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Abstract. Let Cm be a cyclic group of order m. We prove that if a group G fits

into an extension 1 ! C 2
2 nþ1 ! G ! C2 ! 1 for nb 1 then G is good in the sense of

Hopkins-Kuhn-Ravenel, i.e., KðsÞ�ðBGÞ is evenly generated by transfers of Euler classes

of complex representations of subgroups of G.

1. Introduction and statements

This paper is concerned with analyzing the 2-primary Morava K-theory

of the classifying spaces BG of the groups in the title. In particular it answers

the question whether transfers of Euler classes su‰ce to generate KðsÞ�ðBGÞ.
Here KðsÞ denotes Morava K-theory at prime p ¼ 2 and natural number

s > 1. The coe‰cient ring KðsÞ�ðptÞ is the Laurent polynomial ring in one

variable, F2½vs; v�1
s �, where F2 is the field of 2 elements and degðvsÞ ¼

�2ð2s � 1Þ [12]. So the coe‰cient ring is a graded field in the sense that

all its graded modules are free, therefore Morava K-theories enjoy the Künneth

isomorphism. In particular, we have for the cyclic group C2 nþ1 that as a

KðsÞ�-algebra

KðsÞ�ðBC2
2 nþ1Þ ¼ KðsÞ�ðBC2 nþ1ÞnKðsÞ� KðsÞ�ðBC2 nþ1Þ;

whereas KðsÞ�ðBC2mÞ ¼ KðsÞ�½u�=ðu2msÞ, so that

KðsÞ�ðBC 2
2 nþ1Þ ¼ KðsÞ�½u; v�=ðu2ðnþ1Þs

; v2
ðnþ1ÞsÞ;

where u and v are Euler classes of canonical complex linear representations.

The definition of good groups in the sense of [10] is as follows.

(a) For a finite group G, an element x A KðsÞ�ðBGÞ is good if it is a

transferred Euler class of a complex subrepresentation of G, i.e., a class of the
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form Tr�ðeðrÞÞ, where r is a complex representation of a subgroup H < G,

eðrÞ A KðsÞ�ðBHÞ is its Euler class (i.e., its top Chern class, this being defined

since KðsÞ� is a complex oriented theory), and Tr : BG ! BH is the transfer

map.

(b) G is called to be good if KðsÞ�ðBGÞ is spanned by good elements as a

KðsÞ�-module.

Recall that not all finite groups are good as it was originally conjectured

in [10]. For an odd prime p a counterexample to the even degree was con-

structed in [14]. The problem to construct 2-primary counterexample to the

conjecture remains open.

The families of good groups in a weaker sense, i.e., KðnÞoddðBGÞ ¼ 0 are

listed in [16]. In particular, if G belongs to any of the following families of

p-groups, then KðnÞoddðBGÞ ¼ 0:

(a) wreath products of the form H o Cp with H good [10], [11];

(b) metacyclic p-groups [20];

(c) minimal non-abelian p-groups, i.e., groups all of whose maximal sub-

groups are abelian [21];

(d) groups of p-rank 2 [22];

(e) elementary abelian by cyclic groups, i.e., the extensions V ! G ! C

with V elementary abelian and C cyclic [23], [14];

(f ) central product of the form H � Cpm with H good [16];

(g) H is a normal subgroup in G of index p, H is good and the integral

Morava K-theory ~KKðsÞðBHÞ is a permutation module for the action of G=H

[14].

Our main result provides a new series of good groups in the sense of

Hopkins-Kuhn-Ravenel.

Theorem 1. All extensions of C2 by C 2
2 nþ1 are good for all nb 0.

For n ¼ 0 and n ¼ 1 the statement of the theorem was known. See [2],

[4], [16], [18] for detailed discussion and examples. In this particular case, for

various examples of groups of order 32, the multiplicative structure of K �ðBGÞ
is also determined in [2], [4] using transfer methods of [5], [6].

