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ABSTRACT. Given a representation of a link group, we introduce a trilinear form as
a topological invariant. We show that, if the link is either hyperbolic or a knot with
the malnormal peripheral subgroup, then the trilinear form is equal to the pairing of
the (twisted) triple cup product and the fundamental relative 3-class. We give some
examples illustrating the main results.

1. Introduction

This paper examines knot invariants of trilinear forms, while the previous
papers [N2, N3] in this series discussed those of bilinear forms. In general,
the bilinear form arising from the Poincaré duality is a powerful tool, as in
algebraic surgery theory. In contrast, there are relatively fewer studies of
trilinear forms. However, some 3-forms and trilinear cup products appear in
3-dimensional geometry together with topological information (see, e.g., [CGO,
M, L, S, Tur]).

We give the definition of a trilinear pairing (see (1)) in a general situation
where the coefficients are arbitrary. Let Y be a compact orientable 3-manifold
with toroidal boundary and with a fixed fundamental class [Y,0Y] e
H3(Y,0Y;Z)~7Z. Take a group homomorphism f:7(Y)— G, a right
G-module M, and a G-invariant trilinear function  : M? — A over a ring
A. Then, we can define the composite map

4

LD ey v (1)

H'(Y,07; M)®® —— H3(Y,07; M®%) <
Here M is regarded as the local coefficient of Y via f, and the first map —
is the cup product, and the second is defined by the pairing with [Y,d7Y].
However, the trilinear form (1) is considered to be something uncomputable.
Actually, it seems hard to concretely express the 3-class [Y,0Y] and the cup
product.
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This paper addresses the case where Y is the 3-manifold which is obtained
from the 3-sphere by removing an open tubular neighborhood of a link L, i.e.,
Y = S3\vL. We show that, if L is a hyperbolic link, we obtain a diagram-
matic method of computing the trilinear pairings. To be precise, starting from
a diagram of L, we define an invariant of trilinear form, and show that the
invariant is equal to the trilinear form (1), if L is a hyperbolic link (Theorem
2.5). In addition, we also show a similar theorem in the torus knot case (see
Theorem 2.6). The point in the theorems is that, in the computation of (1),
we do not need to describe [Y,0Y] and cup products, thus, this computation
is not so hard; see the examples in Section 4. As an application, when Y is
a 3-fold covering space of S3 branched along a hyperbolic link L and M is a
trivial coeflicient, we give a diagrammatic computation of the trilinear form (1)
(Theorem 3.1).

This paper is organized as follows. Section 2 formulates the trilinear
forms in terms of the quandle cocycle invariants, and states the main theorems.
Section 3 discusses a relationship to 3-fold branched coverings. Section 4
describes some computations. Section 5 gives the proofs of the theorems.

Notation. The symbol L denotes a smoothly embedded oriented link in the
3-sphere S°. We write E; for the 3-manifold which is obtained from S3
by removing an open tubular neighborhood of L.
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2. Results: diagrammatic formulations of the trilinear forms

Our purpose in this section is to give a trilinear form invariant (The-
orem 2.3), and to state the main results in §2.2. For this purpose, §2.1
starts by reviewing colorings, and formulates some link-invariants of trilinear
forms.

Thorough this section, we fix a group G and a right G-module M over a
ring A.

2.1. Preliminary: formulation of the first cohomology. We need some notation
from [I1JO, N2] before proceeding. Denote M x G by X, and define a binary
operation on X by

(M xG)x (MxG)—MxG, (a,g,bh)— ((a—b) -h+bh~'gh), (2)
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which was first introduced in [IIJO, Lemma 2.2], and satisfies “the quandle
axiom”. We fix a link L C S with a group homomorphism f : 7;(S*\L) —
G.

Next, we review colorings. Choose an oriented diagram D of L. Then,
it follows from the Wirtinger presentation of D that the homomorphism f is
regarded as a map {arcs of D} — G. A map % :{arcs of D} - X is an
X-coloring if it satisfies € (o) <E(f,) = €(y,) at each crossings of D as
illustrated in Figure 1. It is worth noticing that the set of all colorings is
regarded as a subset of the direct product X *?, where op is the number of the
arcs of D. Let Coly(Dy) denote the set of all X-colorings over f, that is,

Coly(Dy) :={€ e (M x G)* |¥ is an X-coloring, pgo% = f}, (3)

where pg is the projection X = M x G — G. Then, we can easily verify
from the linear operation (2) that Coly(D,) is made into an abelian sub-
group of M*P) and that the diagonal subset Mgiag C M*" is a direct summand
in Coly(Dy). Denoting the other summand by Col¥%(D;), we have a de-
composition

Colx(Dy) = Col§*(Dy) ® Maiag.

