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Abstract. Let ðM; gM ;FÞ be a closed, connected Riemannian manifold with a

Riemannian foliation F of nonzero constant transversal scalar curvature. When M

admits a transversal nonisometric conformal field, we find some generalized condi-

tions that F is transversally isometric to ðSqð1=cÞ;GÞ, where G is the discrete sub-

group of OðqÞ acting by isometries on the last q coordinates of the sphere Sqð1=cÞ of
radius 1=c.

1. Introduction

A Riemannian foliation is a foliation F on a smooth manifold M such

that the normal bundle Q ¼ TM=TF may be endowed with a metric gQ whose

Lie derivative is zero along leaf directions [15]. Note that we can choose a

Riemannian metric gM on M such that gM jTF? ¼ gQ; such a metric is called

bundle-like. A Riemannian foliation F is transversally isometric to ðW ;GÞ,
where G is a discrete group acting by isometries on a Riemannian manifold

ðW ; gW Þ, if there exists a homeomorphism h : W=G !M=F that is locally

covered by isometries [10]. Recently, S. D. Jung and K. Richardson [6]

proved the generalized Obata theorem which states that: F is transversally

isometric to ðSqð1=cÞ;GÞ, where G is the discrete subgroup of OðqÞ acting by

isometries on the last q coordinates of the sphere Sqð1=cÞ of radius 1=c if and

only if there exists a non-constant basic function f such that

‘X‘f ¼ �c2fX

for all foliated normal vectors X , where c is a positive real number and ‘ is the

transverse Levi-Civita connection on the normal bundle Q.

A transversal conformal field is a normal vector field with a flow preserving

the conformal class of the transverse metric. That is, the infinitesimal auto-
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morphism Y is transversal conformal if LYgQ ¼ 2fYgQ for a basic function

fY depending on Y , where LY is the Lie derivative. In this case, it is trivial

that

fY ¼
1

q
div‘ðpðYÞÞ;

where div‘ is a transversal divergence and p : TM ! Q is the natural pro-

jection. If the transversal conformal field Y satisfies div‘ðpðYÞÞ ¼ 0, i.e,

LYgQ ¼ 0, then Y is said to be transversal Killing field, that is, its flow is

a transversal infinitesimal isometry. The properties of the infinitesimal auto-

morphisms have been studied by many authors ([4], [8], [13], [14], [16]).

In this article, we study the Riemannian foliation admitting a transversal

nonisometric conformal field. First, we recall the well-known theorems about

the Riemannian foliations admitting a transversal nonisometric conformal field

([3], [4], [5], [6], [12]).

Let RQ, RicQ and sQ be the transversal curvature tensor, transversal Ricci

operator and transversal scalar curvature with respect to the transversal Levi-

Civita connection ‘ on Q [15]. Let kB be the basic part of the mean curva-

ture form k of the foliation F and k
]
B its dual vector field (precisely, see

Section 2). Then we have the following well-known theorem.

Theorem A ([6]). Let ðM; gM ;FÞ be a closed, connected Riemannian

manifold with a Riemannian foliation F of a nonzero constant transversal scalar

curvature sQ. If M admits a transversal nonisometric conformal field Y sat-

isfying one of the following conditions:

(1) Y ¼ ‘h for any basic function h, or

(2) LY RicQ ¼ mgQ for some basic function m, or

(3) RicQð‘fY Þ ¼ sQ

q
‘fY , gQðk]

B;‘fY Þ ¼ 0 and gQðAk
]
B

‘fY ;‘fY Þa 0,

then F is transversally isometric to ðSqð1=cÞ;GÞ.

Now, we recall two tensor fields EQ and ZQ ([3], [5]) by

EQðYÞ ¼ RicQðYÞ � sQ

q
Y ; Y A TF?; ð1Þ

ZQðX ;YÞ ¼ RQðX ;YÞ � RQ
s ðX ;YÞ; ð2Þ

where RQ
s ðX ;YÞs ¼ sQ

qðq�1Þ fgQðpðY Þ; sÞpðXÞ � gQðpðXÞ; sÞpðY Þg for any vector

field X ;Y A TM and s A GQ. Trivially, if EQ ¼ 0 (resp. ZQ ¼ 0), then the

foliation is transversally Einsteinian (resp. transversally constant sectional

curvature). The tensor ZQ is called as the transversal concircular curvature

tensor, which is a generalization of the concircular curvature tensor on a
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Riemannian manifold. In an ordinary manifold, the concircular curvature

tensor is invariant under a concircular transformation which is a conformal

transformation preserving geodesic circles [17]. Then we have the well-known

theorem.

