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Abstra
t. Consider the following game: Player A 
hooses an integer

α between 1 and n for some integer n ≥ 1, but does not reveal α to

Player B. Player B then asks Player A a yes/no question about whi
h

number Player A 
hose, after whi
h Player A responds truthfully with

either �yes� or �no.� After a predetermined number m of questions

have been asked (m ≥ 1), Player B must attempt to guess the number


hosen by Player A. Player B wins if she guesses α. The purpose

of this note is to �nd, for every m ≥ 1, all 
anoni
al m-question

algorithms whi
h maximize the probability of Player B winning the

game (the notion of �
anoni
al algorithm� will be made pre
ise in

Se
tion 3).

1. Introdu
tion

I'm thinking of a number between 1 and 1000. I will allow you one guess,

but prior to guessing you get to ask me a preliminary �yes/no� question

about whi
h number I 
hose, and I will answer truthfully. Clearly, you

don't want to ask, �Is the number you pi
ked between 1 and 1000?� as you

already know that the answer is �yes.� Similarly, you wouldn't ask, �Did

you pi
k the numbers 3 and 298?� sin
e (unless I 
hoose not to abide by

the rules of the game) you know the answer to this query is �no.� So at the

very least, you should ask me a question to whi
h you do not already know

the answer. Two su
h questions are listed below. Whi
h of the following do

you believe will yield a higher probability of guessing the number I 
hose

(assuming you guess rationally after I give you my answer)?

Q1: �Did you 
hoose number 1?�, or
Q2: �Is the number you 
hose between 1 and 500?�

You're thinking Q2 is the more prudent 
hoi
e, right? After all, the

answer to Q1 is almost 
ertainly �no,� and (if it is indeed �no�) then you'll

have to 
hoose from 999 numbers. But if you ask Q2, you 
an immediately

eliminate 500 numbers. Would you be surprised to dis
over that it doesn't

matter whi
h question you 
hoose? Whether you ask me Q1 or Q2, the

probability of 
orre
tly guessing my number is the same!
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Let us brie�y explain why this is the 
ase. If you ask me Q1, and I answer

�yes,� then you will guess number 1 and win. On the other hand, if you ask

Q1 and I answer �no,� then you will just guess some integer between 2 and

1000. This means the probability of winning if you ele
t to ask Q1 equals

1

1000
· 1 +

999

1000
·

1

999
=

2

1000
.

Noti
e that if you had guessed randomly with no preliminary question, then

the probability of winning is 
learly

1
1000 ; thus asking Q1 results in doubling

the probability of �nding my number. Now, similar reasoning reveals that

ele
ting to ask Q2 instead delivers a probability of winning equal to

500

1000
·

1

500
+

500

1000
·

1

500
=

2

1000
,

and that's the same as before!

Now, let's 
hange the rules a bit. Let's keep the same basi
 setup, but this

time I will allow you a sequen
e of two preliminary questions. Spe
i�
ally,

I will permit you an initial yes/no question about my 
hosen number, and

then a se
ond yes/no question after I answer your �rst query. Following

my answer to your se
ond question, you will attempt to guess the number

I pi
ked. Whi
h of the following two algorithms yields a higher probability

that you will guess my number?

( 1) First question: �Did you 
hoose number 1 or number 2?"
→֒ If I say �yes,� ask se
ond question �Did you 
hoose number 2?"
→֒ If I say �no,� ask se
ond question �Did you 
hoose number 3?",

or

( 2) First question: �Did you 
hoose a number between 1 and 500?"
→֒ If I say �yes,� ask se
ond question �Did you 
hoose a number

between 1 and 250?"
→֒ If I say �no,� ask se
ond question �Did you 
hoose a number

between 501 and 750?"

Perhaps unexpe
tedly, both algorithms yield the same probability (namely,

4
1000 ) of guessing my number. However, the following related algorithm

yields only a

3
1000 probability of guessing 
orre
tly:

( 3) First question: �Did you 
hoose number 1?"
→֒ If I say �yes,� then you know my number and don't need a

se
ond question.

→֒ If I say �no,� ask se
ond question �Did you 
hoose number 2
or number 3?�

32 MISSOURI J. OF MATH. SCI., VOL. 28, NO. 1



I'M THINKING OF A NUMBER . . .

The purpose of this note is to generalize these surprising fa
ts. In parti
-

ular, after some formal preliminaries in the next se
tion, we shall des
ribe

all �natural� m-question algorithms whi
h deliver the maximum probability

of Player B guessing 
orre
tly (the notion of �natural� will be formalized in

Se
tion 3).

2. Setting the Stage

We begin with an informal des
ription of the game at hand (as stated

in the abstra
t). To fa
ilitate our proofs, we will present a slightly more

general version. Throughout, Z+
will denote the set {1, 2, 3, . . .} of positive

integers. For n ∈ Z+
, we shall denote the set {1, 2, . . . , n} simply by [n].

Let n ∈ Z+
and let X ⊆ Z+

have 
ardinality n. The set X is presented

to Player A and Player B. Player A 
hooses an integer α ∈ X uniformly

at random, but does not reveal α to Player B. However, Player B knows

that Player A has 
hosen su
h an α. Player B is permitted a total of

m ≥ 1 yes/no questions in sequen
e (m is revealed to Player B before

the game 
ommen
es), after whi
h Player B must guess whi
h number was


hosen by Player A. Player B wins if she guesses α. In the sequel, we shall

denote this game by G(m,X); we agree to use the notation G(m,n) in 
ase

X = [n]. Our goal is to determine all possible m-question algorithms (from

a 
anoni
al set of algorithms; more on this shortly) that will deliver the

maximum probability of Player B winning G(m,X).
Our �rst task is to make further assumptions in order to for
e the game

to terminate in a winner. To ki
k things o�, we 
onsider an example of a

yes/no question that is, in some sense, very bad.

