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Abstract. Given a representation of a link group, we introduce a trilinear form as

a topological invariant. We show that, if the link is either hyperbolic or a knot with

the malnormal peripheral subgroup, then the trilinear form is equal to the pairing of

the (twisted) triple cup product and the fundamental relative 3-class. We give some

examples illustrating the main results.

1. Introduction

This paper examines knot invariants of trilinear forms, while the previous

papers [N2, N3] in this series discussed those of bilinear forms. In general,

the bilinear form arising from the Poincaré duality is a powerful tool, as in

algebraic surgery theory. In contrast, there are relatively fewer studies of

trilinear forms. However, some 3-forms and trilinear cup products appear in

3-dimensional geometry together with topological information (see, e.g., [CGO,

M, L, S, Tur]).

We give the definition of a trilinear pairing (see (1)) in a general situation

where the coe‰cients are arbitrary. Let Y be a compact orientable 3-manifold

with toroidal boundary and with a fixed fundamental class ½Y ; qY � A
H3ðY ; qY ;ZÞGZ: Take a group homomorphism f : p1ðYÞ ! G, a right

G-module M, and a G-invariant trilinear function c : M 3 ! A over a ring

A. Then, we can define the composite map

H 1ðY ; qY ;MÞn3 ���!^
H 3ðY ; qY ;Mn3Þ ������!h�; ½Y ;qY �i

Mn3 ���!c A: ð1Þ

Here M is regarded as the local coe‰cient of Y via f , and the first map ^

is the cup product, and the second is defined by the pairing with ½Y ; qY �.
However, the trilinear form (1) is considered to be something uncomputable.

Actually, it seems hard to concretely express the 3-class ½Y ; qY � and the cup

product.
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This paper addresses the case where Y is the 3-manifold which is obtained

from the 3-sphere by removing an open tubular neighborhood of a link L, i.e.,

Y ¼ S3nnL: We show that, if L is a hyperbolic link, we obtain a diagram-

matic method of computing the trilinear pairings. To be precise, starting from

a diagram of L, we define an invariant of trilinear form, and show that the

invariant is equal to the trilinear form (1), if L is a hyperbolic link (Theorem

2.5). In addition, we also show a similar theorem in the torus knot case (see

Theorem 2.6). The point in the theorems is that, in the computation of (1),

we do not need to describe ½Y ; qY � and cup products, thus, this computation

is not so hard; see the examples in Section 4. As an application, when Y is

a 3-fold covering space of S3 branched along a hyperbolic link L and M is a

trivial coe‰cient, we give a diagrammatic computation of the trilinear form (1)

(Theorem 3.1).

This paper is organized as follows. Section 2 formulates the trilinear

forms in terms of the quandle cocycle invariants, and states the main theorems.

Section 3 discusses a relationship to 3-fold branched coverings. Section 4

describes some computations. Section 5 gives the proofs of the theorems.

Notation. The symbol L denotes a smoothly embedded oriented link in the

3-sphere S3. We write EL for the 3-manifold which is obtained from S3

by removing an open tubular neighborhood of L.
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2. Results: diagrammatic formulations of the trilinear forms

Our purpose in this section is to give a trilinear form invariant (The-

orem 2.3), and to state the main results in § 2.2. For this purpose, § 2.1

starts by reviewing colorings, and formulates some link-invariants of trilinear

forms.

Thorough this section, we fix a group G and a right G-module M over a

ring A.

2.1. Preliminary: formulation of the first cohomology. We need some notation

from [IIJO, N2] before proceeding. Denote M � G by X , and define a binary

operation on X by

/ : ðM � GÞ � ðM � GÞ ! M � G; ða; g; b; hÞ 7! ðða� bÞ � hþ b; h�1ghÞ; ð2Þ
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which was first introduced in [IIJO, Lemma 2.2], and satisfies ‘‘the quandle

axiom’’. We fix a link L � S3 with a group homomorphism f : p1ðS3nLÞ !
G.

Next, we review colorings. Choose an oriented diagram D of L: Then,

it follows from the Wirtinger presentation of D that the homomorphism f is

regarded as a map farcs of Dg ! G. A map C : farcs of Dg ! X is an

X -coloring if it satisfies CðatÞ / CðbtÞ ¼ CðgtÞ at each crossings of D as

illustrated in Figure 1. It is worth noticing that the set of all colorings is

regarded as a subset of the direct product X aD , where aD is the number of the

arcs of D. Let ColX ðDf Þ denote the set of all X -colorings over f , that is,

ColX ðDf Þ :¼ fC A ðM � GÞaD jC is an X -coloring; pG � C ¼ f g; ð3Þ

where pG is the projection X ¼ M � G ! G. Then, we can easily verify

from the linear operation (2) that ColX ðDf Þ is made into an abelian sub-

group of M aðDÞ, and that the diagonal subset Mdiag � M aD is a direct summand

in ColX ðDf Þ. Denoting the other summand by ColredX ðDf Þ, we have a de-

composition

ColX ðDf ÞGColredX ðDf ÞlMdiag:

