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Abstract. The objective of this paper is to obtain properties of
strongly compact spaces by using nets, filterbases, pre-complete accumula-
tion points and so on.

1. Introduction. It is well-known that the effects of the investiga-
tion of properties of closed bounded intervals of real numbers, spaces of
continuous functions and solutions to differential equations are the possible
motivations for the formation of the notion of compactness. Compactness
is now one of the most important, useful, and fundamental notions of not
only general topology, but also of other advanced branches of mathemat-
ics. Many researchers have pithily studied the fundamental properties of
compactness and now the results can be found in any undergraduate text-
book on analysis and general topology. The productivity and fruitfulness
of the notion of compactness motivated mathematicians to generalize this
notion. In the course of these attempts, many stronger and weaker forms
of compactness have been introduced and investigated. The notion of semi-
compactness is one of them. A topological space (X, 7) is semi-compact if
every cover of X by semi-open sets has a finite subcover [4], where a semi-
open set is a subset of the closure of the interior of itself [9]. The notion of
semi-compactness has been studied in detail by several authors. In 1982,
Atia et al. [1] introduced a strong version of compactness defined in terms
of preopen subsets of a topological space which he called strongly compact.
A topological space X is said to be strongly compact if every preopen cover
of X admits a finite subcover. Since then, many mathematicians have
obtained several results concerning its properties. The notion of strongly
compact relative to a topological space X was introduced by Mashhour et
al. [10] in 1984. They established several characterizations of these spaces.
In 1987, Ganster [5] obtained an interesting result that there exists no in-
finite spaces which are both strongly compact and semi-compact. He also
answered the question: What type of space do we get when we take the
one-point-compactification of a discrete space? He showed that this space
is strongly compact. He proved that a topological space is strongly compact
if and only if it is compact and every infinite subset of X has nonempty
interior. In 1988, Jankovic et al. [8] showed that a topological space (X, 7)
is strongly compact if and only if it is compact and the family of dense
sets in (X, 7) is finite. Quite recently Jafari and Noiri [6], by introducing
the class of firmly precontinuous functions, found some new equivalences of
strongly compact spaces.



It is the objective of this paper to give some characterizations of
strongly compact spaces in terms of nets and filterbases. We also intro-
duce the notion of pre-complete accumulation points by which we give some
characterizations of strongly compact spaces. By introducing the notion of
1-lower (resp. 1-upper) precontinuous functions and considering the known
notion of 1-lower (resp. l-upper) compatible partial orders, we investigate
some more properties of strong compactness. We also investigate strongly
compact spaces in the context of multifunctions by introducing 1-lower
(resp. l-upper) precontinuous multifunctions. Lastly we also obtain some
characterizations of strongly compact spaces by using lower (resp. upper)
precontinuous multifunctions due to Popa [13]. In this paper we are working
in ZFC.

2. Preliminaries. In what follows (X, 7) and (Y,0) (or X and Y)
are always topological spaces. A subset S of a space X is called preopen
[11] if S C Int(Cl(S)), where Int(S) and CI(S) denote the interior and
the closure of S, respectively. It is obvious that every open set is preopen
but the converse is not true. For example, the set of rational numbers
is preopen but it is not open. The complement of a preopen set is called
preclosed [12]. The intersection of all preclosed sets containing a subset S
is called the preclosure of S and is denoted by pCI(S). The family of all
preopen sets is denoted by PO(X). For a point z in X, we define the set
PO(X,z) ={U |z € U € PO(X)}. Recall that a function f: X — Y is
said to be precontinuous [11] if the inverse image of each open set in Y is
preopen in X.

Let A be a directed set. Now we introduce the following notions which
will be used in this paper. A net & = {z, | @ € A} pre-accumulates at
a point x € X if the net is frequently in every U € PO(X,x), i.e. for
each U € PO(X,z) and for each ay € A, there is some o > ag such that
Zq € U. The net € p-converges to a point x of X if it is eventually in every
U € PO(X,x). We say that a filterbase © = {F,, | « € '} pre-accumulates
at a point v € X if x € () ,cppCI(Fy). Given a set S with S C X, a
precover of S is a family of preopen subsets U, of X for each a € I of X
such that S C (J,c; Ua- A filterbase © = {F, | o € T'} p-converges [7] to a
point x in X if for each U € PO(X, x), there exists an F,, in © such that
F,CU.