Example 1. Suppose that Player B asks, �Is the number you 
hose equal

to the 
ardinality of the set of Fermat primes?� in the game G(m,n), where
n > 4. It is known only that there are at least 5 Fermat primes; it is

not known if there are any more. So if Player A's 
hosen number is 5,
then Player A simply (at present) does not know the answer to Player B's

question, and the game ends in a stalemate.

In light of this example, we temporarily idealize Player A as follows (we

shall later be able to dispense with this assumption):

Assumption 1. Player A has perfe
t knowledge, that is, Player A knows

the truth value of P for every proposition P .

Now, noti
e that any yes/no question asked by Player B 
an be phrased

in the form, �Is it the 
ase that P?� for some proposition P . This leads to
an equivalent formulation of the game whi
h is a bit more 
onvenient for

our purposes:
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Assumption 2. All �questions� asked by Player B are merely propositions.

Player A returns �true� if the proposition is true and �false� otherwise.

We now set up notation whi
h will be heavily utilized throughout the

remainder of this se
tion.

De�nition 1. Let P be a proposition presented by Player B in the game

G(m,X). Then set

(1) P 0 := {i ∈ X :
Player A returns �false� if he pi
ked number i},

and

(2) P 1 := {j ∈ X :
Player A returns �true� if he pi
ked number j}.

To help the reader intuit this de�nition, we present two examples.

Example 2. Suppose Player B presents P := �Denver is the 
apital of

Colorado� in the game G(m,X). Then P 0 = ∅ and P 1 = X.

Example 3. Assume Player B presents P := �The number you 
hose

is prime� in the game G(m, 10). Then P 0 = {1, 4, 6, 8, 9, 10} and P 1 =
{2, 3, 5, 7}.

We now transition to a probabilisti
 paradigm. Re
all that the game

G(m,X) begins with Player A 
hoosing, uniformly at random, an integer

α ∈ X . The game 
on
ludes with Player B making a guess β based upon

the information she re
eives from Player A, and B wins the game if and

only if α = β. Throughout the remainder of this se
tion, we shall denote

Player A's 
hoi
e by α and Player B's guess by β. In this setting, we regard

X as a probability spa
e endowed with the uniform distribution

P (x) =
1

|X |
for all x ∈ X. (2.1)

Note that if Player B presents proposition P to Player A, then (as both P 0

and P 1
are subsets of X) P 0

and P 1
are events on the probability spa
e

X . Namely, P 0
is the event �Player A returns `false' after re
eiving P ,� and

P 1
the event �Player A returns `true' after re
eiving P .� Importantly, we

do not assume that Player B knows pre
isely whi
h elements P 0
and P 1


ontain. We elaborate below.

Suppose Player B is playing G(1, 10), and let P be �The number you


hose is prime� as in Example 3. Let S := P i
, where i = 0 if Player A's

response to P was �false,� and i = 1 otherwise. Then all Player B knows

for sure is that Player A's 
hoi
e α ∈ [10] was uniformly random, and

that in fa
t α ∈ S = P i
. What is the probability that Player B will now

su

essfully guess α? This really depends upon Player B's knowledge, given

A's response S. Suppose that T is a nonempty subset of [10] from whi
h

Player B will guess uniformly at random, given that α ∈ S. Let's refer to T
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as Player B's �guessing set.� If Player B has absolutely no knowledge about

whi
h numbers between 1 and 10 are prime, then she will have no idea

whi
h elements belong to S. So B may as well use guessing set T = [10],
and the probability she will win equals

1
10 < 1

|S| . However, if B knows that

{2, 3, 5} are primes and {1, 4} are not (and nothing more about the integers

in [10]), then things 
hange. Indeed, if S = P 0 (i.e. Player A answered

�false�) then Player B knows {1, 4} ⊆ S. So it is reasonable that B use

guessing set T = {1, 4}, and the probability she will win equals

1
6 = 1

|S| .

On the other hand, if S = P 1
, then B knows {2, 3, 5} ⊆ S, so B should

use guessing set T = {2, 3, 5}. In this 
ase, the probability she will win

equals

1
4 = 1

|S| . Finally, if B knows pre
isely whi
h numbers between 1 and

10 are prime, then she may use guessing set T = S and B's probability of

winning equals

1
|S| . Note that in ea
h of these 
ases, Player B's probability

of winning is at most

1
|S| . We generalize our observations above with a �nal

assumption.

Assumption 3. After presenting all m propositions to Player A and re-


eiving A's responses in the game G(m,X), Player B sele
ts a nonempty

subset T ⊆ X (a �guessing set�) from whi
h she sele
ts β uniformly at

random.

We are now ready to determine an upper bound on the probability of

Player B winning G(m,X) (with Assumptions 1�3 above).

Theorem 1. The probability that Player B wins the game G(m,X) is at

most

min(|X|,2m)
|X| .

Proof. Player B will win G(m,X) with probability at most 1 = |X|
|X| . Thus

it su�
es only to prove that the probability of winning is at most

2m

|X| . Let's

assume that Player A has 
hosen α ∈ X uniformly at random, and �x an

arbitrary set {P1, . . . , Pm} of propositions to be presented by Player B. Let

W denote the event, �Player B's guess β is equal to α.� For 1 ≤ i ≤ m,

re
all that P 0
i ⊆ X denotes the event �Player A says `false' after re
eiving

Pi.� Similarly, P 1
i is the event �Player A says `true' after re
eiving Pi.�

Then W o

urs if and only if P i1
1 ∩ P i2

2 ∩ · · · ∩ P im
m ∩ W o

urs for some

(i1, i2, . . . , im) ∈ {0, 1}m. Sin
e for (i1, . . . , im) 6= (j1, . . . , jm), the events

P i1
1 ∩ · · · ∩ P im

m ∩ W and P j1
1 ∩ · · · ∩ P jm

m ∩ W are mutually ex
lusive, it

follows that

P(W) =
∑

(i1,...,im)∈{0,1}m

P(i1, . . . , im,W),
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where (i1, . . . , im,W) is the ve
tor naming the event P i1
1 ∩ · · · ∩ P im

m ∩W .

