in an open connected and x0-normal neighbourhood Ω of Ω in
Rm+1. This so-called Cauchy-Kowalewskaia (CK-) extension of f(x) is given by

F (x0, x) =
∞∑
k=0

(−1)k
xk0
k!
∂kxf(x).

The CK-extension procedure leads to the CK-product which, despite the non-
commutativity of the Clifford algebra, preserves the monogenicity of the factors: the
CK-product of two monogenic functions in Rm+1 is the CK-extension to Rm+1 of
the product of the real-analytic restrictions to Rm. For example, if zj, j = 1, . . . ,m
denote the monogenic variables in Rm+1:

zj = xj − x0ej,
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then their CK-product is the CK-extension of xjxk, given by

zj � zk =
1

2
(zjzk + zkzj).

In the sequel, the so-called Clifford-Heaviside functions

P+ =
1

2

(
1 + i

x

|x|

)
, P− =

1

2

(
1− i

x

|x|

)

play an important rôle; they were introduced independently by Sommen in [13] and
McIntosh in [12].
These Clifford-Heaviside functions satisfy the relations

P+ + P− = 1; P+P− = P−P+ = 0; (P+)2 = P+; (P−)2 = P−.

Throughout this paper the Fourier transform of f(x) will be denoted by
F(f(x))(y):

F(f(x))(y) =
∫

Rm
exp (−i < x, y >) f(x) dV (x),

where dV (x) stands for the Lebesgue measure on Rm.

3 The Clifford-Laguerre polynomials

On the real line the generalized Laguerre polynomials L(α)
n (x), for α > −1, are

defined by

L(α)
n (x) = x−α

exp (x)

n!

dn

dxn

(
exp (−x)xn+α

)
, n = 0, 1, 2, . . .

They constitute an orthogonal basis for L2

(
[0,∞[, xα exp (−x)

)
and satisfy the

orthogonality relation∫ ∞

0
L(α)
m (x)L(α)

n (x)xα exp (−x)dx = Γ(1 + α)

(
n+ α

n

)
δm,n.

Starting point for the construction of a generalization to Clifford analysis of these
classical Laguerre polynomials are the functions

F (x) = exp (−|x|)|x|αP+ and G(x) = exp (−|x|)|x|αP−; α ∈ R,

which are real-analytic in the open connected domain Rm \ {0} in Rm.
Consequently their CK-extensions, which can be written as

F ∗(x0, x) = exp (−|x|)
∞∑
k=0

xk0
k!
|x|α−2k

(
L+,+
k,m,α(x)P

+ + L+,−
k,m,α(x)P

−
)

and analogously

G∗(x0, x) = exp (−|x|)
∞∑
k=0

xk0
k!
|x|α−2k

(
L−,+k,m,α(x)P

+ + L−,−k,m,α(x)P
−
)
,
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exist in an open connected and x0-normal neighbourhood Ω of Rm \ {0} in Rm+1.
By definition F ∗ satisfies in Ω:

F ∗(0, x) = exp (−|x|)|x|αP+ (1)

and
(∂x0 + ∂x)F

∗(x0, x) = 0. (2)

From the monogenicity relation (2) we derive the recurrence relation

L+,+
k+1,m,α(x)P

+ + L+,−
k+1,m,α(x)P

−

= |x|x
(
L+,+
k,m,α(x)P

+ + L+,−
k,m,α(x)P

−
)
− (α− 2k)x(

L+,+
k,m,α(x)P

+ + L+,−
k,m,α(x)P

−
)

+ x2∂x

(
L+,+
k,m,α(x)P

+ + L+,−
k,m,α(x)P

−
)
.