Recall that a multifunction (also called multivalued function [3]) F' on
a set X into a set Y, denoted by F: X — Y, is a relation on X into Y,
ie. FC X xY. Let F: X — Y be a multifunction. The upper and lower
inverse of a set V of Y are denoted by F*(V) and F~(V):

Fr(V)={zeX|F(x)cV}and F-(V)={z € X | F(z)NV # 0}.



3. Characterizations of Strongly Compact Spaces. We begin
with the following notions.

Definition 1. A point z in a space X is said to be a pre-complete
accumulation point of a subset S of X if Card(S NU) = Card(S) for each
U € PO(X,x), where Card(S) denotes the cardinality of S.

Definition 2. In a topological space X, a point z is said to be a pre-
adherent point of a filterbase © on X if it lies in the preclosure of all sets
of ©.

Theorem 3.1. A space X is strongly compact if and only if each infinite
subset of X has a pre-complete accumulation point.

Proof. Let the space X be strongly compact and let S be an infinite
subset of X. Let K be the set of points x in X which are not pre-complete
accumulation points of S. Now it is obvious that for each point x in K, we
are able to find U(z) € PO(X,z) such that Card(S NU(x)) # Card(S).
If K is the whole space X, then ©® = {U(z) | + € X} is a precover of
X. By the hypothesis, X is strongly compact, so there exists a finite
subcover ¥ = {U(z;)}, where i = 1,2,... ,n such that S C J{U(z;) NS |
i=1,2,...,n}. Then Card(S) = max{Card(U(z;)NS)|i=1,2,...,n}
which does not agree with what we assumed. This implies that S has a pre-
complete accumulation point. Now assume that X is not strongly compact
and that every infinite subset S C X has a pre-complete accumulation point
in X. It follows that there exists a precover = with no finite subcover. Set
d = min{Card(®) | & C E, where ® is a precover of X}. Fix U C = for
which Card(¥) = § and |J{U | U € ¥} = X. Let N denote the set of
natural numbers. Then by hypothesis, § > Card(N). By well-ordering of
¥ by some minimal well-ordering “~”, suppose that U is any member of
U. By minimal well-ordering “~”, we have Card({V |V € ¥,V ~ U} <
Card({V | V € ¥}). Since ¥ cannot have any subcover with cardinality
less than 0, then for each U € ¥ we have X # | J{V |V € U,V ~ U}. For
each U € ¥, choose a point 2(U) € X \ | J{VU{z(V)} |V e UV ~ U}
We are always able to do this because if not, one can choose a cover of
smaller cardinality from V. If H = {z(U) | U € ¥}, then to finish the
proof we will show that H has no pre-complete accumulation point in X.
Suppose that z is a point of the space X. Since V¥ is a precover of X
then z is a point of some set W in W. By the fact that U ~ W, we have
z(U) € W. It follows that T = {U | U € ¥ and z(U) € W} C {V |
Ve,V ~ W} But Card(T) < 0. Therefore, Card(H NW) < §. But
Card(H) = § > Card(N) since for two distinct points U and W in ¥, we
have x(U) # x(W). This means that H has no pre-complete accumulation
point in X which contradicts our assumptions. Therefore, X is strongly
compact.



Theorem 3.2. For a space X the following statements are equivalent.

(1) X is strongly compact;
(2) Every net in X, with a well-ordered directed set as its domain, pre-
accumulates to some point of X.

Proof. (1) = (2): Suppose that (X, 7) is strongly compact and ¢ =
{zo | @ € A} is a net with a well-ordered directed set A as its domain.
Assume that £ has no pre-adherent point in X. Then for each point z in X
there exist a V(z) € PO(X,x) and an a(x) € A such that V(z)N{z, | o >
a(z)} = 0. This implies that {zs | @ > a(z)} is a subset of X \ V(z). Then
the collection C' = {V(x) | # € X} is a precover of X. By the hypothesis
of the theorem, X is strongly compact and so C has a finite subfamily
{V(x;)}, where i = 1,2,... ,n such that X = [J{V(x;)}. Suppose that the
corresponding elements of A are {a(x;)}, where i = 1,2,... ,n. Since A is
well-ordered and {«a(z;)}, where i = 1,2,... ,n is finite, the largest element
of {a(z;)} exists. Suppose it is {«(z;)}. Then for v > {a(x;)}, we have
{zs| 6>~} C N (X \V(2:)) = X \U;_, V(x;) = 0, which is impossible.
This shows that & has at least one pre-adherent point in X.

