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ON RESOLVING THE LITTLEWOOD-ROSS PARADOX

John Byl

Abstract. In this paper the Littlewood-Ross paradox is discussed. Some
questions are raised regarding the most common resolution of this paradox and an
alternative resolution is proposed.

1. Introduction. The eminent mathematician J. E. Littlewood described the
following paradox of the infinite [5]. Balls numbered 1, 2, . . . are put into an urn
as follows. At 1 minute to noon the balls numbered 1 to 10 are put in, and the
number 1 is taken out. At 1/2 minute to noon numbers 11 to 20 are put in and the
number 2 is taken out. At 1/3 minute to noon 21 to 30 are put in and 3 is taken
out. And so on. How many balls are in the urn at noon?

At first sight one might think that the number N of balls in the urn at noon
should be infinite, since we have an infinite number of operations, each adding a
net total of 9 balls to the urn. It seems that we should have

N = lim
n→∞

9n = ∞. (1)

On the other hand, since ball n is removed at the nth operation, and since n takes
on all values from 1 to infinity, it seems that the urn should be empty at noon! An
intriguing paradox.

Which answer is the correct one? Littlewood placed more weight on the second
line of argumentation: any selected number, say 106, is absent since it was taken
out at the 106th operation. Hence, Littlewood concluded that at noon the urn is
empty. The same paradox has been described more recently by Ross [6] who, using
similar reasoning, reached the same verdict.

During the past few years this paradox has been discussed by various authors.
Allis & Koetsier [1,2] and Earman & Norton [3] concurred that the urn is empty
at noon; Holgate [4] added some mathematical comments; and van Bendegem [7]
reasoned that, since two contradictory conclusions are reached (i.e., the urn at
noon is both empty and full), the super-task (i.e., an infinite sequence of actions)
described by Littlewood is impossible.

As noted by Allis & Koetsier [2], paradoxes of the infinite are deceptive research
topics. Often we are led astray by intuitions and reasoning patterns from which
the flawed ingredients can be extracted only through thorough investigation.

In this paper we examine some difficulties associated with the proposal of
an empty urn at noon, and argue for the alternative interpretation of an infinite
number of balls in the urn at noon.
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2. Continuity Condition. One difficulty with the paradox, as has been
pointed out by Allis & Koetsier [1] and Earman & Norton [3], is that the problem
is logically underdescribed. The problem as posed merely describes what happens
at a number of particular instances before noon. No constraints have been placed
on what happens at or after noon. Thus, logically anything could happen.

What is needed is the specification of some further, physically plausible, con-
tinuity conditions. Two such apparently quite natural conditions can be applied to
fix the number of balls in the urn at noon.

(1) The principle adopted by Allis & Koetsier [1] is that the position functions of
the balls are continuous functions of time. If at some moment before noon a
ball comes to rest in a particular position, which it does not leave before noon,
then it is considered to be still at that position at noon.

(2) Another possibility is that the number N(t) of balls in the urn is continuous
at any time t at which no ball is added or subtracted from the vase. Thus, at
such a time t, N(t) = limt′→t N(t′).

For continuity condition (2), since no balls are added or subtracted at noon,
the urn at that time clearly contains an infinite number of balls. Condition (1), on
the other hand, is asserted by Allis & Koetsier to lead to an empty noon-time urn.

Which continuity condition is more plausible? Earman & Norton prefer the
continuity of the position functions on the grounds that this is favored by the
numbering of the balls, whereby they retain their individual identity through time.
Also, they argue that it refers to the simplest spacetime picture for the kinematics
of the balls.

One wonders, however, whether these two conditions are necessarily incom-
patible. According to Earman & Norton, the assumption of continuous position
functions leads to the conclusion that the number function N(t) increases without
limit with each stage as noon is approached, whereupon it falls discontinuously to
zero.

Consider, however, what such a discontinuity in the number function entails.
The instant before noon the urn contains an infinity of distinct balls, each with its
unique label and each with its individual position function. At noon these balls are
considered to be instantaneously ejected from the urn. Viewed kinematically, this
involves moving a finite distance in zero time, causing discontinuities to appear in
the corresponding position functions. It seems, therefore, that the continuity of all
position functions necessarily implies also the continuity of the number function.

