Large deviations for hitting times of some decreasing sets

Claudio Macci*

Abstract

In this paper we consider a suitable \mathbb{R}^d -valued process (Z_t) and a suitable family of nonempty subsets (A(b):b>0) of \mathbb{R}^d which, in some sense, decrease to empty set as $b\to\infty$. In general let T_b be the first hitting time of A(b) for the process (Z_t) . The main result relates the large deviations principle of $(\frac{T_b}{b})$ as $b\to\infty$ with a large deviations principle concerning (Z_t) which agrees with a generalized version of Mogulskii Theorem. The proof has some analogies with the proof presented in [4] for a similar result concerning nondecreasing univariate processes and their inverses with general scaling function.

1 Introduction

Throughout this paper we consider a suitable \mathbb{R}^d -valued process (Z_t) starting at zero and a suitable family of nonempty subsets (A(b):b>0) of \mathbb{R}^d which, in some sense, decrease to empty set as $b\to\infty$ (for a precise statement see (\mathbf{Z}) and (\mathbf{A}) below in section 2 devoted to some preliminaries). Moreover let us consider the random variables $(T_b:b>0)$ where, in general, T_b is the first time t at which $Z_t \in A(b)$.

The aim of this paper is to relate the large deviations principle of $(\frac{T_b}{b})$ as $b \to \infty$ with a large deviations principle concerning (Z_t) which agrees with a generalized version of Mogulskii Theorem with a continuous parameter (see (**Z**) with some related remarks in section 2).

 $^{^*}$ This work has been partially supported by Murst Project "Processi stocastici, calcolo stocastico ed applicazioni".

Received by the editors June 2002.

Communicated by T. Bruss.

¹⁹⁹¹ Mathematics Subject Classification: 60F10.

 $[\]it Key\ words\ and\ phrases$: large deviations, first passage time, Mogulskii Theorem, homogeneous function of degree 1.

Some propositions and the main result (Theorem 3.3) are presented in section 3. Section 4 is devoted to present some examples which can be related to some queueing problems. In section 5 we present the proofs of the results in section 3. Finally a conjecture on first hitting places ($Z_{T_b}: b > 0$) is presented in section 6.

The proofs presented in section 5 have some analogies with the proofs presented in [4] (section 6) for similar results concerning nondecreasing univariate processes and their inverses with general scaling function; on the other hand a work with the linear scaling function used in this paper is [6].

2 Preliminaries

In this paper we deal with a \mathbb{R}^d -valued process (Z_t) with cadlag path such that $Z_0 = 0$ and the following condition (**Z**) holds. In view of presenting (**Z**) we introduce some notation: let D[0,1] be the family of all \mathbb{R}^d -valued functions with cadlag paths defined on [0,1], let AC[0,1] be the family of all \mathbb{R}^d -valued absolutely continuous functions defined on [0,1] and let $AC_0[0,1]$ be the set

$$AC_0[0,1] = \{ \phi \in AC[0,1] : \phi(0) = 0 \}.$$

Moreover we use the notation $\frac{Z_{\alpha}}{\alpha}$ for the (random) function

$$t \in [0,1] \mapsto \frac{Z_{\alpha t}}{\alpha}$$

in D[0,1].

(**Z**) Let $\xi: \mathbb{R}^d \to [0, \infty]$ be a convex and good rate function which has a unique zero $\underline{m}^{(0)}$ (namely $\xi(\underline{y}) = 0$ if and only if $\underline{y} = \underline{m}^{(0)}$) with $\underline{m}^{(0)} \neq 0$; then $(\frac{Z_{\alpha}}{\alpha})$ satisfies the large deviations principle in D[0, 1] (as $\alpha \to \infty$) with the good rate function

$$\phi \in D[0,1] \mapsto I(\phi) = \begin{cases} \int_0^1 \xi(\dot{\phi}(t))dt & \text{if } \phi \in AC_0[0,1] \\ \infty & \text{if } \phi \notin AC_0[0,1] \end{cases} ; \tag{1}$$

indeed we recall that $\phi \in AC[0,1]$ implies that ϕ is differentiable almost everywhere in [0,1].

It is useful to point out some consequences of (\mathbf{Z}) . First of all, if we consider the function ϕ_0 defined by

$$t \in [0,1] \mapsto \phi_0(t) = t\underline{m}^{(0)},$$

we have $I(\phi) = 0$ if and only if $\phi = \phi_0$. Moreover ξ is the large deviations rate function for $(\frac{Z_{\alpha}}{\alpha})$ (as $\alpha \to \infty$) as a consequence of contraction principle (see [3], Theorem 4.2.1, page 110).

