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ABSTRACT. The purpose of this note is to prove some results in
Bunke-Schick differential K-theory and topological Z/kZ K-theory.
The first one is an index theorem for the odd-dimensional geometric
families of Z/kZ-manifolds. The second one is an alternative proof
of the Freed-Melrose Z/kZ-index theorem in the framework of differ-
ential K-theory.

1. INTRODUCTION

In this note we establish some results in Bunke-Schick differential K-
theory Kpg [7] and topological K-theory with Z/kZ-coefficients K ~'Z/kZ
[2, Section 5]. We first introduce an index theorem in which the indices
take value in Z/kZ. In order to describe this result, we briefly recall some
constructions in Kpg and K~1Z/kZ.

Let X be a smooth compact manifold. Generators of the K-group
Kps(X) are constructed out of real differential forms and geometric families
over X [7, Definition 2.2]. A geometric family is roughly the data needed
to define the index bundle.

Bunke and Schick [7, Subsection 5.9] pointed out the relevance to the no-
tion of geometric family of Z/kZ-manifolds over X of a concrete description
of the torsion subgroup of Kgg (X). An odd-dimensional geometric fam-
ily of Z/kZ-manifolds (W, &, ) consists of an odd-dimensional geometric
family W with boundary, an even-dimensional geometric family £ without
boundary, and an isomorphism f : k.€ — OW [7, 2.1.7] from k copies of €
onto the boundary of W. It defines a k-torsion element [W, &, 8] € Kps(X)
[7, Lemma 5.20]. On the other hand, there is a canonical way to construct
a class |W,€,8] € K™Y (X,Z/kZ).

The work of Freed-Melrose [13] has led to the index theorem [13, Corol-
lary 5.4], which expresses the topological index of vector bundles over even-
dimensional Z/kZ-manifolds through the reduced eta invariant of [1]. In
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the following we discuss a geometric extension of [13, Corollary 5.4] in which
7./ kZ-manifolds is replaced by odd-dimensional families of Z/kZ-manifolds.

Let w: X — Y be a proper submersion with closed fibers of even relative
dimension. Suppose that 7 carries a smooth K-orientation [7, 3.1.9]. From
[7, Section 3] we have an analytical Z/2Z-graded push-forward map 7 :
K}gs(X) — KBs(Y).

General methods [10, Chapter 1D] show that there is a (topological)
direct image 7f : K~ 1(X,Z/kZ) — K=Y, Z/kZ).

We may define two differential K-characters ([5]) Inda.,(W,&,8) and
Indiop, (W, E, B) using pairings of 1 [W, €, B],7f |[W, £, 8] with K-homology
[4]. We prove that

Indan(wagaﬁ) = Indtop(waga ﬁ)

In the case when & is a zero-dimensional geometric family, we get an index
theorem in K ~'Z/kZ for families of Dirac operators. Moreover, if Y = pt
and X of odd dimension, we may recover the mod k Index Theorem 3,
(8.4)].

The second main result of this note is an alternative approach to the
Freed-Melrose Z/kZ-index theorem ([13, Corollary 5.4]).

2. BACKGROUND MATERIAL

2.1. Bunke-Schick Differential K-theory. In this subsection we review
Kps and the analytical push-forward construction. We refer the reader to
[7, 6, 8] for more details.

Let X be a smooth compact manifold. Let d denote the exterior de-
rivative on the space of real differential forms ©*(X). Generators of the
differential K-group Kps (X) are pairs (€, w), where £ is a geometric family
f};g(()g)) ([7, Definition 2.1]. We have a well-defined notion of
isomorphism and sum of generators [7, Definitions 2.5,2.6]. Two generators
(&1, w1) and (&, ws) give rise to the same class in Kpg(X) if there is a geo-
metric family £ such that (&1, w1) + (€',0) is paired with (€3, wq) + (€', 0),
two generators (&1, w}) and (&, w}) are paired ([7, Definition 2.10]) if the
disjoint union & Uy &~ is tamed ([7, 2.2.2]), and

over X, and w €

B —
w) —wy =n°(E Ux £57 ),

where 7P is the Bunke eta form [6, Subsection 4.4].

