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ABSTRACT. Let G4 be an AF-algebra given by a periodic Bratteli
diagram with the incidence matrix A € GL(n,Z). For a given
polynomial p(x) € Zlx] we assign to G4 a finite abelian group
Abp2)(Ga) = Z"/p(A)Z™. 1t is shown that if p(0) = £1 and
Z[z]/{p(x)) is a principal ideal domain, then Aby,)(G4) is an in-
variant of the strong stable isomorphism class of G 4. For n = 2 and
p(x) = x — 1 we conjecture a formula linking values of the invariant
and torsion subgroup of elliptic curves with complex multiplication.

1. INTRODUCTION

Let A € GL(n,Z) be a strictly positive integer matrix and consider the
following two objects, naturally attached to A. The first one, which we
denote by (Ga,04), is a pair consisting of an AF-algebra, G4, given by
an infinite periodic Bratteli diagram with the incidence matrix A and a
shift automorphism, o4, canonically attached to G4. (The definitions of
an AF-algebra, a Bratteli diagram, and a shift automorphism are given in
Section 2.) The second object is an abelian group, which can be introduced
as follows. Let p(z) € Z[x] be a polynomial over Z, such that p(0) = +1
and Z[z]/{p(x)) is a principal ideal domain; here (p(x)) means the ideal
generated by p(z). Notice that Z[z]/(p(x)) is a principal ideal domain
whenever p(z) is an irreducible polynomial and roots of p(z) generate an
algebraic number field whose ring of integers is a principal ideal domain.
Consider the following abelian group:

Zn/p(A)Zn = Abp(m)(GA)v (1)

which we shall call an abelianized G4 at the polynomial p(x). Recall that
the AF-algebras G 4 and G 4. are said to be stably isomorphic, whenever
Ga®K=Ga ®K, where K is the C*-algebra of compact operators on a
Hilbert space H.
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Definition 1. The AF-algebras G4 and G A are said to be strongly stably
isomorphic if they are stably isomorphic and 04,04/ are the conjugate shift
automorphisms.

Roughly speaking, the stable isomorphism is a property of AF-algebra
G 4, while the strong stable isomorphism is a property of the AF-algebra
G 4 along with its incidence matrix A. The main result of the present note
is the following theorem.

Theorem 1. For each polynomial p(x) € Z[z], such that p(0) = £1 and
Z[z]/{p(x)) is a principal ideal domain, the abelian group Aby,)(G a) is an
imwvariant of the strong stable isomorphism class of the AF -algebra G 4.

Remark 1. The reader can find many more numerical invariants of sta-
tionary AF-algebras in the remarkable monograph by Bratteli, Jorgensen
& Ostrovsky [2]; notice that the authors consider the case when A is not
necessarily a unimodular matrix.

Let Ecopr be an elliptic curve with complex multiplication by an order
of conductor f > 1 in the imaginary quadratic field Q(v/—d), where d # 1
[12, p. 96]. Counsider a periodic continued fraction fw = [ag, a1, -, anl,

where w = # if d =1 (mod 4) and w = Vd if d = 2,3 (mod 4). We
shall introduce an integer matrix A = [, (all (1)>, see Section 4.1 for a
motivation.

Conjecture 1. (“Weil’s Conjecture for torsion points”) For each
Ecn there exists a number field K such that Ecpy = E(K) and a twist
of E(K) such that Eiors(K) =2 Aby—1(Ga), where Eiors(K) is the torsion
subgroup of E(K).

Remark 2. Conjecture 1 is an analog of (one of) classical Weil’s Con-
jectures for projective varieties over finite fields [4, pp. 449-451]; indeed,
it identifies Fyops(K) with the fixed points of an automorphism A of the
cohomology group H'(E(K);Z), see also the last paragraph of Section 3.

The note is organized as follows. The preliminary facts are brought
together in Section 2. Theorem 1 is proved in Section 3. In Section 4
conjecture 1 is explained and some examples are given.