The previous paper [N2] gave a topological meaning of the coloring sets

as follows:

Theorem 2.1 ([N2]). Let EL be a link complement in S3. Regard the

G-module M as a local system of EL via f : p1ðELÞ ! G. Then, there are

isomorphisms

ColX ðDf ÞGH 1ðEL; qEL;MÞlM; ColredX ðDf ÞGH 1ðEL; qEL;MÞ: ð4Þ

Let us review shadow colorings [CKS, IIJO]. A shadow coloring is a pair

of a coloring C over f and a map l from the complementary regions of D

to M, satisfying the condition depicted in the right side of Figure 1 for every

arc. Let SColX ðDf Þ denote the set of shadow colorings of D such that the

unbounded exterior region is assigned by 0 A M. Notice that, by the color-

ing rules, assignments of the other regions are uniquely determined from the

unbounded region, and admit, therefore, a shadow coloring; we thus obtain

Fig. 1. The coloring conditions at each crossing t and around each arcs.
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a bijection

ColX ðDf ÞF SColX ðDf Þ: ð5Þ

2.2. Invariants of trilinear forms. We will explain Definition 2.2 below, and

show Theorem 2.3.

For this, we need two things: first, we take three G-modules M1, M2, M3

and the associated Xi ¼ Mi � G: Let A be an abelian group. Let us consider

a trilinear map c : M1 �M2 �M3 ! A over Z satisfying the G-invariance,

that is,

cða1 � g; a2 � g; a3 � gÞ ¼ cða1; a2; a3Þ; ð6Þ

holds for any ai A Mi and g A G.

Next, let us consider the map X1 � X2 � X3 ! A by the formula

ððb1; g1Þ; ðb2; g2Þ; ðb3; g3ÞÞ 7! cððb1 � b2Þ � ð1� g2Þ; b2 � b3; b3 � b3 � g�1
3 Þ; ð7Þ

for ai A Mi and g1; g2; g3 A G. This map was first defined in [N1, Corollary

4.6]. Given three shadow colorings Si A SColXi
ðDf Þ with ia 3 and each cross-

ing t of D, we can find assignments as illustrated in Figure 2. Inspired by the

formula (7), we define a weight of t to be

Wc; tðS1;S2;S3Þ :¼ cðða1 � b1Þð1� g etÞ; b2 � c2; c3 � c3 � h�1Þ A A;

where et A fG1g is the sign of t:

Definition 2.2. Given a G-invariant trilinear map c : M1 �M2 �M3 !
A, we define a trilinear map

Tc :
Y3
i¼1

SColXi
ðDf Þ ! A; ðS1;S2;S3Þ 7!

X
t

Wc; tðS1;S2;S3Þ;

where t runs over all the crossings of D.

The point is that, given a diagram D, we can diagrammatically deal with

the trilinear map Tc by definitions; see § 4.1–§ 4.3 for examples.

Next, we now show the invariance of Tc up to trilinear equivalence:

Fig. 2. Colors around a crossing with respect to the shadow colorings S1, S2, S3. Here ðbi ; gÞ
and ðci ; hÞ lie in M � G.
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Theorem 2.3. Let two diagrams D and D 0 di¤er by a Reidemeister move.

Then, there is a canonical isomorphism Bi : SColXi
ðDf ÞF SColXi

ðD 0
f Þ, for which

the equality Tc ¼ T 0
c � ðB1 nB2 nB3Þ holds. In particular, the equivalence

class of the trilinear map Tc depends only on the homomorphism f : p1ðS3nLÞ !
G and the input data ðM1;M2;M3;cÞ.

Proof. We first focus on the Reidemeister move of type III; see Figure

3. Considering the correspondence in Figure 3 with xi; yi; zi A Xi, we can

construct the bijection Bi, where i A f1; 2; 3g: We suppose that the left region

is colored by ri A M. Let us show the desired equality Tc ¼ T 0
c � ðB1 nB2 n

B3Þ. For this, take ai; bi; ci A Mi and g; h; k A G such that xi ¼ ðai; gÞ, yi ¼
ðbi; hÞ, zi ¼ ðci; kÞ A Xi. Then, the sum from the left side is, by definition and

examining the figure, computed as

cððr1 � a1Þð1� gÞ; a2 � c2; c3ð1� k�1ÞÞ

þ cððr1g� a1gþ a1 � b1Þð1� hÞ; b2 � c2; c3ð1� k�1ÞÞ

þ cððr1 � a1Þkð1� k�1gkÞ; ða2 � b2Þk; ðb3k � c3k þ c3Þð1� k�1h�1kÞÞ:

On the other hand, the sum from the right side is formulated as

cððr1 � a1Þð1� gÞ; a2 � b2; b3ð1� h�1ÞÞ

þ cððr1 � b1Þð1� hÞ; b2 � c2; c3ð1� k�1ÞÞ

þ cððr1 � a1Þhð1� h�1ghÞ; ðb2 � a2Þhþ a2 � c2; c3ð1� k�1ÞÞ:

Then, an elementary calculation using (6) can show that the two sums are

equal. However, since the calculation is a little tedious, we omit the details.