Theorem B ([3]). Let ðM; gM ;FÞ be as in Theorem A. If M admits a

transversal nonisometric conformal field Y such that

ð
M

gQðEQð‘fY Þ;‘fY Þb 0;

then F is transversally isometric to ðSqð1=cÞ;GÞ.

Remark 1. Since RicQð‘fY Þ ¼ sQ

q
‘fY implies EQð‘fY Þ ¼ 0, Theorem B

is a generalization of Theorem A (3) when F is minimal.

Theorem C ([4], [5]). Let ðM; gM ;FÞ be as in Theorem A, and suppose

that F is minimal. If M admits a transversal nonisometric conformal field Y

such that

ðiÞ LY jEQj2 ¼ 0 ð½4�Þ

or

ðiiÞ LY jZQj2 ¼ 0 ð½5�Þ;

then F is transversally isometric to ðSqð1=cÞ;GÞ.

Remark 2. Theorem B and Theorem C have been proved in [18] for the

point foliation, that is, for ordinary manifolds.

In this paper, we prove the following theorems.

Theorem 1. Let ðM; gM ;FÞ be as in Theorem A, and suppose that F

is minimal. If M admits a transversal nonisometric conformal field Y such

that

LY jEQj2 ¼ const: or LY jZQj2 ¼ const:;

then F is transversally isometric to ðSqð1=cÞ;GÞ.

Remark 3. Theorem 1 is a generalization of Theorem C.

Theorem 2. Let ðM; gM ;FÞ be as in Theorem A, and suppose that F is

minimal. If M admits a transversal nonisometric conformal field Y such that

LYgQðLYE
Q;EQÞa 0;

then F is transversally isometric to ðSqð1=cÞ;GÞ.
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Remark 4. Theorem 2 is a generalization of Theorem A (2) and (3) when

F is minimal (cf. Remark 4.3). See also [19] for the ordinary manifold.

Theorem 3. Let ðM; gM ;FÞ be as in Theorem A. If M admits a

transversal conformal field Y such that Y ¼ K þ ‘h, where K is a transversal

Killing field and h is a basic function, then F is transversally isometric to

ðSqð1=cÞ;GÞ.

Remark 5. Theorem 3 is a generalization of Theorem A (1).

2. Preliminaries

Let ðM; gM ;FÞ be a ðpþ qÞ-dimensional Riemannian manifold with a

foliation F of codimension q and a bundle-like metric gM with respect to F

[15]. Let TM be the tangent bundle of M, TF its integrable subbundle given

by F, and Q ¼ TM=TF the corresponding normal bundle. Then there exists

an exact sequence of vector bundles

0! TF! TM ! 
p

s
Q! 0;

where p : TM ! Q is a natural projection and s : Q! TF? is a bundle map

satisfying p � s ¼ id. Let gQ be the holonomy invariant metric on Q induced

by gM , that is, LXgQ ¼ 0 for any X A TF, where LX is the transversal Lie

derivative, which is defined by LXs ¼ p½X ; sðsÞ� for any s A GQ. Let ‘ be the

transverse Levi-Civita connection in Q [7]. The transversal curvature tensor

RQ of ‘ is defined by RQðX ;Y Þ ¼ ½‘X ;‘Y � � ‘½X ;Y � for any vector fields

X ;Y A GTM. Let RicQ and sQ be the transversal Ricci operator and the

transversal scalar curvature of F, respectively. The foliation F is said to be

(transversally) Einsteinian if RicQ ¼ 1
q
sQ � id with constant transversal scalar

curvature sQ: The mean curvature vector field t is defined by

t ¼
Xp

i¼1
pð‘M

fi
fiÞ;

where f fig ði ¼ 1; . . . ; pÞ is a local orthonormal frame field on TF. The

foliation F is said to be minimal if the mean curvature vector field t

vanishes. Let feag ða ¼ 1; . . . ; qÞ be a local orthonormal frame field on Q.