2. PRELIMINARIES

An AF-algebra (approximately finite-dimensional C*-algebra) is defined
to be the norm closure of an ascending sequence of the finite-dimensional
C*-algebras M,,’s, where M, is the C*-algebra of the n x n matrices with
the entries in C. Here the index n = (n1,...,nx) represents a semi-simple
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matrix algebra M,, = M,, ®---® M, . The ascending sequence mentioned
above can be written as M, RN M> RN , where M; are the finite
dimensional C*-algebras and ¢; the homomorphisms between such algebras.
The set-theoretic limit .4 = lim M; has a natural algebraic structure given
by the formula a,, + by — a + b; here a,, — a,br — b for the sequences
G, € My, b, € M. The homomorphisms ¢; can be arranged into a graph
as follows. Let M; = M;, & --- & M;, and My = My, & --- & My be
the semi-simple C*-algebras and ¢;: M; — M;; the homomorphism. One
has the two sets of vertices V;,,...,V, and Vir,..., Vit joined by the a,
edges, whenever the summand M, contains a,s copies of the summand M
under the embedding ;. As i varies, one obtains an infinite graph called
a Bratteli diagram of the AF-algebra [1]. The Bratteli diagram defines a
unique AF-algebra.

If the homomorphisms ¢; = pa = -+ = Const in the definition of the
AF-algebra A, the Bratteli diagram of AF-algebra A is called stationary;
by an abuse of notation, we shall refer to the corresponding AF-algebra as
stationary as well. The stationary Bratteli diagram looks like a periodic
graph with the incidence matrix A = (a,s) repeated over and over again.
Since matrix A is a non-negative integer matrix, one can take a power of
A to obtain a strictly positive integer matrix — which we always assume to
be the case. We shall denote the above AF-algebra by G4. Recall that
in the case of AF-algebras, the abelian monoid V¢ (A) of finitely-generated
projective modules over A (and a scale) defines the AF-algebra up to an
isomorphism and is known as a dimension group of A. We shall use a
standard dictionary existing between the AF-algebras and their dimension
groups [10, Section 7.3]. Instead of dealing with the AF-algebra Ga, we
shall work with its dimension group (Ko(Ga), Kq (Ga)), where Ko(G4)
is the lattice and K (G 4) is a positive cone inside the lattice given by a
sequence of the simplicial dimension groups:

zn Aygn Aygn A (2)
(The above notation comes from the Ky-group of G4 [10, p. 122].) There ex-
ists a natural automorphism, o 4, of the dimension group (Ko(Ga), K, (G 4))
[3, p. 37]. It can be defined as follows. Let A4 > 1 be the Perron-Frobenius
eigenvalue and vgq = (01(41), . .,vg")) € R% the corresponding eigenvector
of the matrix A. It is known that K (G4) is defined by the inequality
ng) +o vaﬁl") > 0 and one can multiply Z-module ng) +o vaﬁl")
by Aa. It is easy to see that such a multiplication defines an automorphism
of the dimension group (Ko(Ga), K (G4)). The automorphism is called a
shift automorphism and denoted by o4. The shift automorphisms o 4,0 4/
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are said to be conjugate, if 0406 = foo 4/ for some order-isomorphism 6 be-
tween the dimension groups (Ko(G ), K (Ga)) and (Ko(Gar), K (Gar)).
We shall write this fact as (Ga,04) = (Gar,04/) (an isomorphism).

Lemma 1. The pairs (Ga,c4) and (Gas,04) are isomorphic if and only
if the matrices A and A’ are similar.

Proof. By Theorem 6.4 of [3], (Ga,04) = (Gar,04/) if and only if the ma-
trices A and A’ are shift equivalent, see [14] for a definition of the shift
equivalence. On the other hand, since the matrices A and A’ are unimod-
ular, the shift equivalence between A and A’ coincides with a similarity of
the matrices in the group GL(n,Z) [14, Corollary 2.13]. O

Corollary 1. The AF'-algebras G4 and G a1 are strongly stably isomorphic
if and only if the matrices A and A’ are similar.