Finally, the required equality concerning Reidemeister moves of type I

immediately follows from cð0; y; zÞ ¼ 0, and the invariance under the Reide-

meister move of type II is clear by a similar discussion.

Fig. 3. The 1 : 1-correspondence associated with a Reidemeister move of type III.
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Remark 2.4. In this way, the construction for trilinear forms is appli-

cable to not only tame links in S3, but also handlebody-knots in S3. In fact,

by a similar discussion to [IIJO], we can easily check that the trilinear form

is invariant with respect to the diagrammatic moves of handlebody-knots; see

[IIJO, Figures 1 and 2] for the moves.

2.3. Topological meaning of the trilinear forms. As mentioned in the intro-

duction, we will state (Theorems 2.5 and 2.6) that the trilinear forms of some

links are equal to the trilinear pairings (The proofs of the theorems appear in

§ 5).

Theorem 2.5. Let M1, M2, M3 be G-modules as in Definition 2.2.

Choose a fundamental class ½EL; qEL� in H3ðEL; qEL;ZÞGZ. We assume that

L is either a hyperbolic link or a prime knot which is neither a cable knot nor a

torus knot. Then, via the identification (4), the trilinear form Tc is equal to the

following composite map:

1
3

i¼1

H 1ðEL; qEL;MiÞ ��!^ H 3ðEL; qEL;M1 nM2 nM3Þ ���������!c�h�; ½EL;qEL�i
A: ð8Þ

The following theorem shows that a weak version of the identity in

Theorem 2.5 also holds for the torus knots.

Theorem 2.6. Let M1, M2, M3, c, and ½EL; qEL� be as above. Assume

that L is the ðm; nÞ-torus knot. Then, the trilinear form Tc is equal to the

composite (8) modulo the integer mn A Z.

As a concluding remark, while the triple cup product of a link is often

considered to be speculative and uncomputable, it turns out to be computable

only from a link diagram without describing ½EL; qEL� and any triangulation

of S3nL.

Remark 2.7. We compare the trilinear forms in Definition 2.2 with the

existing results on ‘‘the quandle cocycle invariants’’. Briefly speaking, the link

invariant in [CKS] is constructed from a quandle X and a map F : X 3 ! A

which satisfy ‘‘the quandle cocycle condition’’, and is defined to be a certain

map JF : SColX ðDÞ ! A. Then, our trilinear form is a trilinearization of the

quandle cocycle invariants with respect to quandles of the form X ¼ M � G.

To be precise, if M ¼ M1 ¼ M2 ¼ M3, we can see that the associated invariant

JF : SColX ðDÞ ! A is equal to the composite Tc � ð4 � idÞ � 4 by definitions,

where 4 is the diagonal map SColX ðDÞ ! SColX ðDÞ2. In conclusion, the

theorems also suggest topological meaning of the quandle cocycle invariants

with X ¼ M � G.
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Remark 2.8. We also explain that the assumption for L in Theorem 2.6

stems from malnormality. Here, a subgroup K � G is said to be malnormal

if g�1Kg \ K ¼ f1Gg for any g A GnK . For a knot K � S3, it is proved [HW,

Wei] that the peripheral subgroup p1ðqðS3nKÞÞ � p1ðS3nKÞ is malnormal if and

only if K is a prime knot which is neither a cable knot nor a torus knot, as

above. Furthermore, for a hyperbolic link L, the peripheral subgroups of the

link group is malnormal. Theorem 2.6 is proved in Section 5.2 by using the

results in [N5], which in turn is proved by using the malnormality of peripheral

subgroups.

3. Relation to 3-fold branched coverings

In this section, we consider a closed oriented 3-manifold N and the triple

cup product

H 1ðN;Z=nZÞn3 ���!^
H 3ðN;Z=nZÞ ����!h�; ½N�i

Z=nZ; ð9Þ

where the coe‰cient module Z=nZ is a G-module with the trivial G-action.

Although there are studies of this map (see, e.g., [S, CGO, Tur]), there are

few examples of computation. As an application of the theorems above, this

section gives a recovery of the triple cup products of N, when N is a 3-fold

cyclic covering of S3 branched over a link.

