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ABSTRACT. Let (M,gy,7) be a closed, connected Riemannian manifold with a
Riemannian foliation % of nonzero constant transversal scalar curvature. When M
admits a transversal nonisometric conformal field, we find some generalized condi-
tions that % is transversally isometric to (SY(1/c),G), where G is the discrete sub-
group of O(g) acting by isometries on the last ¢ coordinates of the sphere S9(1/c) of
radius 1/c.

1. Introduction

A Riemannian foliation is a foliation % on a smooth manifold M such
that the normal bundle Q = TM /T % may be endowed with a metric gp whose
Lie derivative is zero along leaf directions [15]. Note that we can choose a
Riemannian metric gy on M such that gu|;,+ = go; such a metric is called
bundle-like. A Riemannian foliation Z is transversally isometric to (W, G),
where G is a discrete group acting by isometries on a Riemannian manifold
(W,gw), if there exists a homeomorphism #: W /G — M /% that is locally
covered by isometries [10]. Recently, S. D. Jung and K. Richardson [6]
proved the generalized Obata theorem which states that: & is transversally
isometric to (S9(1/c),G), where G is the discrete subgroup of O(g) acting by
isometries on the last ¢ coordinates of the sphere S(1/c) of radius 1/c¢ if and
only if there exists a non-constant basic function f such that

VyVf = —c*fX

for all foliated normal vectors X, where ¢ is a positive real number and V is the
transverse Levi-Civita connection on the normal bundle Q.

A transversal conformal field is a normal vector field with a flow preserving
the conformal class of the transverse metric. That is, the infinitesimal auto-
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morphism Y is transversal conformal if Lygo = 2fygop for a basic function
fy depending on Y, where Ly is the Lie derivative. In this case, it is trivial
that

fy = 61] divv(n(Y)),

where divy is a transversal divergence and n: TM — Q is the natural pro-
jection. If the transversal conformal field Y satisfies divy(n(Y)) =0, i.e,
Lygp =0, then Y is said to be transversal Killing field, that is, its flow is
a transversal infinitesimal isometry. The properties of the infinitesimal auto-
morphisms have been studied by many authors ([4], [8], [13], [14], [16]).

In this article, we study the Riemannian foliation admitting a transversal
nonisometric conformal field. First, we recall the well-known theorems about
the Riemannian foliations admitting a transversal nonisometric conformal field
(3], [41, [5), [6], [12)).

Let R2, Ric? and o2 be the transversal curvature tensor, transversal Ricci
operator and transversal scalar curvature with respect to the transversal Levi-
Civita connection V on Q [15]. Let xp be the basic part of the mean curva-
ture form x of the foliation & and Kg its dual vector field (precisely, see
Section 2). Then we have the following well-known theorem.

THEOREM A ([6]). Let (M,gum,7) be a closed, connected Riemannian
manifold with a Riemannian foliation F of a nonzero constant transversal scalar
curvature ¢2. If M admits a transversal nonisometric conformal field Y sat-
isfying one of the following conditions:

(1) Y =Vh for any basic function h, or
(2) Ly Ric? = ugo for some basic function u, or
(3) Ric®(Vfy) =5 Vfr, 9oy, Vfv) =0 and go(4,:Vfr,Vfr) <0,
then F is transversally isometric to (S1(1/c),G).

Now, we recall two tensor fields E¢ and Z¢ ([3], [5]) by
a?
EC(Y) :RicQ(Y)—7Y7 YeTFt, (1)

Z9X,Y)=RX,Y) - R4(X,Y), 2)

where RZ(X,Y)s = q(;—fl){gg(n(Y),s)n(X) —go(n(X),s)n(Y)} for any vector
field X,Y e TM and se I'Q. Trivially, if E2 =0 (resp. Z¢ =0), then the
foliation is transversally Einsteinian (resp. transversally constant sectional
curvature). The tensor Z9 is called as the transversal concircular curvature
tensor, which is a generalization of the concircular curvature tensor on a



Riemannian foliations admitting transversal conformal fields 61

Riemannian manifold. In an ordinary manifold, the concircular curvature
tensor is invariant under a concircular transformation which is a conformal
transformation preserving geodesic circles [17]. Then we have the well-known
theorem.

