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INTEGER SOLUTIONS OF LINEAR DIOPHANTINE

EQUATIONS FORM A GROUP

Ajai Choudhry

Abstract. It is shown that the set of integer solutions of a single
Diophantine equation, or of several simultaneous linear Diophantine equa-
tions, in an arbitrary number of variables, say n, is a group with respect
to a suitably defined binary operation. Further, the aforesaid group is the
direct sum of n cyclic groups.

1. Introduction. Various methods of obtaining integer solutions of
the linear Diophantine equation

a1x1 + a2x2 + · · ·+ anxn = b, (1)

or the simultaneous linear Diophantine equations

a11x1 + a12x2 + · · ·+ a1nxn = b1,

a21x1 + a22x2 + · · ·+ a2nxn = b2,

...

am1x1 + am2x2 + · · ·+ amnxn = bm, (2)

have been given by several mathematicians [1, 2, 3, 4, 6]. Necessary and
sufficient conditions for the solvability of equations (1) and (2) are also
known [2, 5]. The object of this note is to show that when integer solutions
of (1) or of the simultaneous equations (2) exist, the set of these integer
solutions can be given a group structure with respect to a suitably defined
binary operation. We also show that this group is the direct sum of n cyclic
groups.

We first prove a couple of preliminary lemmas. In the first lemma
we show that for a fixed integer k, the set of integers, denoted by Z, is a
group with respect to a suitable binary operation defined in terms of k, and
we examine the structure of this group. This is generalized in Lemma 2
where we show that the set Zn is a group with respect to a suitable binary
operation defined in terms of a fixed n-tuple (k1, k2, . . . , kn). We use these
results to prove the main theorem about the group structure of the set of
integer solutions of linear Diophantine equations.

2. Preliminary Lemmas.

Lemma 1. For any fixed integer k, the set Z of integers is an abelian
group under the binary operation ⊕k defined by a⊕k b = a + b − k where
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a and b are any two arbitrary integers. The group (Z,+) is isomorphic to
the group (Z,⊕k). Further, (Z,⊕k) is a cyclic group with two generators
1 + k and −1 + k and each subgroup S of (Z,⊕k) is a cyclic group of the
form S = {ma+ k | m ∈ Z} where a is a fixed integer.

Proof. It is readily seen that ⊕k is a well-defined commutative binary
operation and that Z is closed under the operation ⊕k. We note that for
any three arbitrary integers a, b, and c, we have the relations

a⊕k (b ⊕k c) = a⊕k (b+ c− k) = a+ b+ c− 2k,

(a⊕k b)⊕k c = (a+ b− k)⊕k c = a+ b+ c− 2k,

which show that a⊕k (b⊕k c) = (a⊕k b)⊕k c so that the binary operation
⊕k is associative. Next we observe that for any integer a,

a⊕k k = a+ k − k = k,

a⊕k (2k − a) = a+ (2k − a)− k = k.

It follows from these relations that k acts as the identity element and 2k−a

is the inverse of the arbitrary integer a with respect to the operation ⊕k.
Thus, (Z,⊕k) is an abelian group.

The mapping φ:Z → Z defined by φ(a) = a + k is readily seen to be
a one-to-one onto mapping. Further,

φ(a+ b) = a+ b+ k = (a+ k) + (b + k)− k

= (a+ k)⊕k (b + k) = φ(a)⊕k φ(b).

Thus, the groups (Z,+) and (Z,⊕k) are isomorphic.
The group (Z,+) is known to be a cyclic group with two generators

1 and −1. Since (Z,⊕k) is isomorphic to the group (Z,+), it follows that
the group (Z,⊕k) is also cyclic and it has two generators 1+ k and −1+ k.
Each subgroup of (Z,+) is a cyclic group. Correspondingly, each subgroup
of (Z,⊕k) is also a cyclic group. For any integer a ∈ (Z,⊕k) and any
positive integer m, the mth “multiple” of a with respect to ⊕k, denoted by
m ∗k a, may be defined recursively, by

m ∗k a = a⊕k a⊕k · · · ⊕k a
︸ ︷︷ ︸

m summands

= ((m− 1) ∗k a)⊕k a,
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while 0 ∗k a = k. It is easily seen that 2 ∗k a = 2a− k, 3 ∗k a = 3a − 2k,
and, in general, m ∗k a = ma− (m− 1)k. Moreover, since the inverse of a
with respect to ⊕k is (2k − a), we get

−m ∗k a = m ∗k (2k − a) = m(2k − a)− (m− 1)k = −ma+ (m+ 1)k.

