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Paperfolding sequences, paperfolding curves
and local isomorphism
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ABSTRACT. For each integer n, an n-folding curve is obtained by folding » times a strip
of paper in two, possibly up or down, and unfolding it with right angles. Generalizing
the usual notion of infinite folding curve, we define complete folding curves as the
curves without endpoint which are unions of increasing sequences of n-folding curves for
n integer.

We prove that there exists a standard way to extend any complete folding curve
into a covering of R? by disjoint such curves, which satisfies the local isomorphism
property introduced to investigate aperiodic tiling systems. This covering contains at
most six curves.

The infinite folding sequences (resp. curves) usually considered are se-
quences (ax),.n- < {+1,—1} (resp. infinite curves with one endpoint) obtained
as direct limits of n-folding sequences (resp. curves) for n € N. It is well known
(see [3] and [4]) that paperfolding curves are self-avoiding and that, in some
cases, including the Heighway Dragon curve, a small number of copies of the
same infinite folding curve can be used to cover R? without overlapping. On
the other hand, the last property is not true in some other cases.

In the present paper, we define complete folding sequences (resp. curves) as
the sequences (ax),.z < {+1,—1} (resp. the infinite curves without endpoint)
which are direct limits of n-folding sequences (resp. curves) for n e N. Any
infinite folding sequence (resp. curve) in the classical sense can be extended into
a complete folding sequence (resp. curve). On the other hand, most of the
complete folding sequences (resp. curves) cannot be obtained in that way.

We prove that any complete folding curve, and therefore any infinite
folding curve, can be extended in an essentially unique way into a covering of
R? by disjoint complete folding curves which satisfies the local isomorphism
property. We show that a covering obtained from an infinite folding curve can
contain complete folding curves which are not extensions of infinite folding
curves.
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One important argument in the proofs is the derivation of paperfolding
curves, which is investigated in Section 2. Another one is the local isomor-
phism property for complete folding sequences (cf. Section 1) and for cover-
ings of R? by sets of disjoint complete folding curves (cf. Section 3). The
local isomorphism property was originally used to investigate aperiodic tiling
systems. Actually, we have an interpretation of complete folding sequences as
tilings of R, and an interpretation of coverings of R? by disjoint complete
folding curves as tilings of R

1. Paperfolding sequences

The notions usually considered (see for instance [5]), and which we define
first, are those of n-folding sequence (sequence obtained by folding n times a
strip of paper in two), and oo-folding sequence (sequence indexed by N* =
N — {0} which is obtained as a direct limit of n-folding sequences for n € N).

Then we introduce complete folding sequences, which are sequences
indexed by Z, also obtained as direct limits of n-folding sequences for
neN. We describe the finite subwords of each such sequence. Using this
description, we show that complete folding sequences satisfy properties similar
to those of aperiodic tiling systems: they form a class defined by a set of local
rules, neither of them is periodic, but all of them satisfy the local isomor-
phism property introduced for tilings. It follows that, for each such sequence,
there exist 2 isomorphism classes of sequences which are locally isomorphic
to 1t.

DEerFINITIONS.  For each ne N and each sequence S = (a,...,a,) < {+1,
—1}, we write |S|=n and S = (—ay,...,—a;). We say that a sequence
(ai,...,a,) is a subword of a sequence (bi,...,b,) or (bi)rens OF (Pik)icyz

if there exists /& such that a;y = by, for 1 <k <n.

DeriNiTION.  For each n € N, an n-folding sequence is a sequence (a, ...,
ayn—1) = {+1,—1} obtained by folding n times a strip of paper in two, with
each folding being done independently up or down, unfolding it, and writing
ar = +1 (resp. a = —1) for each ke {l,...,2" — 1} such that the k-th fold
from the left has the shape of a v (resp. A) (we obtain the empty sequence for
n=0).

PropPeRrTIES. The following properties are true for each n e N:

1) If S is an n-folding sequence, then S is also an n-folding sequence.

2) The (n+ 1)-folding sequences are the sequences (S,+1,S) and the se-
quences (S,—1,S), where S is an n-folding sequence.

3) There exist 2" n-folding sequences (proof by induction on n using 2)).
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4) Any sequence (aj,...,dyi_1) is an (n+ 1)-folding sequence if and only
if (ax)|<p<on_; is an n-folding sequence and aj iy = (—l)kal for 0 <
k<2"-1.

5) If n>2 and if (ai,...,a:._1) is an n-folding sequence, then a1 =
(=1)*ay for 0<r<n—2and 0 <k <2""' —1 (proof by induction on
n using 4)).

DEFINITION.  An oo-folding sequence is a sequence (a,),.n+ such that
(ar,...,an_1) 1s an n-folding sequence for each ne N™.

DEFINITION. A finite folding sequence is a subword of an n-folding
sequence for an integer n.

ExampLEs. The sequence (+1,41,+1) is a finite folding sequence since it
is a subword of the 3-folding sequence (—1,+1,+1,+1,—1,—1,41). On the
other hand, (+1,+1,+1) is not a 2-folding sequence and (+1,+1,+1,+1) is
not a finite folding sequence.

DEFINITION. A complete folding sequence is a sequence (ax),.z < {+1,
—1} such that its finite subwords are finite folding sequences.

ExampLes. For each oco-folding sequence S = (ay), N, Write S=
(—a-n),e_n-- Then (S,+1,8) and (S,—1,S) are complete folding sequences
since (7a2n_1, o, —ap,+la,. .. ,azn_l) and (761277_1, e, —ap,—l,ag,.. .,azn_l)
are (n+ 1)-folding sequences for each n e N. In Section 3, we give examples
of complete folding sequences which are not obtained in that way.

It follows from the property 5) above that, for each complete folding
sequence (aj),., and each neN, there exists k€Z such that a; jym =
(=1)'ay for each /e Z. Moreover we have:

ProposITION 1.1.  Consider a sequence S = (ay),., < {+1,—1}.  For each
n e N, suppose that there exists h, € Z such that a; ,jom = (—l)kah” for each
k € Z, and consider E, = h, +2"Z and F, = h, +2"*'Z.  Then, for each n e N:
) Z—E,={heZ|ay 1 =ay for each ke L} and Z — E, is the disjoint
union of Fy, ..., F,_1;
2) for each he E,, (a_ani1,...,ap420—1) is an (n+ 1)-folding sequence;
3) for each heZ, if (aj_omiqf1y--.,apipni_1) s an (n+ 2)-folding sequence,
then he E,.

Proor. It follows from the definition of the integers /4, that the sets
F, are disjoint. For each neN, we have E,=Z7Z — (FoU---UF,_;) since
Z— (FyU---UF,_;) is of the form h+2"Z and h, does not belong to
FoU---UF, ;.
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For each n e N, there exists no /&€ E, such that a, ;.1 =a, for each
k € Z, since we have E, = (h, + 2"\ Z)U (hyy1 + 2" Z), a) 1y01 = —ay, and
ap,. 4om2 = —ay,,,. On the other hand, we have a;, rone2=a;, for 0<
m<n-—1 and keZ, and therefore a, ;1 =a; for he FybU---UF,_; and
k € Z, which completes the proof of 1).

We show 2) by induction on n. The case n =0 is clear. If 2) is true for
n, then, for each he E,;;, the induction hypothesis applied to (@ni2k)icz

implies that (@, pm o)1 < <oni1_p i an (n + 1)-folding sequence; it follows that

(@p_gniisty -y peoni_q) 18 an (n+ 2)-folding sequence, since aj_jniiyqiox =
(=1)*ay_yu1,y for 0 <k <21 —1.

Concerning 3), we observe that, for each h € Z, if (a,_yn141,. .., @piomi_1)
is an (n+ 2)-folding sequence, then aj on = —a,_»«. According to 1), it fol-

lows h—2" € E,, and therefore he E,. W

COROLLARY 1.2.  Any sequence (ap),., < {+1,—1} is a complete folding
sequence if and only if, for each n € N, there exists h, € Z such that aj, jm1 =
(=1)*a, for each ke Z.

For each complete folding sequence S and each n € N, the sets E, and F,
of Proposition 1.1 do not depend on the choice of /,. We denote them by
E,(S) and F,(S). We write E, and F, instead of E,(S) and F,(S) if it creates
no ambiguity.

COROLLARY 1.3. Any complete folding sequence is nonperiodic.

Proor. Let S = (ay),., be such a sequence, and let r be an integer such
that aj,., = a, for each heZ. For each neN, it follows from 1) of Prop-
osition 1.1 that r+ (Z—-E,) =Z—E,, whence r+ E,=E, and re2"Z.
Consequently, we have r=0. H

Now, for each complete folding sequence S = (a5),.4, We describe the
finite subwords of S and we count those which have a given length.

LemMma 1.4, For each ne N and for any r,s € Z, we have r —s € 2"\ Z if
(@rs1y- ey riy) = (Agp1y .-y asyy) for t =sup(27,7).

Proor. If r—s¢2Z, then we have for instance re E| and se Fy. It
follows a1 = —a,43 = a5 = —a,y7 since r+ 1€ Fy,. Moreover, we have
agis = —agyq if s+ 1€ F, and ay7 = —ag3 if s+3€F;. One of these two
possibilities is necessarily realized since s + 1 € E}, which contradicts (@41, ...,
ari7) = (g1, - -, Asy7).