Sin
e there are 2m su
h ve
tors, it su�
es to show that P(v) ≤ 1
|X| for any

su
h ve
tor v. Thus let v := (i1, . . . , im,W) be arbitrary. Observe that

v o

urs if and only if α ∈ S := P i1
1 ∩. . .∩P im

m and Player B's guess β equals α.
(2.2)

Thus if S = ∅, then v 
annot o

ur, and P(v) = 0 < 1
|X| . Assume now

that S 6= ∅. Then

P(v) = P (α ∈ S) · P
(

β = α | α ∈ S
)

=
|S|

|X |
·
|S ∩ T |

|S| · |T |
=

|S ∩ T |

|T |
·

1

|X |
≤

1

|X |
;

(2.3)

here, P
(

β = α | α ∈ S
)

denotes the 
onditional probability that β = α

given that α ∈ S. To 
on
lude the proof, we justify why P
(

β = α | α ∈ S
)

=
|S∩T |
|S|·|T | . Sin
e Player A's sele
tion lies in S, there are a total of |S| · |T |

equally likely pairs (α, β) of possible 
hoi
es by players A and B, respe
-

tively. Player B will win provided the pair (α, β) satis�es α = β, and there

are |S ∩ T | su
h pairs. The proof is now 
omplete. �

The per
eptive reader may have noti
ed the power of two appearing in

the bound on P(W) above, and wondered if there is a relation between

our work thus far and the binary sear
h algorithm of 
omputer s
ien
e.

Indeed there is. Without taking the reader too far a�eld, we mention simply

that the binary sear
h algorithm �nds a spe
i�ed key value in an array

by repeatedly bise
ting the array and making 
omparisons. For instan
e,

suppose you want (your 
omputer) to �nd the number 10 in the array

1, 2, 3, 4, 5, 6, 7, 8, 9, 10. Begin by taking the midpoint, 5, and 
omparing

it with the desired value. Ten is bigger. Now repeat the pro
ess on the

array 6, 7, 8, 9, 10. The midpoint, 8, is less than 10. Repeat on the array

9, 10. Whether 9 or 10 is 
hosen as the next midpoint, the algorithm will,

at worst, terminate with 10 on the fourth 
omparison. Indeed, it is not

hard to show that any member of the original array 
an be found with

at most 4 
omparisons (this is the so-
alled worst 
ase of the algorithm).

Part of the purpose of the following se
tion is to show that even with mu
h

less stringent assumptions (re
all that Player B is free to ask Player A any

question (proposition); the question need not even obviously relate to the

game being played), Player B still 
annot do any better than she 
an by

adopting a natural set of additional rules for game play. We shall shortly

introdu
e su
h a set of rules, and then �nd all strategies whi
h maximize

B's probability of winning in this modi�ed probabilisti
 setting.
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We 
on
lude this se
tion with some simple appli
ations of Theorem 1.

Consider �rst the game G(1, 2). Player B 
an assure a win by presenting the

proposition, �The number you 
hose is 2� to Player A. If Player A returns

�true,� then Player B knows A's number is 2. If he returns �false,� then

Player B knows that A's number is 1. Things 
hange a bit if we 
onsider

G(1, 3) instead. Theorem 1 tells us that the probability that Player B

wins this game is at most

min(3,21)
3 = 2

3 . Thus there does not exist a

proposition P that, regardless of the number 
hosen by Player A, will (after

re
eiving Player A's response) allow Player B to dedu
e whi
h number

Player A 
hose. In fa
t, one need not resort to probabilisti
 methods in

order to establish this; one needs only basi
 propositional logi
. Suppose

by way of 
ontradi
tion that there exists su
h a proposition P . Let ϕ be

the statement, �Player A will 
hoose a uniformly random number α ∈ [3]
(observe that Player B knows ϕ).� Then ϕ ∧ P |= �Player A 
hose i� and
ϕ ∧ ¬P |= �Player A 
hose j� for some i, j ∈ [3]. Therefore (ϕ ∧ P ) ∨ (ϕ ∧
¬P ) |= �Player A 
hose either i or j.� But (ϕ ∧ P ) ∨ (ϕ ∧ ¬P ) is true.

We dedu
e that Player A 
hose either i or j. But of 
ourse, |[3]| = 3, so
this need not be so. We refer the interested reader to the bibliography for

further reading on probability, logi
, and algorithms.

3. Main Results

Now that we have Theorem 1 in our po
ket, we are ready to give a


anoni
al version of the game alluded to in the abstra
t. Throughout the

remainder of this note, we shall assume G(m,X) to be as de�ned
in De�nition 2 below unless stated otherwise.

De�nition 2 (The game G(m,X), 
anoni
al version). A �nite, nonempty

set X ⊆ Z+
is presented to Players A and B. Player A randomly 
hooses

a number α ∈ X, but does not reveal α to Player B. Further, Player B is

given a positive integer m. For ea
h i ∈ [m], Player B is to sele
t some

subset Bi ⊆ X and presents it to Player A (this is equivalent to Player B

asking Player A if the number he 
hose is in Bi). After re
eiving Bi from

Player B, Player A returns Ai := Bi if α ∈ Bi (this 
orresponds to an

answer of �yes�) and Ai := Bc
i (relative to X) if α /∈ Bi (whi
h 
orresponds

to an answer of �no�)1. After Player B has presented all m sets to Player

A (and re
eived all m responses from Player A), Player B attempts to guess

the number Player A pi
ked. Now set A0 := X, and for 1 ≤ i ≤ m+ 1, let
Ai :=

⋂

0≤j<i Aj . We further impose the following on Player B:

2

(1) Bi ⊆ Ai for all i ∈ [m], and

1

Player B presents Bi to Player A after she has re
eived Ai−1 from Player A.