THEOREM B ([3]). Let (M,gm, ) be as in Theorem A. If M admits a
transversal nonisometric conformal field Y such that

JMgQ<EQ<VfY>,VfY) >0,

then F is transversally isometric to (S(1/c), G).

REMARK 1. Since RicQ(Vfy) :%ny implies EC(Vfy) =0, Theorem B
is a generalization of Theorem A (3) when F is minimal.

THeOREM C ([4], [5]). Let (M,gm,F) be as in Theorem A, and suppose
that F is minimal. If M admits a transversal nonisometric conformal field Y
such that

() Ly[EC”=0 (14)
or

(i) Ly|Z9” =0 (3)),
then F is transversally isometric to (S(1/c), G).

REMARK 2. Theorem B and Theorem C have been proved in [18] for the
point foliation, that is, for ordinary manifolds.

In this paper, we prove the following theorems.

THEOREM 1. Let (M,gy,F) be as in Theorem A, and suppose that F
is minimal. If M admits a transversal nonisometric conformal field Y such
that

Ly|E9)? = const. or Ly|Z9?* = const.,
then F is transversally isometric to (S(1/c),G).
REMARK 3. Theorem 1 is a generalization of Theorem C.

THEOREM 2. Let (M,gy,F) be as in Theorem A, and suppose that F is
minimal. If M admits a transversal nonisometric conformal field Y such that

LYgQ(L}’EgaEQ) < 07

then F is transversally isometric to (S(1/c),G).
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REMARK 4. Theorem 2 is a generalization of Theorem A (2) and (3) when
F is minimal (c¢f. Remark 4.3). See also [19] for the ordinary manifold.

THEOREM 3. Let (M,gym,7) be as in Theorem A. If M admits a
transversal conformal field Y such that Y = K +Vh, where K is a transversal

Killing field and h is a basic function, then F is transversally isometric to
(89(1/¢), G).

REMARK 5. Theorem 3 is a generalization of Theorem A (1).

2. Preliminaries

Let (M,gym,7) be a (p+ g)-dimensional Riemannian manifold with a
foliation & of codimension ¢ and a bundle-like metric g,; with respect to &
[15]. Let TM be the tangent bundle of M, T'# its integrable subbundle given
by #, and Q = TM /T the corresponding normal bundle. Then there exists
an exact sequence of vector bundles

0-TF —TM= Q —0,

where 7: TM — Q is a natural projection and ¢: Q — T.Z* is a bundle map
satisfying moo =1id. Let go be the holonomy invariant metric on Q induced
by gum, that is, Lygpo =0 for any X € T#, where Ly is the transversal Lie
derivative, which is defined by Lys = n[X,a(s)] for any se I'Q. Let V be the
transverse Levi-Civita connection in Q [7]. The transversal curvature tensor
R2 of V is defined by R9(X,Y)=[Vy,Vy]—V|yy for any vector fields
X,YeI'TM. Let Ric? and 62 be the transversal Ricci operator and the
transversal scalar curvature of %, respectively. The foliation Z is said to be
(transversally) Einsteinian if Ric? :éand with constant transversal scalar
curvature ¢2. The mean curvature vector field 7 is defined by

)4
v=> V£,
i=1

where {f;} (i=1,...,p) is a local orthonormal frame field on 7.%. The
foliation % 1is said to be minimal if the mean curvature vector field 7
vanishes. Let {e,} (¢ =1,...,q) be a local orthonormal frame field on Q.
For any se I'Q, the transversal divergence divy(s) is given by

q

divy(s) = Z 9o (Ve,s, €q)-

a=1
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For the later use, we recall the transversal divergence theorem [20] on a foliated
Riemannian manifold.

THEOREM 1 ([20])). Let (M,gy,F) be a closed, connected Riemannian
manifold with a foliation & and a bundle-like metric gy with respect to F.
Then

J divy(s) = J go(s, )
M M
for all se Q.