The previous paper [N2] gave a topological meaning of the coloring sets
as follows:

Tueorem 2.1 ([N2]). Let Ep be a link complement in S3. Regard the
G-module M as a local system of E; via [ :m(EL) — G. Then, there are
isomorphisms

Coly(Dy) ~ H'(Ep,0EL; M) ©® M, Col¥!(Dy) = HY(EL,0E; M).  (4)

Let us review shadow colorings [CKS, IIJO]. A shadow coloring is a pair
of a coloring ¥ over f and a map A from the complementary regions of D
to M, satisfying the condition depicted in the right side of Figure 1 for every
arc. Let SColy(Dy) denote the set of shadow colorings of D such that the
unbounded exterior region is assigned by 0 € M. Notice that, by the color-
ing rules, assignments of the other regions are uniquely determined from the
unbounded region, and admit, therefore, a shadow coloring; we thus obtain

Qr Br b
\ MR') = (A(R) = b) - h +b,
\77 where C(6) = (b, h).

Fig. 1. The coloring conditions at each crossing 7 and around each arcs.
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a bijection

2.2. Invariants of trilinear forms. We will explain Definition 2.2 below, and
show Theorem 2.3.

For this, we need two things: first, we take three G-modules M|, M,, M3
and the associated X; = M; x G. Let A be an abelian group. Let us consider
a trilinear map Y : M x My x M3 — A over Z satisfying the G-invariance,
that is,

Y(ar-g,a-g,a3-g) = y(ay, a, a3), (6)

holds for any a; € M; and g € G.
Next, let us consider the map X; x X5 x X3 — 4 by the formula

((b1,91), (b2, 92), (b3,93)) = W((b1 — b2) - (1 = g2), by — b3, bs — b3 - g5 '), (7)

for a; € M; and g1,92,93 € G. This map was first defined in [N1, Corollary
4.6). Given three shadow colorings .%; € SColy,(Dy) with i < 3 and each cross-
ing 7 of D, we can find assignments as illustrated in Figure 2. Inspired by the
formula (7), we define a weight of 7 to be

Wy (S, S0, 5) = (@1 —b1)(1 = g%), by — c2,c5 —e3 - h ') € 4,
where ¢, € {+1} is the sign of 7.

DerINITION 2.2. Given a G-invariant trilinear map y : M} x My x M3 —
A, we define a trilinear map

Ty |[SColy, (D) — 4; (A, 52, 93) = Y _ Wy oA, 52, S3),
i=1 T
where 7 runs over all the crossings of D.

The point is that, given a diagram D, we can diagrammatically deal with
the trilinear map 7, by definitions; see §4.1-§4.3 for examples.
Next, we now show the invariance of 7, up to trilinear equivalence:

(b1,9) (c1, (b2,9) c2,h (b3, 9) (3, h
XK@ wX

Fig. 2. Colors around a crossing with respect to the shadow colorings %1, %5, ¥3. Here (b;,g)
and (c¢;,h) lie in M x G.
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T; Yi Zi T; Yi Zi

N «

N
T T
5 > ) e =

\ N

Zi yi <z (x5 <z) < (v < z) zi Y <z (v <y) <z

Fig. 3. The 1 : l-correspondence associated with a Reidemeister move of type IIIL.

THEOREM 2.3. Let two diagrams D and D' differ by a Reidemeister move.
Then, there is a canonical isomorphism %; : SColy,(Dy) ~ SColy,(Dy), for which
the equality Ty = 7, l//’ o (% ® B, ® B3) holds. In particular, the equivalence
class of the trilinear map 7, depends only on the homomorphism f : 7 (S*\L) —
G and the input data (M, My, M3,).