(2) = (1): Now it is enough to prove that each infinite subset has a
pre-complete accumulation point by utilizing Theorem 3.1. Suppose that
S C X is an infinite subset of X. According to Zorn’s Lemma, the infinite
set S can be well-ordered. This means that we can assume S to be a net
with a domain which is a well-ordered index set. It follows that S has a
pre-adherent point z. Therefore, z is a pre-complete accumulation point of
S. This shows that X is strongly compact.

Theorem 3.3. A space X is strongly compact if and only if each fam-
ily of preclosed subsets of X with the finite intersection property has a
nonempty intersection.

Proof. The proof follows from Theorem 3.3 in [10].

Theorem 3.4. A space X is strongly compact if and only if each filter-
base in X has at least one pre-adherent point.

Proof. Suppose that X is strongly compact and © = {F, |a €T} isa
filterbase in it. Since all finite intersections of F},’s are non-empty, it follows
that all finite intersections of pCI(F,)’s are also non-empty. Now it follows
from Theorem 3.3 that (. pCI(Fy) is non-empty. This means that © has
at least one pre-adherent point. Now suppose O is any family of preclosed
sets. Let each finite intersection be non-empty. The sets F, with their
finite intersection establish a filterbase ©. Therefore, ©® pre-accumulates to
some point z in X. It follows that z € (< Fo. Now we have, by Theorem
3.2, that X is strongly compact.

Theorem 3.5. A space X is strongly compact if and only if each filter-
base on X, with at most one pre-adherent point, is p-convergent.



Proof. Suppose that X is strongly compact, x is a point of X, and
© is a filter base on X. The pre-adherence of © is a subset of {z}. Then
the pre-adherence of O is equal to {z} by Theorem 3.4. Assume that
there exists a V' € PO(X,z) such that for all F € ©, FN (X \V) is
non-empty. Then ¥ = {F\V | F € O} is a filterbase on X. It follows
that the pre-adherence of ¥ is non-empty. However, ()pco pCUF \ V) C
(Npeo PCUEF))N(X\V) ={2}N(X\ V) = (. But this is a contradiction.
Hence, for each V € PO(X, ), there exists an F € © with F C V. This
shows that © p-converges to z.

To prove the converse, it suffices to show that each filterbase in X
has at least one pre-accumulation point. Assume that © is a filterbase
on X with no pre-adherent point. By hypothesis, © p-converges to some
point z in X. Suppose F, is an arbitrary element of ©. Then for each
V € PO(X,z), there exists an F3 € O such that Fzg C V. Since © is a
filterbase, there exists a 7 such that F, C F,, N Fg C F,, NV, where F} is
non-empty. This means that F, NV is non-empty for every V € PO(X, z)
and correspondingly for each «, z is a point of pCI(F,). It follows that
z € N, PCIU(F,). Therefore, z is a pre-adherent point of © which is a
contradiction. This shows that X is strongly compact.

4. Strong Compactness and 1-lower and 1-upper Precontinu-
ous Functions. In this section we further investigate properties of strong
compactness by 1-lower and l-upper precontinuous functions. We begin
with the following notions and in what follows R denotes the set of real
numbers.

Definition 3. A function f: X — R is said to be 1-lower (resp. 1-upper)
precontinuous at the point y in X if for each A > 0, there exists a preopen set
U(y) € PO(X,y) such that f(z) > f(y)\A (resp. f(z) > f(y)+A) for every
point z in U(y). The function f is 1-lower (resp. 1-upper) precontinuous in
X if it has these properties for every point x of X.

