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ABSTRACT. Let E(1) be the first Johnson-Wilson spectrum at the prime two. In this
paper, we calculate the homotopy groups of the E(1)-localized sphere spectrum with a
grading over the Picard group of the stable homotopy category of E(1)-local spectra.

1. Introduction

Let p be a prime number. In the stable homotopy category &, of p-local
spectra, we denote by [X, Y] the group of morphisms from X to Y in .%,, and
[X,Y], =@, 4[S*AX,Y]. Here, S* is the k-dimensional sphere spectrum.
For the Bousfield localization functor Ly with respect to a spectrum E, we
denote ¥ = Lg(¥,). The category Y is a symmetric monoidal category,
whose structure is given by the E-local smash product Lg(— A —). A spectrum
X € Y is invertible if there exists Y € g such that Lg(X A Y) = LiS%, and
the Picard group Pic(Zg) of Lk is the collection of the isomorphism classes
of invertible spectra in %.

In this paper, we use the following notation:

np(X) =[P, LgX] for PePic(Z), and  n7(X)=Dpopic(y) T (X)-

*

Let K(n) be the n-th Morava K-theory spectrum. Hopkins, Mahowald and
Sadofsky deeply studied the Picard group Pic(ZLk(,) in [3], and Westerland
showed many interesting results around 7~ <")(S0) in [13]. In chromatic homo-
topy theory, we have an important object E(n), the n-th Johnson-Wilson spec-
trum, as well as K(n). The localization functor L, and the category Zg
are abbreviated as L, and .%,, respectively, and let z”(X) denote 7 (”)(X ).
We consider the monomorphisms

in : m(LaX) = @, 418", LaX] = D, 4 [LuS*, L, X]

C
- @PePic(!t’”)[P’ L”X] = ﬂf(X)
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for n>0. These monomorphisms fit into the following commutative
diagram:

m(LoX) —— m(LyX) e o e m(LyX) e— -
i Jmono. i Jmono. i lmono.
7)(X) ——— n}(X) (X)) —— -

From this system, we obtain

mono.

lim(i,) : lim 7, (L,X) — lim =?(X).

We recall that the chromatic convergence theorem (cf. [10, Th. 7.5.7]) implies
that if X is finite, then the universal map 7z.(X) — lim, n.(L,X) is an isomor-
phism, and therefore we have the monomorphism

lim,, (i)
—

7. (8% —— lim 7, (L,S°) lim 7"(S°). (1.1)

mono. n
Under this map, we expect that lim, 7”(S°) has a new information of 7., (S?).
We note that Pic(#y) = Z and the homomorphism

to : Pic(Z,) — Pic(L) = Z

induced by the localization functor Ly is a splitting epimorphism. Putting
Pic’(%,) = ker(/;), we have the decomposition

Pic(%,) = Z @ Pic’(%,).

Here, the summand Z is generated by L,S'. The structure of the Picard group
is known as follow:

THEOREM 1 ([4, Th. A. and Th. 6.1], [2, Th. 1.2]).

(1) If (p—1)kn and 2p —2 > n? +n, then Pic"(%,) = 0.
(2) At p=2, Pic"(#) =2Z)2.

(3) At p=3, Pic" (%) =Z/3®Z/3.

This implies that, if (p—1)fn and 2p —2>n?+n, then #"(S°) =
n.(L,S°). We consider the first interesting case (p,n) = (2,1) in this paper.
We define

(i) =maxfieZ:2° |1}  and a(z){i(tH2 ;*t’ (1.2)

for a nonzero integer ¢, The main theorem in this paper is the
following:
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THEOREM 2. At p =2, as a Zyy-algebra with a grading over Pic(%) =
ZD1Z)2,

ﬂi(SO) = Z(z)[ZQ, At/a(t) T F#£ 0]/R
with

(2t—1,0) t=0,1mod (4)
20| = (0,1 d A = :
120 = (0,1) an 141/a(0)| {(21_171) t=2,3mod (4)

