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BINARY BRANCHING TREES
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Abstract This work is inspired by a paper by Mandelbrot and Frame [1], in

which they describe properties of symmetric binary branching trees. We study a

variation of their trees in which non-uniform scaling is applied, focusing on geomet-

ric properties such as path length and tree height. We also discuss the computer

implementation via Mathematica.

1. Introduction. We study the geometry of asymmetric binary branching

trees, a variation on the symmetric trees found in [1], focusing on path length and

tree height. Instead of using a uniform scaling ratio in the branching process, we

chose to apply different scalings based upon whether branching occurred to the left

or to the right. These trees will be referred to as asymmetric branching binary

trees, or simply asymmetric trees. This slight change leads to a wealth of new

geometric characteristics.

In order to better understand asymmetric trees it is first necessary to consider

their symmetric counterpart. To construct a symmetric branching tree, first con-

struct a vertical segment which will be referred to as the trunk. For simplicity let

the trunk have unit length. Then extend two branches from the tip of the trunk,

each branching by an angle θ > 0◦ from the vertical extension of the trunk and

having length r, where r ∈ (0, 1) is a scaling ratio. Two branches are then created

from the tips of each of these branches in a similar fashion. At this stage, the four

new branches will have length r2. This process is continued indefinitely [see Figure

1A]. Notice that the length of branches created at stage n is r times the length of

the branches at stage n− 1.

Asymmetric trees, constructed in a similar manner, will use two scaling ratios

[see Figure 1B]. Let r1 be the scaling ratio applied to right branchings and r2 be the

scaling ratio applied to left branchings. Also, we assume that 0 < r2 < r1 < 1. The

angle at which each branch is rotated from the extension of the previous branch

(or trunk) will remain constant throughout the tree. By altering a symmetric tree

in this way we lose left-right symmetry.

In a fractal tree, every branch can be described using a finite number of left

turns and right turns. For example, the branch at the address TLR is found by

traveling along the trunk, taking a left turn at the first branching and then taking

a right turn at the second branching. Similarly, a path within the tree can be
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described by the left turns and right turns contained in it. For example, an infinite

path of alternating right and left turns has the address TRLRL · · · = T (RL)∞ and

a finite path contained in that path is TRLRL.

In Section 2, we analyze the lengths of infinite paths emanating from the

base of the trunk of the tree. The lengths of infinite paths can be determined by

summing an appropriate series. In symmetric trees, this is the geometric series

1 + r + r2 + · · · = 1
1−r . Because all the branches constructed at the same stage

have the same length, every infinite path beginning at the base of the trunk in a

symmetric tree will have the same length, 1
1−r . In contrast to the study of path

lengths in the symmetric trees, asymmetric trees introduce complications due to

the non-uniform scaling. Clearly, TR∞ is the longest path, having length |TR∞| =
1

1−r1
, while TL∞ is the shortest path, with length 1

1−r2
.

In Section 3, we give an analysis of tree height for asymmetric trees. If the

tree is placed on the Cartesian plane with the trunk lying on the y-axis and the

base at the origin, then the height is defined to be the largest y-coordinate in the

tree. Although every path in a symmetric tree has the same length, they do not

all reach the same height. For example, the path TR∞ in Figure 1A clearly does

not reach the greatest height. Now, consider branches TRR and TRL. Notice

that it is always the vertical branch that reaches the greater height. Therefore, by

constructing a path with as many vertical branches as possible, e.g. T (RL)∞ or

T (LR)∞, the greatest height can be obtained. So the total height of the tree, i.e.

the height of the path T (RL)∞ or T (LR)∞, can be found using the equation

1 + r cos(θ) + r2 + r3 cos(θ) + r4 + · · · = 1+ r cos(θ)

1− r2
.

The paths T (RL)∞ and T (LR)∞ are also significant because they are examples

of opposite paths [see Figure 2]. In order to determine the address for a path’s

opposite, switch the positions of the R’s and L’s in the address. T (RL)∞ is also

an example of a periodic path, meaning the address consists of T followed by the

pattern RL repeated infinitely.

Another term that will be important later is corresponding branches. Consider

that the branches TR and TL can be thought of as trunks of scaled down trees.

Branches in the analogous positions in these trees are corresponding branches, as

shown with branches f and g in Figure 2. Similarly, f corresponds to both branches

h and i in different scaled down trees.