Proor. We first focus on the Reidemeister move of type III; see Figure
3. Considering the correspondence in Figure 3 with x;, y;,z; € X;, we can
construct the bijection %;, where i € {1,2,3}. We suppose that the left region
is colored by r; e M. Let us show the desired equality 7, = ﬁ'l//’ o (% ® B, ®
%3). For this, take a;,b;,¢c; e M; and g,h,k € G such that x; = (a;,9), yi =
(bi,h), zi = (¢i,k) € X;. Then, the sum from the left side is, by definition and
examining the figure, computed as

Y((rn—a)(1 —g),a2 — e, e3(1 —k 1))
+((rg —aig +ar — b)) (1 —h),by — c3,¢c3(1 — k1))
+Y((r1 — ank(1 — k™ 'gk), (ay — by)k, (bsk — c3k + ¢3)(1 — k™ h™'k)).
On the other hand, the sum from the right side is formulated as
Y((r —a)(l —g),a2 = by, b3(1 = h "))
+y((r = b)) (1 = h),by — ca,e3(1 — k1))
+ (11 —a)h(l = h7gh), (by — ap)h + ar — c2,e3(1 — k71)).

Then, an elementary calculation using (6) can show that the two sums are
equal. However, since the calculation is a little tedious, we omit the details.

Finally, the required equality concerning Reidemeister moves of type I
immediately follows from (0, y,z) =0, and the invariance under the Reide-
meister move of type II is clear by a similar discussion.
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REMARK 2.4. In this way, the construction for trilinear forms is appli-
cable to not only tame links in S, but also handlebody-knots in S3. In fact,
by a similar discussion to [IIJO], we can easily check that the trilinear form
is invariant with respect to the diagrammatic moves of handlebody-knots; see
[IIJO, Figures 1 and 2] for the moves.

2.3. Topological meaning of the trilinear forms. As mentioned in the intro-
duction, we will state (Theorems 2.5 and 2.6) that the trilinear forms of some
links are equal to the trilinear pairings (The proofs of the theorems appear in

§5)

THEOREM 2.5. Let My, M,, M3 be G-modules as in Definition 2.2.
Choose a fundamental class [Er,0EL) in Hy(Ep,0EL;Z) ~Z. We assume that
L is either a hyperbolic link or a prime knot which is neither a cable knot nor a
torus knot.  Then, via the identification (4), the trilinear form 7 is equal to the
following composite map:

3
QR HY(EL,0EL; M;) —— H*(EL,0EL; M1 @ My ® M3)

i=1

Wole, [EL,0EL)> A (8)

The following theorem shows that a weak version of the identity in
Theorem 2.5 also holds for the torus knots.

THEOREM 2.6. Let My, My, M3, , and [Er,0EL] be as above. Assume
that L is the (m,n)-torus knot. Then, the trilinear form 7y is equal to the
composite (8) modulo the integer mn € Z.

As a concluding remark, while the triple cup product of a link is often
considered to be speculative and uncomputable, it turns out to be computable
only from a link diagram without describing [Er,dE.] and any triangulation
of S3\L.

REMARK 2.7. We compare the trilinear forms in Definition 2.2 with the
existing results on “‘the quandle cocycle invariants”. Briefly speaking, the link
invariant in [CKS] is constructed from a quandle X and a map @: X° — 4
which satisfy “the quandle cocycle condition”, and is defined to be a certain
map % : SColy(D) — A. Then, our trilinear form is a trilinearization of the
quandle cocycle invariants with respect to quandles of the form X = M x G.
To be precise, if M = My = M, = M3, we can see that the associated invariant
Jo : SColy (D) — A is equal to the composite 7y o (A x id) o A by definitions,
where A is the diagonal map SColy (D) — SColy (D)% In conclusion, the
theorems also suggest topological meaning of the quandle cocycle invariants
with X = M x G.
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REMARK 2.8. We also explain that the assumption for L in Theorem 2.6
stems from malnormality. Here, a subgroup K C G is said to be malnormal
if g7'KgN K = {1} for any g€ G\K. For a knot K C S, it is proved [HW,
Wei] that the peripheral subgroup 7;(0(S*\K)) C 71 (S*\K) is malnormal if and
only if K is a prime knot which is neither a cable knot nor a torus knot, as
above. Furthermore, for a hyperbolic link L, the peripheral subgroups of the
link group is malnormal. Theorem 2.6 is proved in Section 5.2 by using the
results in [NS5], which in turn is proved by using the malnormality of peripheral
subgroups.

3. Relation to 3-fold branched coverings

In this section, we consider a closed oriented 3-manifold N and the triple
cup product

H'(N: zZ/n2)®® —— o3 (N;z/nz) 2 207, 9)

where the coefficient module Z/nZ is a G-module with the trivial G-action.
Although there are studies of this map (see, e.g., [S, CGO, Tur]), there are
few examples of computation. As an application of the theorems above, this
section gives a recovery of the triple cup products of N, when N is a 3-fold
cyclic covering of S3 branched over a link.