Here R is the ideal of the following relations: Put A, = A, and X;=
Az/—Z//'A_z/—ZZ/j fO}’ j>2
(1) 25=4 .
(2) 2Xj1 =X, for j>2.
o) 0 t=0,1,2mod (4)
() 2"Muya) = 0 or A4, 1=3mod (4)

0 or A4, t=0mod (4)

(4) 2a(r)_l2QAt/u(;) = Aletfl t =2mod (4)
0 t=1,3mod (4)
Xas) s+t=0, and s=t=0mod (2)
0 s+t#0, and s=t=0mod (2)
(S) Asjats)Aijatr) = A Ay, shi—1 -
A1 Agii-1/a(s+—1)  Otherwise

(6) A{ Ay =0 if t # -2, AJA 53 =0, and A7A 3444 =0.

REMARK 3. The author conjectures that 84,3 =0 for t =2 mod (4), and
2907120 4,10 = A} A,y for t =0 mod (4).

Consider the Brown-Peterson spectrum BP at p. The homology theory
BP,.(—) represented by BP satisfies that

BP, = BP.(S°) = Z()[v1, 02, .. ],
BP.(BP) = BP,[t1,15,.. ]

where |v;| = |t;| = 2(p' — 1). Then, for the homology theory E(n), (—) repre-
sented by E(n), we have

E(n), = E(n),(S°) = v, BP./(tay1, Unt2, - ) = Zplv1, 02, 051, 0F ],
E(n).(E(n)) = E(n), ®gp, BP.(BP) ®pp, E(n),

with |v;] = 2(p" — 1). The E(n)-based Adams spectral sequence for a spectrum
A is of the form

Ey' = Exty, E(n),,E(n),(A4)) = m_y(L,A).

*(E(n))(
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Hereafter, we denote by E(n)>'(4) the E,-term of the spectral sequence. For
an E(n),(E(n))-comodule M, we abbreviate

H™"M = EXtg,) (5w

Let I; denote the ideal (vg,v1,...,vk—1) of E(n)
following E(n),(E(n))-comodules:

(E(n),, M).

* 9

where vy = p. Consider the

*9

N = E(n), /I, My = v "Ny,
N/t = Coker(N] > M}) and  Mj=uv N  for i>0.

The short exact sequence Nj — M| — Né“ gives rise to the connecting homo-
morphism

0 H*N[™ — H*TIN.
The k-th algebraic Greek letter elements are defined by

7 = 0001+ -0 (ot [p ot vf}) € HANG = E(m)}(S°)

e /Ck—1,-..,€1,€0
if g /pvit - v} is in H ONé‘. In particular, we denote
_ _( 5 5 P
yjq = fl,g/i’ Bijap = ,/a b Bija=Bijay,  and  B=p.
y [6, Th. 1.1], for any invertible spectrum X e Pic’(%,), we have
E(n)y"(X) = E(n);"(S"){gx} ~ with |gx| = (0,0).
Note that if the element

(k) ok
% an.e9% € E(n);7(X)

er/ex—1,e1,

is a permanent cycle, then we have an element of

(X)) =PIS X =P x ", 1,8 c =(S°).
k k

If & ek/ek er € E(n)5(S°) detects an element in 7.(L,S°), we denote it by
gf}ek,l,....el o 1D particular, we denote

(Y
O(,/a = mt/a'
By Theorem 10 below, at p =2, n.(L;S°) is generated by %py’S With ¢ =
0,1,2 mod (4). Here, b(¢) is the integer in (2.4). Furthermore, the monomor-
phism i; : 7, (L1S°) — 7! (S%) satisfies

