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Abstract. This bibliography introduces literature on graph thick-
ness, outerthickness, and arboricity. In addition to the pointers to
the literature we also give some conjectures concerning known open
problems on the field.

1. Introduction

Topological graph theory studies the embeddings of graphs on various
surfaces and the properties of these embeddings. This bibliography intro-
duces literature on three classical topological invariants of graphs, namely
graph thickness, outerthickness, and arboricity. Although the study of
these concepts is mainly motivated by purely theoretical issues, they have
also found several applications on the areas of graph drawing, information
visualization, VLSI design, and resource location optimization. Obviously,
it is often advantageous to consider a complicated graph in simpler slices,
for example planar ones, as in the case of thickness.

In a bibliography on such a widely studied area, it is difficult to decide
which results and articles are included and which are left out. We have tried
to fulfill the conflicting goals of compactness and extensiveness. In addition
to the pointers to the literature we also give some conjectures concerning
known open problems on the field.

The bibliography given is most likely incomplete. The authors welcome
supplementing information by e-mail (timo.t.poranen@uta.fi).

2. Thickness

The following conjecture was given by Harary [30]:

Prove or disprove the following conjecture: For any graph
G with 9 points, G or its complementary graph G is non-
planar.

The problem is the same as determining whether K9 is biplanar or not,
that is, a union of two planar graphs. The problem was solved indepen-
dently by Battle et al. [7] and Tutte [55] by constructing all subgraphs
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for K9. They showed that K9 is not biplanar. Tutte [95] generalized the
problem by defining the concept of the thickness of a graph.

Definition 2.1. The graph-theoretical thickness (thickness, for short) of a
graph, denoted by Θ(G), is the minimum number of planar subgraphs into
which the graph can be decomposed.

The thickness of a planar graph is 1 and the thickness of a nonplanar
graph is at least 2. Thickness has applications, for example, in VLSI (Very
Large Scale Integration) design [1] and network design [51].

It was long an open question whether Θ(K16) = 3 or 4. Harary offered 10
pounds to anyone who could compute Θ(K16). Finally a professor of French
literature, Jean Mayer [45], won the prize by showing that Θ(K16) = 3.

The NP-status of thickness was solved by Mansfield [43].

Theorem 2.2 ([43]). Determining the thickness of a graph is NP-complete.

The only non-trivial graph classes with known thicknesses are the com-
plete graphs, complete bipartite graphs, and hypercubes. The optimal solu-
tion for the thickness of complete graphs Kn was given for almost all values
of n by Beineke and Harary [13]. A decade later Alekseev and Gonchakov
[4], and independently Vasak [57], solved the remaining cases.

Theorem 2.3 ([4, 13, 57]). For complete graphs, Θ(Kn) = bn+7
6 c, except

that Θ(K9) = Θ(K10) = 3.

See Figure 1 for a decomposition of K9 into three planar subgraphs.
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Figure 1. A minimum planar decomposition of K9.

For complete bipartite graphs Km,n, thickness is solved for almost all
values of m and n.

Theorem 2.4 ([14]). For complete bipartite graphs, Θ(Km,n) = d mn
2(m+n−2)e,

except possibly when m and n are odd, and there exists an integer k satis-

fying n = b 2k(n−2)
n−2k c.
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If m = n, Theorem 2.4 has the following shorter form.

Corollary 2.5. Θ(Kn,n) = bn+5
4 c.

The thickness of hypercubes (an n-cube is denoted by Qn) was deter-
mined by Kleinert [66].

Theorem 2.6 ([66]). Θ(Qn) = dn+1
4 e.

Next we give two lower bounds for thickness, see Beineke et al. [14]
for references concerning their origin. The first lower bound is a direct
application of Euler’s polyhedron formula.

Theorem 2.7. Let G = (V,E) be a graph with |V | = n and |E| = m. Then
Θ(G) ≥ d m

3n−6e.

If a graph does not contain any triangles, as it is for bipartite graphs, a
tighter lower bound can be derived.

Theorem 2.8. Let G = (V,E) be a graph with |V | = n, |E| = m and with
no triangles. Then Θ(G) ≥ d m

2n−4e.

The lower bounds of Theorems 2.7 and 2.8 are also the exact values for
the thickness of almost all complete and complete bipartite graphs.

Wessel [59] gave lower and upper bounds for the thickness of a graph as
a function of the minimum and maximum degree. The upper bound was
independently given also by Halton [29].

Theorem 2.9 ([29, 59]). Let G be a graph with minimum degree δ and
maximum degree ∆. Then it holds that d δ+1

6 e ≤ Θ(G) ≤ d∆
2 e.