To state Theorem 3.1, we need some terminology. Let G be Z/3Z =
(t|t3 =1). Consider the epimorphism f : 7;(S*\L) — G which sends every
meridian to ¢, and the associated 3-fold cyclic branched covering C; — S°.

THEOREM 3.1. Let G be Z/n, and the modules My, M), and Mj in
Definition 2.2 be Z[t*']/(n, > + t+ 1) with n # 3. Let p: Z[t*']/(n, > +t+ 1)
— Z/nZ be the epimorphism which sends a+1th to a Set up the map
Yo : M3 — Z/nZ which takes (x,y,z) to xyz. As in Theorem 2.5, assume
that L is either a hyperbolic link or a prime knot which is neither a cable knot
nor a torus knot. Then, there is an isomorphism Colgfl_d(Df) ~ H'(Cy; Z/nZ)
such that the trilinear map ey, is equivalent to (9) with N = Cy.

PrOOF. We first show the isomorphism Colgfl_d(Df) ~ H'(Cp;Z/nZ). Let
R be the ring Z[f]/(n,> +t+1). By Theorem 2.1, we have Coljfid(Df) ~
H'(Ep;0Er; M). Notice that H/(0Er; M) is annihilated by 1 —¢. Since 1 — ¢
and 1+ ¢+ > are coprime, we have

H'(E;0EL; M) = H'(E; M) = Hompg.moa(H: (Er, M), R). (10)

Let E; — E; = S*\L be the 3-fold covering. Then, by Shapiro’s lemma (see,
e.g. [Bro]), the canonical inclusion i:Z/n — R yields the isomorphisms:
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H*(Ep : Z/n) ~ H*(E; Z[1/(n, £ — 1))
~ H*(Ep; R) @ H*(EL; Z[1]/(n,1 — 1)). (11)

Here, the second isomorphism is obtained from the ring isomorphism
Z[f)/(n,* —1) = R®Z[f)/(n,t —1). Let i:E — C; be the inclusion.
According to [Kaw, Theorem 5.5.1], the homology H,(Cy;Z) is annihilated
by 147+, and the induced map i, : Hy(EL;Z) — H,(C1;Z) is a splitting
surjection. Thus, the induced map i* : H'(Cy;Z/n) — H'(Er;Z/n) is injec-
tive and the image is isomorphic to H'(Er; R). In summary, we obtained the
desired isomorphism.

We will complete the proof. By (11), we have a splitting injection
% : H*(Ep,0E[; R) — H*(Er,0EL;Z/n). Take the canonical maps

j: (EL,aEL) — (CL, éL\EL), and k- (CL,@) — (éL, éL\EL)

Then, we have the commutative diagram:

HV(Ep, 0E; M)® — ", B3 (Ey, 0B M) — B g
i P 1
H' (B, 0B 2 /n)® ——— H(Ey 0Bz /) —E0
=~ | ~ |
HY(Cp CAEZ/n)® —— H(Cp C\Epsz/n) ED, ),
k* k*
|

HCriz/n) — P 7

—

HY(Cp; Z/n)®*

Here, the vertical maps j* are the isomorphisms by the excision axiom. More-
over, by the discussion in the above paragraph, the composite k* o (j *)’1 Y
an isomorphism from H'(Er,0Er; M). Since poi:Z/n— Z/n is an isomor-
phism, the following two composites are equivalent:

pogo{e [Er,0E]yo—,  {(e[Ci]yo—.

By Theorem 2.5, the left hand side is equal to the trilinear map 7,.,. Hence,
T poy, 1s equivalent to (9) with N = Cp as desired.

4. Examples as diagrammatic computations

4.1. For the trefoil knot and the figure eight knot. We will compute the
trilinear forms .7, associated with some homomorphisms f : 7 (S*\L) — G,
where L is either the trefoil knot or the figure eight knot.
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g

aC g al(g@”’

Fig. 4. The trefoil knot, the figure eight knot, and the (m,m)-torus knot.