A differential form w e Q" (M) is basic if i(X)w =0 and i(X)dw =0 for
all X e T#, where i(X) is the interior product. Let Qp(%) be the set of all
basic r-forms on M. Then Q*(M)=Q;(F)®Q5(F)" [1]. Let x be the
mean curvature form of %, which is given by

K(s) = go(,s)

for any s € Q. Then the basic part kg of the mean curvature form is closed,
ie., dicg =0 [1]. Let dp be the restriction of d on Qg(%) and dp its formal
adjoint operator of dp with respect to the global inner product -, -», which is
given by

Kby = JM AT ALy

for any basic r-forms ¢ and , where % is the star operator on Q3(#) and
%7 18 the characteristic form of & [15]. The operator dp is given by

Spp = (Or +i(kh)p,  Org = (=1)" DV 5dpzg,

Note that the induced connection V on Qp(%) from the connection V on Q
and Riemannian connection V¥ on M extends the partial Bott connection,
which satisfies Vyw = Lyw for any X € T# [9]. Then the operator J7 is given
by

o1 = =3 ilen)Ve s (3)
a=1

The basic Laplacian Ap acting on Qp(%) is defined by
Ap = dpdp +Opdp.

Then for any basic function f, we have

Apf =0pdpf =~ Ve Ve f +K5(). 4)
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REMARK 6. Note that for any basic form w, the relation between dp and
the ordinary operator 0 is given by

0w = dpw + *y(w),

where y(w) = tFwAp, and ¢y =dyz; +rxAys with oAz =0 [15]. If
weQy (r=0, 1), then we easily have
(@) =0,
which implies that
0w = dpw, AMw = Agw,

where AM = d5 +6d is the ordinary Laplacian.

For later use, we recall the generalized maximum principle for foliation

((6))-

THEOREM 2 ([6]). Let (M,gym,ZF) be a closed, connected Riemannian
manifold with a foliation F and a bundle-like metric gy For any basic

Sunction f, the condition (Ap — K%) f =0 implies that f is constant.

And we review some theorems for transversal nonisometric conformal field

(4D

THEOREM 3 ([4]). Let (M,gym,F) be a closed, connected Riemannian
manifold with a foliation F of codimension q and bundle-like metric gy such
that gk = 0. Assume that the transversal scalar curvature o2 is nonzero
constant. Then for any transversal nonisometric conformal field Y such that

Lygo =2fvgo (fy #0),

(45— K3) fy =

3. Tensors E¢ and Z9

In this section, we give the properties of tensors E¢ and Z¢ on a
Riemannian foliation. From (1) and (2), we have

ZZQ(S, ed)ea = E9(s)

for any se I'Q. Also, we have the following ([4], [5]).
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q—2

tro E¢=0, diw(E?) = p Va2, (5)

2(69)?
q(g—1)

Now, we recall the Lie derivatives of tensors along the transversal conformal
field.

0)2
IEQ|2=|RicQ|2—%, 122)” = |R9* ~ if ¢>2. (6)

Lemma 1 ([3], [4], [S]). Let Y be a transversal conformal field such that
Lng = 2fng. Then

gQ((LYRQ)(euaeb)emed) = 5]()1Vaf; _5]§Vafd _55be(f +5¢(;bed> (7)
(Ly Ric9)(es e5) = —(g — 2)Vify + (An Sy — ()", (8)
Lyo? =2(q— 1)(dpfy — k5(fr)) — 2fya?, )
(LyE®) (e er) = —(q - 2>{vaﬁ, (e - Kﬁ(f))éf’i} (10)
Ly|E9® = =2(q — 2)go(VVfy,E9) — 4fy|E2]’, (11)
Ly|Z2)> = —8go(VVfy, EQ) — 4fy|Z9|*. (12)

where V, =V, and f, =V, fy.

LEMMA 2. If a transversal conformal field Y satisfies Ly Ric€ = ugo for
some basic function u, then

LyE? =0.

Proor. Let Y be the transversal conformal field such that Lygo = 2fygo.
From (3.4), we have

~(q = 2Vafs + (Anfy = K5(/¥))0) = o, (13)
From (3) and (13), we have
w=2CD gy ) (14)

From (13) and (14), we have

—<q—2>{vafb +L(asy —K,é(fy»a;;} _o.