In Section 4, we discuss the use of Mathematica in drawing and analyzing

asymmetric trees. We also outline how to use the package created for this study.
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Finally, in Section 5, we provide some conjectures and questions for further

study. In particular, we discuss space-filling curves.

2. Path Length. Given an asymmetric tree, we can study the length, |P |, of
a path P . Using geometric series, equations for infinite periodic path lengths are

|T (RmLn)∞| =
1−rm+1

1

1−r1
+

rm1 r2(1−rn−1

2
)

1−r2

1− rm1 rn2
,

|T (LmRn)∞| =
1−rm+1

2

1−r2
+

rm2 r1(1−rn−1

1
)

1−r1

1− rm2 rn1
,

where 0 < r2 < r1 < 1 and m,n ∈ N ∪ {0} and m and n cannot both be 0. It

is important to note that the second equation can be derived from the first by

simply switching r1 and r2 since these paths are opposite [see Figure 2]. Other

opposite paths exist, but their lengths cannot be defined with the above equations

(e.g. TRL∞ and TLR∞).

One of the topics that will appear repeatedly is symmetry. Although these trees

have an asymmetric branching pattern, they are still self-similar. Every branch can

be thought of as the trunk of a scaled down tree, lending to many interesting

characteristics in an asymmetric tree.

In particular, self-similarity permits us to study path lengths. By setting the

formulas for |TRL∞| and |TLR∞| equal to each other, we can find a relationship

between r1 and r2 in which these opposite paths are equal in length:

|TRL∞| = |TLR∞| =⇒ 1 + r1

(

1

1− r2

)

= 1 + r2

(

1

1− r1

)

=⇒ r2(1− r2) = r1(1− r1)

=⇒ r21 − r1 + (r2 − r22) = 0.

Solving for r1, we find that

r1 = 1− r2 or r1 = r2.
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Thus, |TRL∞| and |TLR∞| are equal if r1 + r2 = 1 or r1 = r2. The latter is the

case of a symmetric branching tree, which we do not consider.

Self-similarity in fractal trees implies that if a characteristic can be defined for

the whole tree, that some characteristic can be found in each smaller tree within

it. So, when r1 + r2 = 1 there are infinitely many pairs of paths equal in length

stemming from the trunk. Each pair in this infinite set of equal path lengths

corresponds to the pair (TRL∞, TLR∞) and every other pair in the set. Three

corresponding pairs are highlighted in Figure 3.

Other sets of pairs of equal length opposite paths are found by setting the

formulas for |TRnL∞| and |TLnR∞| equal to each other. These paths are equal in

length if r1 = (1− rn2 )
1/n or r1 = r2.

Using generalized formulas for |T (RmLn)∞| and |T (LmRn)∞|, we found a

significant restriction on whether a pair of periodic opposite paths can be equal.

Theorem 2.1. If m ≥ n, where m ≥ 1, n ≥ 0, then |T (RmLn)∞| >

|T (LmRn)∞|.
Proof. For m ≥ 1, n ≥ 0, we find that

|T (RmLn)∞| =
1−rm+1

1

1−r1
+

rm1 r2(1−rn−1

2
)

1−r2

1− rm1 rn2

and

|T (LmRn)∞| =
1−rm+1

2

1−r2
+

rm2 r1(1−rn−1

1
)

1−r1

1− rm2 rn1
.

Now, since 0 < r2 < r1 < 1 it follows that rp1 > rp2 and rp1r
q
2 ≥ rp2r

q
1 for all

p, q ∈ Z with p ≥ q. Thus,

m
∑

j=0

rj1 +

n−1
∑

k=1

rm1 rk2 >

m
∑

j=0

rj2 +

n−1
∑

k=1

rm2 rk1

which implies that

(

1− rm+1
1

1− r1

)

+

(

rm1 r2(1− rn−1
2 )

1− r2

)

>

(

1− rm+1
2

1− r2

)

+

(

rm2 r1(1 − rn−1
1 )

1− r1

)

.
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Since 1− rm1 rn2 < 1− rm2 rn1 , we find

( 1−rm+1

1

1−r1

)

+
( rm1 r2(1−rn−1

2
)

1−r2

)

1− rm1 rn2
>

( 1−rm+1

2

1−r2

)

+
( rm2 r1(1−rn−1

1
)

1−r1

)

1− rm2 rn1
.

Therefore, |T (RmLn)∞| > |T (LmRn)∞|.
To continue our study of paths of equal length we had to resort toMathematica.

Finding values for r1 and r2 in which a pair of opposite paths were equal required

an enormous number of calculations and the evaluation became too cumbersome.