As a simple example, we first focus on the trefoil knot 3;. Let D be the
diagram of K as illustrated in Figure 4. Note that the Wirtinger presentation
is given by 71(S3\L) = (o, B| «fo = Bafy. Then, we can easily see that a cor-
respondence % : {a, f,7} — X with

(g(a) = (ai,g), (g(ﬁ) = (bi7g)7 (g(a) = (Chg) € Mi x G

is an X-coloring over f :m(S*\L) — G, if and only if it satisfies the four
equations

g=f(a), h=f(p),  ghg=hgh, (12)
C,‘:Cl['/’l+b,"(1—h), (13)
(ai —bi) - (1 —g+hg) = (a; —b;) - (1 —h+gh) =0. (14)

Furthermore, given a G-invariant linear form i, the sum 7, is equal to
Y(—ar-(1—g),a2 —by,az- (1—h7"))
+W(=br - (1= h),by — a5+ (1= h'g™"h))

+lp(_cl ! (1 —/171gh),(,’2 —daz,ds - (1 - gil))v

by definition. Then, by canceling out ¢; by using (12) and (13), we can easily
obtain the following formula: for ((a;,g), (b, 1)) € SColy,(Ds) C M2,

Ty((a1,by), (a2,b2), (a3,b3)) = W((a1 — b1)g ™", (ay — by) - hyas — b3) € 4. (15)

Next, we will compute 7, of the figure eight knot. The computation can
be done in a similar way to the trefoil case. We only describe the outline.

Let D be the diagram with four arcs as illustrated in Figure 4. Similarly,
we can see that a correspondence 4 : {oy, 0, 03,04} — X with €(a;) = (x;,z;) €
M; x G is an X-coloring % over f : m;(S3\L) — G, if and only if it satisfies the
following equations:

zi = f(a), 2512122 = zflzglzlzzszZQZl eq, (16)

x3 = (X1 —x2) - 22 + X2, x4 = (2 —x1) - 21 + X1, (17)
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(x1 =x2) - (z1 +22—1) = (x1 —=x2) - (1 =z, )z125
= (x1 —x2) - (1 = z; Nzpzy € M. (18)

Accordingly, it follows from (17) that the set Coly(Dy) is generated by xi, x».
Given a G-invariant trilinear form , the trilinear from .7, is given by the
following formula:

7

° W((xlvxz)v (X{,Xé), (x{',xg))
= y((x1 = x2) 21z ) — x], (6] = x5) - (1= 231))
F (= x2) -z tz, (] = xg) - (1= z), (5] = x3) - (1= z3)zy).

RemaRK 4.1. Unfortunately, the author does not know an example of
(G, M;, ) of a non-discrete Lie group G, G-modules M;, and a G-invariant
trilinear form, for which the trilinear form 7, on M; x M, x M3 is nontrivial.
Though he investigated the case where G = SL,(C) and M = C* or €, all
resulting 7, turned out to be trivial. So, the author would like to propose
it as an open problem to construct an example of (G, M;, ), with G a non-
discrete Lie group, which yields an nontrivial trilinear form 7.

4.2. The (m,m)-torus link 7, ,. We also calculate the trilinear form 7
concerning the (m,m)-torus link, following from Definition 2.2. These cal-
culations is useful in the paper [N4], which suggests invariants of “Hurewitz
equivalence classes”.

Let L be the (m,m)-torus link T, ,, with m > 2, and let oy,..., o, be the
arcs depicted in Figure 4. Let us identity o;y, with o; of period m. The
Wirtinger presentation of 7;(S*\L) is

ay,...,am|ay - am = aparas - m_1 = az - - apa ).

Given a homomorphism 1 : 7;(S*\L) — G with f(«) e G, let us discuss
X-colorings ¥ over f. Concerning the coloring condition on the /-th link
component, it satisfies the equation

(- (Blor) Q€ (os1)) Q- -2) QE (o7 mar) = Car), (19)
for any 1 </ <m. With the notation %(o;) := (x;,z;) € X, this equation (19)
reduces to a system of linear equations
(xX7-1 —x7) + Z (xXj = Xj11) - zj1Zjg2 - Zme = 0€ M, (20)
(<j</+m-2

for any 1</ <m. Conversely, we can easily verify that, if a map
% : {arcs of D} — X satisfies the equation (20), then % is an X-coloring.
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Denoting the left side in (20) by I /(X), consider a homomorphism
Iy :M"— M™, X1y ey Xm) = (71 (X)s .o Ty (X)),

To conclude, the set Coly(Dy) coincides with the kernel of I7%.
Next, we precisely describe the resulting trilinear form.