If r—se2kZ — 217 with 1 <k <n, then we consider he{l,...,2%}
such that r+he F,_1. We have a,,),p2¢ = (—1)"a,,, for each me Z, and
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in particular a,,;, = —a,y;, which contradicts (@i 1,...,dr11) = (dgi1s- .-, dsir)
since 1 <h<2f<t W

ProposITION 1.5.  Consider n e N and write T = (api1,. .., ap2n—1) with
heE, Then any sequence of length <2"t' —1 is a subword of S if and
only if there exist {,ne{—1,+1} such that it can be written in one of the
forms:

(1) (T1,¢{, ) with Ty final segment of T and T initial segment of T

(2) (T1,¢{, T») with Ty final segment of T and T initial segment of T;

(3) (T1,(, T,n, T>) with Ty final segment and T, initial segment of T;

4) (T1,(,T,n, T>) with Ty final segment and T, initial segment of T.

If sup(2™,7) < t < 2" — 1, then any subword of length t of S can be written in
exactly one way in one of the forms (1), (2), (3), (4).

Proor. We can suppose / € F, since T and T play symmetric roles in the
Proposition. Then we have (axy1,...,a5400—1) =T for ke F, and (apy1, ...,
ayion 1) =T for ke E,,;. It follows that each subword of S of length <
21 1 can be written in one of the forms (1), (2), (3), (4).

Now, we are going to prove that each sequence of one of these forms can
be expressed as a subword of S in such a way that the part 77 is associated to
the final segment of a sequence (ayii,...,dk+2n—1) With k € E,.

First we show this property for the sequences of the form (1) or (3). It
suffices to prove that, for any {,# € {—1,+1}, there exists k € F, such that
ax—on = { and a; = 7, since these two equalities imply (@j_pnii 1, .., dgyan—1) =
(T,{,T,n,T). We consider / € F, such that ¢y =#. We have a;,,,.> = 5 for
each re Z. Moreover, {{ +r-2"t> —2"|reZ} is equal to F,,1 or E,». In
both cases, there exists r € Z such that a;,,,.2_5.» =, and it suffices to take
k=1+r-2"2 for such an r.

Now we show the same property for the sequences of the form (2) or
(4). Tt suffices to prove that, for any (,7e{—1,+1}, there exists ke F,
such that a; = { and apy» =7, since these two equalities imply (ax_ony1,-. .,
agiomi_y) = (T,(,T,n,T). We consider /e F, such that ¢;={. We have
appoma = for each reZ. Moreover, {{+r-2""2+2"|reZ} is equal to
F,11 or E,1r. In both cases, there exists r € Z such that a;,ym2,5» = #, and it
suffices to take k =/ +r-2""2 for such an r.

Now, suppose that two expressions of the forms (1), (2), (3), (4) give the
same sequence of length ¢ with sup(2”,7) <t <2"! — Consider two
sequences (dyi1,...,dr1;) and (dgi1,...,ds,) wWhich realize these expressions
in such a way that, in each of them, the part 7 of the expression is associated
to a final segment of a sequence (djyi,...,dri20—1) With k € E,, while the part
T, is associated to an initial segment of a sequence (ajii,...,d;120—1) Wwith
[ =k+2" or [ =k+2"".  Then, by Lemma 1.4, the equality (a,1,...,d:,)

),
1.
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= (agy1,. .. ,ay,) implies r — s € 2"*1Z. Tt follows that the two expressions are
equal. H

COROLLARY 1.6. Any finite folding sequence U is a subword of S if and
only if U is a subword of S.

Proor. For each sequence T = (a1, ...,a5121-1) with ne N and h e E,,
the sequence U is of the form (1) (resp. (2), (3), (4)) relative to T if and only if
U is of the form (2) (resp. (1), (4), (3)) relative to 7. M

It follows from the Corollary below that, for each integer n > 3, each
complete folding sequence has exactly 8 subwords which are n-folding se-
quences:

CoroLLARY 1.7. Consider ne N and write T = (apy1,...,ap00—1) With
heE, Then any (n+ 2)-folding sequence is a subword of S if and only if it
can be written in the form (T,—{,T,n,T,(,T) or (T,=(, T,n,T,(,T) with
Lne{+l, -1}

Proor. For each ke Z, if (ay_sniiqy..., @ 0m1_1) 18 an (n + 2)-folding
sequence, then ke E, by 3) of Proposition 1.1. Consequently, we have
(ak+1, ce ,ak+2n_1) =T or (ak+1, B ,ak+2n_1) = T, and (ak72u+1+1, ceey ak+2n+1,1)

is of the required form.

In order to prove that each sequence of that form is a subword of S,
we consider k € E,; and we write U = (dgy1,...,q4001-1). We have U =
(T,e,T) or U= (T,e, T) with ¢ = F1. Here we only consider the first case;
the second one can be treated in the same way since 7 and T play symmetric
roles in the Corollary.

We apply Proposition 1.5 for n + 1 instead of n, and we consider the forms
(1), (2), (3), (4) relative to U. For any {,n e {+1,—1}, the sequence (T,—(,
T,n,T,(,T) is a subword of S because it is equal to (U,n, U) or to (U,n, U),
and therefore of the form (1) or (2) relative to U. The sequence (T, —(, T,7,
T,(,T) is also a subword of S because it is of the form (7,«, U,B,T) or
(T,o, U,B,T) with o, B € {+1,—1}, and therefore of the form (3) or (4) relative
toU. N

The following result generalizes [1, Th., p. 27] to complete folding
sequences:

THEOREM 1.8. The sequence S has 4t subwords of length t for each integer
t>7 and 2, 4, 8, 12, 18, 23 subwords of length t =1,2,3,4,5,6.

Proor. The proof of the Theorem for ¢=1,2,3,4,5,6 is based on
Proposition 1.5. We leave it to the reader.
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For ¢ > 7, we consider the integer n > 2 such that 2" < ¢ <2"*! — 1, and
we write T = (dpt1,...,ap420—1) With h € E,. By Proposition 1.5, it suffices to
count the subwords of length ¢ of S which are in each of the forms (1), (2), (3),
(4) relative to T.

Each of the forms (1), (2) gives |T1|+ |T>| =¢—1, and therefore |7}| >
t-1)—(2"=1)=rt—-2". As |T1|<2"—1, we have 2"—1)—(r—2") +1
=21 ¢ possible values for |7)|. Consequently, there exist 4(2"*! —7)
sequences associated to these two forms, since there are 2 possible values
for (.

Each of the forms (3), (4) gives |T)|+ |T2| =t—2"—1, and therefore
|T| <t—2"—1. We have t—2" possible values for |7;|. Consequently,
there exist 8(z — 2") sequences associated to these two forms, since there are 4
possible values for ({,#). Now, the total number of subwords of length 7 in S
is 42" — 1) +8(t—2") =4r. W

For each sequence (ay),., = {+1,—1}, we define a tiling of R as follows:
the tiles are the intervals [k,k+ 1] for ke Z, where the “colour” of the
endpoint k (resp. k + 1) is the sign of a; (resp. ax11). Each tile is of one of the

forms [+,+], [+, -], [=,+], [, =], and each pair of consecutive tiles is of one
of the forms ([+7+L[+7+])> ([+7+L[+7_])> ([+’_}a[_7+])> ([+’_]7[_7_D:
([77+L[+’+])’ ([77+L[+77]): ([777]3[77+])7 ([777]3[777])'

Concerning the theory of tilings, the reader is referred to [7], which
presents classical results and gives generalizations based on mathematical
logic. Two tilings of R" are said to be isomorphic if they are equivalent
up to translation, and locally isomorphic if they contain the same bounded sets
of tiles modulo translations.

We say that two sequences (aj),.z(bn)yez © {+1,—1} are isomorphic
(resp. locally isomorphic) if they are equivalent up to translation (resp. they
have the same finite subwords). This property is true if and only if the
associated tilings are isomorphic (resp. locally isomorphic). It follows from the
definitions that any sequence (ap),., = {+1,—1} is a complete folding se-
quence if it is locally isomorphic to such a sequence.

COROLLARY 1.9. Any complete folding sequence S = (ay),., is locally
isomorphic to S = (—a_y),.z, but not locally isomorphic to —S = (—ay), .y

Proor. The first statement is a consequence of Corollary 1.6 since each
finite folding sequence T is a subword of S if and only if 7 is a subword of S.
In order to prove the second statement, we consider T = (api1, dpro, @hi3)
with he E,. We have —T # T since aj.3 = —ap,;. By Corollary 1.7, the
4-folding sequences which are subwords of S are the sequences (7T,—(, T,
n,T,(,T) and (T,-¢, T,n,T,(,T) for {,ne{+1,—1}, while the 4-folding
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sequences which are subwords of —S are the sequences (—7,—¢(,—T,n,—T,
(,—T) and (-T,-¢,—T,n,—T,(,—T) for {,ne{+1,—1}. Consequently, S
and —S have no 4-folding sequence in common. M

REMARK. For each oo-folding sequence S, it follows from Corollary 1.9
that 7 = (S,+1,S) and U = (S, —1,S) are locally isomorphic, since U = T.