At/a(l) = 0, 1 mod (4)
(at/b( )) { 2QA,/3 t =2 mod (4) ’ (13)
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We note that Pic’(%) = Z/2 is generated by the question mark spectrum Q
(see §3). By Proposition 8, E(1);"(S°) is generated by the algebraic alpha
elements &,,. The generator A,/ in Theorem 2 is detected by &, €
E(1)77(8%) if 1 =0,1 mod (4), and by &,/,yg0 € E(1);"(Q) if = 2,3 mod (4).
By this fact, at p = 2, for any algebraic alpha element &/, with ¢ # 0, at least
one of &, and .90 detects a nontrivial element in 7! (S%). We also note the
following:
(1) At p>2, any algebraic alpha element in E(1);"(S%) survives to
7.(L1S°) = =} (S?).
(2) More general, if (p—1) ¥n and 2p — 2 > n*> +n, then any nonzero
algebraic Greek letter element in E(n); " (S°) survives to m,(L,S°) =
7 (SY).
(3) At p =23, the algebraic beta element f, in E(2)§(S0) survives to
7. (L,S%) if and only if 1=0,1,2,3,5,6 mod (9) [12, Th. 2.12], and
7.(L2S0) # n2(SP).
By these facts, we conjecture the following:

CONJECTURE 4. Let p be a prime number and n an integer > 0. For any
algebraic Greek letter element ") EE (n)5"(S%) with t # 0, there exists

t/en_1,en_2,...,€
nverti ic (4 (0
an invertible spectrum X € Pic’(%,) such that %o s ersed

7" (S?).

x survives to
The author would like to thank the referee for many useful comments.

2. The structure of 7.(L;S°) at p = 2, revisited

Hereafter, we consider the case p =2. Ravenel determined the struc-
ture of 7,(L;S°) as [9, Th. 8.15]. In this section, we review the homotopy
groups.

The homology theory E(1),(—) represented by the first Johnson-Wilson
theory spectrum E(1) satisfies

E(1), = E(1),(5°) = Zp)[v],
E(1),(E(1)) = E(1), ®gp, BP.(BP) ®gp, E(1),.

Hereafter, we denote by E(1)."(X) the E,-term of the E(l)-based Adams
spectral sequence converging to 7,(L;X). This spectral sequence forms as
follow:

*

E(1)3"(X) = Exty}) ) (B, E(1), (X)) = (LX),

(1)

For an E(1),(E(1))-comodule M, we abbreviate H**M = Eth’(ﬁ) ey (E).
M). We consider the following E(1),(E(1))-comodules:
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Ny =E(1),, My=2"EQ1),, M{=EQ1),/Q2)
and M, = Coker(N{ — My).
THEOREM 5 ([11, Th. 5.2.1, and Th. 5.2.2.]).
(1) H‘Y‘IMOO:{Q S:[:O.
0 otherwise
(2) H**M) =K(1),[ho,p1]/(p} = 0) where hye H">M} and p, e H"' M},
which are represented by ti and vi}(h+ ) in E(1),(E(1))/(2),
respectively. Here, K(1), = E(1),/(2) = Z/2[vi’").

For an element in H*M], we use the notation of Behrens’ type (see [1])
defined as follows. Consider the short exact sequence

0— M 5 Mml 2 M -0
where ¢(x) =x/2. For an element x € H*M7, we define x,/, € H*M, by
257x5 = 9, (v]x) = vix/2.
THeEOREM 6 ([7, Th. 4.16]).

Q/Zp) ® yjapy : t #0) s=0
H M} = Q/Zpy @ <(ho),1: (p1)yn - 240 s=1.
<(h8)r/17 (plhg_])z/l 2410 s>1

Here, {—) is an exterior algebra, the summand Q/Z;y at s =0 (resp. s=1)
is generated by the elements 1o (resp. (p1)y);) for j >0, and a(t) is the integer
in (1.2). '

The short exact sequence
0— N} — M — M} —0 (2.1)
gives rise to the exact sequence

0— HONO — H'MY — H'M! & H'NY -0  and

. (2.2)

H'M} % HNy  for s #0,1
by Theorem 5. Here J is the connecting homomorphism associated with (2.1).

In H*NJ, we denote

s = 0(1y5) for t #0 and 1 <s <a(1),

o = 0y, and ¢ =0((p1)oy)-
Then, by Theorem 6, we have the following:
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L s=0

o0 _ ) $Gijatn 1 #0) o1
= Q/Z ®<5((h0);/1),5((,01),/1) 2kt s=27 (2‘3)

O((h)):0((prhy™ ) yp) 2248 5> 2

Here the summand Q/Z) at s =2 is generated by the elements Ej for j > 0.