ProposiTioN 4.2, Let f:7i(S*\Ty.m) — G be as above. Let : M> —
A be a G-invariant linear functions. Then, the trilinear form 7 : Ker([] f)®3 —
A sends (Wi, ..., wp) ® (X1,..., %) ® (¥1,.-, Ym) to

m m—1 k
SO | we(l = z2)2rinoi1s D (et = Xj4o) sk,

/=1 k=1 =1

Viere(1 = z,;l/)) (21)

Here, for s <t, we use the notations Zy,:= zyzgy1---2; and Zey.s:=1€ G.

The formula can be obtained by direct calculation.

4.3. Examples of Theorem 3.1. We will give some examples of Theorem 3.1.
Under the setting of Theorem 3.1, let G =Z/3 = {t| > = 1), and [ : 7;(S*\L)
— Z/3 be the map which sends every meridian to ¢, Take M;=4=
Z[{]/(n, > +t+1) for some neZso, and let Y, : My x My x M3 — A send
(x,y,2) to xyz.

In this paragraph, we focus only on knots, K, such that H'(Eg,d0Ek; A)
~ H'(Bk;Z/n) is isomorphic to either 4 or 0. We will write the trilinear
map J, as a cubic polynomial with respect to (a,b,¢) € (H'(Ek, 0Ex; Z/n))’.
Then, we give the resulting computation of 7y, , when K is a prime knot with
crossing number < 7. The list of the computation is given as follows:

Knot n T,
3 2 abc
4, 4 2abc
51 any 0
52 5 (1 + t)abe
6; any 0
6, any 0

63 any 0
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5. Proofs of the theorems

We will complete the proofs of Theorems 2.5-2.6 in §5.3. While the
statements were described in terms of ordinary cohomology, the proof will
be done via the group cohomology. For this purpose, we review the relative
group homology in §5.1.

5.1. Preliminary: Review of relative group cohomology. We will recall the
relative group (co)homology in the non-homogeneous terms. Throughout this
subsection, we fix a group I" and a homomorphism f:I"— G. Then, we
have the action of I on the right G-module M via f.

Set Cq.(I's M) = Map(I™", M). For ¢ e Cy(I'; M), define the coboundary
0"(¢) € CA1(I'; M) by the formula

an(¢)(g1a e 7gn+1) = ¢(g27 s 7gn+1)

+ Z B(G1s -2 91,9041, G112, - Gns1)

I<i<n

+ (*1)n¢(gla s On)Gnt-

Let K; be a subgroup and i; : K; — I" be the inclusion, where the index j runs
over 1 < j<m. Then, we can define the mapping cone of 7 as follows:

C™(I',K y; M) := Map(I'", M (@Map ) )).
For (h,ki,...,kn) € C"(I',Ks; M), define 0" (h,ki,...,ky) in C"*Y(I", K ; M)
by
O"(hoki, ... k)@, by, ... by
= (0"h(a), h(by) — " 'ky(b1), ..., h(bm) — 0" ki (bm)),

where (a,by,...,by) € I x K" x --- x K". Then, (C*(I',Ky;M),0%) is a
cochain complex, and we can consider its cohomology.

We now observe the submodule consisting of 1-cocycles Z!'(I",K ;; M).
Let us define the semi-direct product M X G by

(a,9)x(d',g") = (a-g'+d',99"), for a,a’ eM, g,qg €G.

Let Homy (I, M > G) be the set of group homomorphisms I" — M X G over
the homomorphism f. Consider the following map:

ZNI'Ky; M) — Homy(I', M X G) ® M™;

(hvyla'“aym) = (VH (h(y)vf(y))’ylv"'vym)'
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Lemma 5.1 (N2, Lemma 5.2]). This map gives an isomorphism between
ZNI',K;; M) and the following subset of Homy(I',M X G) ® M":

{(F vy ) | F ) = (0 — v By, Si(hy), for any by € K;}.

The image of ', ie., B'(I',K;; M), is equal to the subset {(f,a,...,
a)} ey Here, for ae M, the map fa : T — M X G is defined as the homo-
morphism which sends y to (a —a -y, f(y)). In particular, if K, is not empty,
BYI',Ky; M) is a direct summand of Z'(I',K s; M).