Theorem 4.1. A function f: X — R is 1-lower precontinuous if and
only if for each 1 € R, the set of all  such that f(z) < 7 is preclosed.

Proof. It is obvious that the family of sets 7 = {(n,00) | n € RFUR
establishes a topology on R. Then the function f is 1-lower precontinuous
if and only if f: X — (IR, 7) is precontinuous. The interval (—oo, 7] is closed
in (R, 7). It follows that f~!((—o0,7]) is preclosed. Therefore, the set of
all z such that f(x) <7 is equal to f~1((—o0,n]) and thus, is preclosed.

Corollary 4.2. A subset .S of X is strongly compact if and only if the
characteristic function Xg is 1-lower precontinuous.

Theorem 4.3. A function f: X — R is l-upper precontinuous if and
only if for each 1 € R, the set of all  such that f(z) > 7 is preclosed.



Corollary 4.4. A subset S of X is strongly compact if and only if the
characteristic function Xg is 1-upper precontinuous.

Theorem 4.5. If the function F(z) = sup,c; fi(z) exists, where f;,
are 1-lower precontinuous functions from X into R, then F(z) is 1-lower
precontinuous.

Proof. Suppose that n € R. Let F(xz) < n and therefore for every
i€, fi(x) <n. It is obvious that {z € X | F(z) < n} = (e {z €
X | fi(x) < n}. Since each f; is 1-lower precontinuous, then each set of
the form {z € X | fi(z) < n} is preclosed in X by Theorem 4.1. Since
an arbitrary intersection of preclosed sets is preclosed, then F'(x) is 1-lower
precontinuous.

Theorem 4.6. If the function G(x) = inf;cs fi(z) exists, where f;,
are l-upper precontinuous functions from X into R, then G(x) is 1-upper
precontinuous.

Theorem 4.7. Let f: X — R be a 1-lower precontinuous function,
where X is strongly compact. Then f assumes the value m = inf, cx f(x).

Proof. Suppose 7 > m. Since f is 1-lower precontinuous, then the
set K(n) ={z € X | f(z) <n} is a non-empty preclosed set in X by the
infimum property. Hence, the family {K(n) | n > m} is a collection of
non-empty preclosed sets with finite intersection property in X. By Theo-
rem 3.3 this family has non-empty intersection. Suppose z € ﬂn>m K(n).
Therefore, f(z) = m as we wished to prove.

Theorem 4.8. Let f: X — R be a l-upper precontinuous function,
where X is a strongly compact space. Then f attains the value m =

SupweX f(iE)
Proof. The proof is similar to the proof of Theorem 4.5.
It should be noted that if a function f at the same time satisfies con-

ditions of Theorem 4.5 and Theorem 4.6, then f is bounded and attains its
bound.

5. Strongly Compactness and Precontinuous Multifunctions.
In this section, we give some characterizations of strongly compact spaces
by using lower (resp. upper) precontinuous multifunctions.

Definition 4. A multifunction F': X — Y is said to be lower (resp. up-
per) precontinuous if X \ F'~(S) (resp. F~(5)) is preclosed in X for each
open (resp. closed) set S in Y.

Lemma 5.1. (Popa [13]). For a multifunction F: X — Y, the following
statements are equivalent.

(1) F is lower precontinuous;



(2) If x € F~(U) for a point = in X and an open set U C Y, then
V c F~(U) for some V € PO(z);

(3) If x ¢ F¥(D) for a point x in X and a closed set D C Y, then
F*(D) C K for some preclosed set K with o ¢ K;

(4) F~(U) € PO(X) for each open set U C Y.

Lemma 5.2. (Popa [13]). For a multifunction F: X — Y, the following
statements are equivalent.

(1) F is upper precontinuous;

(2) If z € F*(V) for a point x in X and an open set V C Y, then
F(U) Cc V for some U € PO(z);

(3) If x ¢ F~(D) for a point  in X and a closed set D C Y, then
F~(D) C K for some preclosed set K with = ¢ K;

(4) F*(U) € PO(X) for each open set U C Y.

Recall that a relation, denoted by <, on a set X is said to be a partial
order for X if it satisfies the following properties.