The basic tool for the proof is the Serre spectral sequence, which we use

throughout the paper. However, if we work in a straightforward way, even

for s ¼ 2, n ¼ 1, this requires a serious computational e¤ort and use of com-

puter, see [17], p. 78. We simplify the task of calculation with invariants by

suggesting the special bases for particular C2-modules KðsÞ�ðBHÞ, see Lemma 1

and Lemma 2. This simple but comfortable idea is our key tool to prove

Theorem 1. We will prove it for the semi-direct products

ðC2 nþ1 � C2 nþ1ÞzC2: ð1Þ
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Then the general case follows because of the fact that the Serre spectral

sequence does not show the di¤erence between the semi-direct products and

their non-split versions.

2. Preliminaries

Recall [9] there exist exactly 17 non-isomorphic groups of order 22nþ3,

nb 2, which can be presented as a semidirect product (1). Each such group G

is given by three generators a, b, c and the defining relations

a2
nþ1 ¼ b2

nþ1 ¼ c2 ¼ 1; ab ¼ ba; c�1ac ¼ a ib j; cbc ¼ akb l

for some i; j; k; l A Z=2nþ1 (Z=2m denotes the ring of residue classes modulo

2m). In particular one has the following.

Proposition 1 (See [9]). Let n be an integer such that nb 2. Then there

exist exactly 17 non-isomorphic groups of order 22nþ3 which can be presented as

a semi-direct product (1). They are:

G1 ¼ ha; b; c j ð�Þ; cac ¼ a; cbc ¼ bi;

G2 ¼ ha; b; c j ð�Þ; cac ¼ a1þ2n

; cbc ¼ b1þ2 n

i;

G3 ¼ ha; b; c j ð�Þ; cac ¼ ab2
n

; cbc ¼ bi;

G4 ¼ ha; b; c j ð�Þ; cac ¼ a1þ2 n

b2
n

; cbc ¼ b1þ2 n

i;

G5 ¼ ha; b; c j ð�Þ; cac ¼ a�1; cbc ¼ b�1i;

G6 ¼ ha; b; c j ð�Þ; cac ¼ a�1þ2 n

; cbc ¼ b�1þ2 n

i;

G7 ¼ ha; b; c j ð�Þ; cac ¼ a�1b2
n

; cbc ¼ b�1i;

G8 ¼ ha; b; c j ð�Þ; cac ¼ a�1þ2 n

b2
n

; cbc ¼ b�1þ2 n

i;

G9 ¼ ha; b; c j ð�Þ; cac ¼ ab2
n

; cbc ¼ a2
n

b1þ2n

i;

G10 ¼ ha; b; c j ð�Þ; cac ¼ a; cbc ¼ b1þ2 n

i;

G11 ¼ ha; b; c j ð�Þ; cac ¼ a�1b2
n

; cbc ¼ a2
n

b�1þ2 n

i;

G12 ¼ ha; b; c j ð�Þ; cac ¼ a�1; cbc ¼ b�1þ2 n

i;

G13 ¼ ha; b; c j ð�Þ; cac ¼ a; cbc ¼ b�1þ2 n

i;

G14 ¼ ha; b; c j ð�Þ; cac ¼ a�1; cbc ¼ b1þ2 n

i;

3KðsÞ�ðBGÞ, G ¼ ðC2 n � C2 n ÞzC2



G15 ¼ ha; b; c j ð�Þ; cac ¼ b; cbc ¼ ai;

G16 ¼ ha; b; c j ð�Þ; cac ¼ a; cbc ¼ b�1i;

G17 ¼ ha; b; c j ð�Þ; cac ¼ a1þ2 n

; cbc ¼ b�1þ2 n

i;

where (*) denotes the collection fa2nþ1 ¼ b2
nþ1 ¼ c2 ¼ ½a; b� ¼ 1g of defining

relations.

Let Hi and Gi be finite p-groups, i ¼ 1; . . . ; n, such that Hi is good and Gi

fits into an extension 1 ! Hi ! Gi ! Cp ! 1.