Indeed, if we follow Allis & Koetsier in assuming that any ball coming to rest
at a position which it does not leave before noon is still at that position at noon,
then all balls in the urn just before noon should still be there at noon. (Here I am
assuming that a ball placed in the urn remains in the same position until it exits).
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In this case the continuity of position functions seems to lead to the same result as
does the continuity of the number function: a full urn at noon.

In short, it seems quite natural to conclude that the two continuity conditions
are in fact consistent. Moreover, both continuity conditions seem to suggest that
the urn is full at noon.

3. Problems with an Empty Urn. There is a further difficulty with the
conclusion that at noon the urn is empty. What causes the mysterious evaporation
of the contents of the urn at noon? That the urn should be empty at noon seems
amazing, since the number of balls in the urn is steadily increasing as noon is
approached. The super-task consists of an infinite number of similar actions, each
action consisting of adding 10 balls and subtracting one, for a net addition of 9
more balls to the urn. How, then, can the urn be suddenly empty as the hour
strikes? How can an infinity of net additions be completely canceled if not a single
action involves a net subtraction?

Earman & Norton assert that this is simply the artifact of the subtraction
of one infinite set from another. Yet there must be more to it than that. First,
the subtraction of one infinite set from another does not necessarily lead to a null
result; it depends on the details of the operations. Second, the sudden evaporation
occurs at noon, after all the specified operations have been completed. Thus, it
must correspond to some additional, unspecified operation occurring precisely at
noon (e.g., perhaps the urn is then turned upside-down, or the balls suddenly cease
to exist). Furthermore, this new operation must be consistent with the continuity
of the position functions of the balls. Since Earman & Norton affirm that at noon
no balls are added or removed from the vase, such an additional operation seems
to be ruled out.

In short, the argument for an empty noon-time urn must rely on more than
just the continuity of the position functions of the balls. At heart there seems to
be an underlying assumption that all the balls do in fact exit the urn before noon.

Since at noon an infinite number of consecutively numbered balls have been
removed, the nth ball at the nth stage for an infinite number of stages until ball
omega is removed at stage omega, it may seem that the urn must be empty.

However, the super-task as posed is completed when the last ball enters the
urn, not when it exits. At noon balls numbered 1 to ω have been removed but the
urn still contains balls numbered from ω + 1 to 10ω. Perhaps this can be clarified
by restating the problem slightly: if at stage n ball n is added to the urn and
any balls numbered n/10 or less are removed, then at stage ω the urn contains all
balls numbered higher than ω/10. One could even postulate the existence of some
mechanism that seals the urn once the last ball has been added to it, preventing
any further exits. Hence, even though an infinite number of numbered balls have
been removed from the urn, there still remains an infinite number of balls inside.
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This is consistent with Earman & Norton’s observation that N(t) increases without
limit for all instances before noon.

Furthermore, this conclusion is confirmed also by an examination of Allis &
Koetsier’s second super-task [1], where at the nth stage balls labeled 10n − 9 to
10n− 1 are added, whereas ball n, instead of being removed, is renumbered to 10n.
This leads to a number function N(t) identical to that of the original super-task for
all instances before noon. But now N is infinite at noon, each ball being labeled
with a natural number followed by infinitely many zeros (an omega-sequence of
zeros).

Allis & Koetsier exclaim that it is remarkable that the second super-task results
in an infinite number function at noon, since at all times before noon it is identical
to the number function of the first super-task. What is remarkable, however, is not
that the second super-task results in a full urn, but that the first one should lead
to an empty urn. It would seem that the balls left in the second urn at noon are
precisely those that never exited the urn in the first super-task.

4. Subtracting Infinite Sets. The examination of Allis & Koetsier’s second
super-task supplies an answer also to the perplexing question: What is the label of
the lowest numbered ball in the urn? At first sight this seems to refute the notion
of a full urn at noon. If every specific natural number has been removed by noon,
how can there be any numbers remaining in the urn?