(i) = <z holds for every x € X (reflexitivity),
(ii) If x <y and y < z, then = y (antisymmetry),
(iii) If x <y and y < z, then x < z (transitivity).

A set equipped with an order relation is called a partially ordered set
(or poset).

Theorem 5.3. The following two statements are equivalent for a space
X.

(1) X is strongly compact.

(2) Every lower precontinuous multifunction from X into the closed sets
of a space assumes a minimal value with respect to the set inclusion
relation.

Proof. (1) = (2): Suppose that F' is a lower precontinuous multifunc-
tion from X into the closed subsets of a space Y. We denote the poset of
all closed subsets of Y with the set inclusion relation “C” by A. Now we
show that F: X — A is a lower precontinuous function. We will show that
N=F"({SCY|SeAand S CC})is preclosed in X for each closed set
CofY. Let z ¢ N, then F(z) # S for every closed set S of Y. It is obvious
that z € F~(Y'\ C), where Y\ C'is open in Y. By Lemma 5.1 (2), we have
W c F~(Y\C) for some W € SO(z). Hence, F(w) N (Y \ C) # 0 for each
w in W. So for each w in W, F(w)\ C # (. Consequently, F(w)\ S # 0 for
every closed subset S of Y for which S C C. We consider that W NN = §.
This means that N is preclosed. By using Theorem 1.2.15 [2], we observe
that F' assumes a minimal value.

(2) = (1): Suppose that X is not strongly compact. It follows that
we have a net {z; | i € A}, where A is a well-ordered set with no pre-
accumulation point by [5]. We give A the order topology. Let M; = pCl{z; |
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i > j} for every j in A. We establish a multifunction F: X — A, where
F(z) ={i € A| i > jy} and j, is the first element of all those j’s for
which ¢ M;. Since A has the order topology, F(z) is closed. By the
fact that {j, | £ € X} has no greatest element in A, then F does not
assume any minimal value with respect to set inclusion. We now show that
F~(U) € PO(X) for every open set U in A. If U = A, then F~(U) = X
which is preopen. Suppose that U C A and z € F~(U). It follows that
F(z)NU # (. Suppose j € F(z) NU. This means that j € U and
j€F(z)={i€eA|i>j,}. Therefore, M; > M, . Since z ¢ M;,, then
z ¢ M;. There exists a W € SO(z) such that W N {z; | i € A} = 0. This
means that W N M; = 0. Let w € W. Since W N M; = 0, it follows that
w ¢ M; and since j,, is the first element for which w ¢ Mj, then j,, < j.
Therefore, j € {i € A | i > j,} = F(w). By the fact that j € U, then
j € Fw)NU. It follows that F(w) N U # ( and therefore w € F~(U).
So we have W C F~(U) and thus, z € W C F~(U). Therefore, F~(U) is
preopen. This shows that F' is lower precontinuous which contradicts the
hypothesis of the theorem. So the space X is strongly compact.

Theorem 5.4. The following two statements are equivalent for a space
X.

(1) X is strongly compact;
(2) Every upper precontinuous multifunction from X into the subsets of a
Ti-space attains a maximal value with respect to set inclusion relation.

Proof. The proof is similar to that of Theorem 5.1.

The following result concerns the existence of a fixed point for multi-
functions on strongly compact spaces.

Theorem 5.5. Suppose that F: X — Y is a multifunction from a strong
compact domain X into itself. Let F'(S) be preclosed for S being a preclosed
set in X. If F(z) # 0 for every point z € X, then there exists a nonempty,
preclosed set C' of X such that F(C) = C.

Proof. Let A={SC X |S#0,S € PC(X)and F(S) C S}. Tt
is evident that x belongs to A. Therefore, A # () and also, A is partially
ordered by set inclusion. Suppose that {S,} is a chain in A. Then F(S,) C
S, for each . By the fact that the domain is strongly compact and by [7],
S=1),8y # 0 and also S € PC(X). Moreover, F(S) C F(S,) C S, for
each . It follows that F(S) C S,. Hence, S € A and S = inf{S,}. It
follows from Zorn’s Lemma that A has a minimal element C. Therefore,
C € PC(X) and F(C) C C. Since C is the minimal element of A, we have
F(C)=C.
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