For any s A GQ, the transversal divergence div‘ðsÞ is given by

div‘ðsÞ ¼
Xq

a¼1
gQð‘ea s; eaÞ:
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For the later use, we recall the transversal divergence theorem [20] on a foliated

Riemannian manifold.

Theorem 1 ([20]). Let ðM; gM ;FÞ be a closed, connected Riemannian

manifold with a foliation F and a bundle-like metric gM with respect to F.

Then ð
M

div‘ðsÞ ¼
ð
M

gQðs; tÞ

for all s A GQ.

A di¤erential form o A WrðMÞ is basic if iðXÞo ¼ 0 and iðXÞdo ¼ 0 for

all X A TF, where iðX Þ is the interior product. Let Wr
BðFÞ be the set of all

basic r-forms on M. Then W�ðMÞ ¼ W�BðFÞlW�BðFÞ
? [1]. Let k be the

mean curvature form of F, which is given by

kðsÞ ¼ gQðt; sÞ

for any s A Q. Then the basic part kB of the mean curvature form is closed,

i.e., dkB ¼ 0 [1]. Let dB be the restriction of d on WBðFÞ and dB its formal

adjoint operator of dB with respect to the global inner product hh� ; �ii, which is

given by

hhf;cii ¼
ð
M

f5�c5wF

for any basic r-forms f and c, where � is the star operator on W�BðFÞ and

wF is the characteristic form of F [15]. The operator dB is given by

dBf ¼ ðdT þ iðk]
BÞÞf; dTf ¼ ð�1Þqðrþ1Þþ1�dB�f:

Note that the induced connection ‘ on W�BðFÞ from the connection ‘ on Q

and Riemannian connection ‘M on M extends the partial Bott connection,

which satisfies ‘Xo ¼ LXo for any X A TF [9]. Then the operator dT is given

by

dTf ¼ �
Xq

a¼1
iðeaÞ‘eaf: ð3Þ

The basic Laplacian DB acting on W�BðFÞ is defined by

DB ¼ dBdB þ dBdB:

Then for any basic function f , we have

DB f ¼ dBdB f ¼ �
X
a

‘ea‘ea f þ k
]
Bð f Þ: ð4Þ
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Remark 6. Note that for any basic form o, the relation between dB and

the ordinary operator d is given by

do ¼ dBoþ �gðoÞ;

where gðoÞ ¼G�o5j0 and j0 ¼ dwF þ k5wF with j05wF ¼ 0 [15]. If

o A Wr
B ðr ¼ 0; 1Þ, then we easily have

gðoÞ ¼ 0;

which implies that

do ¼ dBo; DMo ¼ DBo;

where DM ¼ ddþ dd is the ordinary Laplacian.

For later use, we recall the generalized maximum principle for foliation

([6]).

Theorem 2 ([6]). Let ðM; gM ;FÞ be a closed, connected Riemannian

manifold with a foliation F and a bundle-like metric gM. For any basic

function f , the condition ðDB � k
]
BÞ f b 0 implies that f is constant.

And we review some theorems for transversal nonisometric conformal field

([4]).

Theorem 3 ([4]). Let ðM; gM ;FÞ be a closed, connected Riemannian

manifold with a foliation F of codimension q and bundle-like metric gM such

that dBkB ¼ 0. Assume that the transversal scalar curvature sQ is nonzero

constant. Then for any transversal nonisometric conformal field Y such that

LYgQ ¼ 2fYgQ ð fY 0 0Þ,

ðDB � k
]
BÞ fY ¼

sQ

q� 1
fY and

ð
M

fY ¼ 0:

3. Tensors EQ and ZQ

In this section, we give the properties of tensors EQ and ZQ on a

Riemannian foliation. From (1) and (2), we have

X
a

ZQðs; eaÞea ¼ EQðsÞ

for any s A GQ. Also, we have the following ([4], [5]).
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trQ EQ ¼ 0; div‘ðEQÞ ¼ q� 2

2q
‘sQ; ð5Þ

jEQj2 ¼ jRicQj2 � ðs
QÞ2

q
; jZQj2 ¼ jRQj2 � 2ðsQÞ2

qðq� 1Þ if qb 2: ð6Þ

Now, we recall the Lie derivatives of tensors along the transversal conformal

field.

