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Abstract. This article shows that continuous functions on compact
intervals may be approximated uniformly with scattered translates of
the Poisson kernel (α2+x

2)−1, where α > 0 is a fixed real parameter.

1. Introduction

In [1], it was shown that continuous functions on a closed interval may be
uniformly approximated by scattered translates of the Hardy multiquadric.
We will adapt the method found there to our purposes, showing that the
same is true for the Poisson kernel, φ(x) = (α2 + x2)−1.

This note is organized as follows. In the next section, various definitions
and facts are collected. The third section contains the main theorem to be
proved, while the fourth section contains the details of the proof.

2. Definitions and Basic Facts

We will need to know what “scattered” means. For our purposes, we
have the following definition in mind.

Definition 1. A sequence of real numbers, denoted X , is said to be δ-
separated if

inf
x,y∈X

x 6=y

|x− y| = δ > 0.

It’s not hard to see that a δ-separated sequence must be countable. Take
intervals of lenth δ/3 centered at each point in X , each of these intervals is
disjoint and contains a rational number r. Letting a member of X corrspond
to the number r which is in the same interval shows that the set X is at
most countable. This allows us to index X with the integers.

Definition 2. A sequence {xj} ⊂ R is scattered if it is δ-separated for

some positive δ and satisfies

lim
j→±∞

xj = ±∞.
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Throughout the remainder of the paper we let X = {xj}j∈Z be a fixed but
otherwise arbitrary scattered sequence.

3. The Main Result

Theorem 1. Given a scattered sequence {xj}, ε > 0, and a continuous

function f : [a, b] → R, we may find a sequence of coefficients {aj}
N
j=1,

such that

sup
x∈[a,b]

∣

∣

∣

∣

∣

∣

f(x)−
N
∑

j=1

aj
α2 + (x− xj)2

∣

∣

∣

∣

∣

∣

< ε.

Sketch of Proof. The idea is to develop a Taylor expansion

1

α2 + (x− xj)2
=

1

x2
j

[

A0(x) +
A1(x)

xj

+
A2(x)

x2
j

+ · · ·

]

.

From here we show that the linear span of {Aj(x)} contains xj for j =
0, 1, 2, . . . . We then find coefficients to approximate an nth degree polyno-
mial by using an appropriate Vandermonde matrix. Finally, since we may
approximate polynomials, we appeal to the Stone-Weierstrass Theorem to
finish our problem. �

This theorem combined with Hölder’s Inequality allows us to replace the
L∞ norm above with the Lp norm. We state this in the following corollary.

Corollary 1. Given a scattered sequence {xj}, ε > 0, p ∈ [1,∞], and a

continuous function f : [a, b] → R, we may find a sequence of coefficients

{aj}
N
j=1, such that

∥

∥

∥

∥

∥

∥

f(x)−

N
∑

j=1

aj
α2 + (x− xj)2

∥

∥

∥

∥

∥

∥

Lp([a,b])

< ε.

4. Details

This section provides a rigorous justification for the outline of the proof.
We begin with the Taylor expansion. For any nonzero xj we have,

1

α2 + (x− xj)2
=

1

x2
j

[

1 +
−2x

xj

+
x2 + α2

x2
j

]−1

=
1

x2
j

∞
∑

n=0

An(x)

xn
j

.
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This leads to the following relationship for xj >> 0

1 =

[

1 +
−2x

xj

+
x2 + α2

x2
j

]

∞
∑

n=0

An(x)

xn
j

= A0(x) +
A1(x)− 2xA0(x)

xj

+

∞
∑

n=2

An(x)− 2xAn−1(x) + (x2 + α2)An−2(x)

xn
j

(4.1)

In solving (4.1) we can see that An(x) satisfies the recursion relationship:

A0(x) = 1

A1(x) = 2x

An(x) = 2xAn−1(x) − (x2 + α2)An−2(x); n ≥ 2. (4.2)

We are in position to state our first proposition.

Proposition 1. The leading term of An(x) is given by (n+ 1)xn.

Proof. We induct on n. The first two cases are shown above, so we suppose
that the assertion holds for all k such that 1 ≤ k ≤ n. From (4.2), we have

An+1(x) = 2xAn(x)− (x2 + α2)An−1(x).

The leading term is calculated using the leading terms of An(x) and An−1.
This leads to

2x(n+ 1)xn − x2(nxn−1) = [2n+ 2− n]xn+1 = (n+ 2)xn+1.

This is the desired result. �

The goal of this calculation is the following.