We say that a tiling 7 of R” satisfies the local isomorphism property if, for
each bounded set of tiles # <= 7, there exists r € R} such that each ball of
radius r in R” contains the image of .# under a translation. Then any tiling %
is locally isomorphic to J provided that each bounded set of tiles contained in
9 is the image under a translation of a set of tiles contained in 7.

We say that a sequence (a;),., < {+1,—1} satisfies the local isomorphism
property if the associated tiling satisfies the local isomorphism property.

Like Robinson tilings and Penrose tilings, complete folding sequences are
aperiodic in the following sense:

1) they form a class defined by a set of rules which can be expressed by first-
order sentences (for each n e N, we write a sentence which says that each
subword of length 2" of the sequence considered is a subword of an
(n+ 1)-folding sequence);

2) neither of them is periodic, but all of them satisfy the local isomorphism
property.

The second statement of 2) follows from the Theorem below:

THEOREM 1.10. Let S = (ay), ., be a complete folding sequence, let T be a
Sinite subword of S, and let r be an integer such that |T| <2". Then T is a
subword of (aps1,-..,an102r—2) for each heZ.

Proor. There exists k € E, such that T is a subword of (ax_2ryy,...,
ak+2r,1). We have (ak,2v+1, - 7ak+2r,1) = (U7 Z, U) with {=a; and U =
(@rs1y- - Qryarot).

If ke E,+1, we consider m € F,;; such that a, ={; we have a,,,,+ =
(—1)"¢ for each ne Z. 1If k € F,, we write m = k; we have a,, 2 = (—1)"(
for each neZ. In both cases, for each neZ, we have a,,,,+ ={ and
(@mgn2rs_arits s Quanaragar—) = (U, G U).

For each heZ, there exists neZ such that h—m+2" <n-2"3 <h—
m+9-2" — 1, which implies 7+ 1 <m+n-2""3 2"+ 1and h+10-2" -2 >

m—+n-2"3 42"~ 1. Then (@ pori3_2ri1y--->@minarispar—1) is a subword of
(@hs1s-- - apr102:—2), which completes the proof of the Theorem since T is a
subword of (a,11+,1_2:-A372:'+1, - 7Clm+n‘2r+3+2r71). |

The second part of the Theorem below is similar to results which were
proved for Robinson tilings and Penrose tilings:
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THEOREM 1.11. 1) There exist 2 complete folding sequences which are
pairwise not locally isomorphic.

2) For each complete folding sequence S, there exist 2 isomorphism
classes of sequences which are locally isomorphic to S.

Proor oF 1). It follows from Proposition 1.1 that each complete folding
sequence (ap),.z is completely determined by the following operations:

— successively for each ne N, we choose among the 2 possible values the
smallest # e NN F,, then we fix a, € {+1,—1};

— for the unique /e ﬂneNEn if it exists, we fix a; € {+1,—1}.

Moreover, each possible sequence of choices determines a complete folding

sequence.

Now, it follows from Corollary 1.7 that, for each complete folding se-
quence S and each integer m, there exist an integer n > m and a complete
folding sequence 7 such that S and 7 contain as subwords the same m-folding
sequences, but not the same n-folding sequences.

ProOF OF 2). The sequence S is not periodic by Corollary 1.3, and
satisfies the local isomorphism property according to Theorem 1.10. By [7,
Corollary 3.7], it follows that there exist 2“ isomorphism classes of sequences
which are locally isomorphic to S. W

REMARK. Concerning logic, we note two differences between complete
folding sequences and Robinson or Penrose tilings. First, the set of all
complete folding sequences is defined by a countable set of first-order sentences,
and not by only one sentence. Second, it is the union of 2% classes for
elementary equivalence, i.e. local isomorphism, instead of being a single class.

2. Paperfolding curves: self-avoiding, derivatives, exterior

In the present section, we define n-folding curves, finite folding curves, co-
folding curves and complete folding curves associated to n-folding sequences,
finite folding sequences, oo-folding sequences and complete folding sequences.
We show their classical properties: self-avoiding, existence of ‘“‘derivatives.”

Then we prove that any complete folding curve divides the set of all points
of Z?* which are “exterior” to it into zero, one or two “connected components,”
and that these components are infinite.

As an application, we consider curves which are limits of successive anti-
derivatives of a complete folding curve. Any such curve is equal to the closure
of its interior. We show that, except in a special case, its exterior is the union
of zero, one or two connected components. In some cases, its boundary is a
fractal.
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Finally we prove that, for each finite subcurve F of a complete folding
curve C, there exist everywhere in C some subcurves which are parallel to F.

We provide R? with the euclidean distance defined as d((x, y), (X', ")) =
\/(x’ —x)>+ (y' = y)? for any x,y,x’,y' €R.

We fix o« eR} small compared to 1. For any x,yeZ and any (,ne
{+1,—1}, we consider (cf. Fig. 1) the segments of curves

Cu(x,3,4m) = [(x + o,y + (o), (x + 20, p) U [(x + 22, p), (x + 1 = 22, p)]
Ul(x+1—20,y),(x+1—0o,y+na)]
and
Cr(x,3,8m) = [(x+ Loy y 4+ 2), (3, y + 20)] U [(x, p + 200), (x, p + 1 = 200)]
Ul(x,y+1=2a),(x+no,y+1—0a)].

We say that [(x,y),(x+1,p)] is the support of Cg(x,y,{,n) and [(x, ),
(x,y+1)] is the support of Cy(x,y,(,n).

We denote by Cj(x, y,{,n) the segment Cy(x, y,{,n) oriented from left to
right, and Cj(x, y,{,n) the segment Cy(x, y,{,n) oriented from right to left.
Similarly, we denote by Cjf(x,y,(,n) the segment Cy(x, y,{,n) oriented from
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bottom to top, and Cj (x, y,{,n) the segment Cy(x,y,{,n) oriented from top
to bottom. From now on, all the segments considered are oriented.
We associate to Cji(x,y,(,n) the tile

Ph(x, y,6m) = {(u,0) € R [Ju— (x+ 1/2)] + |v - y] < 1/2}
U {(u,0) € R?[sup(lu — (x+ 1 — )], [0 — (y + 2)]) <}
—{(u,0) € R? [sup(lu — (x + )|, [v — (y+ {2)]) < o},
and to Cy(x,y,(,n) the tile
Py (x, »,6m) = {(u,0) € R? [ Ju— (x +1/2)| + v — y| < 1/2}
U {(u,v) € R?[sup(ju — (x + )|, v — (y + {)|) < o}
—{(u,v) e R?[sup(ju — (x + 1 = )|, [o = (¥ +720)|) < a}.
Similarly, we associate to C}/(x, y,{,n) the tile
Py(x, 9,0m) = {(u,0) € R? [Ju— x| + [o— (v + 1/2)| < 1/2}
U {(u,0) € R? |sup(fu — (x + no)], [o — (y+ 1 —2)]) < o}
—{(u,0) e R?[sup(ju — (x + )|, | — (y + o)) < o},
and to Cy(x,y,(,n) the tile
Py(x, 9,0m) = {(u,0) € R [Ju— x| + [o— (v + 1/2)] < 1/2}
U{(u,v) € R?|sup(lu — (x + o), [o = (» +2)]) < o}
—{(u,v) e R? | sup(ju — (x + )|, [v — (¥ + 1 = 2)|) < a}.

We note that each tile is obtained from a square, which has a diagonal of
length 1 with endpoints in Z?, by putting “bumps” on two of its four edges.

We say that two segments C;, C, are consecutive if they just have one
common point and if the end of Cj is the beginning of C,. This property is
true if and only if the intersection of the associated tiles consists of an edge
with a bump (see Fig. 1). The supports of two consecutive segments form a
right angle.

A finite (resp. infinite, complete) curve is a sequence (Ci,...,C,) (resp.
(Ci)jens (Ci);cq) of segments with C;, Ciy1 consecutive for each integer i such
that C; and C;.| exist.

We identify two finite curves if they only differ in the beginning of the first
segment and the end of the last one. We also identify two infinite curves if
they only differ in the beginning of the first segment.
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In the case of a complete curve, the tiles and the squares obtained by
erasing their bumps cover the same part of R>.

We say that a curve (Ci,...,C,) (resp. (Gi);cn> (Ci)icz) 18 self-avoiding if
we have C;NC; =& for |j—i| >2. Such a curve defines an injective con-
tinuous function from a closed connected subset of R to R

The tiles associated to the segments of a self-avoiding curve are non-
overlapping, except possibly because of the bump at the end of the last
segment.

We consider that two curves (Cy,...,Cy) and (Dy,...,D,) can be con-
catenated if the end of the support of C,, and the beginning of the support
of D; form a right angle. Then we modify the end of C, and the beginning
of D in order to make them consecutive.

For each finite curve (C;),_;_, (resp. infinite curve (C;), N+, complete
curve (Ci);.z), we consider the sequence (7,);_;-, ; (resp. (7;);en+> (Mi)icz)
defined as follows: for each i, we write 5, = +1 (resp. #, = —1) if we turn
left (resp. right) when we pass from C; to C;;. Two curves are associated
to the same sequence if and only if they are equivalent modulo a positive
isometry.