2

Player B loses if she does not follow (1) and (2) of De�nition 2.
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(2) Player B's guess is a member of Am+1 (that is, Am+1 is Player B's

guessing set).

Note that at the ith stage of the game (that is, the stage where Player

B is about to sele
t a set Bi to present to Player A), Player B knows the

elements of Ai and that α ∈ Ai. Thus she need not in
lude any members

of A c
i in her set Bi (ergo (1)). Similarly, after Player B has given all m sets

to Player A, she knows both the elements of Am+1 and that α ∈ Am+1.

Thus it makes no sense to guess outside of this set (hen
e (2)). Finally,

observe that the game de�ned in De�nition 2 above is a spe
i�
 example of

the game de�ned in the previous se
tion, and therefore Theorem 1 applies

in this 
ontext.

Re
all from Theorem 1 that the probability of winning G(m,X) is at

most

min(|X|,2m)
|X| . We shall prove that this value 
an a
tually be a
hieved via

the �
anoni
al version� of the game just des
ribed. We leave the abstra
tion

for a moment to present a 
on
rete example.

Example 4. Consider the game G(2, 6). To begin, Player A 
hooses some

α ∈ [6]; say α = 4. Now Player B is allotted two �questions� before guessing.

Player B presents the set {1, 2, 3} to Player A, who then returns {4, 5, 6}.
Player B now presents {4, 5} to Player A, who returns {4, 5}. Player B

guesses 4, and wins the game.

We now turn our attention to determining Player B's strategy for a
hiev-

ing the maximum probability

min(|X|,2m)
|X| of winning G(m,X). We begin

with a de�nition and another example.

De�nition 3. Let X be a �nite, nonempty subset of Z+
, and let m ≥ 1

be an integer. For ea
h i, 1 ≤ i ≤ m, suppose Bi ⊆ X. Lastly, let

x0 ∈ X. Then we 
all the sequen
e g := (B1, . . . , Bm, x0) a game ve
tor

of the game G(m,X). Further, we say that g is allowable in the game

G(m,X) provided every Bi satis�es (1) of De�nition 2 and x0 satis�es (2)
of De�nition 2. Lastly, g is winning if g is allowable and x0 is the number


hosen by Player A.

Example 5. Consider the game G(3, 9) (that is, Player A 
hooses some

α ∈ [9] and Player B is allotted 3 subsets of [9] before guessing), and

suppose that Player A 
hooses the number 1. Set B1 := {2, 4, 8}, B2 :=
{1, 3, 5, 9}, B′

2 := {1, 2, 5, 9}, and B3 := {1, 5}. Then the game ve
tor

g := (B1, B2, B3, 5) is allowable and g
′ := (B1, B2, B3, 1) is winning. How-

ever, the game ve
tor g
′′ := (B1, B2, B3, 6) is not allowable, sin
e 6 /∈ A4.

Finally, g
′′′ := (B1, B

′
2, B3, 1) is not allowable either, sin
e B′

2 is not a

subset of B1 or Bc
1 (hen
e B′

2 * A2).

We now establish a proposition whi
h will be heavily utilized throughout

the remainder of the paper. In what follows, the notation Gα(m,X) will
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denote the game with m questions on the �nite, nonempty set X ⊆ Z+
in

whi
h Player A 
hooses α.

Proposition 1. Let X ⊆ Z+
be �nite and nonempty and let m > 1 be

an integer. Further, suppose that B1, . . . , Bm are subsets of X and that

x0 ∈ X. Then the following hold:

(a) Let A1 be Player A's response to B1 in the game Gα(m,X). Then

A1 is a �nite subset of Z+

ontaining α. Thus the game Gα(m −

1, A1) is well-de�ned.

(b) (B1, . . . , Bm, x0) is an allowable game ve
tor of the game Gα(m,X)
if and only if (B2, . . . , Bm, x0) is an allowable game ve
tor of the

game Gα(m− 1, A1).
(
) (B1, . . . , Bm, x0) is a winning game ve
tor of the game Gα(m,X) if

and only if

(B2, . . . , Bm, x0) is a winning game ve
tor of the game Gα(m −
1, A1).

Proof. Assume that X ⊆ Z+
is �nite and nonempty and that m > 1.

Assume in addition that Bi ⊆ X for 1 ≤ i ≤ m and that x0 ∈ X .

(a) By de�nition, Player A returns A1 := B1 if α ∈ B1 and A1 := X\B1

otherwise. Sin
e X is �nite, it follows in either 
ase that A1 is a �nite

subset of Z+
. Moreover, α ∈ A1. Therefore, the game Gα(m − 1, A1) is

well-de�ned.

(b) Assume �rst that (B1, . . . , Bm, x0) is an allowable game ve
tor of

Gα(m,X) and let 2 ≤ i ≤ m be arbitrary. Then by de�nition of �allowable,�

it follows that

Bi ⊆ Ai =
⋂

0≤j<i

Aj ⊆ A1 and x0 ∈ Am+1 =
⋂

0≤j≤m

Aj ⊆ A1.

Therefore, B2 ∪B3 ∪ . . .∪Bm ∪{x0} ⊆ A1. We 
on
lude that (B2, B3, . . .,
Bm, x0) is a game ve
tor of the game Gα(m − 1, A1). Now set A′

1 := A1

(this is the analog of A0 in De�nition 2), and for 2 ≤ i ≤ m, let A′
i be Player

A's response to Bi in the game Gα(m− 1, A1). Lastly, for 2 ≤ i ≤ m + 1,
set A ′

i :=
⋂

1≤j<i Aj .