As far as condition (\mathbf{Z}) is concerned, we point out that Mogulskii Theorem is a well known result on large deviations for sequences of processes with cadlag path (see e.g. [3], Theorem 5.1.2, page 152; another reference is [5], section 3); another result on large deviations for sequences of processes is Theorem 5.1 in [7] (page 71) which provides a large deviations principle for multidimensional jump Markov processes and the corresponding rate function is, in some sense, more general than I in (1). Furthermore we can say that (\mathbf{Z}) can be seen as a generalized version

of Mogulskii Theorem where α is a continuous parameter; this generalized version holds true when (Z_t) is a quite general Lévy process (see Theorem 1.2 in [2] which deals with a general separable Banach space instead of \mathbb{R}^d).

Now we introduce a quite general class of nonempty subsets (A(b):b>0) of \mathbb{R}^d ; more precisely, given a function $\psi:\mathbb{R}^d\to\mathbb{R}$ such that condition (\mathbf{A}) presented below holds, we set

$$A(b) = \{ y \in \mathbb{R}^d : \psi(y) \ge b \} \quad (\forall b > 0).$$
 (2)

In particular we set A = A(1) and, for all b > 0, the boundary of A(b) is

$$\partial A(b) = \{ \underline{y} \in \mathbb{R}^d : \psi(\underline{y}) = b \} \ (\forall b > 0);$$

moreover we point out that, in some sense, A(b) decreases to emptyset as $b \to \infty$.

Condition (A) consists of the following three conditions:

(A1) the function ψ is homogeneous of degree 1, namely

$$\psi(\gamma y) = \gamma \psi(y) \ (\forall \gamma > 0 \text{ and } \forall y \in \mathbb{R}^d),$$

and continuous.

(**A2**) $\psi(\underline{m}^{(0)}) > 0$.

(A3) for all b > 0

$$\psi(\underline{z}) = b, \ \gamma \in (0,1) \Rightarrow \psi(\underline{z} + \gamma \underline{m}^{(0)}) \ge b$$

which is equivalent to

$$\underline{z} \in \partial A(b), \ \gamma \in (0,1) \Rightarrow \underline{z} + \gamma \underline{m}^{(0)} \in A(b).$$
 (3)

It is useful to point out some consequences of (A).

First of all $\psi(\underline{0}) = 0$ follows from (A1). Moreover (A2) means that, in some sense, (Z_t) is directed to A; indeed (A2) is equivalent to

$$\{\gamma \underline{m}^{(0)}: \gamma > 0\} \cap A(b) \neq \emptyset \ \ (\forall b > 0).$$

Finally, as far as (A3) is concerned, (3) gives a condition on the shape of the sets (A(b):b>0); some examples are presented in section 4. On the other hand, for instance, the function ψ defined by

$$\underline{y} \in \mathbb{R}^d \mapsto \psi(\underline{y}) = \|\underline{y}\|$$

(where $\|\cdot\|$ is the usual norm) satisfies $(\mathbf{A1})$ and $(\mathbf{A2})$ but $(\mathbf{A3})$ fails.

A reference concerning this topic is [1] and (A2) can be considered as the opposite of (H2) in [1]; indeed in [1] we have a general sequence of random variables (Y_n) in place of (Z_t) and, in some sense, (Y_n) is directed away from A. Furthermore we point out that the set A in [1] is more general than A in this paper and (\mathbf{Z}) is not considered in [1] for the two following reasons: it does not allow to handle general sequences of random variables; the approximations derived from (\mathbf{Z}) on finite time intervals are not sufficient because, in some sense, we have the opposite of ($\mathbf{A2}$) for (Y_n) .

In this paper we deal with a family of random variables $(T_b:b>0)$ defined by

$$T_b = \inf\{t \ge 0 : Z_t \in A(b)\} \ (\forall b > 0);$$

thus, in general, T_b is the first hitting time of A(b) for the process (Z_t) .

We remark that each T_b is almost surely finite by (A2); moreover we also have

$$\frac{b}{\psi(\underline{m}^{(0)})}\underline{m}^{(0)} \in \partial A(b) \quad (\forall b > 0)$$

so that

$$\ell \underline{m}^{(0)} \in \partial A$$
, where $\ell = \frac{1}{\psi(\underline{m}^{(0)})}$. (4)

The value ℓ plays a crucial role in what follows; indeed we shall see below that ℓ is the limit of $\frac{T_b}{b}$ as $b \to \infty$ because is the unique base for the corresponding large deviations rate function J (namely we have J(x) = 0 if and only if $x = \ell$; for this terminology concerning a rate function, see [4], section 2).

3 A variational formula for J in terms of ξ

The main result in this section is Theorem 3.3 which provides a variational formula for large deviations rate function J of $(\frac{T_b}{b})$ as $b \to \infty$ in terms of ξ .