As it follows from (1) that

L+,+
0,m,α(x) = 1 and L+,−

0,m,α(x) = 0,

we thus obtain consecutively:

L+,+
1,m,α(x) = ix2 +

(
1−m

2
− α

)
x

L+,−
1,m,α(x) =

(
m− 1

2

)
x

L+,+
2,m,α(x) = −x4 + i(−2α−m+ 1)x3 +

(
α(α− 2) +

1

2
− m

2
+mα

)
x2

L+,−
2,m,α(x) =

(
m− 1

2

)
x2

L+,+
3,m,α(x) = −ix6 +

(
3α+ 3

m

2
− 3

2

)
x5 + i

(
α(α− 2) + 3mα− 5

2
m+ 2

+2α2 − 4α+
m2

2

)
x4 +

(
−α(α− 2)(α− 4)− 3

2
mα2 + 4mα

+
5

2
α− 2m+

3

2
− 3

2
α2 − m2α

2
+
m2

2

)
x3

L+,−
3,m,α(x) =

(
1−m

2

)
x5 + i

(
−3

2
m+ 1− α+mα+

m2

2

)
x4

+

(
−2mα+ 2m+

3

2
α− α2

2
− 3

2
+
mα2

2
+
m2α

2
− m2

2

)
x3

and so on.
Note that L+,+

k,m,α(x) is a polynomial of degree 2k in x, while L+,−
k,m,α(x) is a polynomial

of alternative degree 2k − 1 and 2k − 2 in x.
Furthermore, the Clifford-Laguerre polynomials L+,+

k,m,α(x) and L+,−
k,m,α(x) satisfy the

relation

L+,+
k,m,α(x)P

+ + L+,−
k,m,α(x)P

−

= (−1)k exp (|x|)|x|2k−α∂kx

(
exp (−|x|)|x|αP+

)
. (3)
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Naturally, similar formulae hold for the Clifford-Laguerre polynomials generated
by the CK-extension G∗. It turns out that L−,+k,m,α(x), respectively L−,−k,m,α(x) is the

complex conjugate of L+,−
k,m,α(x), respectively L+,+

k,m,α(x).

By means of formula (3) we obtain the following proposition.

Proposition
When α > −m and 2k < l we have the orthogonality relation∫

Rm
L+,+
k,m,α+2k(x)

(
L+,+
l,m,α+2l(x)P

+ + L+,−
l,m,α+2l(x)P

−
)
|x|α exp (−|x|)dV (x) = 0.

Proof:
As L+,+

k,m,α+2k(x) is a polynomial of degree 2k in x, it is sufficient to show that for
each t < l:∫

Rm
xt
(
L+,+
l,m,α+2l(x)P

+ + L+,−
l,m,α+2l(x)P

−
)
|x|α exp (−|x|)dV (x) = 0. (4)

Introducing spherical co-ordinates in Rm:

x = rω, r = |x|, ω ∈ Sm−1,

the function L+,+
l,m,α+2l(x)P

+ + L+,−
l,m,α+2l(x)P

− takes the ”axial” form

A2l(r) +B2l(r)ω,

where A2l and B2l are polynomials with complex coefficients of degree 2l in the
variable r.
Hence, if t = 2s is even, the above integral becomes

(−1)s
∫ +∞

0

∫
Sm−1

r2s

(
A2l(r) +B2l(r)ω

)
rα exp (−r)rm−1drdS(ω),

where dS(ω) stands for the Lebesgue measure on the unit sphere Sm−1 in Rm.
As ω is a specific spherical harmonic:∫

Sm−1
ωdS(ω) = 0,

so that this integral can be further simplified to

Am(−1)s
∫ +∞

0
A2l(r)r

2s+α+m−1 exp (−r)dr,

with

Am−1 =
2πm/2

Γ
(
m
2

)
the area of the unit sphere Sm−1.
The above integral converges if α > −m− 2s.
If t = 2s+1 is odd, we obtain in an analogous manner that the integral (4) converges



The Clifford-Laguerre Continuous Wavelet Transform 209

if α > −m− (2s+ 1).
Consequently, we conclude that the integral (4) converges for each 0 ≤ t < l under
the assumption α > −m.
Using respectively relation (3) and Stokes’s theorem, we obtain consecutively∫

Rm
xt
(
L+,+
l,m,α+2l(x)P

+ + L+,−
l,m,α+2l(x)P

−
)
|x|α exp (−|x|)dV (x)

= (−1)l
∫

Rm
xt∂lx

(
exp (−|x|)|x|α+2lP+

)
dV (x)

= (−1)l
{∫

∂Rm
xtdσ∂l−1

x

(
exp (−|x|)|x|α+2lP+

)

−
∫

Rm
(xt∂x)∂

l−1
x

(
exp (−|x|)|x|α+2lP+

)
dV (x)

}

= (−1)l+1
∫

Rm
(xt∂x)∂

l−1
x

(
exp (−|x|)|x|α+2lP+

)
dV (x).