Now, we review the cup product. When K, is the empty set, the product
of ue CP'(I'; M) and ve CY(I"; M') is defined to be u— ve CPY(I';M @ M')
given by

(u—~0)(g1,- -+ Gprq) = (=) (ulg1, ..., 9p)9p+1 - Ip1q)
® U(gp-Hy cen agp+q)- (22)

When K, is not empty, for two elements (f,ki,...,k,) e C’(I',K;; M) and
(f' ki{,....k,) e CI{(I",Ky; M'), let us define the cup product by

(f =Sk =S km— f) e CP(I Ky MQM').

This formula yields a bilinear map, by passage to cohomology.
Finally, we observe another complex. Let us define the module CJ,(I")
by the formula

{(Cla“-vcm) eMap(Z[rn]aM)mlcl +ot+tom= OEMap(Z[Fn]vM)}'

Then, this complex canonically has an inclusion into the direct sum of
(I, K)):
P,:Cly(I')— @ C"(I,K)).

I
Jil<j<m
Then, we define a quotient complex, D"(I',K ;; M), to be the cokernel of P,.
Then, C"(I',K 4; M) is isomorphic to D"(I',K s; M), because the kernel of the
inclusions (D", C"(I",K;) — C"(I',.A") is the image of P,.

REMARK 5.2. We give a natural relationship to the usual cohomology.
Take the Eilenberg-MacLane spaces of type (/',1) and of type (Kj,1), and
consider the map (1), : K(K;,1) — K(I',1) induced by the inclusions. Then
the relative homology H,(I",K,; M) is isomorphic to the homology of the
mapping cone of | |, K(K;,1) — K(I',1) with local coefficients. Further, the
cup product — above coincides with that on the singular cohomology
groups.
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We mention the case where L is either a knot or an unsplittable link.
(We note that any hyperbolic knot is unsplittable). Then, the complement
S*\L is an Eilenberg-MacLane space by the sphere theorem. Since we only
use I" as m;(S*\L) in this paper, we may discuss only the relative group
cohomology.

5.2. Review: results of the previous papers [N2] and [N5]. Throughout this
section, we denote the union of the fundamental groups of the boundaries
of S3\L by o (S*\L), for brevity. Let m = #L, and choose a diagram D
of L.

THEOREM 5.3 (N2, Theorem 2.2]). Let X be M x G, as mentioned in
(2). Let k: X — M X G be a map which sends (m,g) to (m—mg,g). Given
an X-coloring € over f, consider a map {arcs of D} — M X G which assigns o
to k(€ (a)). Then, this assignment yields isomorphisms

Coly(Dy) = Z' (1 (S*\L), 0r1 (S*\L); M),
Col¥4(Dy) = H'(m1(S*\L), dn1 (S*\L); M).

Next, we explain Theorem 5.4. Choose a relative 1-cocycle f : 7 (S*\L)
— M > 7 (S*\L) with y;,...,¥,. We consider the subgroup K, defined by

{(r = yemf ), mf1}) € M 3 (S*\L) |a,b € Z°}.
Given a G-invariant trilinear map  : M> — A, consider the map
0, : (M > 7 (S\L))* — 4;

((a>g)7 (b7h>7 (C’ k)) = ‘//((a + yr— y/g) - hk, (b + yr— .V/h) -k,

c+ yr— yik). (23)
Then, we can easily check that each 0, is a 3-cocycle in C3(M > n;(S*\L); 4).
The collection ¥ := (0y,...,0,r) represents a relative 3-cocycle in D3 (M

i (S3\L), #; A).

ProposITION 5.4 (N5, Proposition 6.7]). Under the notation above, fix a
shadow coloring I corresponding the relative 1-cocycle ( v, VL)

If L is either a hyperbolic link or a prime knot which is neither a cable knot
nor a torus knot, as in Theorem 2.5, then the diagonal restriction of 7y is equal
to the pairing of the 3-class |Ep,0E;r] and the above 3-cocycle W. Namely,

Ty( S5, S5, 57) = W<, f.1EvL, OEL)>. (24)

If L is the (m,n)-torus knot, the same equality (24) holds modulo mn.



Twisted cohomology pairings of knots III; triple cup products 221

5.3. Proof of Theorem 2.5; trilinear pairing.

Proor (Proof of Theorem 2.5). First, we observe (25) below. Consider
a 0-cochain ¥ := (y1,..., ygr) € DO(M X m(S*\L), M). Then, f — 0°% is rep-
resented by another 1-cocycle

G = ((f = F1,-- s f = F21),(0,...,0)) € D' (M > 7, (S*\L), M),
where ¥, denotes the map 7;(S*\L) — M which takes g to y; — yjg. The
3-cocycle ¥ explained in (23) is equal to the cup product 4’ — ¢’ — €', by
definition. Hence, Proposition 5.4 implies

Ty (S5, .

