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JAPANESE THEOREM: A LITTLE KNOWN THEOREM

WITH MANY PROOFS – PART I

Mangho Ahuja, Wataru Uegaki, and Kayo Matsushita

[Note: (A), (U), (M) refer to the authors’ names. The pronoun I always means
(A).]

Japanese Theorem. Triangulate a cyclic polygon by lines drawn from any
vertex. The sum of the radii of the incircles of the triangles is independent of the
vertex chosen.

1. Background. I (A) found this theorem in a 1993 article [5], where the author
Nick Mackinnon wrote “ . . . I have used the above theorem as a starter for course
work, not expecting a proof of the theorem (I can’t even prove it myself) . . . ” It
was the author’s remark in parenthesis that intrigued me. In fall 1995 I assigned
this theorem as a problem to Cathy, a Masters Degree student. By spring 1996
both Cathy and I had a proof of the theorem [3]. But one question remained: Why
is it called the Japanese Theorem? My long search for the answer ended when I
received a 15-page fax in English, French, and Japanese from Professor Yoshida of
Kyoto University.

The theorem (Quadrilateral case) had originated in China [6]. So, when it came
to Japan around 1900, it was known as the “Chinese Theorem” [4]. Later, when
Y. Mikami generalized it from a quadrilateral to a polygon, the name remained the
“Chinese Theorem”. So, who coined the term “The Japanese Theorem”? This the-
orem, without a name, appeared in a 1906 article entitled, “Japanese Mathematics”
[2]. We believe this led the later authors to call it the “Japanese Theorem”.

This theorem is displayed on a wooden tablet in a Shinto shrine. The hanging
of such tablets showing mathematical theorems was a common custom in Edo era
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in Japan [1]. These tablets, called Sangaku in Japanese, can be seen all over Japan.
The Sangaku of our theorem was once hanging in the Tsuruoka-San’nosha shrine
in the Ushu area (at present Yamagata and Akita prefectures of Japan), but it has
since disappeared.

To learn more about the history of the theorem, in summer 1999 I traveled to
Japan, where (M) and I searched the libraries of Kyoto University for references.
At the same time Professor (U) of Mie University was examining and analyzing
every available document relevant to the theorem. His findings are published in
a paper (in Japanese) in the Journal of Mie University [7]. The authors plan to
write a detailed history of the theorem in another paper, leaving the present paper
to focus on the geometry only.

2. Plan. In part I, we state a few elementary results, E1, E2, . . . , E5, and
then derive results G1, G2, . . . , G8 in Geometry, of which a few are well-known.
We end part I with the oldest proof of the theorem. In part II we show a variety of
proofs – five different proofs by Japanese mathematicians. We end our paper with
a discussion of the generalized (polygonal) case of the theorem and the conclusion.

Elementary Results. In any triangle ABC, the following are true:

(E1) sinA+ sinB + sinC = 4 cos A

2
cos B

2
cos C

2
.

(E2) sinA+ sinB − sinC = 4 sin A

2
sin B

2
cos C

2
.

(E3) cosA+ cosB + cosC = 1 + 4 sin A

2
sin B

2
sin C

2
.

(E4) If chords AB and CD of a circle intersect at P , then PA · PB = PC · PD.
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(E5) Ptolemy’s Theorem. If a quadrilateral ABCD is inscribed in a circle, then
AB · CD +BC · AD = AC ·BD.

3. Results from Plane Geometry. We will prove results G1 to G8 (some of
these are known theorems) needed for the proofs that follow. For a triangle ABC,
let O, R, and I, r denote the center and radius of the circumcircle and the incircle,
respectively.

(G1) r = 4R sin A
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Proof. Now

a = BC = r cot
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Thus,
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.
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But

a = 2R sinA = 4R sin
A

2
cos

A

2
,

hence,

r = 4R sin
A

2
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B

2
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2
.

(G2) If AI produced meets the circumcircle in F , then FB, FC, FI are equal. In
other words the points B, C, and I lie on a circle with center F .

Proof. Clearly, 6 BIF = 6 IBA+ 6 BAI = B/2+A/2. Also, 6 IBF = 6 IBC+
6 CBF = 6 IBC + 6 CAF = B/2 + A/2. Thus, 6 BIF = 6 IBF and FI = FB.
Similarly, FI = FC. So the points B, I, and C lie on a circle with center F .

(G3) R2
− 2Rr = OI2 (This result is also known as Chapple’s Theorem.)

Proof. Extend AI till it meets the circumcircle in F . We draw two diameters
FOG and KIOL through O. Let IJ be the perpendicular from I to side AB,
then IJ = r. Since 6 BAF = 6 BGF , the two right triangles AJI and GBF are
similar. Hence, r/AI = BF/2R, or 2Rr = AI ·BF = AI ·IF , which by (E4) equals
LI · IK = (R+OI)(R −OI) = R2

−OI2. Hence, R2
− 2Rr = OI2.
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(G4) (Carnot’s Theorem) Let a1, b1, and c1 denote the lengths of perpendiculars
from O to sides BC, CA, and AB, respectively. Then R + r = b1 + c1 + a1, if O
lies within the triangle ABC, and R+ r = b1 + c1 − a1 if say OA intersects BC.

Proof. Since 6 BOC = 2 6 A, the length a1 is either R cosA, or R cos(π−A) =
−R cosA, depending upon the position of O. Thus, b1+c1±a1 = R[cosB+cosC+
cosA] which equals R[1 + 4 sinA/2 sinB/2 sinC/2] by (E3), and equals R + r by
(G1). Thus, R+ r = b1 + c1 ± a1.

(G5) Let ABCD be a quadrilateral inscribed in a circle. If E, F , G, and H denote
the midpoints of the arcs AB, BC, CD, and DA, respectively, then the lines EG
and FH are perpendicular.