As xt∂x ≈ xt−1 and t < l, repeating this argument leads to the desired result. �

4 The Clifford-Laguerre wavelets

For α > −m and 0 < l, the above proposition implies that the L1-functions

ψl,m,α(x) =

(
L+,+
l,m,α+2l(x)P

+ + L+,−
l,m,α+2l(x)P

−
)
|x|α exp (−|x|)

= (−1)l∂lx

(
exp (−|x|)|x|α+2lP+

)

have zero momentum.
In order that ψl,m,α is also an L2-function, we have to make the restriction α > −m/2.
Hence, for α > −m/2 and 0 < l, the functions ψl,m,α are good candidates for mother
wavelets in Rm, if at least they satisfy an appropriate admissibility condition (see
section 5). We call them the Clifford-Laguerre wavelets.
The wavelets ψl,m,α have vanishing moments up to order l − 1:∫

Rm
xjψl,m,α(x)dV (x) = 0 , j = 0, . . . , l − 1.

Their Fourier transform is

F(ψl,m,α(x))(u) = (−i)lulF
(

exp (−|x|)|x|α+2lP+

)
(u),

where by definition

F
(

exp (−|x|)|x|α+2lP+

)
(u)

=
∫

Rm
exp (−i < x, u >) exp (−|x|)|x|α+2l 1

2

(
1 + i

x

|x|

)
dV (x). (5)
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Introducing spherical co-ordinates

x = rω, u = ρξ; r = |x|, ρ = |u|, ω ∈ Sm−1, ξ ∈ Sm−1

expression (5) becomes

F
(

exp (−|x|)|x|α+2lP+

)
(u)

=
1

2

∫ +∞

0
exp (−r)rα+2l+m−1dr

∫
Sm−1

exp (−irρ < ω, ξ >)dS(ω)

+
i

2

∫ +∞

0
exp (−r)rα+2l+m−1dr

∫
Sm−1

exp (−irρ < ω, ξ >)ωdS(ω). (6)

From the theory of the Fourier transform of radial functions and the theory of Bessel
functions, it is well known that

∫
Sm−1

exp (−irρ < ω, ξ >)dS(ω) =
(2π)m/2Jm/2−1(rρ)

rm/2−1ρm/2−1
,

with Jm/2−1 the Bessel function of the first kind of order m/2− 1 (see [15]).
By applying this result, the first term of the right hand side of equation (6) becomes

1

2

∫ +∞

0
exp (−r)rα+2l+m−1dr

∫
Sm−1

exp (−irρ < ω, ξ >)dS(ω)

=
(2π)m/2

2

1

ρm/2−1

∫ +∞

0
exp (−r)rα+2l+m/2Jm/2−1(rρ)dr.

By the assumption α > −m, this can be further simplified to (see for e.g. [9])

1

2

∫ +∞

0
exp (−r)rα+2l+m−1dr

∫
Sm−1

exp (−irρ < ω, ξ >)dS(ω)

=
(2π)m/2

2
Γ(α+ 2l +m)

ρ1−m/2

(1 + ρ2)(α+2l+m/2+1)/2
P

1−m/2
α+2l+m/2

(
(1 + ρ2)−1/2

)
,

with

P µ
ν (x) =

1

Γ(1− µ)

(
1 + x

1− x

)µ/2
F

(
−ν, ν + 1; 1− µ;