For each segment of curve D, we denote by D the segment obtained from
D by changing the orientation. If a finite curve C = (Cy,..., C,) is associated
to S=(,...,1, ), then C=(C,,...,Cy) is associated to S= (-7, ,...,
—n,). If a complete curve C = (C;),., is associated to S = (77;,);.z, then C =
(C_is1);cz is associated to S = (—7_;); 7.

For each segment of curve D with support [X, Y] and oriented from X
to Y, we call X, Y the endpoints, X the initial point and Y the terminal point
of D. The initial point of a curve (Cy,...,C,) is the initial point of C;, and
its terminal point is the terminal point of C,. The vertices of a curve are the
endpoints of its segments.

We say that two segments of curves, or two curves, are parallel (resp.
opposite) if they are equivalent modulo a translation (resp. a rotation of
angle 7).

We have Z? = MiUM, and MiNM, = & for My ={(x,y) e Z*|x+y
odd} and M, = {(x,y) e Z*|x + y even}. We denote by M one of these two
sets and we consider, on the one hand the curves with supports of length 1 and
vertices in Z*, on the other hand the curves with supports of length /2 and
vertices in M.

Let C be a segment of the second system, let X be its initial point and let
X' be its terminal point. Then, in the first system, there exist two curves
(A41,A4,) and (By, B,), associated to the sequences (—1) and (+1), such that X
is the initial point of 4 and By, and X"’ is the terminal point of 4, and B, (see
Fig. 2A).
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Fig. 2A Fig. 2B

Now, consider in the second system a segment C’ such that (C,C’) is a
curve associated to a sequence (¢) with ¢ e {+1,—1}. Let X" be the terminal
point of C’. In the first system, denote by (A4, A}) and (Bj, B)) the curves
associated to the sequences (—1) and (+1), such that X’ is the initial point of
A{ and B, and X" is the terminal point of 4} and B).

Then (see Fig. 2B), (41,4»,B;,B}) and (Bi, B>, A],A}) are curves asso-
ciated to (—1,&+1) and (+1,¢,—1). Each of these curves has X, X', X"
among its vertices, and crosses the curve (C,C’) near X'. Moreover (4;, A4,
A}, A}) and (B, B, Bj, B)) are not curves.

For each curve (Ci,...,Cy) (resp. (Ci),cn> (Ci)jez) of the first system
and each curve (Dy,...,D,) (resp. (D;);cn+> (Di);cz) of the second system, we
say that C is an antiderivative of D or that D is the derivative of C if, for each
integer i
a) if D;y; exists, then Cpy1 and Dy have the same initial point;

b) if D; exists, then Cy; and D; have the same terminal point;
c) if D; and D,y exist, then C crosses D near the terminal point of D; (we say

that C alternates around D).

Each curve of the second system has exactly two antiderivatives in the first
one. Each curve C of the first system has at most one derivative in the second
one. If that derivative exists, then the sequence (#;,...,75,_1) (resp. (#;);cn+>
(1:);ez) of elements of {—1,+1} associated to C satisfies #,;,, = (—1)'y; for
each integer i such that #,,,, exists. Conversely, if this condition is satisfied,
then the derivative of C is defined by taking for M the set M; or M, which
contains the initial point of Cj, and replacing each pair of segments (Cy;_1, Cy;)
with a segment D;.

For the definition of the derivative of a complete curve (C;),.,, we permit
ourselves to change the initial point of indexation, i.e. to replace (C;);., with
(Citk)jez for an integer k. With this convention, the derivative exists if and
only if #7,; = (—1)', for each i € Z or Naip1 = (=1)'y, for each i e Z. If these
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two conditions are simultaneously satisfied, we obtain two different derivatives;
in that situation, which only concerns one isometry class of curves, we consider
that the derivative is not defined.

We define by induction the n-th derivative C™ of a curve C, with C(0) = C
and C"tV derivative of C" for each neN, as well as the n-th antideriva-
tives. It is convenient to represent the successive derivatives of a curve C on
the same figure in such a way that C™ alternates around C"*V for each n e N
such that C"*1) exists. This convention will be used later in the paper.

For each n € N, we call an n-folding curve any finite curve associated to an
n-folding sequence. For each n-folding sequence obtained by folding n times
a strip of paper, we obtain the associated n-folding curve by keeping the strip
folded according to right angles instead of unfolding it completely.

We see by induction on n that the n-folding curves are the n-th anti-
derivatives of the curves which consist of one segment. Consequently, up to
isometry and up to the orientation, there exist one 2-folding curve (cf. Fig. 3A),
two 3-folding curves (cf. Fig. 3B), and four 4-folding curves (cf. Fig. 3C).

We call oo-folding curve (resp. finite folding curve, complete folding curve)
each curve associated to an oo-folding sequence (resp. a finite folding sequence,
a complete folding sequence). Any curve (C;);.n+ (resp. (Ci);.,) is an oo-
folding curve (resp. a complete folding curve) if and only if it is indefinitely
derivable.

The successive antiderivatives of a paperfolding curve, as well as its suc-
cessive derivatives if they exist, are also paperfolding curves.

ProOPOSITION 2.1.  Antiderivatives of self-avoiding curves are self-avoiding.

Proor. Consider a curve C whose derivative D is self-avoiding. If C is
not self-avoiding, then there exist two segments of C which have the same
support. These two segments are necessarily coming from segments of D
which have a common endpoint.

In order to prove that this situation is impossible, we consider the function
7 which is defined on the set of all supports of segments of D with z([(«, ),

Y
'
|
|
i
'

Fig. 3A. one 2-folding curve Fig. 3B. two 3-folding curves
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Fig. 3C. four 4-folding curves

(u+1,0+¢)]) = +1 (resp. —1) for each (u,v) € Z*> and each ¢ {—1,+1} such
that C is above (resp. below) D on [(u,v), (u+ 1,v+¢)]. It suffices to observe
that the equality 7([(«,0'), (' +1,0' +¢")]) = (=1)" "“2([(u,v), (u + 1,0+ ¢)])
is true wherever 7 is defined. In fact, it is true for the supports of consecutive
segments of D because C alternates around D, and it is proved in the general
case by induction on the number of consecutive segments between the two
segments considered. W

COROLLARY 2.2. Paperfolding curves are self-avoiding.

Proor. For each integer n, each n-folding curve is self-avoiding because
it is the n-th antiderivative of a self-avoiding curve which consists of one
segment. Each finite folding curve is self-avoiding since it is a subcurve of
an n-folding curve for an integer n. Complete folding curves and oo-folding
curves are self-avoiding because their finite subcurves are self-avoiding.

Another proof is given by [4, Observation 1.11, p. 134]. W

For each self-avoiding curve C and any x, y € Z, we write:
pe(l(x,»), (x+ 1, »)]) = +1 (resp. —1) if C contains a segment with the initial
point (x, y) (resp. (x+1,y)) and the terminal point (x+ 1, y) (resp. (x,»));
pe(l(x,»), (x, y+ 1)]) = +1 (resp. —1) if C contains a segment with the initial
point (x, y) (resp. (x,y+ 1)) and the terminal point (x,y+ 1) (resp. (x,y)).

There exists ¢ € {—1,+1} such that po([(x, ), (x +1,»)]) = (=1)"""* and
pe([(x, 1), (x, y+ 1)]) = (=1)" """ wherever p. is defined. In fact, ¢ is the
same for the supports of two consecutive segments, and we see that it is the
same for the supports of any two segments by induction on the number of
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consecutive segments between them. We extend the definition of p., according

to this property, to the set of all intervals [(x, ¥), (x + 1, y)] or [(x, y), (x, y + 1)]

with x, ye Z.

For each self-avoiding curve C = (C;);., and any pairs (C;,Ci1),

(Cj, Cj41) of consecutive segments, if C; and C; have the same terminal point,

then, by the property of p. stated above, we turn left when passing from C;

to Ciyy if and only if we turn left when passing from C; to Cjy. For each

X e Z?, we write o¢(X) = +1 (resp. —1) if X is the common endpoint of two

consecutive segments C;, Ciy; of C and if we turn left (resp. right) when

passing from C; to Ci,q.
It follows from the definition of derivatives that, for each k € N:

a) if C®9 exists, then there exists Xs; € Z* such that the set of all vertices of
C@) is contained in Ey(C) = Xo + 252,

b) if C*+D exists, then there exists X5 € Z> such that the set of all vertices
of CPk+1 is contained in Eayi1(C) = Xops1 + (25,257 + (2%, —2K)Z.
The set E,(C) is defined for each n e N such that C" exists. If C*D

exists, then we have E,|(C) < E,(C); we write F,(C) = E,(C) — E,;+1(C).
If S'=(y;);., is the sequence associated to a complete folding curve C =

(Ci);cz, then, for each i € Z and each n € N, the terminal point of C; belongs to

E,(C) if and only if i belongs to E,(S).