Therefore, the proof follows from (10).
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LemMa 3. If Y is a transversal conformal field, then
Ly|E?]> =2go(LyE?, E9).

Proor. Let {e,} be a local orthonormal basis on Q such that (Ve,), =0
at a point x. Let Y be the transversal conformal field Y such that Lygp =
2fvgo. Then at x, we have

Ly|E? = ;LngwQ(ea),EQ(Ea))
= Za:(Lng)(EQ(ea),EQ(ea)) + 2Za:gg((LYEQ)(ea),EQ(ea>)
+2Za:gQ(EQ(LYea),EQ(ea))
= 2fy|EQ]® +299(LyEC, E9) + 2 " go(E?(Lyes), E%(ea)).  (15)

Now, we calculate the last term in the above equation. That is,

S 90(E(Lyed), E%e,)

= " go(E%(Lyed), er)go(E%(es), e1)
a,b

= 9o(E%(es), Lyea)go(E2(es), ea)
a,b

= 33 Lr{go(E%er). ego(E2er) e0)} — 2v|E2
a,b

—> 90((LyE%)(e), E%(ea)) = > go(E?(Lye,), E(e4)).
Hence we have
23" go(EC(Lyes), E(er)) = 5 Ly EOP — 2fy|E2?

—go(LyE?, E9). (16)
From (15) and (16), the proof is completed.

LemMa 4. Let Y be a transversal conformal field such that Lygg = 2fygo.
Then
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Ly|Z9)? = 2go(LyZ%,Z9) — 4fy|Z9)? (17)
(9~ 2)go(LyZ2,Z9) = 4go(Ly E®, E) + 8fy|E°|". (18)

ProoF. Note that go(LyZ2,Z9) = —4go(VVfy,E?) [5]. So (17) fol-
lows from (12). For the proof of (18), from (I11) and (12),

ALy|EC® = (g = 2)Ly|Z9 +4(q = 2)fr|Z°" — 16fy|E.
Hence from Lemma 3.3 and (17), the equation (18) is proved. []
From (6) and Theorem C, we have the following.

PropoOSITION 1. Let (M, gy, F) be a closed, connected Riemannian mani-
fold with a minimal foliation & of codimension q > 2 and a bundle-like metric
gm. Assume that the transversal scalar curvature is nonzero constant and either
IRic?| or |RQ| is constant. If M admits a transversal nonisometric conformal
field, then F is transversally isometric to (S9(1/c),G).

REmMARK 7. For the ordinary manifold, Proposition 3.5 has been proved in
[2] and [11], respectively.
4. The proofs of Theorems

First, we recall the integral formulas for the tensor £¢ and Z€.

ProposiTiON 2 ([3], [5]). Let (M,guy,F) be a closed, connected Rieman-
nian manifold with a foliation & of codimension q and a bundle-like metric gy
with respect to F. Assume that the transversal scalar curvature @ is nonzero
constant. Then for any transversal nonisometric conformal field Y such that
Lygo =2fvgo (fy #0), we have

2q-2) jM Go(E2(Vfy), Vfy) = jM{4f5|EQ|2 + frLy|E9P)

+2(¢-2) jM Go(EQ(fyVfy) ich)

and

0 71 2170)2 l 02
| sotEewmvm =5 | {1zep+ jhivizer)

JM go(RicC(fyVfy), x)
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Proor oF THEOREM 1. Let Y be the transversal nonisometric conformal
field such that Lygp = 2fygg. From Theorem 2.3, we have

| 5=o (19)

Assume that # is minimal. Since Ly|E2|* = const or Ly|Z2|* = const, from
(19) and Proposition 4.1, we have

2g-2) jM Go(E(Vfy), Viy) = 4JM F2E9?

or
| soEewmvm =3[ siizer
M M

respectively. Hence from Theorem B, the proof is completed.
LemMA 5. Let Y be a transversal conformal field such that Lygo = 2fygo.