To state Theorem 3.1, we need some terminology. Let G be Z=3Z ¼
ht j t3 ¼ 1i. Consider the epimorphism f : p1ðS3nLÞ ! G which sends every

meridian to t, and the associated 3-fold cyclic branched covering ~CCL ! S3.

Theorem 3.1. Let G be Z=n, and the modules M1, M2, and M3 in

Definition 2.2 be Z½tG1�=ðn; t2 þ tþ 1Þ with n0 3. Let p : Z½tG1�=ðn; t2 þ tþ 1Þ
! Z=nZ be the epimorphism which sends aþ tb to a. Set up the map

c0 : M
3 ! Z=nZ which takes ðx; y; zÞ to xyz. As in Theorem 2.5, assume

that L is either a hyperbolic link or a prime knot which is neither a cable knot

nor a torus knot. Then, there is an isomorphism ColredXi
ðDf ÞGH 1ð ~CCL;Z=nZÞ

such that the trilinear map Tp�c0
is equivalent to (9) with N ¼ ~CCL.

Proof. We first show the isomorphism ColredXi
ðDf ÞGH 1ð ~CCL;Z=nZÞ. Let

R be the ring Z½t�=ðn; t2 þ tþ 1Þ. By Theorem 2.1, we have ColredXi
ðDf ÞG

H 1ðEL; qEL;MÞ. Notice that HiðqEL;MÞ is annihilated by 1� t. Since 1� t

and 1þ tþ t2 are coprime, we have

H 1ðEL; qEL;MÞGH 1ðEL;MÞGHomR-modðH1ðEL;MÞ;RÞ: ð10Þ

Let ~EEL ! EL ¼ S3nL be the 3-fold covering. Then, by Shapiro’s lemma (see,

e.g. [Bro]), the canonical inclusion i : Z=n ! R yields the isomorphisms:
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H �ð ~EEL : Z=nÞGH �ðEL;Z½t�=ðn; t3 � 1ÞÞ

GH �ðEL;RÞlH �ðEL;Z½t�=ðn; t� 1ÞÞ: ð11Þ

Here, the second isomorphism is obtained from the ring isomorphism

Z½t�=ðn; t3 � 1ÞGRlZ½t�=ðn; t� 1Þ. Let i : ~EEL ,! ~CCL be the inclusion.

According to [Kaw, Theorem 5.5.1], the homology H1ð ~CCL;ZÞ is annihilated

by 1þ tþ t2, and the induced map i� : H1ð ~EEL;ZÞ ! H1ð ~CCL;ZÞ is a splitting

surjection. Thus, the induced map i� : H 1ð ~CCL;Z=nÞ ! H 1ð ~EEL;Z=nÞ is injec-

tive and the image is isomorphic to H 1ðEL;RÞ. In summary, we obtained the

desired isomorphism.

We will complete the proof. By (11), we have a splitting injection

S : H �ð ~EEL; q ~EEL;RÞ ! H �ðEL; qEL;Z=nÞ. Take the canonical maps

j : ð ~EEL; q ~EELÞ ! ð ~CCL; ~CCLn ~EELÞ; and k : ð ~CCL;qÞ ! ð ~CCL; ~CCLn ~EELÞ:

Then, we have the commutative diagram:

H 1ðEL; qEL;MÞn3
H 3ðEL; qEL;MÞ R???yS

???yS i

x???
H 1ð ~EEL; q ~EEL;Z=nÞn3

H 3ð ~EEL; q ~EEL;Z=nÞ Z=n

G

x??? j � G

x??? j �

����
H 1ð ~CCL; ~CCLn ~EEL;Z=nÞn3 ���!^

H 3ð ~CCL; ~CCLn ~EEL;Z=nÞ ���������!h�; ½ ~CCL; ~CCLn ~EEL�i Z=n???yk �

???yk �

����
H 1ð ~CCL;Z=nÞn3

H 3ð ~CCL;Z=nÞ Z=n:

������!c0�^ �����������!h�; ½EL;qEL�i

�����!^ ����������!h�; ½ ~EEL;q ~EEL�i

���������!^ ������������!h�; ½ ~CCL�i

Here, the vertical maps j � are the isomorphisms by the excision axiom. More-

over, by the discussion in the above paragraph, the composite k � � ð j �Þ�1 �S is

an isomorphism from H 1ðEL; qEL;MÞ. Since p � i : Z=n ! Z=n is an isomor-

phism, the following two composites are equivalent:

p � c0 � h�; ½EL; qEL�i �^; h�; ½ ~CCL�i �^:

By Theorem 2.5, the left hand side is equal to the trilinear map Tp�c0
. Hence,

Tp�c0
is equivalent to (9) with N ¼ ~CCL as desired.