Studying path lengths that cannot be defined with our equations for |T (RmLn)∞|
and |T (LmRn)∞| may require a different approach.

3. Tree Height. Tree height is defined by the largest y-coordinate in the path

that has the most vertical reach. When θ > 90◦ the trunk can be taller than its

branches, which could possibly change the analysis of tree height as discussed here.

θ < 0◦ is essentially a reflection across an extension of the trunk. We limited our

tree height study to trees in which 0◦ < θ ≤ 90◦. Thus, the question is: which path

do we use to determine tree height? We know that the first right branch always

has a greater vertical reach than the first left branch. Likewise, the right side of

the tree is taller than the left side.

The path which determines tree height is found by comparing the height of

the path TRn to that of TRn−1L for n ≥ 2 (for n = 1, height(TR) will always be

greater than height(TL)). Note that height (P ) denotes the largest y-coordinate of

the path P . This method of determining which path defines tree height is necessary

since the height(TRn−1L) is not always greater than height(TRn) [see Figure 4].

The four quantities that determine whether a right branch extends above the

left branch stemming from the same previous branch (or trunk) are θ, n, r1, and

r2. If θ = 90◦, then two of the paths determining tree height are T (RL)∞ and

T (LR)∞, the same as for symmetric trees. For 0◦ < θ < 90◦, the tip of a right

branch can have a greater height than the tip of the left branch stemming from the

same previous branch. Whether this occurs or not depends on the values for n and

the ratio r1
r2
.

Using trigonometry, we compare the heights of any two paths, resulting in

the correct inequalities to test. In particular, the y-coordinates of branches can

be determined using trigonometry, as Figure 4 illustrates. We can now find an
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inequality in terms of n that determines if the nth branch exhibiting greater height

is a left or right branch

height(TRn−1L) ≥ height(TRn)

⇐⇒ rn−1
1 r2 cos((n− 2)θ) ≥ rn1 cos(nθ)

⇐⇒ r2 cos((n− 2)θ) ≥ r1 cos(nθ)

⇐⇒ r2
r1

≥ cosnθ

cos(n− 2)θ
.

Thus, when the last inequality above is true, the height of the left branch

attached to the (n − 1)th right branch is greater than, or equal to, the height of

the nth right branch. If the left and right branches at the (n − 1)th branching are

equal in height, then either branch determines tree height.

Once it has been determined that turning left on a path to greatest tree height

is preferred to turning right, then the path of greatest height can be determined

without further examination of the branches in the sequence. This results from

similar triangles constructed at the nth and (n− 2)th branchings.

If TR3L reaches greater height than TR4 [see Figure 5], then the next

comparison that would be made to determine tree height is height(TR3L2) ≥
height(TR3LR). The angles in the previous triangles used to find the last terms

in the equations for height(TR2L) and height(TR3) are congruent to the angles in

the triangles we would use for height(TR3L2) and height(TR3LR). Thus, if a right

branch was chosen the first time these triangles were used in a comparison, then a

right branch would be chosen again. This also means that any time a left branch is

chosen, the path determining height is the one alternating from that point onward

(e.g. TRn−1(LR∞).

Up to this point we have made the assumption that there exists a positive

integer n for which r2 cos((n − 2)θ) ≥ r1 cos(nθ) is true but it is not necessarily

clear that this is always the case. The following theorem will clarify this and provide

an expression for n as a function of r1, r2 and θ.

Theorem 3.1. Suppose that 0 < r2 < r1 < 1 and 0 < θ ≤ π
2 . Then, there

exists n ≥ 2 such that r2 cos((n− 2)θ) ≥ r1 cos(nθ).
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Proof. Using trigonometric identities, the inequality r2 cos((n − 2)θ) ≥
r1 cos(nθ) can be rewritten in the form

r2 cos((n− 2)θ) ≥ r1(cos 2θ cos((n− 2)θ)

− sin 2θ sin((n− 2)θ))

⇐⇒ r2 cos((n− 2)θ)− r1 cos 2θ cos((n− 2)θ) ≥ −r1 sin 2θ sin((n− 2)θ)

⇐⇒ cos((n− 2)θ)(r2 − r1 cos 2θ) ≥ −r1 sin 2θ sin((n− 2)θ)

⇐⇒ r1 sin 2θ sin((n− 2)θ) ≥ − cos((n− 2)θ)(r2 − r1 cos 2θ)

⇐⇒ sin((n− 2)θ)

cos((n− 2)θ)
≥ r1 cos 2θ − r2

r1 sin 2θ

⇐⇒ tan((n− 2)θ) ≥ cos 2θ − r2
r1

csc 2θ.