1− x

2

)
; −1 < x < 1

the associated Legendre function of the first kind and

F (a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)

zn

n!
; |z| < 1

the hypergeometric function.
To calculate the second term of the right hand side of (6), we use the Funk-Hecke
theorem (see [10]):∫

Sm−1
f(< ω, ξ >)Sk(ω)dS(ω) = Am−1Sk(ξ)

∫ 1

−1
f(t)(1− t2)(m−3)/2Pk(t)dt,
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with Sk ∈ H(k) a solid spherical harmonic of degree k and Pk the Legendre polyno-
mial of degree k in Rm.
Application of this theorem leads to∫

Sm−1
exp (−irρ < ω, ξ >)ωdS(ω)

= Am−1ξ
∫ 1

−1
exp (−irρt)(1− t2)(m−3)/2P1(t)dt.

As

Pk(t) =
k!(m− 3)!

(k +m− 3)!
C

(m−2)/2
k (t)

and the Gegenbauer polynomials Cλ
k satisfy

Cλ
k (−x) = (−1)kCλ

k (x),

we obtain ∫
Sm−1

exp (−irρ < ω, ξ >)ωdS(ω)

= −Am−1ξ
∫ 1

−1
exp (irρt)(1− t2)(m−3)/2P1(t)dt.

This can be further calculated as∫
Sm−1

exp (−irρ < ω, ξ >)ωdS(ω)

= −iAm−12
m/2−1

√
πΓ

(
m− 1

2

)
ξρ1−m/2r1−m/2Jm/2(ρr).

Consequently we obtain for the second term of the right hand side of (6):

i

2

∫ +∞

0
exp (−r)rα+2l+m−1dr

∫
Sm−1

exp (−irρ < ω, ξ >)ωdS(ω)

= 2m/2−2
√
πΓ

(
m− 1

2

)
Am−1ξρ

1−m/2
∫ +∞

0
exp (−r)rα+2l+m/2Jm/2(ρr)dr

= 2m/2−2
√
πΓ

(
m− 1

2

)
Γ(α+ 2l +m+ 1)Am−1ξ

ρ1−m/2

(1 + ρ2)(α+2l+m/2+1)/2

P
−m/2
α+2l+m/2

(
(1 + ρ2)−1/2

)
,

where we have again used the assumption α > −m.
Hence we finally obtain for the Fourier transform of the Clifford-Laguerre wavelets:

F(ψl,m,α(x))(u) = (−i)l2m/2−1Γ(α+ 2l +m)
|u|1−m/2

(1 + |u|2)(α+2l+m/2+1)/2
ul{

πm/2P
1−m/2
α+2l+m/2

(
(1 + |u|2)−1/2

)
+

√
π

2
Γ

(
m− 1

2

)

(α+ 2l +m)Am−1
u

|u|
P
−m/2
α+2l+m/2

(
(1 + |u|2)−1/2

)}
. (7)
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5 The Clifford-Laguerre CWT

Take f ∈ L2(Rm), then its Clifford-Laguerre CWT (CLCWT) is defined by

Tl,m,αf(a, b, s) = Fl,m,α(a, b, s) = < ψ
a,b,s
l,m,α, f >

=
∫

Rm
ψ
a,b,s

l,m,α(x)f(x)dV (x)

where, still for α > −m/2 and l > 0, the continuous family of wavelets ψ
a,b,s
l,m,α(x) is

given by

ψ
a,b,s
l,m,α(x) =

1

am/2
sψl,m,α

(
s(x− b)s

a

)
s,

with a ∈ R+, b ∈ Rm and s ∈ Spin(m), originating from the mother wavelet ψl,m,α
by dilation, translation and spinor-rotation.
In agreement with the general representation theory of groups, we define the repre-
sentation of Spin(m) on the CLCWT as follows:

L(s′)Fl,m,α(a, b, s) = s′Fl,m,α(a, s′bs
′, s′s).

The above definition of the continuous family of wavelets leads to the commutation
relation:

L(s′)Tl,m,αf(a, b, s) = Tl,m,α(L(s′)f)(a, b, s).