Let G fit into an extension of the form 1 ! H ! G ! Cp ! 1, with

diagonal action of Cp by conjugation on H ¼ H1 � � � � �Hn. Let

Tr� ¼ Tr�% : KðsÞ�ðBHÞ ! KðsÞ�ðBGÞ

be the transfer homomorphism associated to the p-covering

% ¼ %ðH;GÞ : BH ! BG:

Let

Tr�i ¼ Tr�%i : KðsÞ�ðBHiÞ ! KðsÞ�ðBGiÞ

be the transfer homomorphism associated to the p-covering

%i ¼ %ðHi;GiÞ : BHi ! BGi; i ¼ 1; . . . ; n:

Then

ðTr15� � �5TrnÞ�

is the transfer homomorphism associated to the product %1 � � � � � %n.

Let

ri : BG ! BGi

be the map induced by the projection pi : H ! Hi on the i-th factor. Consider

the map

ðr1; . . . ; rnÞ : BG ! BG1 � � � � � BGn:

Then by naturality of the transfer one has

ðr1; . . . ; rnÞ
� � ðTr15� � �5TrnÞ� ¼ Tr� � ðp1; . . . ; pnÞ�:

Therefore ðr1; . . . ; rnÞ
� defines the homomorphism

r� : KðsÞ�ðBG1 � � � � � BGnÞ=ImðTr15� � �5TrnÞ� ! KðsÞ�ðBGÞ=Im Tr�:
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In [3] we proved the following.

Theorem 2. Let G be a group as above. Then

i) If Gi are good, then so is G.

ii) As a KðsÞ�ðptÞ-module, KðsÞ�ðBGÞ=Im Tr� is spanned by elements in

Im r�.

In particular this implies

Corollary 1. Let G ¼ Gi, i0 3; 4; 7; 8; 9; 11, in Proposition 1. Then G

is good in the sense of Hopkins-Kuhn-Ravenel.

Proof. G15 is good as wreath product [10]. If i0 15, Gi has maximal

abelian subgroup Hi ¼ ha; bi on which the quotient acts (diagonally) as above.

Each of the following groups C2 nþ1 � C2, the dihedral group D2 nþ2 , the quasi-

dihedral group QD2 nþ2 , the semi-dihedral group SD2 nþ2 could be written as

semidirect product C2 nþ1 zC2 with that kind of action. For all these groups

KðsÞ�ðBGÞ is generated by transfers of Euler classes, see [19, 20].

We will need the following approximations (see [7], Lemma 2.2) for the

formal group law in Morava KðsÞ�-theory, s > 1, where we set vs ¼ 1.

F ðx; yÞ1 xþ yþ ðxyÞ2
s�1

modðy22ðs�1Þ Þ; ð2Þ

F ðx; yÞ ¼ xþ yþFðx; yÞ2
s�1

; ð3Þ

where Fðx; yÞ1 xyþ ðxyÞ2
s�1

ðxþ yÞ modððxyÞ2
s�1

ðxþ yÞ2
s�1

Þ:

3. Complex representations over BG

Let us define some complex representations over BG we will need.

Let H ¼ ha; biGC2 nþ1 � C2 nþ1 be the maximal abelian subgroup in G.

Let

p : BH ! BG ð4Þ

be the double covering. Let l and n denote the complex line bundles over BH

defined by

lðaÞ ¼ nðbÞ ¼ e2pi=2
nþ1

; lðbÞ ¼ lðcÞ ¼ nðaÞ ¼ nðcÞ ¼ 1;

i.e. the pullbacks of the canonical complex line bundles along the projections

onto the first and second factor of H respectively.

Define three line bundles a, b and g over BG, as follows:

aðaÞ ¼ bðbÞ ¼ gðcÞ ¼ �1; aðbÞ ¼ aðcÞ ¼ bðaÞ ¼ bðcÞ ¼ gðaÞ ¼ gðbÞ ¼ 1:
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Let us denote Chern classes by

xi ¼ ciðp!ðlÞÞ; yi ¼ ciðp!ðnÞÞ; i ¼ 1; 2;

a ¼ c1ðaÞ; b ¼ c1ðbÞ; c ¼ c1ðgÞ

in KðsÞ�ðBGÞ, where p!ð�Þ is the induced representation from p.