4. Examples as diagrammatic computations

4.1. For the trefoil knot and the figure eight knot. We will compute the

trilinear forms Tc associated with some homomorphisms f : p1ðS3nLÞ ! G,

where L is either the trefoil knot or the figure eight knot.
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As a simple example, we first focus on the trefoil knot 31. Let D be the

diagram of K as illustrated in Figure 4. Note that the Wirtinger presentation

is given by p1ðS3nLÞG ha; b j aba ¼ babi: Then, we can easily see that a cor-

respondence C : fa; b; gg ! X with

CðaÞ ¼ ðai; gÞ; CðbÞ ¼ ðbi; gÞ; CðaÞ ¼ ðci; gÞ A Mi � G

is an X -coloring over f : p1ðS3nLÞ ! G, if and only if it satisfies the four

equations

g ¼ f ðaÞ; h ¼ f ðbÞ; ghg ¼ hgh; ð12Þ

ci ¼ ai � hþ bi � ð1� hÞ; ð13Þ

ðai � biÞ � ð1� gþ hgÞ ¼ ðai � biÞ � ð1� hþ ghÞ ¼ 0: ð14Þ

Furthermore, given a G-invariant linear form c, the sum Tc is equal to

cð�a1 � ð1� gÞ; a2 � b2; a3 � ð1� h�1ÞÞ

þ cð�b1 � ð1� hÞ; b2 � c2; c3 � ð1� h�1g�1hÞÞ

þ cð�c1 � ð1� h�1ghÞ; c2 � a2; a3 � ð1� g�1ÞÞ;

by definition. Then, by canceling out ci by using (12) and (13), we can easily

obtain the following formula: for ððai; gÞ; ðbi; hÞÞ A SColXi
ðDf Þ � M 2

i ,

Tcðða1; b1Þ; ða2; b2Þ; ða3; b3ÞÞ ¼ cðða1 � b1Þg�1; ða2 � b2Þ � h; a3 � b3Þ A A: ð15Þ

Next, we will compute Tc of the figure eight knot. The computation can

be done in a similar way to the trefoil case. We only describe the outline.

Let D be the diagram with four arcs as illustrated in Figure 4. Similarly,

we can see that a correspondence C : fa1; a2; a3; a4g ! X with CðaiÞ ¼ ðxi; ziÞ A
Mi � G is an X -coloring C over f : p1ðS3nLÞ ! G, if and only if it satisfies the

following equations:

zi ¼ f ðaiÞ; z�1
2 z1z2 ¼ z�1

1 z�1
2 z1z2z

�1
1 z2z1 A G; ð16Þ

x3 ¼ ðx1 � x2Þ � z2 þ x2; x4 ¼ ðx2 � x1Þ � z1 þ x1; ð17Þ

Fig. 4. The trefoil knot, the figure eight knot, and the ðm;mÞ-torus knot.
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ðx1 � x2Þ � ðz1 þ z2 � 1Þ ¼ ðx1 � x2Þ � ð1� z�1
2 Þz1z2

¼ ðx1 � x2Þ � ð1� z�1
1 Þz2z1 A M: ð18Þ

Accordingly, it follows from (17) that the set ColX ðDf Þ is generated by x1, x2.

Given a G-invariant trilinear form c, the trilinear from Tc is given by the

following formula:

Tcððx1; x2Þ; ðx 0
1; x

0
2Þ; ðx 00

1 ; x
00
2 ÞÞ

¼ cððx1 � x2Þ � z1z�1
2 ; x 0

2 � x 0
1; ðx 00

1 � x 00
2 Þ � ð1� z�1

2 ÞÞ

þ cððx1 � x2Þ � z�1
2 z1; ðx 0

1 � x 0
2Þ � ð1� z1Þ; ðx 00

1 � x 00
2 Þ � ð1� z�1

2 Þz1Þ:

Remark 4.1. Unfortunately, the author does not know an example of

ðG;Mi;cÞ of a non-discrete Lie group G, G-modules Mi, and a G-invariant

trilinear form, for which the trilinear form Tc on M1 �M2 �M3 is nontrivial.

Though he investigated the case where G ¼ SL2ðCÞ and M ¼ C2 or C3, all

resulting Tc turned out to be trivial. So, the author would like to propose

it as an open problem to construct an example of ðG;Mi;cÞ, with G a non-

discrete Lie group, which yields an nontrivial trilinear form Tc.

4.2. The ðm;mÞ-torus link Tm;m. We also calculate the trilinear form Tc

concerning the ðm;mÞ-torus link, following from Definition 2.2. These cal-

culations is useful in the paper [N4], which suggests invariants of ‘‘Hurewitz

equivalence classes’’.