Lemma 1 ([3], [4], [5]). Let Y be a transversal conformal field such that

LYgQ ¼ 2fYgQ. Then

gQððLYR
QÞðea; ebÞec; edÞ ¼ ddb‘a fc � dcb‘a fd � dda‘b fc þ dca‘b fd ; ð7Þ

ðLY RicQÞðea; ebÞ ¼ �ðq� 2Þ‘a fb þ ðDB fY � k
]
Bð fY ÞÞd

b
a ; ð8Þ

LYs
Q ¼ 2ðq� 1ÞðDB fY � k

]
Bð fY ÞÞ � 2fYs

Q; ð9Þ

ðLYE
QÞðea; ebÞ ¼ �ðq� 2Þ ‘a fb þ

1

q
ðDB f � k

]
Bð f ÞÞd

b
a

� �
; ð10Þ

LY jEQj2 ¼ �2ðq� 2ÞgQð‘‘fY ;EQÞ � 4fY jEQj2; ð11Þ

LY jZQj2 ¼ �8gQð‘‘fY ;EQÞ � 4fY jZQj2: ð12Þ

where ‘a ¼ ‘ea and fa ¼ ‘a fY .

Lemma 2. If a transversal conformal field Y satisfies LY RicQ ¼ mgQ for

some basic function m, then

LYE
Q ¼ 0:

Proof. Let Y be the transversal conformal field such that LYgQ ¼ 2fYgQ.

From (3.4), we have

�ðq� 2Þ‘a fb þ ðDB fY � k
]
Bð fY ÞÞd

b
a ¼ mdba : ð13Þ

From (3) and (13), we have

m ¼ 2ðq� 1Þ
q

ðDB fY � k
]
Bð fY ÞÞ: ð14Þ

From (13) and (14), we have

�ðq� 2Þ ‘a fb þ
1

q
ðDB fY � k

]
Bð fY ÞÞd

b
a

� �
¼ 0:

Therefore, the proof follows from (10).
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Lemma 3. If Y is a transversal conformal field, then

LY jEQj2 ¼ 2gQðLYE
Q;EQÞ:

Proof. Let feag be a local orthonormal basis on Q such that ð‘eaÞx ¼ 0

at a point x. Let Y be the transversal conformal field Y such that LYgQ ¼
2fYgQ. Then at x, we have

LY jEQj2 ¼
X
a

LYgQðEQðeaÞ;EQðEaÞÞ

¼
X
a

ðLYgQÞðEQðeaÞ;EQðeaÞÞ þ 2
X
a

gQððLYE
QÞðeaÞ;EQðeaÞÞ

þ 2
X
a

gQðEQðLYeaÞ;EQðeaÞÞ

¼ 2fY jEQj2 þ 2gQðLYE
Q;EQÞ þ 2

X
a

gQðEQðLYeaÞ;EQðeaÞÞ: ð15Þ

Now, we calculate the last term in the above equation. That is,

X
a

gQðEQðLYeaÞ;EQðeaÞÞ

¼
X
a;b

gQðEQðLYeaÞ; ebÞgQðEQðeaÞ; ebÞ

¼
X
a;b

gQðEQðebÞ;LYeaÞgQðEQðebÞ; eaÞ

¼ 1

2

X
a;b

LYfgQðEQðebÞ; eaÞgQðEQðebÞ; eaÞg � 2fY jEQj2

�
X
a

gQððLYE
QÞðeaÞ;EQðeaÞÞ �

X
a

gQðEQðLYeaÞ;EQðeaÞÞ:

Hence we have

2
X
a

gQðEQðLYeaÞ;EQðeaÞÞ ¼
1

2
LY jEQj2 � 2fY jEQj2

� gQðLYE
Q;EQÞ: ð16Þ

From (15) and (16), the proof is completed.

Lemma 4. Let Y be a transversal conformal field such that LYgQ ¼ 2fYgQ.

Then
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LY jZQj2 ¼ 2gQðLYZ
Q;ZQÞ � 4fY jZQj2 ð17Þ

ðq� 2ÞgQðLYZ
Q;ZQÞ ¼ 4gQðLYE

Q;EQÞ þ 8fY jEQj2: ð18Þ

Proof. Note that gQðLYZ
Q;ZQÞ ¼ �4gQð‘‘fY ;EQÞ [5]. So (17) fol-

lows from (12). For the proof of (18), from (11) and (12),

4LY jEQj2 ¼ ðq� 2ÞLY jZQj2 þ 4ðq� 2Þ fY jZQj2 � 16fY jEQj2:

Hence from Lemma 3.3 and (17), the equation (18) is proved. r

From (6) and Theorem C, we have the following.