Proof. By a dictionary between the dimension groups and AF-algebras,
the order-isomorphic dimension groups correspond to the stably isomorphic
AF-algebra [3, Theorem 2.3]. Since o4 and o4/ are conjugate, one gets a
strong stable isomorphism. O

Example 1. Let us show that Theorem 1 is non-trivial and the condition
strong stable isomorphism cannot be relaxed to just stable isomorphism.
Consider the unimodular matrices

A_(? a;l) andAh_(th (a—h)h(li—iil)—l), 3)

where a,h € Z and a > h > 1. Because eigenvalues of A and Aj co-
incide, one concludes that (Ko(Ga), K (Ga)) = (Ko(Ga,), Ky (Ga,)),
ie. G4 and Gy, are stably isomorphic AF-algebras (see Section 2 for
1 A\
0 1)’
therefore G4 and G4, are also strongly stably isomorphic. Notice that
the strong stable class of G4 contains more than one representative. Us-
ing the Smith normal form of a matrix (see below), one can find that e.g.
Aby_1(Ga) =2 Aby_1(Ga,) = Zg_1, which is in accord with Theorem 1 for
p(z) = x — 1. However, because the eigenvalues A4 and sz = A% gener-
ate the same number field, we have an isomorphism of dimension groups
(Ko(Ga), K (Ga)) =2 (Ko(Gaz), Ki (Ga2)); on the other hand, because
tr (A) # tr (A?) matrices A and A% (and, therefore, the shift automor-
phisms o4 and o 42) cannot be conjugate. In this case, the proof of The-
orem 1 breaks, see Lemma 1 and Section 3; therefore the condition strong
stable isomorphism cannot be replaced by the stable isomorphism alone.

notation). It is verified directly, that 6 o o4, = o4 06 for 6 =
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3. PROOF OF THEOREM 1

Our proof is based on the following criterion [3, Theorem 6.4]: the di-
mension groups

zr Aygn Aygr A and zr Az Az AL )
are order-isomorphic and o 4,04/ are conjugate if and only if the matrices
A and A’ are similar in the group GL(n,Z), i.e. A’ = BAB~! for a B €
GL(n,Z). The rest of the proof follows from the structure theorem for
the finitely generated modules given by the matrix A over a principal ideal
domain [11, p. 43]. The result says the normal form of the module (in our
case — over the principal ideal domain Z[z]/(p(x))) is independent of the
particular choice of a matrix in the similarity class of A.

Before proceeding to a formal proof, let us give an intuitive idea why
Abp(2)(G 4) is invariant of the similarity class of matrix A. Recall that
Z[z]/{p(z)) is isomorphic to the ring of integers O of an algebraic number
field K = Q(«), where « is a root of polynomial p(z). Since p(0) = +1
one can exclude all rational integer entries of matrix A € GL(n,Z) using
equation p(a) = 0; thus one gets A € GL(n,Ok). But Ok is a principal
ideal domain (by hypothesis) and, therefore, one can use the Euclidean
algorithm to bring A to a diagonal form (the Smith normal form); the
factor of Og-module GL(n,Ok) by a submodule defined by matrix A is
a cyclic abelian group — denoted by Ab,(,)(G4) — which is independent of
the similarity class of matrix A. Let us pass to a step by step argument
based on the theory of modules.

Proof. By hypothesis, Z[z]|/{p(z)) is a principal ideal domain; we shall con-
sider the following Z[z]/(p(z))-module. If A € M, (Z) is an n x n integer
matrix, one endows the abelian group Z™ with a Z[z]/{p(z))-module struc-
ture by defining:

pu(@)v = (pn(A))v,  pu(z) € Z[z]/(p(x)), v e Z". ()

Notice that the obtained module depends on matrix A; we shall write (Z")4
for this module.

Fix a set of generators {e1,...,&,} of (Z™)4. We shall talk about quo-
tient modules in terms of generators and relations, see e.g. lecture notes
by Morandi [6]. The relation submodule can be identified with the kernel
of a module homomorphism ¢y, : (ZM)A — Z" defined by the formula
{p(@)e1,...,p(x)en} — i, p(x)e;. The relation matrix is a mapping
from the module generators to the relation submodule generators; in our
case the relation matrix is p(A). Since the relation submodule depends on
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the polynomial p(z), the factor-module of Z[x]/(p(x)) modulo ker ¢,
will be denoted by (Z”);‘(w).