4. Proof of Theorem 1

Here we prove that all the remaining groups Gi, i ¼ 3; 4; 7; 8; 9; 11, not

covered by Corollary 1, are also good.

Our tool shall be the Serre spectral sequence

E2 ¼ H �ðBC2;KðsÞ�ðBHÞÞ ) KðsÞ�ðBGÞ ð5Þ

associated to a group extension 1 ! H ! G ! C2 ! 1.

Here H �ðBC2;KðsÞ�ðBHÞÞ denotes the ordinary cohomology of BC2 with

coe‰cients in the F2½C2�-module KðsÞ�ðBHÞ, where the action of C2 is induced

by conjugation in G.

Let Tr� : KðsÞ�ðBHÞ ! KðsÞ�ðBGÞ be the transfer homomorphism [1], [13],

[8] associated to the double covering p : BH ! BG.

We use the notations of the previous two sections. In particular

let

HGC2 nþ1 � C2 nþ1 G ha; bi:

The action of the involution t A C2 on

KðsÞ�ðBHÞ ¼ KðsÞ�½u; v�=ðu2ðnþ1Þs
; v2

ðnþ1ÞsÞ ð6Þ

is induced by the conjugation action by c on H.

As a C2-module KðsÞ�ðBHÞ ¼ F lT , where F is C2-free and T is C2-

trivial.

This gives the decomposition

½KðsÞ�ðBHÞ�C2 ¼ ½F �C2 lT : ð7Þ

Clearly the composition p�Tr� ¼ 1þ t, the trace map, is onto ½F �C2 .

Therefore it su‰ces to check that all elements in T are also represented by

good elements.

Note that p�p! is the trace map in complex K-theory, i.e., p�ðp!ðlÞÞ ¼
lþ tðlÞ. Then the Chern classes can be easily computed. In particular for

all cases of G let u ¼ eðlÞ ¼ c1ðlÞ and v ¼ eðnÞ ¼ c1ðnÞ as before. Then
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x1 ¼ p�ðx1Þ ¼ c1ðp�ðp!ðlÞÞÞ ¼ uþ tðuÞ; x2 ¼ p�ðx2Þ ¼ c2ðp�ðp!ðlÞÞÞ ¼ utðuÞ;

y1 ¼ p�ðy1Þ ¼ c1ðp�ðp!ðnÞÞÞ ¼ vþ tðvÞ; y2 ¼ p�ðy2Þ ¼ c2ðp�ðp!ðnÞÞÞ ¼ vtðvÞ:

We will need the following.

Lemma 1. Let G be one of the groups under consideration and t A C2 ¼
G=H be the corresponding involution on H. Then there is a set of monomials

fxog ¼ fxi
1x

j
2 y

k
1 y

l
2g, such that the set fxo; xou; xov; xouvg is a KðsÞ�-basis in

KðsÞ�ðBHÞ. Specifically one can choose fxog as follows:

fxog ¼
fx j

2 y
k
1 y

l
2 j j < 2ns�1; k < 2s; l < 2ðnþ1Þs�1g; if G ¼ G3;

fxi
1x

j
2 y

k
1 y

l
2 j i; k < 2s; j; l < 2ns�1g; if G ¼ G4;G9;

fxi
1x

j
2 y

k
1 y

l
2 j i; k < 2ns; j; l < 2s�1g; if G ¼ G7;G8;G11:

8><
>:

Proof. For any case, the set fxo; xou; xov; xouvg generates KðsÞ�ðBHÞ:
using u2 ¼ ux1 � x2 and v2 ¼ vy1 � y2 any polynomial in u, v can be written

as g0 þ g1uþ g2vþ g3uv, for some polynomials gi ¼ giðx1; y1; x2; y2Þ. In par-

ticular it follows by induction, that

v2
m ¼ vy2

m�1
1 þ

Xm
i¼1

y2
m�2 i

1 y2
i�1

2 ; ð8Þ

and similarly for u2
m

.