Halton [29] proved the upper bound by first augmenting the given graph
to be regular, and then splitting it into disjoint cycles by using Petersen’s
classical result [31, p. 90]. The lower bound follows from Euler’s polyhedron
formula.

Halton conjectured a stronger upper bound Θ(G) ≤ d∆+2
4 e. Sýkora et

al. [54] gave a counterexample by constructing a class of regular graphs
of degree d with thickness dd/2e. The construction shows that the upper
bound of Theorem 2.9 is tight.

Dean et al. [24] gave an upper bound as a function of the number of
edges.

Theorem 2.10 ([24]). Let G be a graph with m edges, then it holds that

Θ(G) ≤ b
√

m/3 + 3/2c.

Czabarka et al. [21] presented a bound for the thickness of a graph by
using the crossing number of the graph in question.

The thickness of degree-constrained graphs is studied by Bose and Prabhu
[15], and results for the thickness of random graphs are given by Cooper
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[20]. Mutzel et al. [35] have shown that the thickness of the class of graphs
without K5-minors is at most two.

The genus of a graph is the minimum genus of the orientable surface
on which the graph is embeddable. Asano [5, 6] has studied the thickness
of graphs with genus at most 2. Thickness results for other surfaces are
reported by White and Beineke [60] and Ringel [52].

Very recently, Bourke et al. [16] have studied thickness two graphs in
connection with the directed reachability problem, and Albertson et al. [3]
have studied the thickness of r-inflated graphs.

3. Outerthickness

Instead of decomposing the graph into planar subgraphs, outerthickness
seeks a decomposition into outerplanar subgraphs.

Definition 3.1. The outerthickness of a graph, denoted by Θo(G), is the
minimum number of outerplanar subgraphs into which the graph can be
decomposed.

Outerthickness seems to be studied first in Geller’s unpublished manu-
script (see [31, pp. 108 and 245]), where it was shown that Θo(K7) is 3 by
similar exhaustive search as in the case of the thickness of K9. See Figure
2 for a decomposition of K7 into three outerplanar subgraphs.
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Figure 2. A minimum outerplanar decomposition of K7.

The outerthickness of complete graphs was solved by Guy and Nowakowski.

Theorem 3.2 ([63]). For complete graphs, Θo(Kn) = dn+1
4 e, except that

Θo(K7) = 3.

It is easy to show by simply counting edges that Θo(Kn) ≥ dn+1
4 e, but

the proof for the equality is much more complicated. It starts by considering
the case n = 4r in which r+ 1 outerplanar graphs are shown to make K4r.
The proof is then modified to the cases n = 4r + 1, 4r + 2, and 4r + 3.
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E. MÄKINEN AND T. PORANEN

The same authors also gave optimal solutions for the outerthickness of
complete bipartite graphs and hypercubes.

Theorem 3.3 ([64]). For complete bipartite graphs with m ≤ n, Θo(Km,n) =
d mn
2m+n−2e.

Theorem 3.4 ([63]). Θo(Qn) = dn+1
3 e.

Again, it is easy to show that outerthickness reaches the given bound,
while proving the equality requires a complicated case analysis.

It is possible to apply Euler’s polyhedron formula to derive lower bounds
for outerthickness similarly as for the graph thickness.

Theorem 3.5 ([62]). Let G = (V,E) be a graph with |V | = n and |E| = m.
Then Θo(G) ≥ d m

2n−3e.

Theorem 3.6 ([62]). Let G = (V,E) be a graph with |V | = n, |E| = m
and with no triangles. Then Θo(G) ≥ d m

3n/2−2e.

The lower bounds of Theorems 3.5 and 3.6 are also the exact values
for the outerthickness of complete graphs, complete bipartite graphs, and
hypercubes.

The following theorem gives lower and upper bounds in the terms of
minimum and maximum degree of a graph.

Theorem 3.7 ([29, 59, 50]). For a graph with minimum degree δ and
maximum degree ∆, it holds that dδ/4e ≤ Θo(G) ≤ d∆

2 e.

The lower bound follows from the number of edges in maximal outerpla-
nar graphs, while the upper bound holds as in Theorem 2.9.

Since Θo(G) ≥ Θ(G) and the upper bound is tight for thickness [54], it
follows that the upper bound is tight also for outerthickness.

Heath [65] has shown that a planar graph can be divided into two out-
erplanar graphs. Therefore, Θo(G) ≤ 2Θ(G).