Let G = (g;j) be a matrix over the principal ideal domain [11, p. 43].
It is well- known that by the elementary transformations (the Euclidean
algorithm) consisting of (i) an interchange of two rows, (ii) a multiplication
of a row by —1, (iii) an addition of a multiple of one row to another and

similar operations on columns, brings the matrix (g;;) to a diagonal form:

g1

where g; are positive integers, such that g; | gi+1; the latter is known
as the Smith normal form of a matrix over the principal ideal domain [11,
p. 44]. The elementary transformations are equivalent to a matrix equation
D = PGQ, where P,Q € GL(n,Z).

We claim that matrices p(A) and p(A’) have the same Smith normal
form. First, notice that p(A) and p(A’) are similar matrices. Indeed, we
know that A’ is a matrix similar to A4, i.e. A’ = BAB™! for a matrix
B € GL(n,Z); then it is verified directly that p(A’) = Bp(A)B™!, i.e. p(A)
and p(A’) are similar matrices. Now let D be the Smith normal form of
p(A), then D = Pp(A)Q for some P,Q € GL(n,Z). If B € GL(n,Z) is
such that p(A’) = Bp(A)B~!, then PB~! and BQ are also in GL(n,Z).
One gets the following identities:

PB™Y(p(A"))BQ = PB™Y(Bp(A)B™')BQ = Pp(A)Q =D.  (7)

In other words, p(A’) has the same Smith normal form as p(A). Recall that
the module (Z")z‘(x) can be written as:

(Zn)?(z) =g &S Ly, ®L"T, (8)

where Z,, = Z/g;Z. Since the same set of integers g; will appear in the
diagonal form of the matrix p(A’), one gets Ab,(,)(Ga) = Abpyy)(Gar) for
every choice of the polynomial p(x), such that p(0) = £1 and Z[z]/(p(z))
is a principal ideal domain. (In the practical considerations, we often have
r = n so that our invariant is a finite abelian group.) Theorem 1 follows
now from Corollary 1.
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The most important special case of the above invariant is when p(z) =
x — 1 (the Bowen-Franks invariant). The invariant takes the form:

Aby_1(Ga) = Z" /(A — I)Z". 9)

The Bowen-Franks invariant is covered extensively in the literature [14];
such an invariant has a geometric meaning of tracking an algebraic structure
of the periodic points of an automorphism of the lattice Z™ defined by the
matrix A. In particular, the cardinality of the group Ab,_1(Ga) is equal
to the total number of the isolated fixed points of the automorphism A. It
is easy to see that such a number coincides with |det(A — I)|. O

4. TORSION CONJECTURE

The basic facts on elliptic curves, complex multiplication, etc., can be
found in [12]; an excellent introduction to the subject is [13]. The torsion
of rational elliptic curves with complex multiplication was studied in [8]. A
link between complex multiplication and G 4 was the subject of [7].

4.1. Teichmiiller functor. Let 6 € [0,1) be an irrational number. The
universal C*-algebra Ay generated by the unitaries u and v satisfying the
commutation relation vu = €2 yp is called a noncommutative torus [9],
[3, Chapter 5 (p. 34)], and [10, Exercise 5.8, pp. 86-88]. The torus Ay is
not an AF-algebra, but can be embedded into an AF-algebra given by the
following Bratteli diagram:

ap @

XX

FIGURE 1. The AF-algebra corresponding to Ay.

where 6§ = [ag,a1,...] is the continued fraction of 6 [3, p. 65]. A pair of
noncommutative tori is said to be stably isomorphic (Morita equivalent)
whenever Ag ® K = Ay ® K, where K is the C*-algebra of compact opera-
tors. The Ay is stably isomorphic to Ag if and only if 0" = (af+b)/(c0+d),
where a,b,c,d € Z and ad — bc = 1. The K-theory of Ay is Bott periodic
with Ko(Ag) = K1(Ag) = Z2. The range of trace on projections of Ay ® K
is a subset A = Z + Z6 of the real line; the set A = Ky(Ap) is known
as a pseudo-lattice [5]. The noncommutative torus Ay is said to have real
multiplication, if € is a quadratic irrationality; we denote such an algebra
by Agra- Real multiplication implies non-trivial endomorphisms of the
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pseudo-lattice Agys given as a multiplication by real numbers — hence the
name. Such endomorphisms make a ring under addition and composition
of the endomorphisms; the latter is isomorphic to an order of conductor
f > 1 in the ring of integers of quadratic field Q(#). Recall that each or-