The following lemma applies, in particular, to complete folding curves:

LemMmA 2.3.  Let C be a derivable self-avoiding complete curve. Consider a
square Q = [x,x+ 1] x [y, y+ 1] with x,y e Z. If four vertices of Q are end-
points of segments of C, then at least three segments of C, with two of them
consecutive, have supports which are edges of Q. If three vertices of Q are
endpoints, then the two edges determined by these vertices are supports of
segments of C, or neither of them is a support. If C is derivable twice and if
two vertices of Q are endpoints, then they are necessarily adjacent.

Proor. We denote by W, X, Y, Z the vertices of Q taken consecutively,
and we show that the cases excluded by the Lemma are impossible.

First suppose that an edge of Q, for instance WX, is the support of a
segment of C, that a vertex of Q which does not belong to this edge, for
instance Z, is a vertex of C, and that the edges of Q which contain this vertex
are not supports of segments of C. Consider the two pairs of consecutive
segments of C which respectively have W and Z as a common endpoint.
Then the property of p. implies that these two pairs both have the orientation
shown by Figure 4A, or both have the contrary orientation, which contradicts
the connectedness of C (see Fig. 4A).

Then suppose that two opposite edges of Q, for instance WX and YZ, are
supports of segments of C, and that the two preceding segments, as well as the
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two following segments, have supports which are not edges of Q. Then the
property of p. implies that the two sequences of three consecutive segments
formed from these six segments both have the orientation shown by Figure 4B,
or both have the contrary orientation. Suppose for instance that X and Z
belong to Fy(C). Then the two pairs of segments of C, extracted from the
two sequences, which respectively have X and Z as a common endpoint, give
opposite segments of D, which contradicts the property of p, (see Fig. 4B).

Now suppose that W, X, Y, Z are vertices of C and that no edge of Q is
the support of a segment of C. Then the property of p. implies that the pairs
of segments of C which respectively have W, X, Y, Z as a common endpoint
all have the orientation shown by Figure 4C, or all have the contrary orienta-
tion. Suppose for instance that W and Y belong to Fy(C). Then the pairs of
segments of C which respectively have W and Y as a common endpoint give
opposite segments of D, which contradicts the property of p, (see Fig. 4C).

Finally suppose that C is derivable twice and that only two opposite
vertices of Q, for instance W and Y, are vertices of C. If W and Y belong
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to Fy(C), then, as in the previous case, the pairs of segments of C which
respectively have W and Y as a common endpoint give opposite segments of
D, which contradicts the property of pp.

If W and Y belong to E;(C), we consider the two squares of width /2
which have WY as their common edge. As W and Y are vertices of D, one of
the squares has an edge adjacent to WY which is the support of a segment
of D. On the other hand, as the center X or Z of that square is not a vertex
of C, the edge WY and the opposite edge are not supports of segments of D,
which contradicts the two first statements of the Lemma applied to D. H

DErFINITIONs.  For any X,Y € Z?, a path from X to Y is a sequence
(Xo,...,X,) cZ*> with neN, Xo=X, X, =Y and d(X;_,X;) =1 for 1<
i <n. For each complete curve C, we call exterior of C and we denote by
Ext(C) the set of all points of Z> which are not vertices of C. A connected
component of Ext(C) is a subset K which is maximal for the following
property: any two points of K are connected by a path which only contains
points of K.

THEOREM 2.4. The exterior Ext(C) of a complete folding curve C is the
union of 0, 1 or 2 infinite connected components, and each of these components is
the intersection of Ext(C) with one of the 2 connected components of R>-C.

LemMA 2.4.1. The connected components of Ext(C) are infinite.

PrOOF OF LEMMA 2.4.1. For each neN, we have Ext(C™) = Ext(C)N
E,(C) since each point of E,(C) is a vertex of C™ if and only if it is a vertex
of C.

If K is a connected component of Ext(C), then KNE,(C) is a union of
connected components of Ext(C") for each neN. Otherwise, the smallest
integer n such that this property is false satisfies n > 1, and E, |(C) contains
the consecutive vertices W, X, Y, Z of a square of width (\/5) "1 with W.,Y e
Ext(C™), WeK, Y¢K and X, Z vertices of C"~V which contradicts
Lemma 2.3 applied to C"~ 1.

For each connected component K of Ext(C) and each neN, we have
FEKNE,1(C) = KNE,(C), or KNE,(C) is a union of connected compo-
nents which consist of one point; in fact, for any X, Y € E,(C) with d(x, y) =
(v2)", we have X € F,(C) and Y € E,;(C), or Y € F,(C) and X € E,1(C).
Consequently, in order to prove that Ext(C) has no finite connected compo-
nent, it suffices to show that each Ext(C) has no connected component which
consists of one point.

Suppose that there exist a twice derivable complete curve D and a point
U = (u,v) € Z* such that {U} is a connected component of Ext(D). Write
W=@wu-1v), X=wv+1), Y=(u+1,v) and Z = (u,v—1).
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If U belongs to Fy(D), then W, X, Y, Z belong to E;(D) and they
are vertices of D). By Lemma 2.3, two consecutive segments of D! have
supports which are edges of WXYZ. As D alternates around DV, it follows
that U is a vertex of D, whence a contradiction.

If U belongs to E;(D), consider the point S (resp. T) which forms a square
with X, U, W (resp. X, U, Y). Then SX or XT is the support of a segment
of D since X is a vertex of D.

Suppose for instance that X7 is the support of a segment of D. As Y is a
vertex of D contrary to U, Lemma 2.3 implies that 7Y is also the support of a
segment of D. As X and Y belong to Fy(D), it follows from the property of
pp (see Fig. 4D) that there exist two parallel segments of D! such that T is
the terminal point of one of them and the initial point of the other one, whence
a contradiction. MW

ProoF oF THEOREM 2.4. Write C = (C;);.,. Consider a connected com-
ponent K of Ext(C) and writt M = {X e Z*> — K |d(X,K) = 1}.

Denote by © the set of all squares S =[x, x+ 1] x [y,y+ 1] with x, y e Z
such that K contains one or two vertices of S. For each S € Q, if K contains
one vertex X of S, consider the segment Eg of length /2 joining the vertices of
S adjacent to X. If K contains two vertices of S, consider the segment Eg of
length 1 joining the two other vertices, which are adjacent by Lemma 2.3.

The endpoints of the segments Eg for S € Q belong to M. We are going
to prove that each U e M is an endpoint of exactly two such segments.
We consider the points ¥, W, X, Y € Z* with d(U, V) =d(U, W) =d(U,X) =
d(U,Y) =1 such that VWXY is a square, V, W are vertices of C, and X € K.
We denote by P, O, R, S the squares determined by the pairs of edges
(v, uw), (UW,UX), (UX,UY), (UY,UV).

As C is connected, the fourth vertex of P does not belong to K, and P
does not belong to £2. On the other hand, Q belongs to 2 since X belongs
to K contrary to U and W.

If Y is a vertex of C, then R belongs to 2 since X belongs to K and U, Y
do not belong to K. Moreover, Lemma 2.3 implies that the fourth vertex of S
is a vertex of C, since UV is the support of a segment of C contrary to UY.
Consequently, S does not belong to Q.

If Y is not a vertex of C, then, by Lemma 2.3, the fourth vertex of R is
not a vertex of C, and therefore belongs to K. Consequently, Y belongs to
K, S belongs to 2 and R does not belong to Q.

Moreover, U is the common endpoint of Ey and Er if Y is a vertex of C,
and the common endpoint of Ep and Eg if Y is not a vertex of C.

As K is infinite by Lemma 2.4.1, it follows that the segments Eg for S e Q
form an unbounded self-avoiding curve E. The vertices of E are the points
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of M. One connected component of R> — E contains K, but contains no point
of C and no point of Z> which does not belong to K.

The points of M taken along E form a sequence (X;),.,. For each
X € M, denote by r(X) the unique integer j such that X is the terminal point
of C; and the initial point of Cj;;. Suppose for instance r(Xo) < r(Xp).
Then, using the connectedness of C, we see by induction on i that r(X;) <
r(Xit1) for each ieZ.

Now suppose that there exists a connected component L # K of Ext(C)
such that K and L are contained in the same connected component of
R? — C. Then there exists i € Z such that L is contained in the loop formed
by C between X; and X;;;, and L is finite contrary to Lemma 2.4.1. H

Now, we apply Theorem 2.4 to limits of complete folding curves. We
give less details in this part, which will not be used in the remainder of the
paper.

We consider some complete folding curves C, = (G, ),z with C, = C,Elﬁl
for each n e N. We suppose that the curves C, are represented on the same
figure in such a way that:

— Cp has vertices in Z> and supports of length 1;

— all the segments C,; have the same initial point;

—  C,4 alternates around C, for each ne N.

We denote by L the limit of the curves C, considered as representations of
functions from R to RZ.

The curve L is associated to a function from R to R? which is continuous
everywhere, but derivable nowhere. Moreover, L is closed as a subset of
R?. By Theorem 3.1 below, L contains arbitrarily large open balls. It follows
from Proposition 2.6 and Theorem 3.1 that L is equal to the closure of its
interior.

Now, we consider the complete folding sequences (77,,,[,)1,EZ associated
to the curves C,. We say that (n,),.n 1S ultimately alternating if we have
.1 = (=1)" for n large enough, or 7, | = (=1)"" for n large enough.