Let L be the ðm;mÞ-torus link Tm;m with mb 2, and let a1; . . . ; am be the

arcs depicted in Figure 4. Let us identity aiþm with ai of period m. The

Wirtinger presentation of p1ðS3nLÞ is

ha1; . . . ; am j a1 � � � am ¼ ama1a2 � � � am�1 ¼ a2 � � � ama1i:

Given a homomorphism f : p1ðS3nLÞ ! G with f ðaiÞ A G, let us discuss

X -colorings C over f . Concerning the coloring condition on the l-th link

component, it satisfies the equation

ð� � � ðCðalÞ / Cðalþ1ÞÞ / � � �Þ / Cðalþm�1Þ ¼ CðalÞ; ð19Þ

for any 1a lam. With the notation CðaiÞ :¼ ðxi; ziÞ A X , this equation (19)

reduces to a system of linear equations

ðxl�1 � xlÞ þ
X

lajalþm�2

ðxj � xjþ1Þ � zjþ1zjþ2 � � � zmþl ¼ 0 A M; ð20Þ

for any 1a lam. Conversely, we can easily verify that, if a map

C : farcs of Dg ! X satisfies the equation (20), then C is an X -coloring.
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Denoting the left side in (20) by Gf ;lð~xxÞ, consider a homomorphism

Gf : M
m ! Mm; ðx1; . . . ; xmÞ 7! ðGf ;1ð~xxÞ; . . . ;Gf ;mð~xxÞÞ:

To conclude, the set ColX ðDf Þ coincides with the kernel of Gf .

Next, we precisely describe the resulting trilinear form.

Proposition 4.2. Let f : p1ðS3nTm;mÞ ! G be as above. Let c : M 3 !
A be a G-invariant linear functions. Then, the trilinear form Tc : KerðGf Þn3 !
A sends ðw1; . . . ;wmÞn ðx1; . . . ; xmÞn ðy1; . . . ; ymÞ to

Xm
l¼1

Xm�1

k¼1

c

 
wlð1� zlÞẑzlþ1;lþk�1;

Xk
j¼1

ðxjþl�1 � xjþlÞẑzjþl;kþl�1;

ykþlð1� z�1
kþlÞ

!
: ð21Þ

Here, for sa t, we use the notations ẑzs; t :¼ zszsþ1 � � � zt and ẑzsþ1; s :¼ 1 A G:

The formula can be obtained by direct calculation.

4.3. Examples of Theorem 3.1. We will give some examples of Theorem 3.1.

Under the setting of Theorem 3.1, let G ¼ Z=3 ¼ ht j t3 ¼ 1i, and f : p1ðS3nLÞ
! Z=3 be the map which sends every meridian to t. Take Mi ¼ A ¼
Z½t�=ðn; t2 þ tþ 1Þ for some n A Zb0, and let c0 : M1 �M2 �M3 ! A send

ðx; y; zÞ to xyz:

In this paragraph, we focus only on knots, K , such that H 1ðEK ; qEK ;AÞ
GH 1ð ~BBK ;Z=nÞ is isomorphic to either A or 0. We will write the trilinear

map Tc0
as a cubic polynomial with respect to ða; b; cÞ A ðH 1ðEK ; qEK ;Z=nÞÞ3.

Then, we give the resulting computation of Tc0
, when K is a prime knot with

crossing number < 7. The list of the computation is given as follows:

Knot n Tc0

31 2 abc

41 4 2abc

51 any 0

52 5 ð1þ tÞabc

61 any 0

62 any 0

63 any 0
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5. Proofs of the theorems

We will complete the proofs of Theorems 2.5–2.6 in § 5.3. While the

statements were described in terms of ordinary cohomology, the proof will

be done via the group cohomology. For this purpose, we review the relative

group homology in § 5.1.

5.1. Preliminary: Review of relative group cohomology. We will recall the

relative group (co)homology in the non-homogeneous terms. Throughout this

subsection, we fix a group G and a homomorphism f : G ! G. Then, we

have the action of G on the right G-module M via f .

Set Cn
grðG;MÞ ¼ MapðG n;MÞ. For f A Cn

grðG ;MÞ, define the coboundary

qnðfÞ A Cnþ1
gr ðG;MÞ by the formula

qnðfÞðg1; . . . ; gnþ1Þ ¼ fðg2; . . . ; gnþ1Þ

þ
X

1aian

ð�1Þ ifðg1; . . . ; gi�1; gigiþ1; giþ2; . . . ; gnþ1Þ

þ ð�1Þnfðg1; . . . ; gnÞgnþ1:

Let Kj be a subgroup and ij : Kj ,! G be the inclusion, where the index j runs

over 1a jam. Then, we can define the mapping cone of ij as follows:

CnðG ;KJ;MÞ :¼ MapðG n;MÞl 0
j

MapððKjÞn�1;MÞ
 !