In order to prove this variational formula it is useful to consider the following subsets of D[0,1] varying $x \in (0,\infty)$:

$$H_x = \{ \phi : \phi(s) \notin A(x)^{\circ}, \forall s \leq 1 \}$$

and

$$H^x = \{\phi : \exists s \le 1 \text{ such that } \phi(s) \in A(x)\}.$$

Proposition 3.1. Assume that (\mathbf{Z}) and (\mathbf{A}) hold.

(i) We have

$$-f_{+}(x^{+}) \leq \liminf_{\alpha \to \infty} \frac{1}{\alpha} \log P(\frac{Z_{\alpha}}{\alpha} \in H^{x}) \leq \limsup_{\alpha \to \infty} \frac{1}{\alpha} \log P(\frac{Z_{\alpha}}{\alpha} \in H^{x}) \leq -f_{+}(x) \quad (5)$$

for all $x \in (0, \infty)$ and some nondecreasing and lower semicontinuous function f_+ on $(0, \infty)$ if and only if

$$-g_{-}(x^{-}) \le \liminf_{b \to \infty} \frac{1}{b} \log P(\frac{T_b}{b} \le x) \le \limsup_{b \to \infty} \frac{1}{b} \log P(\frac{T_b}{b} \le x) \le -g_{-}(x)$$
 (6)

for all $x \in (0, \infty)$ and some nonincreasing and lower semicontinuous function g_- on $(0, \infty)$; in such a case

$$g_{-}(x) \equiv x f_{+}(\frac{1}{x}). \tag{7}$$

(ii) We have

$$-f_{-}(x^{-}) \leq \liminf_{\alpha \to \infty} \frac{1}{\alpha} \log P(\frac{Z_{\alpha}}{\alpha} \notin H^{x}) \leq \limsup_{\alpha \to \infty} \frac{1}{\alpha} \log P(\frac{Z_{\alpha}}{\alpha} \notin H^{x}) \leq -f_{-}(x)$$
 (8)

for all $x \in (0, \infty)$ and some nonincreasing and lower semicontinuous function f_- on $(0, \infty)$ if and only if

$$-g_{+}(x^{+}) \leq \liminf_{b \to \infty} \frac{1}{b} \log P(\frac{T_b}{b} > x) \leq \limsup_{b \to \infty} \frac{1}{b} \log P(\frac{T_b}{b} > x) \leq -g_{+}(x) \tag{9}$$

for all $x \in (0, \infty)$ and some nondecreasing and lower semicontinuous function g_+ on $(0, \infty)$; in such a case

$$g_{+}(x) \equiv x f_{-}(\frac{1}{x}).$$

(iii) If, with f_- as in (ii), (8) holds for all $x \in (0, \infty)$, then for all $x \in (0, \infty)$

$$-g_{+}(x^{+}) \leq \liminf_{b \to \infty} \frac{1}{b} \log P(\frac{T_b}{b} \geq x) \leq \limsup_{b \to \infty} \frac{1}{b} \log P(\frac{T_b}{b} \geq x) \leq -g_{+}(x).$$

(iv) If, with g_+ as in (ii), (9) holds for all $x \in (0, \infty)$, then for all $x \in (0, \infty)$

$$-f_{-}(x^{-}) \leq \liminf_{\alpha \to \infty} \frac{1}{\alpha} \log P(\frac{Z_{\alpha}}{\alpha} \in H_{x}) \leq \limsup_{\alpha \to \infty} \frac{1}{\alpha} \log P(\frac{Z_{\alpha}}{\alpha} \in H_{x}) \leq -f_{-}(x).$$

By referring to the functions f_- and f_+ in Proposition 3.1, as in [4] (see eq. (100) in the proof of Theorem 1) for all $x \in (0, \infty)$ we can set

$$f_{-}(x) \equiv \inf\{I(\phi) : \phi \in H_x\} \tag{10}$$

and

$$f_{+}(x) \equiv \inf\{I(\phi) : \phi \in H^{x}\}. \tag{11}$$

Then the next result gives an alternative expression for the functions f_{-} and f_{+} .