The group Kps(X) is Z/2Z-graded ([7, Definition 2.4]). Moreover, it has
a 7./27Z-graded ring structure Kpg(X) ® Kpg(X) = Kps(X) [7, Definition
4.1].
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From [7, 2.4.5, 2.4.6, Lemma 4.3] we have the exact sequences of rings:

0— golg; & Kig(X) &5 K*(X) =0,
0— K/(X) = Kig(X) B as(X) >0, (2.1)

where
o Q}(X) is the group of forms on X with integer periods, K*(X) is
the K-theory of X,
e a(w) = [0, —w], (£, w) = index(E),
e R(&E w) = Q&) — dw with Q(&) is the geometric Chern form of £
7, 2.2.4], and K/ (X) = ker(R).
If £ is an even-dimensional geometric family with Z/2Z-graded kernel bun-
dle K¢ = K§ ® K€ [7, 5.3.1], then index(€) = [K§] — [KE].

Recall from [7, Definition 5.19] that a geometric family of Z/kZ-manifolds
over X is a triple (W, &, B), where W is a geometric family with boundary,
£ is a geometric family without boundary, and g : k.€ — 0V is an isomor-
phism of geometric families over X. Its corresponding class in K7 (X) is
W, E,B] == [€,—+Q(W)] ([7, Definition 5.19]).

Let Y be a smooth compact manifold, and let 7 : X — Y be a proper
submersion with closed fibers, of even relative dimension. Suppose that
7 is topologically K-oriented [7, Definition 3.2]. Fix a representative of
a smooth K-orientation o(m) [7, Definition 3.5, consisting of a geometric
refinement of the Spin®-structure on the vertical tangent bundle TVX, and
a differential form o(0) € Q°9(X). The Z/2Z-graded push-forward map
1+ Kpg(X) = Kps(Y) ([7, 3.2.3]) evaluated at a generator (£,w) (whose
underlying proper submersion is p) is given by

&, w] = [1E, Ac(o(ﬂ))/\w—&—fl(/\,é')—l—/ o(o) NR(E,w)] (2.2)
X/Y XY
(which does not depend on A €]0,c[), where m*€ is a certain geometric

family [7, 3.2.1] (whose underlying submersion is 7 o p), A°(o(m)) is the
even-form in [7, 3.1.11], and

QN E) = / QM) (2.3)
J0A[XY/Y

with H = (idjo,0o[ X )1(]0,00[xE) together with an appropriate vertical
metric.

2.2. Topological K-theory with Z/kZ-coefficients. In this subsection
we briefly recall the definition of K~!(X,Z/kZ) and the construction of
mt: K~YX,Z/kZ) — K=Y (Y,Z/kZ). We refer to [2, Section 5] and [10,
Chapter 1D] for the details.
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From [2, Proposition 5.5], the K-group K ~*(X,Z/kZ) is generated by
triples (E, F, «), where E, F are complex vector bundles over X, and « :
kE — kF is an isomorphism.

Furthermore, if X is Spin® of odd dimension, there is a (topological)
direct image Indy, : K=Y (X,Z/kZ) — Z/kZ (|2, Section 5]).

Let us explicitly state the construction of the integration along the fiber
7t K~Y(X,Z/kZ) — K=Y(Y,Z/kZ). Fix an embedding i : X — R2¢ and
define the embedding 7 := i x 7 : X — R??x Y. Let v be the normal bundle
associated to ¢. The homomorphism 7} is the composite

K NX,Z/kZ) ™ K=Y(X", pt, Z/KZ) S K~ (YR XY pt. 2/k7)
B K-\, Z/kZ);
here,
e XH denotes the Thom space of a vector bundle H over X, Th is a
Thom isomorphism,
e c is the homomorphism induced by the collapsing map Y “*Y —
X7, and
e D is a desuspension map.

We shall call a vector bundle E geometric, if E is a Hermitian vector
bundle equipped with a unitary connection.

Let (E,F, ) be a generator of K ~1(X,Z/kZ) where E and F are geomet-
ric vector bundles and « is a unitary isomorphism (not required to preserve
connections). According to [7, 2.1.4], the Z/2Z-graded geometric bundle
E@F with grading diag(1, —1) defines a zero-dimensional geometric family
F(E @ F). Using the isomorphism k.F(E @ F) = F(k(E & F)), we may
define a geometric family of Z/kZ-manifolds by setting

(kEx[0,1], F(E @ F), id),
where kEx[0,1] is the geometric family whose proper submersion is the
projection X x [0,1] — X and the twisting vector bundle is the product
kE x [0,1] with the identification kE x {1} ~ kF x {1}.

In the following, we identify (E,F, ) with its associated family of Z/kZ-
manifolds.