COROLLARY 2.5. If (1, ),cn is not ultimately alternating, then R* — L is
the union of 0, 1 or 2 unbounded connected components.

Proor. For each neN, we have Ext(C,) = R* — L since (7,,1),,cn i
not ultimately alternating. By Theorem 2.4, it suffices to show that, for each
neN, any X, X’ € Ext(C,) belong to the same connected component of R* — L
if they belong to the same connected component of Ext(C,). Moreover, it is
enough to prove this property when d(X,X’) = (1/v2)".

We consider some distinct points Y, Y', Z, Z’, U, V with YY' and ZZ’
parallel to XX’ such that XX'Y'Y (resp. XX'Z'Z) is a square of center U



Paperfolding curves 57

(resp. V). Then XX', XY, XZ, X'Y', X'Z' are not supports of segments of
C,. Consequently, at least one of the points U, V is not a vertex of C,yj.

If U (resp. V) is not a vertex of C,.1, then the open triangle XUX" (resp.
XVX') is contained in R? — L. Tt follows that X and X' belong to the same
connected component of RP—-L m

REMARK. Let L be the limit of the curves C,, where Cj is the curve C
of Example 3.13 below and 7, ; = (=1)"*! for n> 1. Then we have [(0,1),
(2,1)] = L even though (1,1) is not a vertex of Cy. It follows that (1,0)
belongs to a bounded connected component of R*> — L. It can be proved that
R? — L has infinitely many such components.

ExamprLEs. The limit curve L obtained from the curve C of Example 3.13
by writing 7, ; = +1 for n>1 is called a dragon curve. 1t follows from [6]
that the interior of L is a union of countably many bounded connected
components. According to [2], the boundary of L is a fractal.

On the other hand, Example 3.8 gives a case with L =R? Using a
similar construction, we can obtain L such that its boundary is a line. If L is
one of the limit curves obtained from the curves of Example 3.14 by writing
U (—1)”+1 for n > 1, then its boundary is the union of two or four half-
lines with the same origin.

The Proposition below is not a priori obvious since two curves associated
to the same folding sequence are not necessarily parallel.

PROPOSITION 2.6.  For each complete folding curve C = (Cy), .o, for each
neN and for any i,jeZ, (Ci1,...,Cissn) contains a curve which is parallel
and another curve which is opposite to (Ciiy,...,Ciip).

For the proof of Proposition 2.6, we fix C, n, i, j and we write 4 =
(Cit1,---,Ciin). We consider the integer m such that 2”~! < n <2 and the
sequence S = (1;,),.z associated to C.

LEMMA 2.6.1. There exists k € Ep12(S) such that (Ciyy, ..., Ciiome2) con-
tains a subcurve which is parallel or opposite to A.

PrOOF OF LEMMA 2.6.1.  'We can suppose that there exists / € E,,12(S) such
that i+ 1 </<i+n—1 since, otherwise, there exists k € E,1»(S) such that
A (Cists. .., Crian).

Then, for each he {i+1,...,i+n—1}—{/}, we have he Z — E,, and
therefore 7, =1, om1ome for each reZ. We also have 1y om2 =
(=1)"nomn for each reZ. Consequently, there exists r € Z such that », =
Nipomii4romi2, and therefore #, = ny omi1 ypme for i+1<h<i+n-—1.
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Now the supports of Ciy1 and Ci,y,pmi1,.omi2 are parallel or opposite since
(i+ 142" 4 p.2m42) — (i 4+ 1) is even. It follows that (Cpyjyomit pamizy ...,
Cipppomiiyromi2) is parallel or opposite to 4. W

PrOOF OF PrOPOSITION 2.6. By Lemma 2.6.1, we can suppose that there
exists k € E,,12(S) such that k <i and k+2""2 > i+ n. For each reZ, we
write C = (Cipiqp2m2, -+ o5 Crgr1y2m2).  We consider the (m + 2)-th deriva-
tive D = (D), ., of C, indexed in such a way that, for each r € Z, the initial
point of D, is the initial point of Cy i, ,om+.

For any r,s € Z, we have

(ﬂk+1+,x2nx+3, ‘e 7;7k+2m+2_1+r2m+3) = (77/(+1+S<2”’+37 ey ’7k+2m—2_1+s42m+3).

Consequently, C;. and Cj;, are parallel (resp. opposite) if and only if D, and
D, are parallel (resp. opposite). The same property is true for the copies of 4
contained in Cj, and Cj,.

As we have 88n > 11-2"+2, there exists r € Z such that (Cit1y- -, Ciyssn)
contains (C5,,...,C5,.,¢). Moreover, (Dy,...,Dyyg) is necessarily contained
in a 4-folding curve. It follows (see Fig. 3C) that there exist p,q e {0,1,2,
3,4} such that Dy, and Dy, are opposite. Then C, , and G5 are also
opposite, as well as the copies of 4 that they contain. Consequently, one of
these copies is parallel to 4. W

3. Coverings of R? by sets of disjoint complete folding curves

Consider @ =R? or Q = [a,b] x [¢,d] with a,b,c,d€Z, b>a+1 and
d>c+1. Let & be a set of segments with supports contained in Q2. We say
that & is a covering of @ if it satisfies the following conditions:

1) each interval [(x,y),(x+1,»)] or [(x,»),(x,y+1)] contained in Q, with
x, y € Z, is the support of a unique segment of &;

2) if two distinct non consecutive segments of & have a common endpoint X,
then they can be completed into pairs of consecutive segments, with all
four segments having distinct supports which contain X.

The set & is a covering of R? (resp. [a,b] x [c,d]) if and only if the tiles

associated to the segments belonging to & form a tiling of R? (resp. a patch

which covers [a,b] x [c,d]).

For each covering & of R?, if each finite sequence of consecutive segments
belonging to & is a folding curve, then & is a covering of R? by complete folding
curves, in the sense that & is a union of disjoint complete folding curves.

We say that a covering of R? by complete folding curves satisfies the
local isomorphism property if the associated tiling satisfies the local isomor-
phism property. Two such coverings are said to be locally isomorphic if the
associated tilings are locally isomorphic.
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It often happens that a covering of R? by complete folding curves satisfies
the local isomorphism property. In particular, we show that this property is
satisfied by any covering of R? by 1 complete folding curve, or by 2 complete
folding curves associated to the ‘““positive” folding sequence. Two complete
folding curves associated to the “‘alternating” folding sequence do not give a
covering of R?, but we prove that a covering of R? which satisfies the local
isomorphism property is obtained naturally from these 2 curves by adding 4
other complete folding curves.

We characterize the coverings of R? by sets of complete folding curves
which satisfy the local isomorphism property, and the pairs of locally iso-
morphic such coverings. We show that each complete folding curve can be
completed in a quasi-unique way into such a covering and that, for each
complete folding sequence S, there exists a covering of R?> by a complete
folding curve associated to a sequence which is locally isomorphic to S.

Finally, we prove that each complete folding curve covers a “‘significant”
part of R%. In that way, we show that the maximum number of disjoint
complete folding curves in R?, and therefore the maximum number of complete
folding curves in a covering of R?, is at most 24. We also prove that such a
covering cannot contain more than 6 curves if it satisfies the local isomorphism
property.

The following result will be used frequently in the proofs:

THEOREM 3.1. There exists a function f : N — N with exponential growth
such that, for each integer n, each n-folding curve contains a covering of a square

o, x+ ()] % [y, + ()] with x,y e Z.

Proor. By Figure 3C, each 4-folding curve contains a copy, up to
isometry and modulo the orientation, of the curve given by Figure 5SA. Con-
sequently, each 5-folding curve contains a copy of the curve given by Figure
5B, and each 6-folding curve contains a copy of one of the two curves given by
Figures 5C and 5D.

For each X = (x,y) € Z* and each k e N*, we write L(X, k)= {(u,v) e
R?||u— x|+ |v—y| <k}. We say that a folding curve C covers L(X, k) if

Fig. 5A Fig. 5B
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Fig. 5C Fig. 5D

each interval [(u,v),(u+1,v)] or [(u,v),(u,v+ 1)] with u,v € Z contained in
L(X,k) is the support of a segment of C.

The curve in Figure 5C covers L(Y,2), and each of its two antiderivatives
covers L(X,2) where X is the point corresponding to Y. Each antiderivative
of the curve in Figure 5D covers L(W,2) or L(X,2) where W and X are the
points corresponding to Y and Z. Consequently, each 7-folding curve covers
an L(U,2).

For each k € N, if a folding curve C covers an L(X, k), then each second
antiderivative D of C covers an L(Y,2k —1). More precisely, if we put D on
the figure containing C, then D covers L(X,k —1/2), and we obtain a curve
which covers an L(Y,2k — 1) when we apply a homothety of ratio 2 in order
to give the length 1 to the supports of the segments of D.

We see by induction on n that each (2n+ 7)-folding curve covers an
L(X,2"+1). N

For each complete folding curve C = (C;),_,, there are two possibilities:
— either all the segments C; for i € E; have horizontal supports, and we say
that C has the type H,
— or all the segments C; for i € E; have vertical supports, and we say that C
has the type V.