It follows immediately by de�nition of Gα(m−1, A1) that for 2 ≤ i ≤ m,

A′
i =

{

Bi = Ai if α ∈ Bi,

A1\Bi if α /∈ Bi.
(3.1)

We shall prove that

Ai ⊆ A
′
i for all i, 2 ≤ i ≤ m+ 1. (3.2)
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Toward this end, 
hoose i with 2 ≤ i ≤ m+ 1 and let x ∈ Ai be arbitrary.

We prove that x ∈ A ′
i . Pi
k j with 1 ≤ j < i. We must show that x ∈ A′

j .

If j = 1, the result is 
lear sin
e A′
1 = A1 and Ai ⊆ A1. Now assume that

2 ≤ j < i. As x ∈ Ai, we have x ∈ Aj . Suppose �rst that α ∈ Bj . Then

(3.1) implies that Aj = A′
j , hen
e x ∈ A′

j . Assume now that α /∈ Bj . Then

Aj = X\Bj and A′
j = A1\Bj. Sin
e x ∈ Aj , we 
on
lude that x /∈ Bj .

Thus to prove that x ∈ A′
j , it su�
es to show that x ∈ A1. Re
all that

2 ≤ i ≤ m + 1 and that x ∈ Ai. Thus x ∈ A1 by de�nition of Ai. This


on
ludes the proof of (3.2). It is now easy to see that (B2, . . . , Bm, x0) is
allowable: we simply need to 
he
k that Bi ⊆ A ′

i for 2 ≤ i ≤ m and that

x0 ∈ A
′
m+1. But this follows immediately from (3.2) and the assumption

that (B1, . . . , Bm, x0) is allowable.
Now suppose that (B2, . . . , Bm, x0) is allowable in the game Gα(m −

1, A1). By assumption,

B1 ⊆ X = A1. (3.3)

It follows from (3.1) that

A′
i ⊆ Ai for 1 ≤ i ≤ m (that A′

1 ⊆ A1 is by de�nition). (3.4)

Analogous to (3.2) above, we now prove that

A
′
i ⊆ Ai for all i, 2 ≤ i ≤ m+ 1. (3.5)

Let 2 ≤ i ≤ m+ 1 be arbitrary. Then

A
′
i =

⋂

1≤j<i

A′
j ⊆

⋂

1≤j<i

Aj = X ∩
(

⋂

1≤j<i

Aj

)

=
⋂

0≤j<i

Aj = Ai;

the 
ontainment is immediate from (3.4) above. We 
on
lude from (3.3),

(3.5), and the assumption that (B2, . . . , Bm, x0) is allowable that (B1,. . .,
Bm, x0) is an allowable game ve
tor of G(m,X).

(
) This follows immediately from (b). �

At long last, we are ready to establish the main result of this note via

indu
tion. In parti
ular, we now have the ma
hinery required to 
hara
ter-

ize all optimal strategies for Player B. Sin
e the base 
ase of the indu
tion

may be of independent interest, we single it out and prove it separately.

First, we remind the reader that by Theorem 1, the probability that Player

B wins game G(m,X) 
annot ex
eed min(|X|,2m)
|X| .

Proposition 2. Let X be a �nite, nonempty subset of Z+
, and let α ∈ X

be random. Now let g := (B1, x0) be an arbitrary allowable game ve
tor of
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the game Gα(1, X). Finally, let Wg be the event, �g is a winning ve
tor of

the game Gα(1, X).� Then

(a) P(Wg) =
min(|X|,2)

|X| if and only if

(b) min(1, |X | − 1) ≤ |B1| ≤ max(1, |X | − 1).

Proof. Suppose �rst that |X | = 1. Then (b) automati
ally holds, and the

equivalen
e of (a) and (b) redu
es to the assertion that g is a winning

ve
tor. Regardless of whether B1 = ∅ or B1 = X , Player A will return

X . Sin
e g is a game ve
tor, it follows by de�nition that x0 ∈ X . Hen
e

x0 = α, and g is winning.

We now assume that |X | > 1 and that Player B has presented B1 to

Player A. Let B1 be the event, �Player A returns B1,� and let Bc
1 be the

event, �Player A returns Bc
1.� Sin
e either B1 or Bc

1 must o

ur and sin
e

these events are mutually ex
lusive, we dedu
e that

P(Wg) = P(Wg ∩ (B1 ∪ Bc
1)) = P(Wg ∩ B1) + P(Wg ∩ Bc

1). (3.6)

Suppose now that (b) above fails. We shall prove that (a) fails too. It

is easy to see that (b) fails if and only if B1 = ∅ or B1 = X . Suppose that

B1 = ∅. Then B1 does not o

ur, and we dedu
e from (3.6) above that

P(Wg) = P(Wg ∩Bc
1) = P(Bc

1) ·P(Wg | Bc
1) = 1 ·

1

|X |
<

min(|X |, 2)

|X |
, (3.7)

and we have shown that (a) fails. An analogous argument applies in 
ase

B1 = X .

Conversely, assume (b) holds. Then both B1 and Bc
1 are nonempty. In

this 
ase, (3.6) be
omes

P(Wg) = P(Wg ∩ B1) + P(Wg ∩ Bc
1)

= P(B1) · P(Wg | B1) + P(Bc
1) · P(Wg | Bc

1)

=
|B1|

|X |
·

1

|B1|
+

|Bc
1|

|X |
·

1

|Bc
1|

=
2

|X |
=

min(|X |, 2)

|X |
,

(3.8)

as required. �

Now is a good time to re�e
t upon our results to this point in light of

the examples given in the introdu
tion. Let n > 1 be arbitrary. Then in

the game G(1, n) (as introdu
ed in the introdu
tion, with Player B asking

a yes/no question to Player A), Player B 
an maximize her probability of

winning by asking the following (seemingly naive) simple question: �Is the

number you pi
ked equal to 1?� We �nd this fa
t quite surprising. In

fa
t, we 
an say a bit more: Player B maximizes her probability of winning
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G(1, n) with question Q if she knows a number x ∈ [n] for whi
h Player A

answers �no� to Q if he pi
ked x and a value y ∈ [n] for whi
h Player A

responds with �yes� to Q if he pi
ked y. We now present the main result of

this paper.