4. Arboricity

As thickness is defined using planar graphs and outerthickness by using
outerplanar graphs, it is natural to continue to tighten the definition by
replacing outerplanar graphs by trees. This gives us the concept of arboric-
ity. Hence, the arboricity of a graph, denoted by Υ(G), is the minimum
number of line-disjoint spanning forests whose union is G. Nash-Williams
[89] gave the exact solution for arboricity

Υ(G) = max
⌈ mH

nH − 1

⌉

,
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where the maximum is taken over all nontrivial subgraphs H of G. The
number of vertices and edges in H are denoted by nH and mH , respec-
tively. Applying Nash-Williams’ result, Dean et al. [24] showed that Υ(G) ≤

d
√

m/2e. This gives also a lower bound for outerthickness.
Trees can be further replaced by stars, caterpillars [80, 86, 83] or linear

forests [78, 94]. (The bibliography concerning star, caterpillar, and linear
arboricity is by no means complete.)

5. Conjectures

Computational experiments [50] have shown that Theorem 2.4 holds for
all m < 30. For example, it was unknown if Θ(K17,21) is equal to 5 or 6
(the thickness of K13,17 is at least 5 due to Euler’s polyhedron formula and
it cannot be more than Θ(K18,21) = 6 or Θ(K17,22) = 6). In general, the
unknown values of Θ(Km,n) are quite rare, for an arbitrary m, there are
fewer than m/4 unsolved cases [11].

Conjecture 5.1. The claim of Theorem 2.4 holds for all complete bipartite
graphs.

Dean et al. [24] have conjectured a tighter upper bound for the thickness
as a function of the number of edges in the graph.

Conjecture 5.2 ([24]). Θ(G) ≤
√

m/16 +O(1) for an arbitrary graph G
with m edges.

The complexity status of outerthickness is open, but since thickness and
maximum planar subgraph problem are NP -complete, we conjecture that
determining the outerthickness of a graph is also NP -complete.

Conjecture 5.3. Determining the outerthickness of a graph is NP-complete.

Dean et al. [24] gave an upper bound for thickness as a function of the
number of edges (Theorem 2.10). If their proof technique is applied straight-

forward to outerplanar graphs, the bound d
√

m/2+ 1/2e is obtained. The
upper bound is of the right order, since the outerthickness of the complete
graph with n vertices is O(n). On the other hand, since Θo(Kn) is approx-

imately
√

m/8 and Θo(Kn,n) is approximately
√

m/9, it seems that the
constant is not the best possible. We conjecture the following upper bound
for outerthickness.

Conjecture 5.4. Θo(G) ≤
√

m/8+O(1) for an arbitrary graph G with m
edges.

Dean et al. [22] proposed an open problem related on bar k-visibility
graphs.

Conjecture 5.5 ([22]). Bar k-visibility graphs have thickness no greater
than k + 1.
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6. Related problems

We can also consider other types of subgraphs whose union is the given
graph. For an interested reader, we recommend an article by Dujmovic and
Wood [25] for further references related to these subgraph classes.

The star arboricity of a graph G is the minimum number of stars whose
union is G. Similarly, the linear arboricity is the minimum number of linear
forests. Since its definition in 1981 [67], the so called Linear Arboricity Con-

jecture has been the concern of numerous theoretical works. The conjecture
states that the linear arboricity of an r-regular graph is d r+1

2 e.
In the book thickness of a graph, which is sometimes called the pa-

genumber, stacknumber, or real linear thickness, vertices are placed on a
line (the spine) and edges are routed without intersections via half-planes
(pages) having common boundary with the spine. Book thickness indicates
the minimum number of needed pages.

Geometric thickness is the smallest number of layers such that the graph
can be drawn in the plane with straight line edges and each edge assigned to
a layer such that no two edges cross. Geometric outerthickness, geometric

arboricity and geometric star-arboricity are defined analogously.
Book thickness and geometric thickness are widely used both in var-

ious theoretical considerations and in applications, while star and linear
arboricities have gained mainly theoretical interest.

7. Thickness, Outerthickness, and Arboricity Publications

References

[1] A. Aggarwal, M. Klawe, and P. Shor, Multilayer grid embeddings for VLSI, Algo-
rithmica, 6.1 (1991), 129–151.
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[59] W. Wessel, Über die Abhängigkeit der Dicke eines Graphen von seinen Knoten-
punktvalenzen, Geometrie und Kombinatorik, 2.2 (1984), 235–238.

[60] A. T. White and L. W. Beineke, Topological graph theory, in L. W. Beineke and
R. J. Wilson, editors, Selected Topics in Graph Theory, Academic Press, 1978,
pp. 15–49.
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