Proposition 1. Let ðM; gM ;FÞ be a closed, connected Riemannian mani-

fold with a minimal foliation F of codimension qb 2 and a bundle-like metric

gM. Assume that the transversal scalar curvature is nonzero constant and either

jRicQj or jRQj is constant. If M admits a transversal nonisometric conformal

field, then F is transversally isometric to ðSqð1=cÞ;GÞ.

Remark 7. For the ordinary manifold, Proposition 3.5 has been proved in

[2] and [11], respectively.

4. The proofs of Theorems

First, we recall the integral formulas for the tensor EQ and ZQ.

Proposition 2 ([3], [5]). Let ðM; gM ;FÞ be a closed, connected Rieman-

nian manifold with a foliation F of codimension q and a bundle-like metric gM
with respect to F. Assume that the transversal scalar curvature sQ is nonzero

constant. Then for any transversal nonisometric conformal field Y such that

LYgQ ¼ 2fYgQ ð fY 0 0Þ, we have

2ðq� 2Þ
ð
M

gQðEQð‘fY Þ;‘fY Þ ¼
ð
M

f4f 2Y jEQj2 þ fYLY jEQj2g

þ 2ðq� 2Þ
ð
M

gQðEQð fY‘fY Þ; k]
BÞ

and

ð
M

gQðEQð‘fY Þ;‘fY Þ ¼
1

2

ð
M

f 2
Y jZQj2 þ 1

4
fYLY jZQj2

� �

ð
M

gQðRicQð fY‘fY Þ; k]
BÞ
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Proof of Theorem 1. Let Y be the transversal nonisometric conformal

field such that LYgQ ¼ 2fYgQ. From Theorem 2.3, we have

ð
M

fY ¼ 0: ð19Þ

Assume that F is minimal. Since LY jEQj2 ¼ const or LY jZQj2 ¼ const, from

(19) and Proposition 4.1, we have

2ðq� 2Þ
ð
M

gQðEQð‘fY Þ;‘fY Þ ¼ 4

ð
M

f 2Y jEQj2

or

ð
M

gQðEQð‘fY Þ;‘fY Þ ¼
1

2

ð
M

f 2Y jZQj2;

respectively. Hence from Theorem B, the proof is completed.

Lemma 5. Let Y be a transversal conformal field such that LYgQ ¼ 2fYgQ.

Then for any basic function h,

ð
M

hfY ¼ �
1

q

ð
M

LYhþ
1

q

ð
M

div‘ðhY Þ:

Proof. Let o ¼ Y b be the dual basic 1-form of the transversal conformal

form Y . Then

ð
M

hðdBoÞ ¼
ð
M

gQðo; dBhÞ ¼
ð
M

iðYÞdBh ¼
ð
M

LYh:

Since dB ¼ dT þ iðk]
BÞ and dTo ¼ �div‘ðYÞ ¼ �qfY , we have

q

ð
M

hfY ¼ �
ð
M

hðdToÞ

¼ �
ð
M

hðdBoÞ þ
ð
M

hiðk]
BÞo

¼ �
ð
M

LYhþ
ð
M

gQðhY ; k]
BÞ

¼ �
ð
M

LYhþ
ð
M

div‘ðhYÞ:

Last equality in above follows from the transversal divergence theorem (The-

orem 2.1). Therefore, the proof is completed. r
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Proof of Theorem 2. Let Y be a transversal nonisometric conformal

field, i.e., LYgQ ¼ 2fYgQ. From (4), Lemma 3.4 and Proposition 4.1, if we put

h ¼ gQðLYE
Q;EQÞ, then from Lemma 4.2, we have

ðq� 2Þ
ð
M

gQðEð‘fY Þ;‘fY Þ

¼ 2

ð
M

f 2
Y jEQj2 þ

ð
M

hfY þ ðq� 2Þ
ð
M

gQðEð fY‘fY Þ; k]
BÞ

¼ 2

ð
M

f 2
Y jEQj2 � 1

q

ð
M

LYhþ
1

q

ð
M

gQðhY ; k]
BÞ

þ ðq� 2Þ
ð
M

gQðEQð fY‘fY Þ; k]
BÞ:

Since F is minimal, we have

ðq� 2Þ
ð
M

gQðEQð‘fY Þ;‘fY Þ ¼ 2

ð
M

f 2Y jEQj2 � 1

q

ð
M

LYgQðLYE
Q;EQÞ:

Hence by the condition LYgQðLYE
Q;EQÞa 0, we have

ð
M

gQðEQð‘fY Þ;‘fY Þb 0:

From Theorem B, the proof of Theorem 2 is completed.

Remark 8. Let F be minimal. Then the following holds.

(1) From Lemma 3.2, Theorem 2 yields Theorem A (2).

(2) Theorem 2 is also a generalization of Theorem A (3). In fact, assume

that RicQð‘fY Þ ¼ sQ

q
‘fY , that is, EQð‘fY Þ ¼ 0. By di¤erentiation, we have

ð‘eaEQÞð‘fY Þ þ EQð‘a‘fY Þ ¼ 0: ð20Þ

From (20), we have

0 ¼
X
a

gQðð‘eaEQÞð‘fY Þ þ EQð‘a‘fY Þ; eaÞ

¼ gQð‘fY ; div‘ðEQÞÞ þ
X
a

gQðEQð‘a‘fY Þ; eaÞ

¼
X
a

gQð‘a‘fY ;EQðeaÞÞ: ð21Þ

From (5), div‘ EQ ¼ 0 and so the last equality in the above follows. Hence

from (10) and (21), we have
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gQðLYE
Q;EQÞ ¼

X
a

gQððLYE
QÞðeaÞ;EQðeaÞÞ

¼ �ðq� 2Þ
X
a

gQð‘a‘fY ;EQðeaÞÞ

� q� 2

q
ðDB fY Þ

X
a

gQðea;EQðeaÞÞ

¼ �ðq� 2Þ
X
a

gQð‘a‘fY ;EQðeaÞÞ �
q� 2

q
ðDB fY Þ trQ EQ

¼ 0:

The last equality follows from trQ EQ ¼ 0. Hence the conditions of Theorem A

(3) implies that gQðLYE
Q;EQÞ ¼ 0. That is, by Theorem 2, F is transversally

isometric to the sphere.

Proof of Theorem 3. Let Y be a transversal conformal field such that

LYgQ ¼ 2fYgQ and Y ¼ K þ ‘h, where K is a transversal Killing field and h is

a basic function. Then

gQð‘XY ;ZÞ þ gQð‘ZY ;XÞ ¼ 2fYgQðX ;ZÞ

for any normal vector field X ;Z A GQ. On the other hand, since the trans-

versal scalar curvature sQ is constant, from Theorem 2.4, we have

ðDB � k
]
BÞ fY ¼

sQ

q� 1
fY : ð22Þ

Since Y ¼ K þ ‘h, we have LYgQ ¼ L‘hgQ ¼ 2fYgQ. That is,

gQð‘X‘h;ZÞ þ gQð‘Z‘h;X Þ ¼ 2fYgQðX ;ZÞ: ð23Þ

On the other hand, ð‘‘hÞðX ;ZÞ ¼ gQð‘X‘h;ZÞ is symmetric. Therefore,

from (23)

ð‘‘hÞðX ;ZÞ ¼ fYgQðX ;ZÞ: ð24Þ

Hence from (3) and (24), we have

ðDB � k
]
BÞh ¼ �qfY : ð25Þ

From (22) and (25), we get

ðDB � k
]
BÞ fY þ

sQ

qðq� 1Þ h
� �

¼ 0:
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By the generalized maximum principle (Theorem 2.3), we have

fY þ
sQ

qðq� 1Þ h ¼ const;

which implies

‘‘fY þ
sQ

qðq� 1Þ‘‘h ¼ 0: ð26Þ

From (24) and (26), we have

‘‘fY ¼ �
sQ

qðq� 1Þ fY :

By the generalized Obata theorem [6], F is transversally isometric to

ðSqð1=cÞ;GÞ, where c2 ¼ sQ

qðq�1Þ .

Remark 9. Theorem 3 is a generalization of Theorem A (1).
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