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SOLUTIONS

No problem is ever permanently closed. Any comments, new solutions, or new
insights on old problems are always welcomed by the problem editor.

129. [1999, 196] Proposed by Kenneth B. Davenport, 301 Morea Road, Box
491, Frackville, Pennsylvania.

Let k ≥ 0 and i ≥ 1 be integers. Prove that

∑

j

〈

k

j

〉(

k + i − j

k + 1

)

=
i

∑

m=1

mk,

where
〈

k

j

〉

denotes an Eulerian number.

Solution by the proposer and Carl Libis, Antioch College, Yellow Springs, Ohio.
Here, an Eulerian number

〈

k

j

〉

is the number of permutations π1π2 · · ·πk of {1, 2, . . . , k} that have j ascents,
namely, j places where πi < πi+1. To prove this result we need Worpitsky’s identity
from R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, 2nd
ed., Addison-Wesley Publishing Company, Reading, Massachusetts, 1994, p. 269,
i.e.

mk =
∑

j

〈

k

j

〉(

m+ j

k

)
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for integer k ≥ 0. Using this identity, rearranging terms, changing index variables,
and using properties of Eulerian numbers, we have

i
∑

m=1

mk =

i
∑

m=1

∑

j

〈

k

j

〉(

m+ j

k

)

=
∑

j

〈

k

j

〉 i
∑

m=1

(

m+ j

k

)

=
∑

j

〈

k

j

〉 i+j
∑

m=j+1

(

m

k

)

=
∑

j

〈

k

j

〉 i+j
∑

m=0

(

m

k

)

=
∑

j

〈

k

j

〉(

i+ j + 1

k + 1

)

=
∑

j

〈

k

k − 1− j

〉(

i+ j + 1

k + 1

)

=
∑

j

〈

k

j

〉(

k + i− j

k + 1

)

.

130. [1999, 196] Proposed by Joseph Wiener and William Heller, University
of Texas-Pan American, Edinburg, Texas.

Show that for any b > 1, the function

f(x) =
(

x2 + (1− b)
)

ex + bx

has exactly one zero for x ≥ 0.

Solution I by Chris Farmer (student), Northwest Missouri State University,
Maryville, Missouri. f(x) is continuous and differentiable throughout its domain.
Furthermore,

f(0) = [02 + (1− b)]e0 + b(0) = 1− b

f(
√
b− 1) = [(

√
b− 1)2 + (1− b)]e

√
b−1 + b

√
b− 1 = b

√
b− 1.

Since b > 1, f(0) = 1 − b < 0 and f(
√
b− 1) = b

√
b− 1 > 0. Therefore, by

the Intermediate Value Theorem, there exists a c such that 0 < c <
√
b− 1 and

f(c) = 0.
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Consider f(c) and f(c+ a), where a > 0.

f(c) = [c2 + (1− b)]ec + bc = 0.

f(c+ a) = [(c+ a)2 + (1− b)]ec+a + b(c+ a)

= [c2 + 2ac+ a2 + (1− b)]ec+a + bc+ ba

> [c2 + (1− b) + 2ac+ a2]ec + bc+ ba

= [c2 + (1− b)]ec + bc+ (a2 + 2ac)ec + ba

= f(c) + (a2 + 2ac)ec + ba

= (a2 + 2ac)ec + ba.

Since a, b, c > 0, f(c+ a) > 0. Therefore, f(x) has no zeros greater than c.
Suppose f(x) has another zero d. Then d ≤ c. Repeating the above argument,

with d in place of c, we find that f(x) has no zeros greater than d, so c ≤ d. It
follows that c = d.

Therefore, f(x) has exactly one zero.

Also solved by N. J. Kuenzi, University of Wisconsin-Oshkosh, Oshkosh, Wis-
consin; Kandasamy Muthuvel, University of Wisconsin-Oshkosh, Oshkosh, Wiscon-
sin; and the proposers.

131. [1999, 197] Proposed by Kenneth B. Davenport, 301 Morea Road, Box
491, Frackville, Pennsylvania.