:

For ðh; k1; . . . ; kmÞ A CnðG;KJ;MÞ, define qnðh; k1; . . . ; kmÞ in Cnþ1ðG ;KJ;MÞ
by

qnðh; k1; . . . ; kmÞða; b1; . . . ; bmÞ

¼ ðqnhðaÞ; hðb1Þ � qn�1k1ðb1Þ; . . . ; hðbmÞ � qn�1kmðbmÞÞ;

where ða; b1; . . . ; bmÞ A G nþ1 � Kn
1 � � � � � Kn

m. Then, ðC �ðG;KJ;MÞ; q�Þ is a

cochain complex, and we can consider its cohomology.

We now observe the submodule consisting of 1-cocycles Z1ðG ;KJ;MÞ.
Let us define the semi-direct product MzG by

ða; gÞ ? ða 0; g 0Þ :¼ ða � g 0 þ a 0; gg 0Þ; for a; a 0 A M; g; g 0 A G:

Let Homf ðG ;MzGÞ be the set of group homomorphisms G ! MzG over

the homomorphism f . Consider the following map:

Z1ðG ;KJ;MÞ ! Homf ðG ;MzGÞlMm;

ðh; y1; . . . ; ymÞ 7! ðg 7! ðhðgÞ; f ðgÞÞ; y1; . . . ; ymÞ:
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Lemma 5.1 ([N2, Lemma 5.2]). This map gives an isomorphism between

Z1ðG ;KJ;MÞ and the following subset of Homf ðG ;MzGÞlMm:

fð ~ff ; y1; . . . ; ymÞ j ~ff ðhjÞ ¼ ðyj � yj � hj; fjðhjÞÞ; for any hj A Kjg:

The image of q1, i.e., B1ðG ;KJ;MÞ, is equal to the subset fð ~ffa; a; . . . ;
aÞga AM : Here, for a A M, the map ~ffa : G ! MzG is defined as the homo-

morphism which sends g to ða� a � g; f ðgÞÞ. In particular, if KJ is not empty,

B1ðG ;KJ;MÞ is a direct summand of Z1ðG ;KJ;MÞ.

Now, we review the cup product. When KJ is the empty set, the product

of u A CpðG ;MÞ and v A CqðG ;M 0Þ is defined to be u ^ v A CpþqðG ;MnM 0Þ
given by

ðu ^ vÞðg1; . . . ; gpþqÞ :¼ ð�1Þ pqðuðg1; . . . ; gpÞgpþ1 � � � gpþqÞ

n vðgpþ1; . . . ; gpþqÞ: ð22Þ

When KJ is not empty, for two elements ð f ; k1; . . . ; kmÞ A CpðG;KJ;MÞ and

ð f 0; k 0
1; . . . ; k

0
mÞ A CqðG;KJ;M

0Þ, let us define the cup product by

ð f ^ f 0; k1 ^ f 0; . . . ; km ^ f 0Þ A CpþqðG ;KJ;MnM 0Þ:

This formula yields a bilinear map, by passage to cohomology.

Finally, we observe another complex. Let us define the module Cn
redðGÞ

by the formula

fðc1; . . . ; cmÞ A MapðZ½G n�;MÞm j c1 þ c2 þ � � � þ cm ¼ 0 A MapðZ½G n�;MÞg:

Then, this complex canonically has an inclusion into the direct sum of

CnðG;KjÞ:

Pn : C
n
redðGÞ ! 0

j:1ajam

CnðG ;KjÞ:

Then, we define a quotient complex, DnðG;KJ;MÞ, to be the cokernel of Pn.

Then, CnðG ;KJ;MÞ is isomorphic to DnðG ;KJ;MÞ, because the kernel of the

inclusions 0m

j¼1
CnðG ;KjÞ ! CnðG ;KÞ is the image of Pn.

Remark 5.2. We give a natural relationship to the usual cohomology.

Take the Eilenberg-MacLane spaces of type ðG; 1Þ and of type ðKj ; 1Þ, and

consider the map ðijÞ� : KðKj; 1Þ ! KðG; 1Þ induced by the inclusions. Then

the relative homology HnðG ;KJ;MÞ is isomorphic to the homology of the

mapping cone of
F

j KðKj; 1Þ ! KðG ; 1Þ with local coe‰cients. Further, the

cup product ^ above coincides with that on the singular cohomology

groups.
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We mention the case where L is either a knot or an unsplittable link.

(We note that any hyperbolic knot is unsplittable). Then, the complement

S3nL is an Eilenberg-MacLane space by the sphere theorem. Since we only

use G as p1ðS3nLÞ in this paper, we may discuss only the relative group

cohomology.