Proposition 3.2. Assume that (**Z**) and (**A**) hold. Moreover let f_{-} and f_{+} be the functions defined by (10) and (11) respectively. Then we have

$$x \in (0, \infty) \mapsto f_{-}(x) = \begin{cases} \inf\{\xi(\underline{z}) : \underline{z} \in \partial A(x)\} & \text{if } x < \ell^{-1} \\ 0 & \text{if } x \ge \ell^{-1} \end{cases}$$

and

$$x \in (0, \infty) \mapsto f_+(x) = \begin{cases} 0 & \text{if } x \le \ell^{-1} \\ \inf\{\xi(\underline{z}) : \underline{z} \in \partial A(x)\} & \text{if } x > \ell^{-1} \end{cases}$$

Thus we immediately have the following

Theorem 3.3. Assume that (**Z**) and (**A**) hold. Then the large deviations principle holds for $(\frac{T_b}{b})$ as $b \to \infty$ and, for the corresponding rate function J defined on $(0,\infty)$, we have

$$J(x) \equiv x \inf\{\xi(\underline{y}) : \underline{y} \in \partial A(\frac{1}{x})\} \equiv \inf\{x\xi(\frac{\underline{y}}{x}) : \underline{y} \in \partial A\}.$$

The next result shows that the expressions of J in Theorem 3.3 are more explicit when d=1; indeed ∂A is reduced to a single point (see Appendix for details) and, if in general we simply write down y instead of $y \in \mathbb{R}^d = \mathbb{R}$, we have

$$\partial A = \{ y \in \mathbb{R} : \psi(y) = 1 \} = \{ \ell m^{(0)} \}$$

by (4).

Corollary 3.4. Assume that (**Z**) and (**A**) hold and let be d = 1. Then, for all $x \in (0, \infty)$, we have

$$J(x) \equiv x\xi(\frac{\ell m^{(0)}}{x}).$$

In the section 5 we present the proofs of Proposition 3.1 and Proposition 3.2. The proof of Theorem 3.3 immediately follows from Proposition 3.2 together with some results in [4] (namely Theorem 13 and Lemma 4). Indeed we still point out that we adapt in a suitable way the content of section 6 in [4]; in particular Proposition 3.1 here plays the role of Theorem 12 in [4].

We conclude with some differences between [4] and this paper. In [4] (Z_t) is a nondecreasing (univariate) process while in this paper (Z_t) is a (possibly multivariate) process such that (\mathbf{Z}) and (\mathbf{A}) hold. We also remark that the hypotheses on (Z_t) in this paper are more general than monotonicity of (Z_t) (monotonicity with respect to each component of (Z_t) , if (Z_t) is multivariate) and we only obtain the large deviations principle for $(\frac{T_b}{b})$ starting from the large deviations principle for $(\frac{Z_{\alpha_c}}{\alpha_c})$ but not vice versa as in [4].

4 Examples

The results in [6], which relate the large deviations behaviour of counting processes and their inverses, are motivated by applications to queues (see the references cited therein); in this section we motivate the results in this paper by applications to some similar queueing problems concerning d queues with d > 1.

In order to do that let us consider d > 1 and the notation

$$Z_t \equiv (Z_t^{(1)}, \dots, Z_t^{(d)}) \quad (\forall t > 0)$$

for the random variables of the process (Z_t) ; moreover, for each $\underline{y} \in \mathbb{R}^d$, we use the notation

$$\underline{y}=(y_1,\ldots,y_d).$$

Example 1. Let $\underline{a} \in \mathbb{R}^d$ be such that $a_1, \ldots, a_d > 0$ and set

$$\underline{y} = (y_1, \dots, y_d) \in \mathbb{R}^d \mapsto \psi(\underline{y}) = \max\{\frac{y_i}{a_i} : i \in \{1, \dots, d\}\}.$$

Thus, for all b > 0, T_b is the first time t at which at least one among the events

$$(\{Z_t^{(i)} \ge ba_i\} : i \in \{1, \dots, d\})$$

occurs. We point out that (A1) holds, (A2) is equivalent to $\max\{m_i^{(0)}:i\in\{1,\ldots,d\}\}>0$ and, as far as (A3) is concerned, a further restriction on $\underline{m}^{(0)}$ is needed: $m_1^{(0)},\ldots,m_d^{(0)}>0$.

Example 2. Let $\underline{a} \in \mathbb{R}^d$ be such that $a_1, \ldots, a_d > 0$ and set

$$\underline{y} = (y_1, \dots, y_d) \in \mathbb{R}^d \mapsto \psi(\underline{y}) = \min\{\frac{y_i}{a_i} : i \in \{1, \dots, d\}\}.$$

Thus, for all b > 0, T_b is the first time t at which all the events

$$(\{Z_t^{(i)} \ge ba_i\} : i \in \{1, \dots, d\})$$

occur. We point out that (A1) holds, (A2) is equivalent to $m_1^{(0)}, \ldots, m_d^{(0)} > 0$ which implies (A3).