2.3. Pairings of Kev’f, K~'7,/kZ with Geometric K-homology. Here,
we explicitly give analytical and topological pairings

7 KES(X) @ K (X) — R/Z,
() KEa(X) @ K~Y(X,Z/kZ) — R/Z,
where K£°°(X) stands for the geometric K-homology group of X [4, Section
5].
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Let = := (P,H, f) be an odd geometric K-cycle over X [4, Definition
5.1]. Here, P is a closed odd-dimensional Spin°-manifold, H is a geometric
vector bundle over P (trivially Z/2Z-graded), and f : P — X is a smooth
map. Let y := (£, w) and z := (E,F,a) be generators of K¢/ (X) and
K~YX,Z/kZ). Let q : P — pt be the map to a point. We set

i(x,y) = ¢ ([F(H),00U f*y) € Kad(pt) = R/Z (2.4)

(x,2) == i, (Indy, (H® f*E,H® f*F,id ® a])), (2.5)

where f*y is the pull-back under f (7, 2.3.2] and iy : Z/kZ — R/Z is the

embedding which sends 1 + kZ to %

Proposition 2.1. The assignments (x,y) — 7(z,y) and (x,z) — (z,2)
factor through well-defined pairings

K95(X) @ K/ (X) B R/Z
K%4(X) © K-'(X,2/kz) Y R/Z.

Proof. Tt is obvious that 7 and (-, -) are bi-additive.

From [7, 2.3.2, Lemma 3.14], 7j(x,-) is well-defined. Let us show that
7(z,y) does not depend on the choice of a representative of [z] € K553 (X).
As noted in [4, Definition 5.7], the equivalence relation on K£°°(X) is gen-
erated by the relations of bordism, direct sum, and vector bundle modifi-
cation.

Suppose that W := (W, G, g) is a K-chain which bounds z [4, Definition
5.5]. We equip W — pt with a smooth K-orientation o(W) as in [7, 5.8.2].
By [7, Proposition 5.18, Lemma 4.3], we have

FHOW,y) = —a ( | Aewr(F@.0 g*y»)
~ ( /W AC(O(W»Ch(vG)g*R(y)) 0.

Then 77(x, ) depends only on the bordism class of x.

We will rewrite the pairing 77 in order to show that 77(+, y) does not depend
on the relations of disjoint sum and vector bundle modification.

Let r : M — X be the proper submersion induced from £. Let f*M
be the pull-back of the family of manifolds M along f, and let pp :
ffM — P and py : f*M — M be the projections. Let S¢ and S%
denote the geometric spinor bundles associated to the Spin®-structures on
TYM and TP. We will use L to denote the twisting bundle of £ [6, 4.3.2].
Since index(q! (F(H) xp f*€)) € K'(pt) = {0}, we can choose a taming
(¢t (F(H) xp f*€))¢. From (2.2), [7, Lemma 3.11], and [6, Definition 4.16],
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we obtain 7j(x,y) in terms of the reduced eta invariant of [1], (D), as
follows:

e ) = [(£*M — pt.ps(H ® 83) ® ply (LESE)) / A(o(P))Ch(VH) f*uw

+ QO (F(H) xp f7€))]
=[0,—n" (f M — pt,pp(H® Sp) @ pi(LEOSY)),

/ A°(o(P)) A Ch(VE) f*w + Q(\, (F(H) xp f*E))]
0,7

220 (g j(DPRRSPILY 4 /P A(o(P))Ch(VH) f*u]
=al —7n p}H@p?WL) _ Ac 0 H *’U)
( 7(D [ Actapieney )

= —jj(prrH®rMl) /P A¢(o(P))Ch(H) f*w mod Z. (2.6)

From [5, Proposition 5] and [, A°(o(P))Ch(H) f*w mod Z = f,,(P,H, f),
where f, is the differential K-character in [5, Examples], we get 7(-, ) is
invariant under the relations of disjoint sum and vector bundle modification.