We will now determine the subgroup of (Zn,⊕k) generated by the arbitrary
element a+ k. In view of the relations

m ∗k (a+ k) = m(a+ k)− (m− 1)k = ma+ k,

−m ∗k (a+ k) = −m(a+ k) + (m+ 1)k = −ma+ k,

it follows that the cyclic subgroup of (Z,⊕k) generated by (a+ k) is of the
form {ma + k | m ∈ Z}. This can also be inferred directly from the one-
to-one correspondence established by the mapping φ between the cyclic
subgroups of the isomorphic groups (Z,+) and (Z,⊕k). Moreover, since
(a+ k) is an arbitrary element of (Z,⊕k), all the subgroups of (Z,⊕k) are
cyclic groups of the form S = {ma + k | m ∈ Z}, the generator of the
subgroup S being (a+ k). This completes the proof.

Lemma 2. For any fixed n-tuple k = (k1, k2, . . . , kn) ∈ Zn, the set Zn

of all integral n-tuples is an abelian group under the binary operation ⊕k

defined by

(a1, a2, . . . , an)⊕k(b1, b2, . . . , bn)=(a1+b1−k1, a2+b2−k2, . . . , an+bn−kn),

where (a1, a2, . . . , an) and (b1, b2, . . . , bn) are any two arbitrary integral n-
tuples. The group (Zn,+), with component-wise addition, is isomorphic to
the group (Zn,⊕k). Further, each subgroup of (Zn,⊕k) is the direct sum
of n cyclic groups, the jth cyclic group of this direct sum is a subgroup of
the group (Z,⊕kj

) and is of the form {ma+ kj | m ∈ Z} for some a ∈ Z.

Proof. Given any fixed integral n-tuple k = (k1, k2, . . . , kn), we con-
struct for each j, j = 1, 2, . . . , n, the group (Z,⊕kj

) as in Lemma 1. The
direct sum of these n groups is easily seen to be the group (Zn,⊕k) where
⊕k is the binary operation as defined in this lemma. Thus,

(Zn,⊕k) = (Z,⊕k1
)⊕ (Z,⊕k2

)⊕ · · · ⊕ (Z,⊕kn
),

where ⊕ is used to denote the direct sum of the groups concerned. This
shows that (Zn,⊕k) is an abelian group with identity (k1, k2, . . . , kn).
Moreover, the inverse of the arbitrary integral n-tuple (a1, a2, . . . , an) with
respect to the operation ⊕k is easily seen to be the n-tuple (2k1− a1, 2k2−
a2, . . . , 2kn − an).
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We now prove that the group (Zn,+), with component-wise addition,
is isomorphic to the group (Zn,⊕k). The mapping φ:Zn → Zn defined by

φ(a1, a2, . . . , an) = (a1 + k1, a2 + k2, . . . , an + kn)

is readily seen to be a one-to-one onto mapping. Further, for any two n-
tuples (a1, a2, . . . , an) and (b1, b2, . . . , bn) belonging to the group (Zn,+),

φ((a1, a2, . . . , an) + (b1, b2, . . . , bn))

= φ(a1 + b1, a2 + b2, . . . , an + bn)

= (a1 + b1 + k1, a2 + b2 + k2, . . . , an + bn + kn)

= ((a1 + k1) + (b1 + k1)− k1, . . . , (an + kn) + (bn + kn)− kn)

= (a1 + k1, a2 + k2, . . . , an + kn)⊕k (b1 + k1, b2 + k2, . . . , an + bn)

= φ(a1, a2, . . . , an)⊕k φ(b1, b2, . . . , bn).