Theorem 2. Let X be a �nite, nonempty subset of Z+
, and let α ∈ X

be random. Now let g := (B1, . . . , Bm, x0) be an arbitrary allowable game

ve
tor of the game Gα(m,X). We remind the reader that A0 := X and

for ea
h i ∈ [m], Ai denotes Player A's response to the set Bi presented by

Player B. Finally, Ai :=
⋂

0≤j<i Aj for i ∈ [m+1]. Now let Wg(Gα(m,X))

be the event, �g is a winning ve
tor of the game Gα(m,X).� Then

(a) P(Wg(Gα(m,X))) = min(|X|,2m)
|X| if and only if

(b) min(2m−i, |Ai| − 2m−i) ≤ |Bi| ≤ max(2m−i, |Ai| − 2m−i) for all i,
1 ≤ i ≤ m.

Proof. We pro
eed by indu
tion on m. Thus suppose the theorem is true

for all k < m. If m = 1, then we are done by Proposition 2. Therefore, we

may suppose that

m > 1. (3.9)

Now set

g
′ := (B2, . . . , Bm, x0). (3.10)

As in the proof of Proposition 2, we let B1 denote the event, �Player A

returns B1 after being presented with B1,� and Bc
1 name the event, �Player

A returns Bc
1 after being presented with B1.� We now 
onsider two 
ases.

Case 1: B1 = ∅ or B1 = X . Then P(Bc
1) = 1 or P(B1) = 1, respe
tively,

and we have

P(Wg(Gα(m,X))) (3.11)

=

{

P(Wg(Gα(m,X)) ∩ Bc
1) = P(Wg(Gα(m,X)) | Bc

1) if B1 = ∅,

P(Wg(Gα(m,X)) ∩ B1) = P(Wg(Gα(m,X)) | B1) if B1 = X.

If B1 = ∅, then Proposition 1 implies that P(Wg(Gα(m,X)) | Bc
1) =

P(Wg′(Gα(m−1, X))). Similarly, if B1 = X , then P(Wg(Gα(m,X)) | B1) =
P(Wg′(Gα(m− 1, X))). In either 
ase, (3.11) redu
es to

P(Wg(Gα(m,X))) = P(Wg′(Gα(m− 1, X))). (3.12)

We are ready to establish the equivalen
e of (a) and (b). Suppose �rst

that
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P(Wg(Gα(m,X))) =
min(|X |, 2m)

|X |
. (3.13)

For all i, 1 ≤ i ≤ m, we must prove that

min(2m−i, |Ai| − 2m−i) ≤ |Bi| ≤ max(2m−i, |Ai| − 2m−i). (3.14)

We dedu
e from (3.12) and (3.13) that

P(Wg′(Gα(m− 1, X))) =
min(|X |, 2m)

|X |
. (3.15)

Re
all from Theorem 1 that P(Wg′(Gα(m − 1, X))) ≤ min(|X|,2m−1)
|X| . This

fa
t along with (3.15) implies

P(Wg′(Gα(m− 1, X))) =
min(|X |, 2m)

|X |
=

min(|X |, 2m−1)

|X |
. (3.16)

It is patent from (3.16) that

|X | ≤ 2m−1. (3.17)

We now prove that (3.14) holds for all i, 1 ≤ i ≤ m. When i = 1, (3.14)
follows immediately from (3.17) above. Set A′

1 := X and for ea
h i with
2 ≤ i ≤ m, let A′

i be Player A's response to Bi in the game Gα(m− 1, X).
Then we dedu
e from (3.16) and the indu
tive hypothesis that

min(2m−i, |A ′
i | − 2m−i) ≤ |Bi| ≤ max(2m−i, |A ′

i | − 2m−i) for 2 ≤ i ≤ m,
(3.18)

where A
′
i is de�ned as in the proof of Proposition 1. Sin
e B1 = ∅ or

B1 = X , it follows that A1 = X . Hen
e

A′
i = Ai for ea
h i, 1 ≤ i ≤ m. Thus also A

′
i = Ai for ea
h i, 2 ≤ i ≤ m.

(3.19)

Combining (3.18) and (3.19), we see that min(2m−i, |Ai| − 2m−i) ≤ |Bi| ≤
max(2m−i, |Ai| − 2m−i) for 2 ≤ i ≤ m, and (3.14) has been established for

all i.
Conversely, assume that (3.14) holds for 1 ≤ i ≤ m. We shall prove

that P(Wg(Gα(m,X))) = min(|X|,2m)
|X| . It follows immediately from (3.14),

(3.19), and the indu
tive hypothesis that

P(Wg′(Gα(m− 1, X))) =
min(|X |, 2m−1)

|X |
. (3.20)
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We dedu
e from (3.12) that

P(Wg(Gα(m,X))) =
min(|X |, 2m−1)

|X |
. (3.21)

To 
on
lude the Case 1 proof, it su�
es to show that |X | ≤ 2m−1
. Again,

we remind the reader that our Case 1 assumption is that B1 = ∅ orB1 = X .

If B1 = ∅, then |X | ≤ 2m−1
follows immediately from the �rst inequality

in (3.14) above (with i = 1). In 
ase B1 = X , we dedu
e |X | ≤ 2m−1
from

the right-hand i = 1 inequality in (3.14). This 
on
ludes the proof in Case

1.