Corollary 2. The set {An(x)}
∞
n=0 is linearly independent on [a, b].

From this, we have that Π[x] ⊂ span{An(x)}
∞
n=0, where

Π[x] = {polynomials in x with coefficients in R}.

We need a way to produce a specific polynomial. To this end, we choose a
subsequence of {xj} as follows. Let xj(1) >> 0, then choose each subsequent
term according to xj(n+1) ≥ 2xj(n), this is possible since xj → ∞.

We use the following.

Proposition 2. The following matrix is invertible

PN =
[

x
−(l+1)
j(k)

]

l,k
l, k = 1, 2, . . . , N.
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Proof. We notice that this is a variant of a Vandermonde matrix whose
determinant is given by

det(PN ) =

N
∏

k=1

x−2
j(k)

∏

1≤r<s≤N

[

1

xj(s)
−

1

xj(r)

]

,

which is nonzero by our choice of subsequence since xj(r) 6= xj(s) unless
r = s. �

Proposition 3. Let N ≥ 1, then the matrix equation

PNbN = eN,

where eN is the N th standard basis vector in R
N , has solution

bN(m) = (−1)N+mxN+1
j(m)

∏

k 6=m

[

1−
xj(m)

xj(k)

]−1

m = 1, . . . , N. (4.3)

Proof. In this case, Cramer’s Rule is easy to work with since it leaves us
with the ratio of Vandermonde determinants. If we set PN (m) to be the
matrix PN with the mth column replaced by eN, then we have

bN(m) =
det(PN (m))

det(PN )
.

We need only work out det(PN (m)) and simplify.

det(PN (m)) =
∏

k 6=m

x−2
j(k)

m′

∏

1≤r<s≤N

[

1

xj(s)
−

1

xj(r)

]

,

where the m′ means we have deleted all of the terms with xj(m). This leaves
us with

bN(m) = x2
j(m)

∏

k>m

[

1

xj(k)
−

1

xj(m)

]−1
∏

l<m

[

1

xj(m)
−

1

xj(k)

]−1

= (−1)N+mxN+1
j(m)

∏

k 6=m

[

1−
xj(m)

xj(k)

]−1

.

�

These coefficients have the property that

bN(m)x
−(N+2)
j(m = O(

1

xj(1)
).
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This allows us to get close to Am(x), since

N
∑

m=1

bN(m)

α2 + (x− xj(m))2

=

N
∑

m=1

bN(m)x−2
j(m)

[

A0(x) +
A1(x)

xj(m)
+ · · ·+

AN−1(x)

xj(m)N−1

+ · · ·

]

= AN−1(x) +O

(

1

xj(1)

)

.

Proposition 4. If p(x) ∈ Π[x] and ε > 0, then there exists an N ≥ 1 and

a sequence {bm}Nm=1 such that

sup
x∈[a,b]

∣

∣

∣

∣

∣

p(x)−
N
∑

m=1

bm
α2 + (x − xj(m))2

∣

∣

∣

∣

∣

< ε.

Proof. Let N = deg(p). Then we may expand p(x) in terms of {Ak(x)},
that is,

p(x) =

N
∑

k=0

ckAk(x).

Then the coefficients that we need are a linear combination of the ones we
found above.

bm =
N+1
∑

k=m

ck−1bk(m).

From this we see that

N+1
∑

m=1

bm
α2 + (x− xj(m))2

= p(x) +O

(

1

xj(1)

)

.

We need only take xj(1) so large that the error term falls below ε. �

Finally, we are in position to prove our main result.

Proof of Theorem. Let ε > 0, and f(x) be specified, then the Stone-Weier-
strass theorem implies that we may find a polynomial p(x) such that

sup
x∈[a,b]

|f(x)− p(x)| <
ε

2
.

The above proposition allows us to find {bm} such that

sup
x∈[a,b]

∣

∣

∣

∣

∣

p(x) −

N+1
∑

m=1

bm
α2 + (x − xj(m))2

∣

∣

∣

∣

∣

<
ε

2
.
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The triangle inequality finishes the proof, since

sup
x∈[a,b]

∣

∣

∣

∣

∣

f(x)−

N+1
∑

m=1

bm
α2 + (x − xj(m))2

∣

∣

∣

∣

∣

≤ sup
x∈[a,b]

|f(x)− p(x)|+ sup
x∈[a,b]

∣

∣

∣

∣

∣

p(x)−
N+1
∑

m=1

bm
α2 + (x− xj(m))2

∣

∣

∣

∣

∣

≤
ε

2
+

ε

2
= ε.

�
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