Thus, the groups (Zn,+) and (Zn,⊕k) are isomorphic.
Finally, we note that for each j, j = 1, 2, . . . , n, the projection mapping

πj from the direct sum (Z,⊕k1
)⊕(Z,⊕k2

)⊕· · ·⊕(Z,⊕kn
), that is the group

(Zn,⊕k), to the group (Z,⊕kj
) defined by

πj(a1, a2, . . . , aj , . . . , an) = aj

is a homomorphism. The homomorphic image of any subgroup of (Zn,⊕k)
with respect to the projection mapping πj is a subgroup of the group
(Z,⊕kj

) and, in view of Lemma 1, it is a cyclic subgroup of (Z,⊕kj
) consist-

ing of integers of the form {ma+ kj | m ∈ Z} for some a ∈ Z. Moreover,
each subgroup of (Zn,⊕k) can be written as the direct sum of its n homo-
morphic images under the projection mappings πj , j = 1, 2, . . . , n. Thus,
each subgroup of (Zn,⊕k) is the direct sum of n cyclic groups; the jth cyclic
group of this direct sum is a subgroup of the group (Z,⊕kj

) and consists
of integers of the form {ma+ kj | m ∈ Z} for some a ∈ Z. This completes
the proof.

3. The Group of Integer Solutions of Linear Diophantine

Equations.

Theorem. When the conditions of solvability of the simultaneous linear
Diophantine equations

n∑

j=1

aijxj = bi, i = 1, 2 . . . , m, (3)
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are satisfied, the nonempty set of integer solutions of these equations forms
an abelian group with respect to a binary operation which may be defined
such that any arbitrarily chosen integer solution of (3) acts as the identity
element of the group. Further, the aforesaid group is the direct sum of n
cyclic groups.

Proof. Let S be the nonempty set of integer solutions (x1, x2, . . . , xn)
of (3), and let (k1, k2, . . . , kn) ∈ S be an arbitrary integer solution of (3)
so that

n∑

j=1

aijkj = bi, i = 1, 2, . . . , m. (4)

Clearly S ⊂ Zn, and we will now prove that S is in fact a subgroup of the
group (Zn,⊕k) constructed in Lemma 2. The identity element of (Zn,⊕k)
is (k1, k2, . . . , kn) which, by definition, is an element of the set S. To prove
that the set S is a subgroup of (Zn,⊕k), we will show that S is closed
under the operation ⊕k and that the inverse of each element of S is also an
element of S.

Let X = (X1, X2, . . . , Xn) ∈ S and Y = (Y1, Y2, . . . , Yn) ∈ S be any
two integer solutions of (3) so that

n∑

j=1

aijXj = bi, i = 1, 2, . . . , m (5)

and

n∑

j=1

aijYj = bi, i = 1, 2, . . . , m. (6)

We note that

X ⊕k Y = (X1 + Y1 − k1, X2 + Y2 − k2, . . . , Xn + Yn − kn), (7)

and for each i we have,

n∑

j=1

aij(Xj + Yj − kj) =

n∑

j=1

aijXj +

n∑

j=1

aijYj −

n∑

j=1

aijkj ,

= bi. (8)
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It follows that X⊕kY is an integer solution of (3) and hence, (X⊕kY ) ∈ S.
This shows that the set S is closed under the binary operation ⊕k.

We have already seen while considering the group (Zn,⊕k) that the
inverse of any element X = (X1, X2, . . . , Xn) with respect to the binary
operation ⊕k is

X−1 = (2k1 −X1, 2k2 −X2, . . . , 2kn −Xn) = (X ′

1, X
′

2, . . . , X
′

n).

We note that for each i we have

n∑

j=1

aijX
′

j =

n∑

j=1

aij(2kj −Xj)

= 2
n∑

j=1

aijkj −
n∑

j=1

aijXj

= bi. (9)

This shows that (X ′

1, X
′

2, . . . , X
′

n) is a solution of (3) and hence, X−1 ∈ S.
Thus, the inverse of each element of S is also an element of S and hence,
S is a subgroup of the group (Zn,⊕k).

It is now an immediate consequence of Lemma 2 that the set S of
solutions of the simultaneous linear equations (3) is an abelian group which
is the direct sum of n cyclic groups; the jth cyclic group of this direct sum
is a subgroup of the group (Z,⊕kj

) and is of the form {ma+ kj , m ∈ Z}
for some a ∈ Z. This completes the proof.

Corollary. If the linear Diophantine equation (1) is solvable, its integer
solutions form a group.

This is an immediate consequence of the theorem.
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