THEOREM 3.2. Let %, 9 be coverings of R*> by sets of complete folding
curves which satisfy the local isomorphism property. Then € and & are locally
isomorphic if and only if each curve of € and each curve of & have the same type
and have locally isomorphic associated sequences.

REMARK. In particular, if a covering of R? by a set of complete folding
curves satisfies the local isomorphism property, then all the curves have the
same type and have locally isomorphic associated sequences.

Proor oF THEOREM 3.2. First we show that the condition is necessary.
Let C =(C;);.4 be a curve of € and let D = (D;),_, be a curve of 2. Con-
sider a finite subcurve F of C.
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As @ satisfies the local isomorphism property, there exists an integer n
such that each square [x,x 4 n] x [y, y + n] with x, y € Z contains a subcurve of
a curve of ¥ which is parallel to F. As % is locally isomorphic to &, each
square [x,x +n] X [y, y+n] with x, y € Z also contains a subcurve of a curve
of & which is parallel to F. According to Theorem 3.1, there exist x, y € Z
such that [x,x+n| x [y, y+n| is covered by D. It follows that D contains a
subcurve which is parallel to F. In particular, the folding sequence associated
to F is a subword of the folding sequence associated to D.

Now, take for F a 3-folding subcurve (Ci.1,...,Ciig) of C, and consider
J € Z such that (Dj,,...,Djg) is parallel to F. Then we have i € E;(C) and
jeE(D). 1t follows that C and D have the same type.

It remains to be proved that the condition is sufficient. We show that, for
each finite set & of tiles, if ¥ contains the image of & under a translation, then
9 contains the image of & under a translation; the converse can be proved in
the same way.

As @ satisfies the local isomorphism property, there exists an integer m
such that each square [a,a + m] x [b, b + m] contains a set of tiles of € which is
the image of & under a translation. By Theorem 3.1, there exists an integer n
such that each n-folding curve contains a covering of a square [a,a+ m] X
[b,b+ m]. For such an n, each n-folding subcurve of a curve of ¥ contains the
image of & under a translation.

We can take n > 3. Then each n-folding subcurve F of a curve of & is
parallel or opposite to a subcurve of a curve of & since each curve of ¥ and
each curve of & have the same type and have locally isomorphic associated
sequences. Now, it follows from Proposition 2.6 applied to ¥ that such an F
is parallel to a subcurve of a curve of ¥, and therefore contains the image of &
under a translation. W

For any disjoint complete folding curves C, D, we call boundary between C
and D the set of all points of Z> which are vertices of two segments of C and
two segments of D.

PROPOSITION 3.3. Let n > 1 be an integer and let € be a covering of R? by
a set of complete folding curves which satisfies the local isomorphism property.
Then the curves of € define the same E,, and their n-th derivatives form a
covering of R* by a set of complete folding curves which satisfies the local
isomorphism property. If the boundary between two curves C,D €€ is non-
empty, then the boundary between C" and D" is nonempty.

Proor. By induction, it suffices to show the Proposition for n = 1. Con-
sequently, it suffices to prove that, for each covering ¢ of R*> by a set of
complete folding curves which satisfies the local isomorphism property, if the
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boundary between two curves C,D e @ is nonempty, then we have E|(C) =
Ei(D), the curves CV) and D) are disjoint and the boundary between C!) and
D is nonempty. Then each point of Ej(%) will be an endpoint of 4 segments
of ¥ = {C(V| C € %} since it is an endpoint of 4 segments of %, and %V will
satisfy the local isomorphism property like %.

We write C = (C;),., and D = (D;),.,. We denote by S = ({;),., and
T = (1;);cz the associated sequences. We consider a point X which belongs
to the boundary between C and D. We write 4 = (Ci_y4,...,Ci13) and B =
(Dj-4,...,Djy3), where i (resp. j) is the integer such that X is the common
endpoint of C; and Ci; (resp. D; and D;i1). As % satisfies the local iso-
morphism property, it follows from Theorem 3.1 applied to C that there exist
a translation 7 of R? and two sequences A’ = (Cy_4,...,Cry3) and B =
(Ci—4,...,Ciy3) such that 7(4) = A’ and 7(B) = B'.

If X belongs to Fy(C), then we have ie Fy(S), and therefore {; 4 =
—{i2 = {; = —{i», which implies (4 = —{> = { = —{o and k € Fy(S).
Consequently, we have 7(X) € Fy(C) and [ € Fy(S), which implies {;_4 = —{;_»
=(=-(42 and n,_4 = —n;_, =n; = —1n;4,. It follows that X belongs to
Fy(D). We show in the same way that X belongs to Fy(C) if it belongs to
Fy(D). Consequently, we have Fy(C) = Fy(D).

If X belongs to Fy(C) = Fy(D), then the segment of C!) obtained from
(Ci, Ciy1) and the segment of D)) obtained from (D;,D;;) have supports
which are opposite edges of a square of center X and width /2. Moreover,
the segments of C!) obtained from (Ck, Cry+1) and (Cj, Ci1) have supports
which are opposite edges of a square of center 7(X) and width v2. By
Lemma 2.3, a third edge of the second square is the support of a segment of
C") obtained from one of the pairs (Cr=2, Ci=1), (Crs2, Ci13), (Ci—a2, Ci—1),
(Cr42, Ci43). Consequently, a third edge of the first square is the support of a
segment of C(!) obtained from one of the pairs (Ciz2,Ci1), (Cita, Ciy3), or the
support of a segment of D) obtained from one of the pairs (Dj-2,Dj-1),
(Dj12,D;y3). In both cases, C) and D!V have a common vertex.

If X belongs to Ej(C) = E;(D), then X is a common vertex of C(!) and
DW . Moreover, the two segments of C() and the two segments of D! which
have X as an endpoint all have different supports since they are the images
under 77! of the four segments of CV) which have z(X) as an endpoint. As
this property is true for each point of the boundary between C and D which
belongs to Ej(C) = Ej(D), the curves C) and DUV are disjoint. W

ReEMARK. If the boundary between two curves C,D € & is finite, then it
contains a point of E,. Otherwise, for n large enough, it would contain no
point of E,, and the boundary between C") and D™ would be empty, contrary
to Proposition 3.3.
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If two disjoint complete folding curves C, D have the same type and if
E(C) = E|(D), then we have g¢(X) = ap(X) for each point X of the bound-
ary between C and D. Consequently, for each covering ¢ of R? by a set of
complete folding curves which have the same type and define the same set Ej,
there exists a unique function oy : Z> — {—1,+1} such that o4 (X) = gc(X)
for each curve C € % and each vertex X of C.

LEMMA 3.4. Let € and 9 be coverings of R* by sets of complete folding
curves. Suppose that all the curves have the same type, define the same sets Ej
and have locally isomorphic associated sequences. Then, for each n e N*, each
X eZ? - E,_ and each U € 2"Z?*, we have o4(X) = 04(U + X).

Proor. For each integer k < 2n — 1, we have Fj + 2172 = F; and there-
fore U + Fy = Fy. In particular, X and U + X belong to F,, for the same
integer m < 2n — 2. As each curve of ¥ and each curve of & have the same
type and define the same Ej, the map Z — U + Z induces a bijection from the
set of all supports of segments of % to the set of all supports of segments of &
which respects the orientation of the segments.

We consider a curve C = (C;),., €% indexed in such a way that the
terminal point of Cy» is X, and a curve D = (D;), ., € Z indexed in such a way
that the support of Dy» is U + S, where S is the support of Con. The initial
point Y of C; and the initial point Z of D, belong to E,,;; since X and U + X
belong to F,.

The sequences ({;);., and (#;);., associated to C and D are locally iso-
morphic. Consequently, we have ({1,...,(m_1) = (#;,...,#m_;) since X and
U + X belong to F,, and therefore (D,...,Dyn) = U+ (Cy,...,Com) and Z =
U+Y. As U+ F,y | = F,.1, it follows that Y and Z both belong to F,.1,
or both belong to E,;,. In both cases, we have ({i,...,(mi_y) = (ny,-..,
#ami_p) since C is locally isomorphic to D, and therefore a4 (X) = (om = fym =

THEOREM 3.5. Let € be a covering of R* by a set of complete folding
curves. Then € satisfies the local isomorphism property if and only if all the
curves have the same type, define the same sets Ej and have locally isomorphic
associated sequences.

Proor. The condition is necessary according to Proposition 3.3 and the
remark after Theorem 3.2. Now we show that it is sufficient.

For each X = (x, y) € Z*> and each k e N*, we write Sy ; = [x,x + k] X
[v, y + k], and we denote by &y i the set of all segments of ¥ whose supports
are contained in Sy . It suffices to prove that, for each X e Z? and each
k e N*, there exists /e N" such that each Sy ; contains some Z e 7Z? with
@@Z,k: (Z—X)—F(g?)(’k.
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We consider the largest integer m such that Sy contains a point of
F,, and an integer n such that m <2n—2. For each U e2"Z? we have,
according to Lemma 3.4, 64(U + Y) = 04(Y) for each Y € Z> — E»,_;, and in
particular for each Y € Sy ; which does not belong to E.

If Sy xNE, =&, it follows that &y x x = U+ &x  for each U e 21772,
since the curves of ¥ have the same type. Then we have the required property
for [ =2".