Since cot 2θ − r2
r1

csc 2θ is constant and tan(x) is an increasing function, there is a

smallest integer n such that tan((n− 2)θ) ≥ cot 2θ − r2
r1

csc 2θ.

Now, we can write n as a function of r1, r2, and θ

n(r1, r2, θ) = smallest integer greater than

(

arctan(cot 2θ − r2
r1

csc 2θ

θ
+ 2

)

.

By using geometric series and summing all the terms for the heights of each right

branch up to (and not including) the nth branching, we get the following formula

for tree height

n−1
∑

j=0

(rj1 cos(jθ)) +
rn−1
1 r2 cos((n− 2)θ) + rn1 r2 cos((n− 1)θ)

1− r1r2
. (3.1)

If at the (n− 1)th branch the left and right branches are equal in height, then

more than one path determines tree height. From the first comparison in which

the left and right branches were equal in height we know there must be at least

two paths for tree height. Again, due to similar triangles, the height of the right
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and left branches will be equal at alternate branchings. Thus, if there is more than

one path determining tree height, there are infinitely many paths determining tree

height [see Figure 6].

4. Computer Implementation. To generate pictures of fractal trees, affine

transformations are necessary. The two functions for generating symmetric trees

are as follows:

SL(x, y) = (rx cos(θ)− ry sin(θ), rx sin(θ) + ry cos(θ) + 1)

SR(x, y) = (rx cos(−θ)− ry sin(−θ), rx sin(−θ) + ry cos(−θ) + 1).

Since asymmetric trees have three variables involved in their construction it

is quite difficult to visualize how minor changes in these variables may affect the

characteristics in the tree. For this reason, it is important to have a means of

producing accurate pictures of these trees. These transformations are:

AL(x, y) = (r2x cos(θ)− r2y sin(θ), r2x sin(θ) + r2y cos(θ) + 1)

AR(x, y) = (r1x cos(−θ)− r1y sin(−θ), r1x sin(−θ) + r1y cos(−θ) + 1).

We wrote a Mathematica package to implement the iteration of these affine

transformations and to generate the figures in this paper. This package is available

upon request from the third author.

5. Further Investigations. There are many other topics concerning asym-

metric branching trees that we have yet to study. One of the main topics that

Mandelbrot and Frame [1] address is self-contact in symmetric trees. In particular

they discussed trees with θ = 135◦ and θ = 90◦. At θ = 135◦ the tree fills a

right isosceles triangle [see Figure 7] and at θ = 90◦ the tree fills a rectangle [see

Figure 8] with certain values of r. One of the characteristics of asymmetric trees

that computer generated pictures allowed us to see was that these trees no longer

completely fill regular polygons. Furthermore, there will always be a gap in the

lower left corner of the rectangle and on the left side of the trunk in the triangle,

since r1 > r2. In the future, we plan to measure this gap in terms of r1, r2, and

θ. These two examples lead to the world of space-filling curves and open up other

avenues of study.
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Figure 1. Comparison of symmetric and asymmetric branching trees.

Both have θ = π
10 . A has r = 1

2 , and B has r1 = 1
2 , r2 = 1

4 .
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Figure 2. Opposite paths T (RL)∞ and T (LR)∞, and some corresponding branches.
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Figure 3. Pairs of equal length paths: (TRL∞, TLR∞), (TR2LR∞, TR3L∞),

and (TR2RL∞, TL3R∞). Here, r1 = 3
4 , r2 = 1

4 , θ = π
3 .
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Figure 4. Part of an asymetric tree with r1 = 3
4 , r2 = 1

4 , θ = π
10 .
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Figure 5. Tree height analysis where r1 = 18
20 , r2 = 5

20 , θ = π
9 .
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Figure 6. Multiple paths determine tree height. Here, r1 = 3
4 , r2 = 3

8 , θ = π
6 .
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Figure 7. Trees that are space-filling curves. On the left, the symmetric tree fills

a triangle. The asymmetric tree does not quite fill a triangle.

Both trees have θ = 135◦.

Figure 8. On the left is a symmetric tree with r = (1/
√
2). On the right

is an asymmetric tree with r1 = (1/
√
2) + 1/18 and r2 = (1/

√
2).

Both trees are space-filling curves and have θ = π/2.
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