Example 3. Let $\underline{a} \in \mathbb{R}^d \setminus \{\underline{0}\}$ be arbitrarily fixed (where $\underline{0}$ is the null vector) and set

$$\underline{y} = (y_1, \dots, y_d) \in \mathbb{R}^d \mapsto \psi(\underline{y}) = \langle \underline{a}, \underline{y} \rangle.$$

Thus, for all b > 0, T_b is the first time t at which the event $\langle \underline{a}, Z_t \rangle \geq b$ occurs. We point out that $(\mathbf{A1})$ holds, $(\mathbf{A2})$ is $\langle \underline{a}, \underline{m}^{(0)} \rangle > 0$ which implies $(\mathbf{A3})$; indeed, for all b > 0, $\psi(\underline{z}) = \langle \underline{a}, \underline{z} \rangle = b$ and $\gamma \in (0, 1)$ implies

$$\psi(\underline{z} + \gamma \underline{m}^{(0)}) = \langle \underline{a}, \underline{z} + \gamma \underline{m}^{(0)} \rangle = \underbrace{\langle \underline{a}, \underline{z} \rangle}_{=b} + \gamma \underbrace{\langle \underline{a}, \underline{m}^{(0)} \rangle}_{>0} \ge b.$$

The hypothesis of monotonicity for the processes $(Z_t^{(1)}), \ldots, (Z_t^{(d)})$ is not necessary for applying the results in this paper to (Z_t) . On the other hand, in view of applications to queues which extends in some sense the applications of the results in [6], here we think $(Z_t^{(1)}), \ldots, (Z_t^{(d)})$ as counting processes related to the d queues.

Then $(T_b:b>0)$ in example 1 refer to some first level crossing times concerning at least one among the d queues; $(T_b:b>0)$ in example 2 refer to some level crossing times concerning all the d queues; if $a_1, \ldots, a_d>0$ are weights associated with each queue, $(T_b:b>0)$ in example 3 refer to some level crossing times concerning the process (\tilde{Z}_t) defined by

$$\tilde{Z}_t \equiv \langle \underline{a}, Z_t \rangle \equiv \sum_{k=1}^d a_k Z_t^{(k)},$$

i.e. the weighted sum of the processes $(Z_t^{(1)}), \ldots, (Z_t^{(d)})$.

5 The proofs

Proof of Proposition 3.1. We prove (i) in one direction; the reverse is similar. For all $\alpha, x > 0$ we have

$$\left\{\frac{Z_{\alpha}}{\alpha} \in H^{1/x}\right\} = \left\{\exists s \le 1 : \frac{Z_{\alpha s}}{\alpha} \in A(\frac{1}{x})\right\} = \left\{\exists s \le 1 : \psi(\frac{Z_{\alpha s}}{\alpha}) \ge \frac{1}{x}\right\} =$$

$$= \{\exists s \le 1 : \psi(Z_{\alpha s}) \ge \frac{\alpha}{x}\} = \{\exists s \le 1 : Z_{\alpha s} \in A(\frac{\alpha}{x})\} = \{T_{\alpha/x} \le \alpha\} = \{\frac{T_{\alpha/x}}{\alpha/x} \le x\}$$

whence we obtain

$$\frac{1}{\alpha}\log P(\frac{Z_{\alpha}}{\alpha} \in H^{1/x}) = \frac{1}{x}\frac{1}{\alpha/x}\log P(\frac{T_{\alpha/x}}{\alpha/x} \le x)$$

and (6) and (7) follow upon taking $\alpha \to \infty$ (and hence $b \to \infty$, with $b = \alpha/x$).

Moreover g_{-} is lower semicontinuous because f_{+} is lower semicontinuous and then it remains to be shown that g_{-} is nonincreasing. By its lower semicontinuity

the function g is discontinuous at most on a dense set Δ in \mathbb{R}_+ (as motivated in the proof of Theorem 12 in [4]) and, for $x \in \Delta$, $\lim \inf$ and $\lim \sup$ in (6) are both equal to $-g_-(x)$. So, by construction, the restriction of g_- to Δ is also nonincreasing as a limit of nonincreasing functions $x \mapsto -\frac{1}{b} \log P(\frac{T_b}{b} \leq x)$.

Now we show that g_- is nonincreasing on the whole \mathbb{R}_+ . Since Δ is dense, then for all $x, x' \in \Delta^c$ with x < x' there exists $y \in \Delta$ such that x < y < x'. The it is sufficies to show that, for all such x, x', y, we have

$$g_{-}(x) \ge g_{-}(y) \ge g_{-}(x').$$
 (12)

For the second inequality in (12) we remark that

$$g_{-}(y) \ge \liminf_{\Delta \ni a \nearrow x'} g_{-}(a) \ge g_{-}(x')$$

because g_{-} is nonincreasing on Δ (for the first inequality) and g_{-} is lower semicontinuous (for the second inequality).