Let us show that (-, [E,F,a]) is well-defined. Assume that E and F
are geometric vector bundles and « is a unitary isomorphism. Since the
geometric family F(H) xp f*F(E@®F) has zero-dimensional fibers, we have

OLFH® f(E@F)).q) = 0. Let CSEVF,a"kVF) € L0 denote
the Chern-Simons class of (kV¥ kVT ) [16, (4)] and let SF(kDE, kDF)
denote the spectral flow from kDE to kDY [3, Section 7]. By [15, (4.59)]

and [3, Proposition (8.3), Theorems (3.4), (8.4)], we calculate

(e, [(8,F,0)]) = GlF (e f*(B6 F)), 1 0(H & fKE)X[0, 1))
~((DHIE) — (DM

+ %/PAC(O(P)) (/01 Ch(tkVHe/ T

+ (1= t)(id ® ) kVHSS B 4 dt@t)) mod Z
= DHEIE) —p(DHer )

1 [ . . .
- / A¢(o(P))CS(EVHOTE (id @ ) k VI F) mod Z
P
= %SF(kDH‘X’f*E, kDH®I ) mod Z = (z, [E, F, al). (2.7)
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Now, let y be another representative of [z]. Then

<ya [Ea F, O‘D = ﬁ(yv [(E7 F, O‘)D = ﬁ(xa [(Ea F, O‘)]) = <$, [Ea F, a]>

3. THE FIRST MAIN RESULT

Let (W, &, B) be an odd-dimensional geometric family of Z/kZ-manifolds
over X. Let (D,).ecx denote the family of Dirac operators associated to
€. We assume that dim(ker(D,)) is constant. This condition can always
be satisfied ([6, 9.2.4]). So, we can form the Z/2Z-graded geometric index
bundle K¢ = K5 @ K¢ [7, 5.3.1]. Let K¢ = K{ & K¢ be the topological
7./27-graded vector bundle induced from K¢. In K°(Y) we have

(kK] — [kKE] = index(k.£) = index(OW) = 0.

A unitary isomorphism a : k(K§ 1) — k(K€ ©1%), for some trivial vector
bundle 1¢ (of rank £), can be induced by a taming (OW), ([7, 2.2.2]). We
set

IW,E, 8] = [K{ ®1" KE 1% o] € K (X,Z/kZ).

Let m: X — Y be a proper submersion with closed fibers, of even relative
dimension. Suppose that 7 has a smooth K-orientation represented by o(7).
We define

Ind.y(W,E,B) :
Indyo,(W, E,B) :

n(,m[W,E,B1),
<',7Tf LW7S7BJ>5

(€ Hom (K& (Y),R/Z) = K/*(Y) [7, Proposition 2.25,(10)]).
Proposition 3.1. The following identity holds.
Ind.,,(W, &, B) = Indp,(W, E, B). (3.1)

Proof. Let « = [N, F, f] for some generator (N, F, f) of K53(Y"). Accord-
ing to [14], we can assume that F = 1. From definitions (2.4) and (2.5),
we pull everything back to N and we can assume Y is an arbitrary closed
odd-dimensional Spin®-manifold. Thus, (3.1) is equivalent to

(Y], m[W,€,B]) = (Y], m W, €, 8]), (3.2)

where [Y] € K55(Y) is the fundamental class of Y.
Let X have the Spin©-structure which is induced from combining those
on TVX and TY. There is a homomorphism 7' : K%59(Y) — K955(X)
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which is dual to the integration along the fiber 7, and we have 7'[Y] = [X].
Then

(Y)W, &,8]) = (Y], W, €,8]) = (X], W, €, 8])

1
- ESF(kD’Ci@lz, kDRE@1Y mod Z.

Fix a representative o(Y) of a differential Spin®-structure on 7Y, and let
o(X) be the composite o(Y') o o(w) [7, Definition 3.21]. Let gy : Y — pt be
the map to a point. By [7, Theorem 3.23] and Q(1,&, 7)(= %Q(l,@l/\/, m))
is exact from (2.3), we calculate

(YA W, ,81) = (@ 1 (0 DW, €, 61) = (@x)[E, ~ L Q0W)]
= [k h.~f [ AW
B +%/XA°(0(X))Q(W) mod Z.

Here, FE is the twisting bundle of £.

Let (k.(€Ux F(KE & 14)*))t be the taming induced by the isomor-
phisms «,8. From [7, Theorem 3.12], [6, 4.2.1, Theorem 4.13], and the
definition of n? [6, Definition 4.16], we have

lim® (G )(k(€ Ux FIEE ©1%7))),
/ A(o(X))nP(OW Ux F(R(KE ©1%)7),
- / A(o(X)Q(W) — / A(o(X))nB (F(R(KE © 1%),
X X

- ‘/ A(o(X))W) — / A%(0(X))CS (kYL 0w ko),
b'e X
and on the other hand,

limn® (g3 )i (k-(€ Ux F(KE ©17)7)))

= k(D) + k(7(DY) — p(DF=1)).

t

Then
£
(Y)W, €, B]) = g(DE=O1) — (DRI o)
- f/ A¢(0(X))CS(kVEEEY 0 kVE €1 Ymod Z2
= %SF(kD’@@lZ,kD’C—@“) mod Z,
which implies that (3.2) holds. O

MISSOURI J. OF MATH. SCI., SPRING 2018 39



A. ELMRABTY

Remark 3.2. The formula (3.1) may be considered as a geometric exten-
sion of the Freed-Melrose Z/kZ-index theorem [13, Corollary 5.4] to the
odd-dimensional geometric families of 7 /kZ-manifolds.