Now for each case we have to explain the restrictions in fxog. Then

the restricted set S ¼ fxo; xou; xov; xouvg will indeed form a K �ðsÞ-basis in

K �ðsÞðBHÞ because of its size 4ðnþ1Þs.

Consider G3. For the conditions on l and k we have to take into account

(2), (3), (6) and the action of the involution t.

In particular, we have

tðlÞ ¼ l; tðnÞ ¼ l2
n

n; and tðuÞ ¼ u:

This implies x1 ¼ uþ tðuÞ ¼ 0 and x2 ¼ utðuÞ ¼ u2.

On the other hand, from (3)

tðvÞ ¼ Fðu2 ns

; vÞ ¼ vþ u2
ns þ ðvu2 nsÞ2

s�1

;

which implies y2
ðnþ1Þs�1

2 ¼ 0 from (6). Similarly

y1 ¼ vþ tðvÞ ¼ u2
ns þ ðvu2 nsÞ2

s�1

;

which implies y2
s

1 ¼ 0.

Thus we have the condition that k < 2 s and l < 2ðnþ1Þs�1 in fxog.
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For the condition on j, that is, the decomposition of x2 ns�1

2 in the suggested

basis, note that the formula for tðvÞ and (8) for m ¼ s� 1 imply

x2 ns�1

2 ¼ u2
ns ¼ y1 þ ðvu2 nsÞ2

s�1

¼ y1 þ v2
s�1ðy1 þ ðvu2 nsÞ2

s�1

Þ2
s�1

¼ y1 þ v2
s�1

y2
s�1

1

¼ y1 þ y2
s�1

1 vy2
s�1�1

1 þ
Xs�1

i¼1

y2
s�1�2 i

1 y2
i�1

2

 !

¼ y1 þ vy2
s�1

1 þ y2
s�1

1

Xs�1

i¼1

y2
s�1�2 i

1 y2
i�1

2 :

Here x2ns�1

2 is represented by yk
1 y

l
2’s, and so we have the condition j < 2ns�1.

G4: The involution acts as follows: tðlÞ ¼ l2
nþ1, tðnÞ ¼ l2

n

n2
nþ1, hence

tðuÞ ¼ F ðu; u2 nsÞ ¼ uþ u2
ns þ ðuu2nsÞ2

s�1

by ð2Þ; ð9Þ

tðvÞ ¼ F ðv;Fðv2 ns

; u2
nsÞÞ ¼ vþ F ðv2 ns

; u2
nsÞ þ v2

s�1ðFðv2ns

; u2
nsÞÞ2

s�1

; ð10Þ

so that x2 s

1 ¼ y2
s

1 ¼ 0.

For the decomposition of x2 ns�1

2 , note (9) implies

x2 ns�1

2 ¼ ðutðuÞÞ2
ns�1

¼ u2
ns

:

Then by (9) again

x2ns�1

2 ¼ x1 þ ðux2 ns�1

2 Þ2
s�1

¼ x1 þ ðuðx1 þ ðux2 ns�1

2 Þ2
s�1

ÞÞ2
s�1

¼ x1 þ u2
s�1

x2 s�1

1

and apply (8) for u2
s�1

.

Similar arguments work for y2
ns�1

2 .

The proof for G9 is completely analogous as it uses the following similar

formulas for the action of the involution:

tðlÞ ¼ ln2
n

; tðnÞ ¼ l2
n

n2
nþ1;

tðuÞ ¼ F ðu; v2 nsÞ ¼ uþ v2
ns þ ðuv2nsÞ2

s�1

;

tðvÞ ¼ F ðv;Fðu2 ns

; v2
nsÞÞ:

G7: Let l be the complex conjugate to l and

u ¼ ½�1�F ðuÞ ¼ eðlÞ; v ¼ ½�1�F ðvÞ ¼ eðnÞ:
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The involution acts as follows:

tðlÞ ¼ l;

tðnÞ ¼ l2
n

n;

tðuÞ ¼ u1 uþ ðuuÞ2
s�1

modð1þ tÞ; by ð3Þ as F ðu; uÞ ¼ 0

tðvÞ ¼ F ðv; u2 nsÞ ¼ vþ u2
ns þ ðvu2nsÞ2

s�1

; by ð2Þ:

It follows that

0 ¼ uþ u modðuuÞ2
s�1

1 uþ u modðu2 sÞ

therefore

x2ns

1 ¼ ðuþ uÞ2
ns

¼ 0; as u2
ðnþ1Þs ¼ 0:

Then as uu ¼ x2 is nilpotent we can eliminate x2 i

2 ¼ ðuuÞ2
i

for i > s� 1 in

(3) after finite steps of iteration and write x2 s�1

2 as a polynomial in uþ u ¼ x1.

We will not need this polynomial explicitly but only

x2 s�1

2 1 0 modð1þ tÞ:

For y2
ns

1 ¼ 0 apply the formula for tðvÞ and take into account vþ v1
0 mod v2

s

.

For the decomposition of y2
s�1

2 note we have two formulas for F ðv; tðvÞÞ ¼
eðl2 nÞ ¼ u2

ns

, one is (8) and another is (3). Equating these formulas we have

an expression of the form

y2
s�1

2 ¼ ux2 ns�1
1 þ Pðy1; y2Þ; for some polynomial Pðy1; y2Þ:

Again as y2 is nilpotent we can eliminate y2
i

2 for i > s� 1 in (3) after finite

steps of iteration and write y2
s�1

2 in the suggested basis. Again we only will

need that

y2
s�1

2 1 ux2ns�1
1 mod Imð1þ tÞ:

This completes the proof for G7. The proofs for G8 and G11 are

analogous. Let us sketch the necessary information for the interested reader

to produce detailed proofs.

G8: the action of the involution is as follows:

tðlÞ ¼ ll2
n

; tðnÞ ¼ nl2
n

n2
n

;

tðuÞ ¼ Fðu; u2 nsÞ;

tðvÞ ¼ Fðv;Fðu2 ns

; v2
nsÞÞ:
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G11: one has

tðlÞ ¼ ln2
n

; tðnÞ ¼ nl2
n

n2
n

;

tðuÞ ¼ F ðu; v2 nsÞ;

tðvÞ ¼ F ðv;F ðu2ns

; v2
nsÞÞ:

For both cases to get x2 ns

1 ¼ 0 apply formula for tðuÞ and uþ u1
0 mod u2

s

. Similarly for y2
ns

1 ¼ 0. For the decompositions of x2 s�1

2 and

y2
s�1

2 apply (3) and (8). In particular for G8 we have by (3) x2 s�1

2 1 u2
ns

modulo some x1 f ðy1; x2Þ A Imð1þ tÞ. Therefore x2 ns�1

2 1 0 modð1þ tÞ and by

(8) for u, we have

x2 s�1

2 1 u2
ns

1 x2 ns�1
1 uþ x2 ns�1

2 1 x2 ns�1
1 u modð1þ tÞ:

Similarly y2
ns�1

2 1 0 modð1þ tÞ and we get

x2 s�1

2 1Fðu2 ns

; v2
nsÞ1 x2 ns�1

1 uþ y2
ns�1

1 v modð1þ tÞ:

Thus we obtain

x2 ns

1 ¼ y2
ns

1 ¼ 0; if G ¼ G7;G8;G9;

x2 s�1

2 1 0; y2
s�1

2 1 x2 ns�1
1 u modð1þ tÞ; if G ¼ G7;

x2 s�1

2 1 x2 ns�1
1 u; y2

s�1

2 1 x2 ns�1
1 uþ y2

ns�1
1 v modð1þ tÞ; if G ¼ G8;

x2 s�1

2 1 y2
ns�1

1 v; y2
s�1

2 1 x2ns�1
1 uþ y2

ns�1
1 v modð1þ tÞ; if G ¼ G11:

Lemma 2. Let g ¼ f0 þ f1uþ f2vþ f3uv A KðsÞ�ðBHÞ, where fi ¼
fiðx1; y1x2; y2Þ are some polynomials written uniquely in the monomials xo

of Lemma 1. Then g is invariant under involution t A G=H i¤

f3x1 ¼ f3 y1 ¼ 0; f1x1 ¼ f2 y1:

Proof. We have g is invariant i¤ g A Kerð1þ tÞ. Since each fi is

invariant

gþ tðgÞ ¼ f1ðuþ tðuÞÞ þ f2ðvþ tðvÞÞ þ f3ðuvþ tðuvÞÞ

¼ f1x1 þ f2 y1 þ f3ðx1 y1 þ x1vþ y1uÞ

and using Lemma 1 the result follows.

To prove Theorem 1 it su‰ces to see that all invariants are represented by

good elements. It is obvious for the elements aþ tðaÞ ¼ p�Tr�ðaÞ in the free
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summand ½F �C2 in (7). Therefore one can work modulo Imð1þ tÞ and check

the elements in the trivial summand T . Let us finish the proof of Theorem 1

using Propositions 2, i). We will turn to Proposition 2 ii) later.

Proposition 2. Let T 0 be spanned by the set

for G3;

fx j
2 y

l
2; x

j
2 y

l
2u; y

2 s�1
1 x

j
2 y

l
2v; y

2 s�1
1 x

j
2 y

l
2uv j j < 2ns�1; l < 2ðnþ1Þs�1g;

for G4;G9;

fxi
2 y

j
2; x

2 s�1
1 xi

2 y
j
2u; y

2 s�1
1 xi

2 y
j
2v; x

2 s�1
1 y2

s�1
1 xi

2 y
j
2uv j i; j < 2ns�1g;

for G7;G8;G11;

fxi
2 y

j
2; x

2 ns�1
1 xi

2 y
j
2u; y

2 ns�1
1 xi

2 y
j
2v; x

2 ns�1
1 y2

ns�1
1 xi

2 y
juv j i; j < 2s�1g:

Then

i) All terms in T 0 are represented by good elements and T � T 0.

ii) Moreover, T ¼ T 0.

Proof of i). The case of G3. The basis set of T 0 above is suggested by

Lemma 1 and Lemma 2: it is clear that all its terms are invariants. The terms

x
j
2 y

k
1 y

l
2 A Imð1þ tÞ, k > 0 are omitted as we work modulo 1þ t. Then all the

restrictions follow by

y2
s

1 ¼ 0; x1 ¼ 0; y2
ðnþ1Þs�1

2 ¼ 0; x2 ns�1

2 1 vy2
s�1

1 modð1þ tÞ:

Thus T � T 0. Let us check that T 0 is generated by the images of prod-

ucts of Euler classes under p�, where p is the double covering (4).

By definitions

p�ðaÞ ¼ l2
n

; p�ðdet p!ðnÞn aÞ ¼ nl2
n

nl2
n ¼ n2;

p�ðv 0Þ ¼ v2
s

; where v 0 ¼ eðdet p!ðnÞn aÞ:

Taking into account (8), for m ¼ s, we get

p�ðv 0Þ ¼ v2
s ¼ vy2

s�1
1 þ

Xs
i¼1

y2
s�2 i

1 y2
i�1

2 ¼ y2
s�1

2 þ vy2
s�1

1 modð1þ tÞ: ð11Þ

By definition x2 ¼ p�ðx2Þ and y2 ¼ p�ðy2Þ. Combined with (11) this

implies that all elements of the first and third parts of the basis set of T 0

are p� images of the sums of Euler classes.
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For the rest parts of the basis of T 0 note that the bundle l can be extended

to a bundle over BG, say l 0, represented by l 0ðaÞ ¼ e2pi=2
nþ1

, l 0ðbÞ ¼ l 0ðcÞ ¼ 1.

So p�ðeðl 0ÞÞ ¼ u. Then note that the second and last parts are obtained by

multiplying by u from the first and third parts respectively. Therefore we can

easily read o¤ all elements as p� images of the sums of Euler classes.