For the first inequality in (12), we remark that f_+ is continuous from the left: indeed in general we have

$$f_+(b) \le \liminf_{a \nearrow b} f_+(a) \le \limsup_{a \nearrow b} f_+(a) \le f_+(b)$$

because f_+ is lower semicontinuous (for the first inequality) and nondecreasing (for the third inequality); thus g_- is continuous from the right by (7) and then

$$g_{-}(x) = \lim_{\Delta \ni a \setminus x} g_{-}(a) \ge g_{-}(y)$$

where the inequality holds because g_{-} is nondecreasing on Δ .

- (ii) The proof is similar to the proof of (i).
- (iii) If (8) holds, (9) holds for (ii) and we have the trivial lower bound

$$\liminf_{b \to \infty} \frac{1}{b} \log P(\frac{T_b}{b} \ge x) \ge \liminf_{b \to \infty} \frac{1}{b} \log P(\frac{T_b}{b} > x) \le -g_+(x^+).$$

To obtain the complementary upper bound, note that for all $\varepsilon > 0$ we have

$$\limsup_{b \to \infty} \frac{1}{b} \log P(\frac{T_b}{b} \ge x) \le \limsup_{b \to \infty} \frac{1}{b} \log P(\frac{T_b}{b} > x - \varepsilon) \le -g_+(x - \varepsilon)$$

by (9) and the result follows from the lower semicontinuity of g_+ by taking $\varepsilon \to 0$. (iv) The proof is similar to the proof of (iii). \diamondsuit

Proof of Proposition 3.2. First of all we point out two consequences of (10) and (11) respectively:

$$x \ge \ell^{-1} \Rightarrow \phi_0 \in H_x \Rightarrow f_-(x) = \inf\{I(\phi) : \phi \in H_x\} = 0;$$

$$x \le \ell^{-1} \Rightarrow \phi_0 \in H^x \Rightarrow f_+(x) = \inf\{I(\phi) : \phi \in H^x\} = 0.$$

Thus we have two remaining cases:

(a)
$$f_{-}(x) = \inf\{\xi(\underline{z}) : \underline{z} \in \partial A(x)\}\$$
 for $x < \ell^{-1}$;

(b)
$$f_{+}(x) = \inf\{\xi(\underline{z}) : \underline{z} \in \partial A(x)\}\ \text{for } x > \ell^{-1}.$$

 $\underline{\text{Case}}$ (a).

Let $\phi \in H_x$ be arbitrarily fixed, with $x < \ell^{-1}$. In order to avoid the trivial case $I(\phi) = \infty$, we assume that $\phi \in AC_0[0, 1]$. Then we have

$$I(\phi) = \int_0^1 \xi(\dot{\phi}(t))dt \ge \xi(\int_0^1 \dot{\phi}(t)dt) = \xi(\phi(1) - \phi(0)) = \xi(\phi(1));$$

indeed the inequality follows from Jensen inequality because ξ is convex. Then, if we consider the function g_{ϕ} is defined by

$$t \in [0,1] \mapsto g_{\phi}(t) = t\phi(1),$$

we have $I(\phi) \ge \xi(\phi(1)) = I(g_{\phi})$ and $g_{\phi} \in H_x$ because $\phi(1) \notin A(x)^{\circ}$; thus

$$\inf\{I(\phi): \phi \in H_x\} = \inf\{\xi(\underline{y}): \underline{y} \notin A(x)^{\circ}\}. \tag{13}$$

Moreover $\underline{m}^{(0)} \in A(x)^{\circ}$ when $x < \ell^{-1}$ and, for $\underline{y} \notin A(x)^{\circ}$, there exists $\alpha \in (0,1]$ such that

$$\underline{z} = \alpha \underline{y} + (1 - \alpha)\underline{m}^{(0)} \in \partial A(x)$$

by the continuity of ψ in (A1); thus

$$\xi(\underline{z}) = \xi(\alpha \underline{y} + (1 - \alpha)\underline{m}^{(0)}) \le \alpha \xi(\underline{y}) + (1 - \alpha)\underbrace{\xi(\underline{m}^{(0)})}_{=0} = \alpha \xi(\underline{y}) \le \xi(\underline{y})$$

by the convexity of ξ . Then, since we have $\partial A(x) \subset (A(x)^{\circ})^{c}$, we obtain

$$\inf\{\xi(y): y \notin A(x)^{\circ}\} = \inf\{\xi(\underline{z}): \underline{z} \in \partial A(x)\}. \tag{14}$$

In conclusion the statement (a) is proved by (10), (13) and (14).

<u>Case</u> (b).