Show that if

A =
∞
∑

n=0

(

1

9n+ 1
− 1

9n+ 4

)

, B =
∞
∑

n=0

(

1

9n+ 5
− 1

9n+ 8

)

,

C =
∞
∑

n=0

(

1

9n+ 2
− 1

9n+ 5

)

, D =
∞
∑

n=0

(

1

9n+ 4
− 1

9n+ 7

)

,

then A+B = (C +D)α, where α = 2 cos(π/9).
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Solution by the proposer. Begin by noting that

A+B =

∫ 1

0

1 + x4

1 + x3 + x6
dx

and

C +D =

∫ 1

0

x+ x3

1 + x3 + x6
dx. (1)

Using the Tables of Indefinite Integrals by G. Petit Bois, Dover Publications, Inc.,
New York, 1961, p. 105, we have the formula

∫

xm

a+ bxn + cx2n
dx =

1

ncq2n−m−1 sin ǫ
·

n−1
∑

k=0

[

− sin(n−m− 1)ǫk ·
1

2
· ln(x2 − 2qx cos ǫk + q2)

+ cos(n−m− 1)ǫk tan
−1

[

x sin ǫk
q − x cos ǫk

]]

, (2)

where

q =

(

a

c

)
1

2n

, cos ǫ =
−b

2
√
ac

, ǫk =
2kπ + ǫ

n
,

and
b2 − 4ac < 0, m < 2n.

Since a = b = c = 1, and n = 3, (2) may be simplified and noting ǫ = 2π/3,

2
√
3

9

2
∑

k=0

[

− sin(2−m)ǫk ·
1

2
ln(2− 2 cos ǫk) + cos(2−m)ǫk tan

−1

[

sin ǫk
1− cos ǫk

]]
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and we must have

ǫ0 =
2π

9
, ǫ1 =

8π

9
, and ǫ2 =

14π

9
. (3)

Taking the A sum with m = 0 we have

A =
2
√
3

9

2
∑

k=0

[

− sin(2ǫk) ·
1

2
ln(2 − 2 cos ǫk) + cos(2ǫk) tan

−1

[

sin ǫk
1− cos ǫk

]]

(4)

=
2
√
3

9

[

− sin
4π

9
· 1
2
· ln

(

2− 2 cos
2π

9

)

− sin
16π

9
· 1
2
ln

(

2− 2 cos
8π

9

)

− sin
28π

9
· 1
2
ln

(

2− 2 cos
14π

9

)

+ cos
4π

9
· 7π
18

+ cos
8 · 2π
9

· π

18
− cos

28π

9
· 5π
18

]

B =
2
√
3

9

2
∑

k=0

[

− sin(−2ǫk) ·
1

2
ln(2− 2 cos ǫk) + cos(−2ǫk) tan

−1

[

sin ǫk
1− cos ǫk

]]

(5)

for m = 4; but since B differs only in the sign of the logarithmic part of its sum,
then A+B will cancel the logarithmic parts of the summation and so we must have

A+B =
2
√
3

9
· 2
[

7π

18
cos

4π

9
+

π

18
cos

16π

9
− 5π

18
cos

28π

9

]

. (6)

Now taking the C sum with m = 1 we have

C =
2
√
3

9

2
∑

k=0

− sin(ǫk) ·
1

2
ln(2 − 2 cos ǫk) + cos(ǫk) tan

−1

[

sin ǫk
1− cos ǫk

]

(7)

=
2
√
3

9

[

− sin
2π

9
· 1
2
· ln

(

2− 2 cos
2π

9

)

− sin
8π

9
· 1
2
ln

(

2− 2 cos
8π

9

)

− sin
14π

9
· 1
2
ln

(

2− 2 cos
14π

9

)

+
7π

18
· cos 2π

9
+

π

18
· cos 8π

9
− 5π

18
cos

14π

9

]

.
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And the D sum with m = 3 yields

D =
2
√
3

9

2
∑

k=0

[

− sin(−ǫk) ·
1

2
ln(2− 2 cos ǫk) + cos(−ǫk) tan

−1

[

sin ǫk
1− cos ǫk

]]

. (8)

As in (5), D differs only in the sign of the logarithmic part of its sum, and so C+D
will cancel the logarithmic parts of the summation and you will have

C +D =
2
√
3

9
· 2
[

7π

18
cos

2π

9
+

π

18
cos

8π

9
− 5π

18
cos

14π

9

]

. (9)

It now remains to show that

A+B = (C +D)α.