Case 2: ∅ ( B1 ( X . In this 
ase, Theorem 1, Proposition 1, and the

argument used in the proof of Proposition 2 (see (3.6) and (3.8)) imply that

P(Wg(Gα(m,X)))

= P(B1) · P(Wg(Gα(m,X)) | B1) + P(Bc
1) · P(Wg(Gα(m,X)) | Bc

1)

= P(B1) · P(Wg′(Gα(m− 1, B1))) + P(Bc
1) · P(Wg′(Gα(m− 1, Bc

1)))

≤
|B1|

|X |
·
min(|B1|, 2

m−1)

|B1|
+

|Bc
1|

|X |
·
min(|Bc

1|, 2
m−1)

|Bc
1|

=
min(|B1|, 2

m−1)

|X |
+

min(|Bc
1|, 2

m−1)

|X |

≤
min(|X |, 2m)

|X |
. (3.22)

Assume �rst that P(Wg(Gα(m,X))) = min(|X|,2m)
|X| . Then equality holds

throughout (3.22). It follows (regardless of whether A1 = B1 or A1 = Bc
1)

that

P(Wg′(Gα(m− 1, A1))) =
min(|A1|, 2

m−1)

|A1|
. (3.23)

For 2 ≤ i ≤ m, the indu
tive hypothesis yields

min(2m−i, |A ′
i | − 2m−i) ≤ |Bi| ≤ max(2m−i, |A ′

i | − 2m−i), (3.24)

Invoking (3.2) and (3.5) of the proof of Proposition 1, (3.24) be
omes

min(2m−i, |Ai| − 2m−i) ≤ |Bi| ≤ max(2m−i, |Ai| − 2m−i) (3.25)

for 2 ≤ i ≤ m. To 
omplete the impli
ation (a) =⇒ (b), we need only show

that (3.25) also holds when i = 1. Suppose not. Then either (1) |B1| <
2m−1

and |B1| < |X | − 2m−1
or (2) |B1| > 2m−1

and |B1| > |X | − 2m−1
.
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In either 
ase, (3.22) implies that P(Wg(Gα(m,X))) < min(|X|,2m)
|X| , and we

have a 
ontradi
tion to our assumption.

Conversely, suppose that (3.25) holds for all i, 1 ≤ i ≤ m. Then by (3.2)

and (3.5) of the proof of Proposition 1, we obtain (3.24) for 2 ≤ i ≤ m. For

the reader's 
onvenien
e, we restate (3.22):

P(Wg(Gα(m,X)))

= P(B1) · P(Wg(Gα(m,X)) | B1) + P(Bc
1) · P(Wg(Gα(m,X)) | Bc

1)

= P(B1) · P(Wg′(Gα(m− 1, B1))) + P(Bc
1) · P(Wg′(Gα(m− 1, Bc

1)))

≤
|B1|

|X |
·
min(|B1|, 2

m−1)

|B1|
+

|Bc
1|

|X |
·
min(|Bc

1|, 2
m−1)

|Bc
1|

=
min(|B1|, 2

m−1)

|X |
+

min(|Bc
1|, 2

m−1)

|X |

≤
min(|X |, 2m)

|X |
.

As (3.24) holds for 2 ≤ i ≤ m, the indu
tive hypothesis allows us to repla
e

the �rst inequality sign above with equality. We 
on
lude from (3.25) above

(with i = 1) that either (1) |B1| ≤ 2m−1
and |Bc

1| ≤ 2m−1
or (2) 2m−1 ≤

|B1| and 2m−1 ≤ |Bc
1|. In either 
ase, we 
an repla
e the se
ond inequality

with equality, and the proof is 
omplete. �

We have determined the sets Bi ⊆ X whi
h maximize Player B's proba-

bility of winning Gα(m,X). It remains to verify that Player B 
an, in fa
t,

e�e
tively �nd an allowable game ve
tor (B1, . . . , Bm, x0) whi
h satis�es

(b) of Theorem 2.

Proposition 3. Consider the game Gα(m,X), where X ⊆ Z+
is �nite

and nonempty and m ≥ 1. Then Player B 
an e�e
tively 
hoose

3

subsets

B1, . . . , Bm of X and x0 ∈ X su
h that

(a) (B1, . . . , Bm, x0) is an allowable game ve
tor, and

(b) min(2m−i, |Ai| − 2m−i) ≤ |Bi| ≤ max(2m−i, |Ai| − 2m−i) for all i,
1 ≤ i ≤ m.

Proof. Fix k with 1 ≤ k ≤ m, and suppose that for ea
h i < k, Player B
has 
hosen Bi ⊆ Ai satisfying (b) and Player A has returned Ai to her.

Then of 
ourse, Player B knows pre
isely whi
h elements of X belong to

Ak. We 
laim that Player B 
an e�e
tively 
hoose Bk ⊆ Ak satisfying (b).

We 
onsider two 
ases.

3

That is, there exists an algorithm by whi
h Player B 
an 
hoose B1, . . . , Bm, x0

satisfying (a) and (b) regardless of whi
h α was 
hosen by Player A.
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Case 1: |Ak| − 2m−k < 0. Then Player B 
an take Bk := ∅.

Case 2: |Ak| − 2m−k ≥ 0. Then Player B 
an 
hoose any subset of Ak

of size |Ak| − 2m−k
.

After 
hoosing the sets B1, . . . , Bm as above, it remains to show that

Player B 
an e�e
tively sele
t x0 ∈ Am+1. Sin
e α ∈ Am+1, we have

Am+1 6= ∅. Thus Player B 
an simply sele
t her favorite element of Am+1

(as above, Player B knows exa
tly whi
h elements of X are members of

Am+1), and the proof is 
omplete. �

4. Some Consequen
es

We 
on
lude the paper with several 
onsequen
es of the results of the

previous se
tion.

Corollary 1. Player B has a winning strategy in the game Gα(m,X) if

and only if m ≥ log2 |X |.