PROPOSITION 7. In H*N{, the following hold:

(1) o((ho), 1) = ey for odd t, and 6((p1),)1) = &18—1/a(c—1) for odd t # 1.
In addition, 6((p,),)1) = &-304/a.

(2) Suppose that s is odd. Then &) = %1% i—1/a(sri—1) I S+1#1,
and G011 ja(—st1) = 0-304/4.

(3) Suppose that the both s and t are even. Then &% a0 =0 or
0 Olgts—1 lf s+1t#0, and O_Cs/a(s)o_ffs/a(s) = xs/fu(s) + yeo_10 for an odd
integer x; and y; € {0,1}.

Proor. (1): By [7, Lem. 4.12], for any nonzero € Z,
%18 ja(r) = 0(111) 8sja(r)
= 0(01(%/a(n)/2)

(o)) 24
a o((p)ip) 2107

We also  have  d((p1),,1) = 0((vip1) _3,1) = 0(v;(8aa)/2) = 0(1 31)aa =
O_C_3O_(4/4 by [7, Lem. 412]
(2): By [7, Lem. 4.12] and (1),
O_CO_( =0 s/l)at/a

(1
= 0(v] (%r/a() /2)
{ ((ho) gy, 1/1 2x1

pl 3+t/1 2|[

OO ja(srm) SHTFE]
| O3y s+t=1"

S+t 1/1 251
2|t

QqSEI

H—t/l

(3): By (2.2), the connecting homomorphism &:Hb26T0M) —

2 is an isomorphism. Assume s+ % 0. oth s and ¢ are
H? 2("+'>N(§) i i phi A 0. If both d

even, then, by Theorem 6, we have H'26+) M) = Z/2{(ho),;, 11} Hence,
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if O_CS/a(AY)O_Cl/a(r) # 0 in H2’2<S+,)N(())> then Ozs/u(s)&l/a(t) = 6((h0)s+[_1/1) = o_‘15(]&%[71/1)

= 8sp—1. If s+¢t=0, then, by [7, Lem. 4.12], 2”“)"&3/“(5)&,3/0(3.)

= 2a(s)_16(lslu(s))O_Cﬁ\'/a(s) = 5(1‘Y/1)O_‘7s/a(s) = 5(”{(&78/4&8))/2) = 5((Ul_spl)s/l) =
0((p1)oj1) = €1 This implies our claim by (2.3).

For s,1e€ Z\{0}, we denote
v(s, 1) = min{v(s), v(?)}.
PROPOSITION 8.  As a bigraded Z-algebra,
E(1);7(8%) = H**Ng = Z[0y/aq) : t # 0]/R

with |0/4s)| = (1,2t), where R is an ideal of the following relations:
(1) 2908, = 0.

T g i1 fa(sri—1)  V(5,1) =0 and s+t #1

B ~ G_3004/4 v(s,) =0 and s+t=1

(@) Syjat%yaty = 0 or a1, v(s,) >0 and s+t#0°
£)>0 and s+t=0

XCaps) + Vsl1dr (s,
Here, x; is an odd integer and y; is in {0,1}.

ProoF. We note that & /2 = (ho),;, in H'My. By (2.3) and Proposi-
tion 7, H*N) is generated by the elements %oy s a Zp)-algebra. By the
definition of the generators, the first relation is immediately given. The second
relation is shown by Proposition 7.

PROPOSITION 9. In the E(1)-based Adams spectral sequence converging to
n.(L1S°), the following hold:

() If t=0,1mod (4), then &, is permanent.

(2) If2 #t=2,3mod (4), then d3(O_C,/a([)) = 0_613(2[,2/“(,,2), and also d3(5(2/3)

= 78 3004/4.

Proor. (1): By [8, Th. 5.8], for s > 0, the elements %4y4/q4(4514) and a1
are permanent cycles. This fact is immediately extended to any s e Z.

(2): By [8, Th. 5.8], for s > 0, we have d5(04s43) = &} d4s1 and ds(dazie/3)
= o‘cfo‘c4x+4/a(4s+4> in the spectral sequence. It is easy to extend these differ-
entials to any s € Z, except for ds3(d/3). We also have d3(d,/3) = d3(vf4o‘c6/3) =
a3 (o740 )olaja = A38_30044.