(6) may be simplified to

2
√
3π

18

[

5 cos
π

9
+ 7 cos

4π

9
− cos

7π

9

]

(10)

and now simplifying (9) and multiplying through by α we have

(C +D)α =
2
√
3π

81

[

14 cos
π

9
cos

2π

9
+ 2 cos

π

9
cos

8π

9
− 10 cos

π

9
cos

14π

9

]

(11)

= −7

(

cos
6π

9
+ cos

8π

9

)

+ cos
7π

9
− 1 + 5

(

cos
4π

9
+ cos

6π

9

)

=
7

2
− 7 cos

8π

9
+ cos

7π

9
− 1 + 5 cos

4π

9
− 5

2
= 7 cos

π

9
+ 5 cos

4π

9
+ cos

7π

9
.

This simplification was reached after using product and half-angle formulas from the
Handbook of Mathematical Functions, edited by M. Abramowitz and Irene Stegun,
Dover Publications, 9th ed. 1970, 4.3.32 and 4.3.36, p. 72, 73.
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We now rewrite this last expression as

5 cos
π

9
+

(

2 cos
π

9

)

+ 7 cos
4π

9
−
(

2 cos
4π

9

)

− cos
7π

9
+

(

2 cos
7π

9

)

. (12)

It remains to show that

cos
π

9
− cos

4π

9
+ cos

7π

9
= 0. (13)

But

cos
π

9
− cos

4π

9
+ cos

7π

9

= cos
π

9
− cos

π

9
cos

3π

9
+ sin

π

9
sin

3π

9
+ cos

π

9
cos

6π

9
− sin

π

9
sin

6π

9

= cos
π

9
− 1

2
cos

π

9
+

√
3

2
sin

π

9
− 1

2
cos

π

9
−

√
3

2
sin

π

9
= 0.

This completes the proof.

132. [1999,197] Proposed by Don Redmond, Southern Illinois University, Car-
bondale, Illinois.

Let Fn denote the nth Fibonacci number. That is, F0 = 0, F1 = 1 and for
n ≥ 2, Fn = Fn−1 + Fn−2. In 1883 Cesaro showed that

n
∑

k=0

(

n

k

)

Fk = F2n and

n
∑

k=0

(

n

k

)

2kFk = F3n.

Prove the following generalization of Cesaro’s result.
Let r and s be roots of the quadratic equation

x2 − ax− b = 0. (1)
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Define the two sequences {Pn} and {Qn} by

Qn =
rn − sn

r − s
and Pn = crn + dsn,

where c and d are constants. If j ≥ 2, then

n
∑

k=0

(

n

k

)

(bQj−1)
n−kQk

jPk = Pjn.

Solution by the proposer. We begin with a lemma.

Lemma. If x satisfies (1), then, for n ≥ 1,

xn = Qnx+ bQn−1.

Proof. It is clear that Q0 = 0, Q1 = 1, Q2 = a and that, for n ≥ 1,

Qn+1 = aQn + bQn−1.

We proceed by induction on n.
For n = 1 and 2 we have

x = Q1x+ bQ0 and x2 = ax+ b = Q2x+ bQ1,

so that the result is true in these cases.
If we assume that the result is true for n = m ≥ 1, that is,

xm = Qmx+ bQm−1,

then, for n = m+ 1, we have

xm+1 = x · xm = x(Qmx+ bQm−1) = x2Qm + xbQm−1

= (ax+ b)Qm + xbQm−1 = x(aQm + bQm−1) + bQm

= xQm+1 + bQm

which is the result for n = m+ 1 and the lemma follows.
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We now prove the main result. We have

n
∑

k=0

(

n

k

)

(bQj−1)
n−kQk

jPk =

n
∑

k=0

(

n

k

)

(bQj−1)
n−kQk

j (cr
k + dsk)

= c
n
∑

k=0

(

n

k

)

(bQj−1)
n−kQk

j r
k + d

n
∑

k=0

(

n

k

)

(bQj−1)
n−kQk

j s
k

= c(Qjr + bQj−1)
n + d(Qjs+ bQj−1)

n = crjn + dsjn = Pjn,

by the lemma. The result follows.

Also solved by José Luis Dı́az, Universidad Politécnica de Cataluña, Terrassa,
Spain and Kenneth B. Davenport, 301 Morea Road, Box 491, Frackville, Pennsyl-
vania.