On the basis of the Allis & Koetsiers’ second super-task, one could simply reply
that the lowest number in the urn is 1 followed by an infinite number of zeros.

Alternatively, one could argue that the set of natural numbers is of cardinality
ℵ0, encompassing 1, 2, 3, . . . ω. On the last action, just before noon, the last number
to be removed from the urn is ω. Thus, the lowest number in the urn is the next
number, ω + 1.

One might ask, how can there be a next number ω + 1 if ω is the largest
natural number? The answer lies in the fact that an infinite set, unlike finite sets,
can be partitioned into two or more subsets each having the same cardinality as
the original set. Consequently, the subtraction of an infinite subset from an infinite
set of the same cardinality does not necessarily leave one with the null set.

To illustrate this unique property of infinite sets, consider a further example.
Suppose we have two urns, A and B. At the nth stage we place balls 10n − 9 to
10n − 1 in urn A, and ball 10n in urn B, renumbering the balls at each stage so
that urn B contains balls numbered 1 to n, and urn A contains balls numbered
n + 1 to 10n. At each stage the balls in urn A will be identical to those in the
urn of Littlewood’s super-task. At noon urn B contains balls labeled 1, 2, . . . ω;
urn A contains balls labeled ω + 1, ω + 2, . . . ω + ω, corresponding to the balls
in Littlewood’s urn at noon. This is equivalent to counting the naturals by first
counting every tenth number and then the remaining numbers. (Suppose all the
balls whose numbers are divisible by ten are red, the rest blue. Count first the red
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balls, then the blue balls. The red balls will then be labeled 1, 2, 3, . . . ω; the blue
balls receive labels ω + 1, ω + 2, . . . ω + ω.)

Another approach is to consider the actions making up the super-task to be
members of an infinite series

p1 + · · ·+ p10− p1 + p11 + · · ·+ p20− p2 + · · · . (2)

Littlewood [5] comments that, confronted with this series, “an analyst would at
once observe that it was “null”, and without noticing anything paradoxical”.

Why would an analyst believe the infinite series to be “null”? Presumably
because it might seem possible to rearrange it as

(p1− p1) + (p2− p2) + · · · . (3)

The latter series is clearly null, since we just add up an infinite number of zero’s.
It is well-known, however, that a rearrangement of an infinite series leaves the

sum unchanged if the series is absolutely convergent, but not necessarily in other
cases. For example, a conditionally convergent infinite series may be rearranged to
sum up to any desired extended real number. The dependence of the summation
of an infinite series on its arrangement is noted also by Holgate [4].

To demonstrate this more concretely, we modify the super-task slightly in order
to obtain a conditionally convergent infinite series. Let the balls vary in mass so
that ball n has a mass of 1/n kg. Then we ask, what is the mass of the balls
in the urn at noon? The super-task, broken down into individual actions, can be
represented by the infinite series

(1 + · · ·+ 1/10− 1) + (1/11 + · · ·+ 1/20− 1/2) + · · · . (4)

One might think that, since any specific number added is eventually removed, this
sum should be equivalent to the rearrangement

(1 − 1) + (1/2− 1/2) + · · ·+ (1/n− 1/n) + · · · . (5)

Yet these two series yield quite different sums. Series (4) sums to a value of approx-
imately 2.3 kg (i.e., ln(10)); series (5), corresponding to Littlewood’s reasoning for
an empty urn, sums to zero. Again it is evident that the mere fact that any partic-
ular finite natural number added to the series is eventually removed is insufficient
proof for the presumed emptiness of the urn at noon.

5. Conclusions. In this paper we have argued that a natural continuity
condition to be applied to the Littlewood super-task is that of the continuity of the
numberN(t) of balls in the urn, leading to the conclusion that the urn is full at noon.
This condition need not contradict the continuity of position functions. It seems
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that the argument for an empty urn at noon requires some further elaboration as to
what happens at noon. Finally, we have presented various examples demonstrating
that the subtraction of one infinite series from another need not yield a null result.

Note. The editors encourage the submission of any response/discussion con-
cerning this article.
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