Let $\phi \in H^x$ be arbitrarily fixed, with $x > \ell^{-1}$. In order to avoid the trivial case $I(\phi) = \infty$, we assume that $\phi \in AC_0[0, 1]$. For such a function ϕ let t_{ϕ} be defined by

$$t_{\phi} = \sup\{t \in [0,1] : \phi(t) \in A(x)\}.$$

We remark that $\phi(t_{\phi}) \in A(x)$ because of ϕ is continuous and A(x) is a closed set; moreover

$$t_{\phi} < 1 \Rightarrow \phi(1) \notin A(x) \text{ and } \phi(t_{\phi}) \in \partial A(x).$$
 (15)

Then we have

$$I(\phi) = \int_0^1 \xi(\dot{\phi}(t))dt \ge \int_0^{t_\phi} \xi(\dot{\phi}(t))dt$$

by the nonnegativeness of ξ and we obtain

$$I(\phi) \ge t_{\phi} \int_{0}^{t_{\phi}} \xi(\dot{\phi}(t)) \frac{dt}{t_{\phi}} \ge t_{\phi} \xi(\int_{0}^{t_{\phi}} \dot{\phi}(t) \frac{dt}{t_{\phi}}) = t_{\phi} \xi(\frac{\phi(t_{\phi}) - \phi(0)}{t_{\phi}}) = t_{\phi} \xi(\frac{\phi(t_{\phi})}{t_{\phi}});$$

the second inequality follows from Jensen inequality because ξ is convex.

By taking into account $\xi(\underline{m}^{(0)}) = 0$ and the convexity of ξ , we have another inequality:

$$I(\phi) \ge t_{\phi} \xi(\frac{\phi(t_{\phi})}{t_{\phi}}) = t_{\phi} \xi(\frac{\phi(t_{\phi})}{t_{\phi}}) + (1 - t_{\phi}) \xi(\underline{m}^{(0)}) \ge$$

$$\geq \xi(t_{\phi} \frac{\phi(t_{\phi})}{t_{\phi}} + (1 - t_{\phi}) \underline{m}^{(0)}) = \xi(\phi(t_{\phi}) + (1 - t_{\phi}) \underline{m}^{(0)}).$$

Now let us consider the function h_{ϕ} defined by

$$t \in [0, 1] \mapsto h_{\phi}(t) = t[\phi(t_{\phi}) + (1 - t_{\phi})\underline{m}^{(0)}]$$

and let us prove that $h_{\phi} \in H^x$. This follows from $h_{\phi}(1) \in A(x)$ which can be proved by considering two distinct cases: when $t_{\phi} = 1$ we have

$$h_{\phi}(1) = \phi(1) = \phi(t_{\phi}) \in A(x)$$

because $\phi(t_{\phi}) \in A(x)$ as pointed out above; when $t_{\phi} < 1$ we have

$$h_{\phi}(1) = \phi(t_{\phi}) + (1 - t_{\phi})\underline{m}^{(0)} \in A(x)$$

by (15) and (A3) (in particular for (A3) we have to refer to (3)). Thus we have $I(\phi) \geq \xi(\phi(t_{\phi}) + (1 - t_{\phi})\underline{m}^{(0)}) = \xi(h_{\phi}(1)) = I(h_{\phi})$ and $h_{\phi} \in H^x$ because $h_{\phi}(1) \in A(x)$; then we have

$$\inf\{I(\phi) : \phi \in H^x\} = \inf\{\xi(y) : y \in A(x)\}. \tag{16}$$

Moreover $\underline{m}^{(0)} \notin A(x)$ when $x > \ell^{-1}$ and, for $\underline{y} \in A(x)$, there exists $\alpha \in (0,1]$ such that

$$\underline{z} = \alpha \underline{y} + (1 - \alpha) \underline{m}^{(0)} \in \partial A(x)$$

by the continuity of ψ in (A1); thus

$$\xi(\underline{z}) = \xi(\alpha \underline{y} + (1 - \alpha)\underline{m}^{(0)}) \le \alpha \xi(\underline{y}) + (1 - \alpha)\underbrace{\xi(\underline{m}^{(0)})}_{=0} = \alpha \xi(\underline{y}) \le \xi(\underline{y})$$

by the convexity of ξ . Then, since we have $\partial A(x) \subset A(x)$, we obtain

$$\inf\{\xi(\underline{y}): \underline{y} \in A(x)\} = \inf\{\xi(\underline{z}): \underline{z} \in \partial A(x)\}. \tag{17}$$