Let X be a closed manifold of finite fundamental group m(X). Let 6
be a unitary representation of m1(X). Denote the flat vector bundle over
X defined by 6, equipped with a Hermitian metric and a flat connection
compatible with the metric, by V3. We choose £ € N* and a unitary
isomorphism « : kVy — 1%

Let

Ve, 1", 0] € K~ (Y, Z/k7Z)
such that
{W!a[‘/@a 17, aH = [(Vba 17, O‘)]

Proposition 3.3. We have
7 [V, 1", a] = 7w [Vy, 1", .
Proof. From (3.2) and (2.7), we get
([a], 7 Vo, 17, 0] = [V, 17, 0)) = 0 (for all [z] € KI5(Y)).  (3.3)

We consider the R/Z-pairing [3, (5.2)] with the identification K'(TY) =
K& (Y) obtained by duality and the Thom isomorphism. It is perfect as
a direct consequence of the universal coefficient theorem for R/Z K-theory
together with R/Z is divisible, and its torsion part coincides with (-,) by
[3, Theorem 8.4] and the construction [3, Section 5:(i)-(iv)]. Thus, (3.3)
yields 7 [Vp, 1", a] = 7f[Vy, 1", a]. O

Remark 3.4.

e From [7, Lemma 3.20, Theorem 3.23, and Proposition 5.18], the
assignment 7 — 7} is natural, functorial under the composition of
smooth K-oriented proper submersions, and bordism invariant.

o Let KFL(X) be the Freed-Lott differential K-group of X, and let
7,7t Kpp(X) — Kpp(Y) denote, respectively, the analytical and
topological index homomorphisms [12].

We set

(Vo, 1", a)

1 o . R
= (Vg,VVH,%C’S(VkVB,a*VI ) = (17, V1,0) € Kpp(X).

We will identify (Vp, 1", ) with [Vp, 1",a]. From [7, 5.3.5], [12,
Definition 3-11], and the variational formula of the Bismut-Cheeger
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eta form in the proof of [17, Proposition 3], it is not hard to see
that

7T!a[V9a 17‘,&] = 7_T!a(vl97 17.3 a)'
Then, [12, Theorem 6-2] yields

i [Ve, 1", 0] = 7 (Vp, 17, a0).

4. THE SECOND MAIN RESULT

Let (M, N,a) be an even-dimensional compact Spin¢ Z/kZ-manifold
([11, Definition (1.7)]). Here, o« : OM — N is the induced map from
an orientation preserving diffeomorphism oM = UF_,(OM); — k.N. We
equip M — pt with a smooth K-orientation o(M) as in [7, 5.8.2]. Let
(E,F, 8) be a geometric Z/kZ-vector bundle over (M, N, ). More precisely,
E and F are two geometric vector bundles over M and N, respectively, and
B : Elops — ka*F is a unitary isomorphism which preserves the unitary
connection.

Let (S™*,S"=1 o/) be the Z/kZ-manifold obtained by removing k open
balls B™ from the n-sphere S™ with o’ induced from Idg.-:. Fix a Z/kZ-
embedding (2,7) : (M, N,a) — (S¥*,S"~1 o) with n even, i.e. v : M —
S™k and j : N < S"~! are two embeddings such that o o 2|gp; = 70 a.
There is a (topological) direct image (z2,9)1(E,F,3) = (uE,]!F,B) which
lies in the reduced K-theory K (S™*, S"=1). The topological Z/kZ-index of
(E,F, B) is given by

indg(E,F) := [(1, )W(E,F, 8)] € Z/kZ = K(S™*, s~ 1).
It is independent of (z,7) with respect to the topological Z-index.
Proposition 4.1. ([11],[13]) The following identity holds.

indy (E,F) = /M A¢(o(M)) CH(VE) — k(DY) mod KZ.