G4. Again the basis for T 0 is suggested by Lemma 1: we have x2 s

1 ¼
y2

s

1 ¼ 0 and x2 ns�1

2 and y2
ns�1

2 are decomposable. Then applying (8) we get

p�ðdetðp!nÞn aÞ ¼ n2;

p�ðeðdetðp!nÞn aÞÞ ¼ v2
s

1 vy2
s�1

1 þ y2
s�1

2 modð1þ tÞ;

p�ðdetðp!lÞn abÞ ¼ l2;

p�ðeðdetðp!lÞn abÞÞ ¼ u2
s

1 ux2 s�1
1 þ x2 s�1

2 modð1þ tÞ:

Thus G4 is good. The proof for G9 is completely analogous.

G7, G8, G11: It is clear that all of the basis elements for T 0 are invariants

and all restrictions are explained by Lemma 1. It su‰ces to check that all

elements are represented by images of the sums of Euler classes.

G7. The bundle l2
n

and n2
n

can be extended to line bundles over BG,

say l 0 and n 0 respectively. Then

p�ðeðn 0ÞÞ ¼ eðn2 nÞ ¼ v2
ns

and p�ðeðl 0ÞÞ ¼ eðl2 nÞ ¼ u2
ns

:

Applying again (8) we get

p�eðl 0Þ ¼ u2
ns ¼ ux2 ns�1

1 þ
Xns
i¼1

x2 ns�2 i

1 x2 i�1

2

1 ux2ns�1
1 þ x2ns�1

2 modð1þ tÞ

1 ux2ns�1
1 modð1þ tÞ

by Lemma 1.

Similarly, applying Lemma 1 we have for G8

p�ðeðdetðp!lÞÞÞ ¼ u2
ns

1 x2 ns�1
1 u modð1þ tÞ;

p�ðeðdetðp!nÞÞÞ ¼ Fðu2 ns

; v2
nsÞ1 x2 ns�1

1 uþ y2
ns�1

1 v modð1þ tÞ

and for G11

p�ðeðdetðp!lÞÞÞ ¼ v2
ns

1 y2
ns�1

1 v modð1þ tÞ;

p�ðeðdetðp!nÞÞÞ ¼ Fðu2ns

; v2
nsÞ1 x2 ns�1

1 uþ y2
ns�1

1 v modð1þ tÞ:

12 Malkhaz Bakuradze



For the proof of Theorem 1, we only need to see i). This completes the

proof of Theorem 1. r

Proposition 2 ii) may have an independent interest. Let us sketch the

proof.

Using the Euler characteristic formula of [10], Theorem D, one can

compute KðsÞ�-Euler characteristic

w2; sðGÞ ¼ rankKðsÞ� KðsÞevenðBGÞ;

for the classifying spaces of the groups in the title. The answer is as follows.

group w2; s

G1 2ð2nþ3Þs;

G2;G4;G9 22ðnþ1Þs�1 � 22ns�1 þ 2ð2nþ1Þs;

G3;G10 3 � 22ðnþ1Þs�1 � 2ð2nþ1Þs�1;

G5;G6;G7;G8;G11;G12 22ðnþ1Þs�1 � 22s�1 þ 23s;

G13;G16 22ðnþ1Þs�1 � 2ðnþ2Þs�1 þ 2ðnþ3Þs;

G14;G15;G17 22ðnþ1Þs�1 � 2ðnþ1Þs�1 þ 2ðnþ2Þs:

As T � T 0 it su‰ces to prove w2; sðTÞ ¼ w2; sðT 0Þ. It is easy to check the

following relation between the size of the trivial summand x ¼ w2; sðTÞ and

w2; sðGÞ for all groups under consideration

ðw2; sðHÞ � xÞ=2þ 2 sx ¼ w2; sðGÞ; ð12Þ

where w2; sðHÞ ¼ 22sðnþ1Þ.

Therefore it su‰ces to see that the number of basis elements of T 0 � G,

in Proposition 2 i) is equal to x in (12) for all cases

G w2; sðT 0Þ

G3 2ð2nþ1Þs;

G4;G9 4ns;

G7;G8;G11 4s: r
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