In conclusion the statement (b) is proved by (11), (16) and (17). \diamondsuit

6 A conjecture on first hitting places $(Z_{T_b}: b > 0)$

It is known that $\underline{m}^{(0)}$ in (\mathbf{Z}) is the limit of $\frac{Z_t}{t}$ as $t \to \infty$. Moreover ℓ is the limit of $\frac{T_b}{b}$ as $b \to \infty$ because ℓ is the unique base for J; indeed by Theorem 3.3 and (4) we have

$$0 \le J(\ell) = \inf\{\ell\xi(\frac{\underline{y}}{\ell}) : \underline{y} \in \partial A\} \le \ell\xi(\frac{\ell\underline{m}^{(0)}}{\ell}) = \ell\xi(\underline{m}^{(0)}) = 0$$

and, as far as the uniqueness is concerned, by Theorem 3.3 we have

$$J(x) = 0 \Leftrightarrow \underline{m}^{(0)} \in \partial A(\frac{1}{x}) \Leftrightarrow x\underline{m}^{(0)} \in \partial A \Leftrightarrow x = \ell.$$

In conclusion we have

$$\lim_{b\to\infty}(\frac{Z_{T_b}}{b},\frac{T_b}{b})=(\ell\underline{m}^{(0)},\ell).$$

The author thinks that, under some possible further hypotheses, $((\frac{Z_{T_b}}{b}, \frac{T_b}{b}))$ satisfies the large deviations principle (as $b \to \infty$) and the corresponding rate function L should be

$$L(\underline{y},x) \equiv \left\{ \begin{array}{ll} x\xi(\frac{\underline{y}}{x}) & \text{if } x>0 \text{ and } \underline{y} \in \partial A \\ \infty & \text{otherwise} \end{array} \right. ;$$

moreover the large deviations rate function K for $(\frac{Z_{T_b}}{b})$ should be

$$K(\underline{y}) \equiv \begin{cases} \inf\{x\xi(\frac{\underline{y}}{x}) : x > 0\} & \text{if } \underline{y} \in \partial A \\ \infty & \text{if } \underline{y} \notin \partial A \end{cases}$$

as a consequence of contraction principle (see e.g. [3], Theorem 4.2.1, page 110).

Appendix: ∂A reduced to a single point when d=1

In general, when d = 1, we simply write down y instead of $\underline{y} \in \mathbb{R}^d = \mathbb{R}$. Then, by taking into account $(\mathbf{A1})$, we have

$$y \in \mathbb{R} \mapsto \psi(y) = \begin{cases} y\psi(1) & \text{if } y > 0 \\ 0 & \text{if } y = 0 \\ -y\psi(-1) & \text{if } y < 0 \end{cases}.$$

We recall that the sets (A(b): b > 0) are nonempty; thus the case $\psi(1), \psi(-1) \le 0$ is not allowed by (2). Moreover the case $\psi(1), \psi(-1) > 0$ is not allowed by (A3); indeed we would have

$$A = (-\infty, -\frac{1}{\psi(-1)}] \cup \left[\frac{1}{\psi(1)}, \infty\right)$$

and we can have $\underline{z} + \gamma m^{(0)} \notin A$ for suitable choices of $z \in \partial A$ and $\gamma \in (0,1)$, so that (3) would fail for b = 1.

In conclusion we can have two cases: $\psi(1) > 0$ and $\psi(-1) \le 0$ when $m^{(0)} > 0$ and the unique point of ∂A is $\frac{1}{\psi(1)} = \ell m^{(0)}$; $\psi(-1) > 0$ and $\psi(1) \le 0$ when $m^{(0)} < 0$ and the unique point of ∂A is $-\frac{1}{\psi(-1)} = \ell m^{(0)}$.

Acknowledgements

I thank P. Baldi for some discussion on first hitting place, J.F. Collamore for some remarks on his paper [1] and W. Whitt for sending me a copy of his works cited in the references.

References

[1] Collamore, J.F. (1998), First passage times for general sequences of random vectors: a large deviations approach, *Stochastic Process. Appl.* 78, 97-130.

- [2] de Acosta, A. (1994), Large deviations for vector-valued Lévy processes, Stochastic Process. Appl. 51, 75-115.
- [3] Dembo, A. and Zeitouni, O. (1993), Large Deviations Techniques and Applications. Jones and Bartlett, Boston.
- [4] Duffield, N.G. and Whitt, W. (1998), Large deviations of inverse processes with nonlinear scalings, *Ann. Appl. Probab.* 8, 995-1026.
- [5] Dupuis, P. and Ellis, R.S. (1997), A Weak Convergence Approach to the Theory of Large Deviations. John Wiley & Sons, New York.
- [6] Glynn, P. and Whitt, W. (1994), Large deviations behavior of counting processes and their inverses, *Queueing Systems Theory Appl.* 17, 107-128.
- [7] Shwartz, A. and Weiss A. (1995), Large Deviations for Performance Analysis. Queues, communications and computing. Chapman & Hall, London.

Dipartimento di Matematica, Università degli Studi di Torino, Via Carlo Alberto 10, I-10123 Torino, Italia email: claudio.macci@unito.it