Proof. If we suppose that the arcs AB, BC, CD, and DA make angles 2α, 2β,
2γ, and 2δ at the center of the circle, then the sum 2α+ 2β + 2γ + 2δ = 2π. Now
the arc EF makes angle α+ β at the center, so 6 EHF = (1/2)(α+ β). Similarly,
arc GH makes angle γ + δ at the center, hence, 6 GEH = (1/2)(γ + δ). If the
lines EG and FH intersect in S, then the sum of the two angles SHE and HES
of triangle ESH is (1/2)(α+ β + γ + δ) = (1/2)π, making the third angle 6 ESH
a right angle.
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(G6) Let ABCD be a rectangle whose diagonals intersect at S. Let P be any point
in a plane. Then PA2 + PC2 = PB2 + PD2 = 2PS2 + 2AS2.

Proof. Since PS is the median for triangles PCA and PBD, we have PA2 +
PC2 = 2AS2 + 2PS2 = PB2 + PD2.

(G7) If I1, I2, I3, I4 are the incenters of triangles ABC, BCD, CDA, and DAB,
respectively, then the figure I1I2I3I4 is a rectangle.
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Proof. Let E, F , G, H denote the midpoints of the arcs AB, BC, CD, andDA,
respectively. Then E lies on the bisectors of angles BCA and BDA. Similarly, each
of the points F , G, and H lies on two angle bisectors as shown in the diagram. This
means that the bisectors AF and CE intersect at I1, and the same for I2, I3, and
I4. The equal arcs AH and HD make equal angles at F , hence, FH is the bisector
of angle AFD. For the same reason, FH is also the angle bisector of angle BHC.
By using (G2) on triangles ABC and BDC, we get FI1 = FB = FC = FI2. This
makes I1I2 perpendicular to the bisector of angle I1FI2, which is FH . Similarly,
I3I4 is perpendicular to FH , and this makes I1I2 and I3I4 parallel lines. Similarly,
I1I4 and I2I3 are parallel lines, both being perpendicular to EG. But (G5) says
that EG and FH are perpendicular. Hence, the figure I1I2I3I4 is a rectangle.

(G8) Let IL, IM , IN be the perpendiculars from the incenter I to the sides BC,
CA, and AB of triangle ABC. Then, AM = AN = (1/2)(b+ c− a), BL = BN =
(1/2)(c+ a− b), and CL = CM = (1/2)(a+ b− c).

Proof. Note that AM = AN , BL = BN , CL = CM . Thus, 2AM+2BL+2CL
equals a+ b+ c, or 2AM + 2a = a+ b+ c. Hence, AM = (1/2)(b+ c− a).

4. Earliest Attempt. Japan was a closed society until 1854, when
Commodore Perry forced open its doors, and Japan began to exchange goods and
knowledge with the western countries. The native Japanese mathematics prior to
its contact with the European world was known as Wasan, which means Japanese
Mathematics. The earliest proof of the Japanese Theorem is found in a book on
Wasan written by Tameyuki Yoshida [9]. We are not sure if Yoshida himself gave
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this proof. The interesting thing about this proof, besides being the earliest, is
that it is based on just two properties of the circle – (1) from any point outside
the circle, tangents drawn to the circle have equal length, and (2) an arc of a circle
makes the same angles at any point on the circle. We now present this proof.

Japanese Theorem (Quadrilateral Case). Let ABCD be a quadrilateral in-
scribed in a circle. Let r1, r2, r3, r4 be the radii of the circles C1, C2, C3,
and C4 inscribed in triangles ABC, BCD, CDA, and DAB, respectively. Then
r1 + r3 = r2 + r4.

Proof. Let Pi, Qi, and Hi denote the points where the circle Ci touches the
sides as shown in diagrams (A) and (B). The first step of the proof is to show that
H1H3 and H2H4 are equal. To do so, let E denote the expression AD + BC −

AB−CD. From diagram (A), E = (AQ3+DQ3)+(BQ1+CQ1)− (AP1 +BP1)−
(CP3+DP3). But AP1 = AH1, AQ3 = AH3, CQ1 = CH1, CP3 = CH3, and so on.
Hence, E = AH3 +CH1 −AH1 −CH3 = (AH3 −AH1)+ (CH1 −CH3) = 2H1H3.
From diagram (B), E = (AP4+DP4)+(BP2+CP2)−(AQ4+BQ4)−(CQ2+DQ2).
But BP2 = BH2, BQ4 = BH4, and so on. Thus, E = DH4+BH2−BH4−DH2 =
(DH4 −DH2) + (BH2 −BH4) = 2H2H4. Hence, H1H3 = H2H4.

Let arcs AB, BC, CD, DA make angles 2α, 2β, 2γ, and 2δ, respectively at
points on the circle. This means 6 ACB = 6 ADB = 2α, 6 BAC = 6 BDC = 2β,
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6 CAD = 6 CBD = 2γ, and 6 DBA = 6 DCA = 2δ. Then

tanα =
r1

CH1

=
r4

DH4

, tanβ =
r1

AH1

=
r2

DH2

,

tan γ =
r3

AH3

=
r2

BH2

, tan δ =
r3

CH3

=
r4

BH4

.

This gives us r1DH4 − r4CH1 = 0, r2AH1 − r1DH2 = 0, r3BH2 − r2AH3 = 0, and
r4CH3−r3BH4 = 0. On adding these, we get r1(DH4−DH2)+r3(BH2−BH4) =
r2(AH3−AH1)+r4(CH1−CH3), or r1(H2H4)+r3(H2H4) = r2(H1H3)+r4(H1H3).
But H2H4 = H1H3, hence, r1 + r3 = r2 + r4. This completes the proof.
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