In other words, the use of the H-representation on the kernel of the wavelet trans-
form is necessary in order to obtain the above Spin(m)-invariance of the wavelet
transform.
Now it is clear that the CLCWT will map L2(Rm) into a weighted L2-space on
R+ × Rm × Spin(m) for some weight function still to be determined. This weight
function has to be chosen in such a way that the CLCWT is an isometry, or in other
words that the Parseval formula should hold.
Introducing the inner product

[Fl,m,α, Gl,m,α]

=
1

Cl,m,α

∫
Spin(m)

∫
Rm

∫ +∞

0
F l,m,α(a, b, s)Gl,m,α(a, b, s)

da

am+1
dV (b)ds,

where ds stands for the Haar measure on Spin(m), we search for the constant Cl,m,α
in order to have the Parseval formula

< f, g >= [Fl,m,α, Gl,m,α]

fulfilled.
We find that this Parseval formula holds if we put (see [6])

Cl,m,α =
∫

Rm
F(ψl,m,α(x))(u)F(ψl,m,α(x))(u)

dV (u)

|u|m
,

where we have used the fact that F(ψl,m,α(x))F(ψl,m,α(x)) is real valued.
The above relation defining the constant Cl,m,α is called the admissibility condition
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for the Clifford-Laguerre wavelets, and the constant Cl,m,α involved is called the
admissibility constant.
After substitution of the expression (7) for the Fourier transform, the admissibility
constant takes the following form:

Cl,m,α

= 2m−2

(
Γ(α+ 2l +m)

)2{
πm

∫
Rm

|u|2l+2−m

(1 + |u|2)(2α+4l+m+2)/2(
P

1−m/2
α+2l+m/2((1 + |u|2)−1/2)

)2
dV (u)

|u|m
+
π

4

(
Γ

(
m− 1

2

)
(α+ 2l +m)Am−1

)2

∫
Rm

|u|2l+2−m

(1 + |u|2)(2α+4l+m+2)/2

(
P
−m/2
α+2l+m/2((1 + |u|2)−1/2)

)2
dV (u)

|u|m

}
.

Introducing spherical co-ordinates

u = ρξ; ρ = |u|, ξ ∈ Sm−1,

the first integral defining the admissibility constant can be simplified to

∫
Rm

|u|2l+2−m

(1 + |u|2)(2α+4l+m+2)/2

(
P

1−m/2
α+2l+m/2((1 + |u|2)−1/2)

)2
dV (u)

|u|m

= Am−1

∫ +∞

0

ρ2l−m+1

(1 + ρ2)(2α+4l+m+2)/2

(
P

1−m/2
α+2l+m/2((1 + ρ2)−1/2)

)2

dρ.

As the associated Legendre functions of the first kind P µ
ν (x) with µ 6= 1, 2, 3, . . .

have the following behaviour near the singular point +1 (see for e.g. [11]):

2µ/2(1− x)−µ/2

Γ(1− µ)

and as

P µ
ν (0) = 2µπ−1/2 cos

(
π

2
(ν + µ)

)Γ

(
1
2

+ ν+µ
2

)

Γ

(
1 + ν−µ

2

) ,
the above integral is finite if we make the restriction α 6= −2l−2,−2l−4,−2l−6, . . ..
In an analogous manner, one obtains that the integral

∫
Rm

|u|2l+2−m

(1 + |u|2)(2α+4l+m+2)/2

(
P
−m/2
α+2l+m/2((1 + |u|2)−1/2)

)2
dV (u)

|u|m

= Am

∫ +∞

0

ρ2l−m+1

(1 + ρ2)(2α+4l+m+2)/2

(
P
−m/2
α+2l+m/2((1 + ρ2)−1/2)

)2

dρ.

is finite, provided that α 6= −2l − 1,−2l − 3,−2l − 5, . . ..
The above reasoning leads to the conclusion that the admissibility constant Cl,m,α is
finite if we make the additional restriction α 6= −2l−1,−2l−2,−2l−3,−2l−4, . . ..
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