5.2. Review: results of the previous papers [N2] and [N5]. Throughout this

section, we denote the union of the fundamental groups of the boundaries

of S3nL by qp1ðS3nLÞ, for brevity. Let m ¼aL, and choose a diagram D

of L:

Theorem 5.3 ([N2, Theorem 2.2]). Let X be M � G, as mentioned in

(2). Let k : X ! MzG be a map which sends ðm; gÞ to ðm�mg; gÞ. Given

an X-coloring C over f , consider a map farcs of Dg ! MzG which assigns a

to kðCðaÞÞ. Then, this assignment yields isomorphisms

ColX ðDf ÞGZ1ðp1ðS3nLÞ; qp1ðS3nLÞ;MÞ;

ColredX ðDf ÞGH 1ðp1ðS3nLÞ; qp1ðS3nLÞ;MÞ:

Next, we explain Theorem 5.4. Choose a relative 1-cocycle ~ff : p1ðS3nLÞ
! Mz p1ðS3nLÞ with y1; . . . ; ym. We consider the subgroup Kl defined by

fðyl � ylm
a
l l

b
l ;m

a
l l

b
l Þ A Mz p1ðS3nLÞ j a; b A Z2g:

Given a G-invariant trilinear map c : M 3 ! A, consider the map

yl : ðMz p1ðS3nLÞÞ3 ! A;

ðða; gÞ; ðb; hÞ; ðc; kÞÞ 7! cððaþ yl � ylgÞ � hk; ðbþ yl � ylhÞ � k;

cþ yl � ylkÞ: ð23Þ

Then, we can easily check that each yl is a 3-cocycle in C3ðMz p1ðS3nLÞ;AÞ.
The collection C :¼ ðy1; . . . ; yaLÞ represents a relative 3-cocycle in D3ðMz

p1ðS3nLÞ;K;AÞ.

Proposition 5.4 ([N5, Proposition 6.7]). Under the notation above, fix a

shadow coloring S~ff corresponding the relative 1-cocycle ð ~ff ; y1; . . . ; yaLÞ:
If L is either a hyperbolic link or a prime knot which is neither a cable knot

nor a torus knot, as in Theorem 2.5, then the diagonal restriction of Tc is equal

to the pairing of the 3-class ½EL; qEL� and the above 3-cocycle C . Namely,

TcðS~ff ;S~ff ;S~ff Þ ¼ chC ; ~ff�½EL; qEL�i: ð24Þ

If L is the ðm; nÞ-torus knot, the same equality (24) holds modulo mn:
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5.3. Proof of Theorem 2.5; trilinear pairing.

Proof (Proof of Theorem 2.5). First, we observe (25) below. Consider

a 0-cochain ~yy :¼ ðy1; . . . ; yaLÞ A D0ðMz p1ðS3nLÞ;MÞ. Then, ~ff � q0~yy is rep-

resented by another 1-cocycle

C 0 :¼ ðð ~ff � y1; . . . ;
~ff � yaLÞ; ð0; . . . ; 0ÞÞ A D1ðMz p1ðS3nLÞ;MÞ;

where yl denotes the map p1ðS3nLÞ ! M which takes g to y1 � y1g. The

3-cocycle C explained in (23) is equal to the cup product C 0 ^ C 0 ^ C 0, by

definition. Hence, Proposition 5.4 implies

TcðS~ff ;S~ff ;S~ff Þ ¼ chC 0 ^ C 0 ^ C 0; ½EL; qEL�i

¼ chC ^ C ^ C; ½EL; qEL�i: ð25Þ

Finally, we will deal with the non-diagonal parts, and complete the proof.

Here, we define M to be the direct product M1 �M2 �M3, and consider the

j-th inclusion

ij : Mj ! M ¼ M1 �M2 �M3; x 7! ðd1jx; d2jx; d3jxÞ:

Thus, we can decompose S~ff as ðS1;S2;S3Þ A ColX1
ðDf Þ � ColX2

ðDf Þ �
ColX3

ðDf Þ componentwise. In addition, we define a G-invariant trilinear form

c : M �M �M ! A; ðða; b; cÞ; ðd; e; f Þ; ðg; h; iÞÞ 7! cða; e; f Þ:

Then, the transformation of the coe‰cients i1 � i2 � i3 yields a diagramQ3
i¼1 H

1ðEL; qEL;MiÞ ���!^
H 3ðEL; qEL;M1 �M2 �M3Þ ���������!c�h�; ½EL;qEL�i

A???yði1�i2�i3Þ�

???yði1�i2�i3Þ�

����
H 1ðEL; qEL;MÞ H 3ðEL; qEL;M �M �MÞ A:������!^D ���������!c�h�; ½EL;qEL�i

Here, the left bottom ^D is defined by a 7! a ^ a ^ a. Then, we can verify

the commutativity directly from the definitions. By Proposition 5.4, the

bottom arrow is equal to the left hand side in (24). Hence, the pullback toQ3
i¼1 H

1ðEL; qEL;MiÞ is equal to the trilinear Tc as desired.

Proof (Proof of Theorem 2.6). Let L be the ðm; nÞ-torus knot. Accord-

ing to the latter part in Theorem 5.4, we need discussions modulo mn. Then,

the proof runs well in the same manner.
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