G5, S5, S7) =<' — €' — €' [EL, 0EL])

S
=Y — % — ¢, [EL, EL]). (25)
Finally, we will deal with the non-diagonal parts, and complete the proof.
Here, we define M to be the direct product M, x M, x M3, and consider the
j-th inclusion
L Mj — M = M] X M2 X M3; X — (51jx,52jx,53jx).

Thus, we can decompose 7 as (1,2, 3) € Coly, (Dy) x Coly,(Dy) x
Coly,(Dy) componentwise. In addition, we define a G-invariant trilinear form
‘/7 M XM XM — A7 ((a,b,C),(d, e?f')a (gaha l)) = lp(aaeaf)'

Then, the transformation of the coefficients 7 x 1 x 13 yields a diagram

I3, H'(EL, 0E1; My) —— H3(Ep,0Ep; My x M x My) L28ERtil

— Joe, .0
HI(ELaaEL;M) —A> H3(EL76EL;MXMXM) M) A.

Here, the left bottom —, is defined by a — @ — a — a. Then, we can verify
the commutativity directly from the definitions. By Proposition 5.4, the
bottom arrow is equal to the left hand side in (24). Hence, the pullback to
1., H'(EL,0EL; M) is equal to the trilinear 7, as desired.

ProOF (Proof of Theorem 2.6). Let L be the (m,n)-torus knot. Accord-
ing to the latter part in Theorem 5.4, we need discussions modulo mn. Then,
the proof runs well in the same manner.

References

[Bro] K. S. Brown, Cohomology of Groups, Graduate Texts in Mathematics, 87, Springer-
Verlag, New York, 1994.



222
[CKS]
(CGO]
[HW]
[1JO]

[Kaw]
(L]

M]

[N1]
(N2]

(N3]
[N4]

[N5]
(S]
[Tur]

[Wei]

Takefumi NOSAKA

J. S. Carter, S. Kamada, M. Saito, Geometric interpretations of quandle homology,
J. Knot Theory Ramifications 10 (2001), no. 3, 345-386.

T. D. Cochran, A. Gerges, K. Orr, Dehn surgery equivalence relations on 3-manifolds,
Math. Proc. Cambridge Philos. Soc. 131 (2001), no. 1, 97-127.

P. de la Harpe, C. Weber, On malnormal peripheral subgroups in fundamental groups,
Confluentes Math. 6 (2014), no. 1, 41-64.

A. Ishii, M. Iwakiri, Y. Jang, K. Oshiro, A G-family of quandles and handlebody-knots,
Ilinois J. Math. 57 (2013), no. 3, 817-838.

A. Kawauchi ed., A survey of knot theory, Birkhaeuser, Basel, (1996).

T. Lidman, On the infinity flavor of Heegaard Floer homology and the integral
cohomology ring, Comment. Math. Helv. 88 (2013), no. 4, 875-898.

T. E. Mark, Triple products and cohomological invariants for closed 3-manifolds,
Michigan Math. J. 56 (2008), no. 2, 265-281.

T. Nosaka, Quandle cocycles from invariant theory, Adv. Math. 245 (2013), 423-438.
T. Nosaka, Twisted cohomology pairings of knots I; diagrammatic computation, Geom.
Dedicata 189 (2017), 139-160.

T. Nosaka, Twisted cohomology pairings of knots II, preprint.

T. Nosaka, Bilinear-form invariants of Lefschetz fibrations over the 2-sphere, J. Gokova
Geom. Topol. 11 (2017), 32-55.

T. Nosaka, On the fundamental relative 3-classes of knot group representations, Geom
Dedicata 201 (2019), 1-24.

D. Sullivan, On the intersection ring of compact three manifolds, Topology 14 (1975),
no. 3, 275-277.

V. G. Turaev, Cohomology rings, linking forms and invariants of spin structures of three-
dimensional manifolds, Mat. Sb. (N.S.) 120 (162) (1983), no. 1, 68-83.

R. Weidmann, On the rank of amalgamated products and product knot groups, Math.
Ann. 312 (1998), no. 4, 761-771.

Takefumi Nosaka
Department of mathematics
Tokyo institute of technology
2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
E-mail: nosaka@math.titech.ac.jp