For a nonzero integer ¢, we define

b(t){a(t)—l y(r) = 1 {v(t)—i—l We) = 0,1

a(t) othewise v(it)+2 v(t)>1

We then have the following:
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TueoreM 10.  As a graded Zy)-algebra,
. (L1S°) = Zpoylouspy : 0 # ¢ =0,1,2 mod (4)]/R

with o p| =2t — 1, where R is the ideal of the following relations: Put
o = oy and & = oyj2)0 o552y for j >3
(1) 284, =¢ for j>3.

0 t=0,1mod (4)
b(1) _ ’
() 2% ame { wto,y ¢ =2mod (4)
Eats) s+t=0 and s=t=0mod (4)

8Cs = 8oy40_4/4 S+t=0 and s=t=2mod (4)

s+t#0 and s=t=0mod (2),
or st =2mod (4) '

0l_30l4/4 s+t=1

Ol Oyy i1 /b(s+1—1)  Otherwise

n(t) . . . 3 r=0,1 mod (4)
@) ey =0 for n(t) = {1 t=2mod (4)

(3) b %me = 0

2 _
and oio304/4 = 0.

ProoF. By Proposition 8 and Proposition 9, for the E(1)-based Adams
spectral sequence

E(1)$(S%) = mp_o(L1S°),

we have the following tables for the Ej-term:

3 Gy 630044 @
2 & G384/ a?
1 @ )2 (255)
0 1
4| 3| 2| -1 0 1 2| 3
and
3 57 Bl () 8 a1
2 &1 Gl /a(4s) 01 Glgs 11
1 8as/a(4s) Olgs+1 O4542/2 (2.6)
0
8s—4 | 8—-3 |8 -2 8—1 8s 8s+1 8s+2 8s+3
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for s #0. Here, b —a is the horizontal coordinate and a is the vertical
coordinate. By degree reason, this spectral sequence collapses at Ey. If j > 3,
then &; detects &; in the statement. If j <3, then & = 247&, detects 247/¢, =

240y )40 _a s
The relations in the statement are immediately shown by Proposition 8 and
the above tables, except for

doggi0/0 = 07 0lagir and 2014511 = 0. (2.7)

They are immediately shown by [8, Th. 5.8 (b)].

3. The question mark spectrum Q
We recall the following theorem:

Tueorem 11 ([6, Th. 1.1]). L,X €Pic®(%,) if and only if E(n),(X)=

E(n), as an E(n),(E(n))-comodule.

*

Consider the cofiber sequence
502 50 L p) L ost. (3.1)

We notice that 7;(S°) = Z/2, which is generated by the stable complex
Hopf map #. Since 21y =0, there exists # € my(V(0)) such that j7=n.
The question mark spectrum @ is defined by the following cofiber
sequence:

2202827 y(0) % s30. (3.2)

Since 77 : $* — V(0) induces v, : E(1), — E(1),.,/(2), we have the follow-
ing commutative diagram.

E(1).(0) 2= E(1), "7 E(1),/2)
I ‘ T (3.3)
E(1), —— E(1), —— E(1),/(2).

Hence E(1),(Q) is isomorphic to E(1),, and so L;Q is in Pic’(#;) by Theorem
11. From [4, Th. 6.1], we obtain the isomophism

Li(OAQ)=L;S° (3.4)

and Pic’(#)) = Z/2 is generated by L,0.
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4. The structure of 7!(S°)

We note that E(1),(Q) = E(1),{go} as E(1),(E(1))-comodules, where go
is an element in E(1),(Q) which is corresponding to 1€ Z) = E(1),. This
implies that

E(1);(0) = E(1);"(S°){go}  with |go| = (0,0). (4.1)

LEMMA 12.  di(gg) = &_183gg in the E(1)-based Adams spectral sequence
converging to m.(L10Q).

Proor. The cofiber sequence (3.2) gives rise to the long exact se-
quence

-2 E(1)31(0) S5 B3 (80 =5 EW A (V(0)

L2 B0 — .