Proof. Player B has a winning strategy in the game Gα(m,X) if and only

if

min(|X|,2m)
|X| = 1 if and only if 2m ≥ |X | if and only if m ≥ log2 |X |. �

It is natural to ask if it is possible to eliminate �min� and �max� from

the formulation of (b) of Theorem 2. Indeed it is. We shall require the

following simple lemma.

Lemma 1. Let (B1, . . . , Bm, x0) be an allowable game ve
tor of the game

Gα(m,X) su
h that min(2m−1, |X | − 2m−1) ≤ |B1| ≤ max(2m−1, |X | −
2m−1). Then 2m ≥ |X | if and only if 2m−1 ≥ |A1|.

Proof. Suppose �rst that 2m ≥ |X |. Then 2m−1 ≥ |X | − 2m−1
, and hen
e

|X | − 2m−1 ≤ |B1| ≤ 2m−1
. If A1 = B1, then 2m−1 ≥ |B1| = |A1|, as

required. Otherwise, A1 = Bc
1. Sin
e |X | − 2m−1 ≤ |B1|, we dedu
e that

|A1| = |X | − |B1| ≤ 2m−1
.

Now assume that 2m ≤ |X |. Then 2m−1 ≤ |X |−2m−1
, and thus 2m−1 ≤

|B1| ≤ |X | − 2m−1
. As above, if A1 = B1, then 2m−1 ≤ |A1|. Suppose

A1 = Bc
1. Sin
e |B1| ≤ |X | − 2m−1

, we obtain |A1| = |X | − |B1| ≥ 2m−1
.

This 
on
ludes the proof. �

Corollary 2. Let X ⊆ Z+
be �nite and nonempty, m ∈ Z+

, and g :=
(B1, . . . , Bm, x0) be an allowable game ve
tor of the game Gα(m,X). Then
the following hold:

(a) If 2m ≥ |X |, then P(Wg(Gα(m,X))) = 1 if and only if |Ai|−2m−i ≤
|Bi| ≤ 2m−i

for 1 ≤ i ≤ m, and

(b) If 2m ≤ |X |, then P(Wg(Gα(m,X))) = 2m

|X| if and only if 2m−i ≤

|Bi| ≤ |Ai| − 2m−i
for 1 ≤ i ≤ m.
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Proof. Let X , m, and g be as stated. We pro
eed by indu
tion onm. Thus,

we assume that the 
orollary holds for all k < m, and prove that it holds

for m. If m = 1, then (a) and (b) follow immediately from Theorem 2.

Now suppose that m > 1. By Theorem 2, it su�
es to establish only the

forward impli
ations.

We prove only (a), as the proof of (b) is similar. Suppose 2m ≥ |X |
and P(Wg(Gα(m,X))) = 1. Then |X | − 2m−1 ≤ 2m−1

. By Theorem 2, it

follows that |X |−2m−1 ≤ |B1| ≤ 2m−1
. Lemma 1 tells us that 2m−1 ≥ |A1|.

Re
all from (3.2) and (3.5) of the proof of Proposition 1 that Ai = A ′
i for

2 ≤ i ≤ m + 1. This fa
t along with the indu
tive hypothesis yields that

|Ai| − 2m−i ≤ |Bi| ≤ 2m−i
for 2 ≤ i ≤ m. The proof is now 
omplete. �

It is immediate from Corollary 2 that in the game Gα(1, X), |X | > 1,
Player B maximizes her probability of winning if and only if she 
hooses

B1 ⊆ X and x0 ∈ X su
h that (B1, x0) is allowable and 1 ≤ |B1| ≤
|X | − 1. Thus (for large values of |X |) there are subsets B1 ⊆ X of many

di�erent 
ardinalities whi
h maximize B's probability of winning Gα(1, X).
Moreover, in general, Player B has some freedom in 
hoosing the sizes of the

sets Bi to present to Player A, even in the 
ase when m = ⌈log2 |X |⌉. For
instan
e, 
onsider the game Gα(5, 19). Then (again, employing a winning

strategy) Player B 
an begin by 
hoosing any B1 ⊆ [19] with the property

that 3 ≤ |B1| ≤ 16.
We end this note by determining 
onditions under whi
h Player B has

no freedom in 
hoosing the 
ardinalities of the sets B1, . . . , Bm, where

(B1, . . . , Bm, x0) is a game ve
tor whi
h maximizes B's probability of win-

ning Gα(m,X).

Corollary 3. Let X be a �nite, nonempty subset of Z+
and let g :=

(B1, . . . , Bm, x0) be a game ve
tor of the game Gα(m,X) whi
h maximizes

Player B's probability of winning (that is, P(Wg(Gα(m,X))) = min(|X|,2m)
|X| ).

Then the 
ardinalities of the sets Bi are uniquely determined if and only if

|X | = 2m (in whi
h 
ase Player B has a winning strategy by Corollary 1).

Proof. Let g := (B1, . . . , Bm, x0) be an arbitrary game ve
tor whi
h max-

imizes the probability of Player B winning Gα(m,X) (in parti
ular, g is

allowable). Assume �rst that the 
ardinalities of the sets Bi are uniquely

determined. Then Theorem 2 implies that min(2m−1, |X |−2m−1) ≤ |B1| ≤
max(2m−1, |X | − 2m−1). We 
laim that 2m−1 = |X | − 2m−1

. Otherwise, it

is easy to see that there exist integers n1 6= n2 satisfying both

0 ≤ ni ≤ |X |, and (4.1)

min(2m−1, |X | − 2m−1) ≤ ni ≤ max(2m−1, |X | − 2m−1) (4.2)
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for i = 1, 2. But then both |B1| = n1 and |B1| = n2 are possible. This gives

us a 
ontradi
tion to the uniqueness of |B1|. Thus 2
m−1 = |X |−2m−1

, and

|X | = 2m.
Conversely, suppose that |X | = 2m. Then it follows immediately from

Corollary 2 that |Bi| = 2m−i
for 1 ≤ i ≤ m. �
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