der of Q(v/d) has the form Z + (fw)Z, where w = 4 if d = 1 (mod 4)
and w = V/d if d = 2,3 (mod 4). Tt is known that continued fraction of
0 = fw is periodic and has the form [ag,ar, .-, ay]; we shall consider a

matrix A =[], <all (1)>
Lemma 2. K¢(Ga) = Ko(Arum)-

Proof. Tt follows easily from the definition of A, that Ko(G4) = Z + Z¢’,
where 6/ = 0 — ag. In other words, Ko(Ga) = Ko(Agra)- O

Let H = {x 4+ iy € C | y > 0} be the upper half-plane and for 7 € H let
C/(Z+7Zr) be a complex torus; we routinely identify the latter with a non-
singular elliptic curve via the Weierstrass @ function [12, pp. 6-7]. Recall
that two complex tori are isomorphic, whenever 7/ = (a7 + b)/(cT + d),
where a, b, ¢,d € Z and ad —bc = 1. If 7 is an imaginary quadratic number,
elliptic curve is said to have complex multiplication; we shall denote such
curves by Ecopr. Complex multiplication means that lattice L = Z + Zr1
admits non-trivial endomorphisms given as multiplication of L by certain
complex (quadratic) numbers. Again, such endomorphisms make a ring
under addition and composition of the endomorphisms; the latter is iso-
morphic to an order of conductor f > 1 in the ring of integers of imaginary
quadratic field Q(7).

Our calculations of torsion are based on a covariant functor between
elliptic curves and noncommutative tori. Roughly speaking, the functor
maps isomorphic curves to the stably isomorphic tori; we refer the reader
to [7] for the details and terminology. To give an idea, let ¢ be a closed 1-
form on a topological torus; the trajectories of ¢ define a measured foliation
on the torus. By the Hubbard-Masur Theorem, such a foliation corresponds
to a point 7 € H. The map F: H — OH is defined by the formula 7 +—
0 = fw o/ f% ¢, where vy, and -, are generators of the first homology of
the torus. The following is true: (i) H = OH x (0,00) is a trivial fiber
bundle, whose projection map coincides with F’; (ii) F' is a functor, which
maps isomorphic complex tori to the stably isomorphic noncommutative
tori. We shall refer to F' as the Teichmiiller functor. Remarkably, functor
F maps Ecyps to Agpyr; more specifically, complex multiplication by order
of conductor f in imaginary field Q(v/—d) goes to real multiplication by an
order of conductor f in the real field Q(v/d), see an explicit formula for F
[7, p. 524].
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Etors(Q), continued
—d f | see [Olson 1974] [8] fraction of Ab,_1(G4a)
p.196 VF2d
2 |1 7o, [1,2] 2 1 Ly
1 0
. 1
3 |1 7y or 7 (1,1,2 (g 1> Zy
- 14
7 |1 7o 2,T,1, 1,4 (9 ;’) Ziy
. 1
—11 |1 7 (3,3,6) ( 69 213) Y/
. 2
—19 |1 7, 4,2,1,3,1,2,8) (?1? i’i) L3 & Lo
1
43 |1 7, 6,7,1,3,1,5,1,3, 1, 1,12 (g??é; ggG) Liso & Liv1s
—67 | 1 7, 8,5,2,1,1,7,1,1, 2,5, 16) (??ggf ??82) Lisor & Lgas
-3 | 2 Ly or Dig (3,2,6) (163 i) ZooZs
. 24 24
7 |2 Zo 5,3, 2, 3,10 ( 727 7 > Lig & Ligs
_ 1
—3 |3 7, [5,5,10] (?0 ?) Lis & Zirg

4.2. Numerical examples. We conclude by examples supporting Conjec-
ture 1; they cover all rational Ecps [8], except d = —1 and d = —163.

Remark 3. Note that Fiors(Q) C Etors(K) since K is a non-trivial ex-
tension of Q. The reader can see, that K = Q only for the first two rows;
we do not have specific results for K in other cases, but the table admits
existence of such a field. The third column lists all twists of E(Q) satisfying

conjecture 1.
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