Then for any basic function h,

J th:—lJ Lyh+lj lev(//lY)
M qJIm qJm

ProoF. Let @ = Y? be the dual basic 1-form of the transversal conformal
form Y. Then

JMh((SBw) N JM gol®, dsh) = J

i(Y)dgh = J Lyh.
M M

Since 65 = 07 + (i) and drw = —divy(Y) = —gfy, we have

(]J /’lfY = — h(&Ta))
M JIM

_ h(&Bw)—s—J hi(ich oo

S Lyh—l—J go(hY, k)
M M

=— LYIH—J divy (hY).
M M

Last equality in above follows from the transversal divergence theorem (The-
orem 2.1). Therefore, the proof is completed. []
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PrOOF OF THEOREM 2. Let Y be a transversal nonisometric conformal

field, i.e., Lygo = 2fygo. From (4), Lemma 3.4 and Proposition 4.1, if we put
h=go(LyE? E?), then from Lemma 4.2, we have

(¢—2) JM Go(EVfy).Vfy)

2| FIER+[ Wyt a-2) | oolEUTIA)
M M M

1 1
2J f§|EQ|2——J Lyh—i——J go(hY,ih)
M qJIm qJIm

+a=2) | 0olEXATS) ).
Since # is minimal, we have
. . X 1
(q— 2)J go(EC(Vfy),Vfy) = ZJ fHECP ——J Lygo(LyE®,E?).
M M qJ)m
Hence by the condition Lygo(LyE?, E?) <0, we have

JMgQ<EQ<ny>,VfY> > 0.

From Theorem B, the proof of Theorem 2 is completed.

REMARK 8. Let & be minimal. Then the following holds.

(1) From Lemma 3.2, Theorem 2 yields Theorem A (2).

(2) Theorem 2 is also a generalization of Theorem A (3). In fact, assume
that Ric®(Vfy) = %ny, that is, EC(Vfy) =0. By differentiation, we have

(Ve, E€)(Vfy) + E2(VVfy) = 0. (20)

From (20), we have

0= Z gQ((VeaEQ)(VfY) + EQ(VanY)v eq)
= 9o(Vfy,divv(E?) + > go(EC(VVfy), ea)
= ZQQ(VanY7EQ(3a))- (21)

From (5), divy E€ =0 and so the last equality in the above follows. Hence
Sfrom (10) and (21), we have
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go(L LyE?, EQ ZgQ YEQ )(€a), EQ(ea))

~(q-2)" 9oViVfr. E%(e.))

122 001) Y ot E%er)

= —(¢-2) Y 9o(VVfv, E%e)) - ‘I%ZMBM tro E©

=0.

The last equality follows from trg E Q@ = 0. Hence the conditions of Theorem A
(3) implies that go(LyE2,E?) =0. That is, by Theorem 2, F is transversally
isometric to the sphere.

Proor orF THEOREM 3. Let Y be a transversal conformal field such that
Lygo =2fygo and Y = K +Vh, where K is a transversal Killing field and / is
a basic function. Then

go(Vx Y, Z) 4+ go(VzY,X) = 2fygo(X,Z)

for any normal vector field X,Z e I'Q. On the other hand, since the trans-
versal scalar curvature o€ is constant, from Theorem 2.4, we have

O'Q
qg—1

(4g — K3) fr = —— [y (22)

Since Y = K +Vh, we have Lygg = Lysgo = 2fygo. That is,
90(VxVh, Z) + go(V2Vh.X) = 2frgo(X, Z). (23)

On the other hand, (VVh)(X,Z)=go(VxVh,Z) is symmetric. Therefore,
from (23)

(VVh)(X,Z) = frgo(X,Z). (24)
Hence from (3) and (24), we have
(45 = wp)h = —qfy. (25)

From (22) and (25), we get

0
(AB—KB)<fy—|—q q"_ h) —0.
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By the generalized maximum principle (Theorem 2.3), we have

a2

Sy + mh = const,

which implies
@
VVfy + mVVh =0. (26)
From (24) and (26), we have
) a?
Wiy =— m/ Y-

By

the generalized Obata theorem [6], & is transversally isometric to

(S4(1/¢), G), where ¢? =22

q(g—1)"

REMARK 9. Theorem 3 is a generalization of Theorem A (1).
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