Proof. Let (S§;,S%) be the Z/kZ geometric spinor bundle associated to the
Spin®-structure of (M, N). We denote, by f(E,F), the geometric family of
7/ kZ-manifolds over pt

fEF) = ((M = pt,E@ Syf), (N = pt, F © Sy), 5).
From (2.6), we have

[f(E,F)] =i ( /M A¢(o(M))Ch(VE) — k(DY) mod kZ) S (41)

We will identify «E,pF with Z/2Z-graded geometric vector bundles, where
the geometric structures are defined as in the proof of [12, Lemma 4-3].
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Let us first prove the following Riemann-Roch property:

[f(E,F)] = [f(uE, 2F)]. (4.2)

We may regard f(E,F) as a geometric Z/kZ-cycle of Deleey on pt [9, Defi-
nition 2.1]. Let f(E,F)y denote the modification of f(E,F) by a geometric
Spin® Z/kZ-vector bundle V. — (M, N) [9, Definition 2.5, Remark 2.6].
More precisely, if V = (Viy, Vy) and E(E) := (M — pt,E® S§;) then

f(E’F)V = (E(E)VMvg(F)vaﬁ) )

where £(E)y,, and £(F)y,, are the modifications of the geometric K-chains
E(E) and E(F) by Vs,V ([4, Definition 5.6]).

Inspired by [18, Lemma 2.3.4], there is a Z/kZ — bordism z := ((Q, P),
(G,H),(Q, P) — pt) [9, Definition 2.4] between f(E,F)y and f(uE, nF)w
for certain geometric Spin® Z/kZ-vector bundles V- — (M, N) and W —
(S™* Sn=1). We equip Q, P — pt with smooth K-orientations o(Q),o(P) as
in [7, 5.8.2], and we equip the Z/kZ-vector bundle (G, H) with a geometric
structure which extends that induced from f(E,F)y and f(uE, nF)w.

From [9, Definition 2.4, Remark 1.9], and by gluing together geometric
K-chains along their common boundaries, we have

08(G) = (E(B)y, UEWE)y,, )Y (REM)  (43)

OE(H) = E(F)v, UEGF)yy, (4.4)

17

where O£(G) and £(G)~ are the boundary and the opposite of £(G), and
= gtands for an isomorphism between two geometric families (over pt) [7,
2.1.7).

By (4.3), and because the K-homological Chern character is invari-
ant under the relation of modification [5, Proposition 2] and the form
A¢(0(Q))Ch(VE) is closed, we get

A*(o(M))CR(VF) —
I, /

Sn,k

- / (A°(0(Q))Ch(V®))og = / d(A(0(Q))Ch(VE)) = 0.
7 ¢ (4.5)

A°(o(S™*))Ch(VHE) + k / A°(o(P))Ch(VH)
P

Using (4.1), together with [5, Lemma 1], we have [f(E,F)y] = [f(E,F)],
and so we may assume that z is a geometric Z/kZ-bordism between f(E,F)
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and f(uE, nF). Now, (4.4) [7, Proposition 5.17] and (4.5) yield

[f(uB,2F)] = [(8"™" = pt, 2F @ S§um), — A%(o(S™"))Ch(V"F)]

1
= [N%pt,F@va,—f/
= [f(E,F)].

Let s = (s1,52) : (S*F,S') < (S™*,S"1) be the canonical embedding. By
the Thom isomorphism s, : K (S**,S!) = K(S™*, $"1), [(1,7)i(E,F, B)] is
the direct image [s(E, F, B)] of a certain Z/kZ-vector bundle (E, F, 3) over
(S%* S!). We compute, using (4.2) [11, Proposition 1.14] at the marked
step, and indy (E, F) is independent of the embedding (, 7)

[F(EF)] = [£(uE, 2F)] = [f(s1,E, s2,F)] = [£(E,F)] = iy, (indy(E, F))
=iy, (indy(s1(E, F))) = ix, (indi((2, )1 (E, F))) = i, (indi (E, F)) .

A(o(S™F))Ch(V"E) + /P A¢(o(P))Ch(V)]

O

Remark 4.2. From (4.2) together with Zhang’s description of ﬁ(Dé’nF_l)

[19, Theorem 2.2], we obtain the following geometric formula forindy(E,F):

indy, (B, F) = A(0(S™*)) CH(V"") + k A(o(S" 1))y mod KZ.
s,k gn—1

Here, v is a certain Chern-Simons current ([19, (2.18)]).
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