By the diagram (3.3), the element gg € E(l)g’o(Q) satisfies (ip),(g90) = 2,
and so (ig),(go) survives to 2 eng(L;S°). Recall that the diagram

V(0) —— ¥(0)

|

st T _, g0

is commutative. Hence, in 7(V(0)), we have 27 = injij = in>. Therefore,

since o € 71 (L1S?) is the E(1)-localization of 5 € 7, (S?), the generator (L;i)a} €
ma(L1V(0)) is detected by i.(32) € E(1)§’4(V(O)), where i, is the map induced
by i in (3.1). By an easy calculation in the cobar complex, we have 6o (i.(57))
=& 133gg. This implies d5(gp) = &_1%7g0.

ProPoSITION 13.  In the E(1)-based Adams spectral sequence converging to
7.(L1Q), the following hold:

(1) di(gg) = 13399, and 29y is permanent.

(2) If t=0,1mod (4), then d3(&[/u(l)gQ) = &f&,,z/a(t,agQ.

(3) If t=2,3mod (4), then &, 9o is permanent.

Proor. In the spectral sequence, we have the following by Theorem 8,
Proposition 9 and Lemma 12:

Ty /a(n) 310190 t=0,1 mod (4)
dB(&t/a(t)gQ) = &f&,,z/a([,z)gg + o‘c,/a(,)o‘c,lo‘c%gQ 2#t=2,3mod (4)
07 G384/490 + 0a/30-187 g0 1=2
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_ { % %-2/ae-290 ¢ =0,1mod (4)
0 t=2,3mod (4)

We also remark that d3(& 384/490) = o‘cfo‘c,zﬁgQ. Hence, for the E(1)-based
Adams spectral sequence

EM3P(Q) = mp-u(L10),

we have the following tables of the Ej-term:

4 &} (%-2/390)
3 31 (@-2/390)
2 || a1(3-2p390) i %;5 ! (4.2)
! %190 %/390
0 240
—4 -3 -2 1l o0 |1]2]| 3
and
3 7 (da5-2/390) 72 (day-190)
21| a1 (dus—2/390) &1 (das-190)
! Hs-190 %as/a(4s) (290) Sagi2/390
0
8s—4 8s—3 8s—2 8s—1 8s | 8+1 |8 +2 8s+3
(4.3)

for s #0. Here b — a is the horizontal coordinate and «a is the vertical coor-
dinate. By degree reason, this spectral sequence collapses at E4, and our claim
is shown.

ProOF (Proof of Theorem 2).
E(1).(Q) — E(1),, and

By (3.4), we have the pairing E(1),(Q) ®
gsq ng =L (4.4)
We note that 7}(S°) =7 (LiS°) @ [L10, LiS°], = n.(LiS°) @ (L1 Q) as a

graded Z;-module. Consider the two spectral sequences

E(1);%(S%) = n.(L1S) and  E(1);°(Q) = n.(L1Q) = [L10,L;S"],.
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We define A4/, € E(1);7(S%)[g0]/(95 = 1) by

i B % /a(r) t=0,1mod (4)
t/at) = Ula(ydo = 2,3 mod (4)

By Lemma 9 and Lemma 13, the element A4, ,(; survives to z(S°) = 7, (L;S°)
@ [L10, LS, for any nonzero ¢, which is denoted by Aija(ry-  We also denote
by 2¢ € [L10Q, L1 S°] = ny(L1 Q) an element detected by 2g¢ € E(l)g’O(Q). The
relations in the statement are given by Proposition 7, Lemma 9, Theorem 10,
Lemma 13, (4.4), and the tables (2.5), (2.6), (4.2) and (4.3), except

4. ZQA,/3 = AIZA,,I for =2 mod (4), and
24,=0 for t=1mod (4).

By (1.3) and (2.7), these relations are given by 4 - 204,/5 = i\ (40,/2) = i1 (afoy—1)
= A4, for t=2mod (4), and 24, = i1(2%,) = i1(0) = 0 for =1 mod (4).
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