If Sy i contains the unique point W of E,,, then we still have &y x i =
U + &y i for each U e 2"Z? such that a4 (U + W) = a¢(W), since the curves
of % have the same type. Moreover, we have E», = W +2"Z% since W
belongs to E»,. We consider V € 2"Z? such that V + W € F», and oy (V + W)
= o4(W). We have V + W + 2"1Z2 = (Y eZ*|Y eF,, and o4(Y) =
o4 (W)}, and therefore Sy pix ik = U+ V + Ex i for each U e 2mt172 Con-
sequently we have the required property for /=2"*!, H

Now we consider the coverings which consist of one complete folding
curve. The following result is a particular case of Theorem 3.5. It applies to
the folding curves considered in Theorem 3.7 and Example 3.8 below.

COROLLARY 3.6. Any covering of R? by a complete folding curve satisfies
the local isomorphism property.

THEOREM 3.7. For each complete folding sequence S, there exists a
covering of R? by a complete folding curve associated to a sequence which is
locally isomorphic to S.

Proor. Consider a curve C = (C;), 4 associated to S. Let © consist of
the finite curves parallel to subcurves of C, such that (0,0) is one of their
vertices. For each F € Q, denote by N(F) the largest integer n such that F
contains a covering of [—n,+n]”.

For any F,GeQ, writt F<G if Fc G and N(F)<N(G). As S
satisfies the local isomorphism property, the union of any strictly increasing
sequence in Q is a covering of R?> by a complete folding curve associated to a
sequence which is locally isomorphic to S.

It remains to be proved that, for each F € Q, there exists G > F in Q.
According to Proposition 2.6, there is an integer m such that each (Ciy,...,
Ciym) contains a curve parallel to F. By Theorem 3.1, there exists a finite
subcurve K of C which contains a covering of a square X + [—n,+n]” with
XeZ? and n=m+ N(F) + 1.

Let 7 be an integer such that X is the terminal point of C;. Consider a
curve H parallel to F and contained in (Ci1,...,Ciyy). Denote by 7 the
translation such that t(F) = H. Then t-'(X) belongs to [—m,+m]® since



Paperfolding curves 65

((0,0)) belongs to X + [-m,+m]>. For G =1'(K), we have F = G and G
covers 71 (X) + [-n,4+n]>. In particular, G covers [-N(F) — 1,+N(F) + 1]%.
|

REMARK. There is no covering of R* by a curve associated to (S,+1,.5)
or to (S,—1,S), where S is an oo-folding sequence. In fact, such a curve C
would contain 4 segments having the point of E,(C) as an endpoint, and
E(S,4+1,8) (resp. E,(S,—1,S)) would contain 2 integers.

ExaMPLE 3.8. There exists a covering of R? by a complete folding curve
defined in an effective way.

Proor. For each (x, y) € Z* and each n € N*, we say that a (2n)-folding
(resp. (2n+ 1)-folding) curve C covers the isosceles right triangle 7' = <{(x, y),
(x+2" y), (x,y+2")> (resp. T = {(x, ), (x+2" y+27), (x+ 2" y)>) if it
satisfies the following conditions (cf. Fig. 6A, 6B, 6C):

— each interval [(u,v), (u+ 1,v)] or [(u,v), (u, v+ 1)] with u,v € Z, contained in
the interior of T, is the support of a segment of C;

— among the intervals [(u,v),(u+ 1,v)] or [(u,v),(u,v+1)] with u,veZ,
contained in the same vertical or horizontal edge of 7', alternatively one
over two is the support of a segment of C;

— no interval [(u,v),(u+ 1,v)] or [(u,v), (u,v+ 1)] with u,v € Z, contained in
the exterior of 7, is the support of a segment of C;

Fig. 6A
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Fig. 6E

— the vertex of the right angle of T is the initial or the terminal point of C;

— the vertex of one of the acute angles of T is the initial or the terminal point
of C.

We extend this definition to the isosceles right triangles with vertices in Z>

obtained from 7 by rotations of angles n/2, =, 3n/2 (cf. Fig. 6D).

Now, let T be one of the isosceles right triangles considered, let £ be an
integer, let C be a k-folding curve which covers 7', and let S be the sequence
associated to C. If the initial (resp. terminal) point of C is the vertex of the
right angle of T, we associate to (S,+1,S) and (S,—1,S) (resp. (S,+1,S) and
(S,-1,8)) two (k + 1)-folding curves C; and C, which contain C. In both
cases, the parts of C; and C, which correspond to S respectively cover the
isosceles right triangles 7 and 7, which have one edge of their right angle in
common with 7', in such a way that C; and C, respectively cover the isosceles
right triangles TUT; and TUT; (cf. Fig. 6B, 6C and 6D).

For each ne N* and each triangle 7 = {(x, y), (x + 2", y +2"), (x + 2",
y)> with (x, y) € Z?, repeat six times the operation above according to Figure
6E, beginning with a (2n+ 1)-folding curve C which covers 7. Then we
obtain a (2n + 7)-folding curve C’ which contains C. Moreover, C’ covers a
triangle 7' = {(x', y"), (x' + 23 p" £ 273) (x' + 2"+ p")> with (x',)') e Z?
and T contained in the interior of 7’. By iterating this process, we obtain a
covering of R? by a complete folding curve. M

PROPOSITION 3.9. Let € be a covering of R* by a set of complete folding
curves which satisfies the local isomorphism property. For each covering & of
R2, the following properties are equivalent:

1) 9 consists of complete folding curves, and the curves of €UZ have the
same type, define the same sets Ej and have locally isomorphic associated
sequences.

2) €=9, or E,(¥) # & and €, Z only differ in the way to connect the four
segments which have the unique point of E..(%¢) as an endpoint.
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Proor. If 1) is true, then 2) is also true since Lemma 3.4 implies o4 (X) =
o5(X) for each X € Z> — E,,. Conversely, if 2) is true, then 1) follows from
the remark after Corollary 1.9. W

ReMark. If 1) and 2) are true, then & satisfies the local isomor-
phism property by Theorem 3.5, and & is locally isomorphic to ¥ by Theo-
rem 3.2.

THEOREM 3.10. For each complete folding curve C, if E, (C) is empty or
if the unique point of E..(C) is a vertex of C, then C is contained in a unique
covering of R* by a set of complete folding curves which satisfies the local
isomorphism property. Otherwise, C is contained in exactly two such coverings,
which only differ in the way to connect the four segments having the unique point
of Ey as an endpoint.

Proor. It suffices to show that C is contained in a covering of R? by a
set of complete folding curves which satisfies the local isomorphism property.
In fact, for any such coverings %, 2, Proposition 3.3 and the remark after
Theorem 3.2 imply that each curve of ¥ and each curve of & have the same
type, define the same sets Ej; and have locally isomorphic associated sequences.
Then the Theorem is a consequence of Proposition 3.9 and the Remark just
after.

For each m € N, denote by %, the set of all segments of C with supports
in [-m,+m]*. Let Q consist of the pairs (&,m), where me N* and & is a
covering of [—m, —l—m}z containing ,,, for which there exists X e Z* such that
X+&&cC.

For any (&,m),(#,n) e Q, write (&,m) < (#,n) if & cF and m < n.
If (#,n)eQ and me{l,...,n—1}, then we have (§,m) e Q and (&,m) <
(7 ,n) for the set & of all segments of % with supports in [—m, +m]*.

First we show that, for each m € N*, there exists (&,m) € Q. We can take
m large enough so that C contains some segments with supports in [—m, +m]2 .
We consider a finite curve 4 — C which contains all these segments. Accord-
ing to Proposition 2.6, there exists an integer k such that each subcurve of
length k& of C contains a curve parallel to 4.

By Theorem 3.1, C contains a covering of a square X + [—k — 2m,
+k +2m]* with X € Z*>. The covering of X + [—k,+k]* extracted from C
contains a curve of length > k, which itself contains a curve B parallel to
A. We consider Y € Z? such that Y+ 4 =B. We have Y e X 4 [~k —m,
+k 4+ m]?, because A contains a point of [-m,+m]? and B is contained in
X 4 [k, +k]>. Consequently, C contains a covering # of Y + [—m,+m]>.
We have (6,m) e Q for § = —Y +F since & contains the set Y + €, of all
segments of B with supports in Y + [—m, +m]>.
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Now, according to Konig’s Lemma, € contains a strictly increasing
sequence (&,,,m),,.n+- The union % of the sets &, is a covering of R? which
contains C. Any finite curve 4 = € is parallel to a subcurve of C since it is
contained in one of the sets &,. In particular, % is a covering of R? by a set
of complete folding curves. It remains to be proved that & satisfies the local
isomorphism property.

It suffices to show that, for each m € N*, there exists n € N* such that
each square X + [—n,+n]2 contains the image of &,, under a translation. We
consider a point ¥ € Z? such that Y + &,, = C, and a finite curve 4 = C which
contains Y + &,. By Proposition 2.6, there exists n € N* such that each sub-
curve of length n of C, and therefore each subcurve of length n of a curve of &,
contains a curve parallel to 4. Each square X + [—n, —i—n]2 contains a subcurve
of length n of a curve of &, and therefore contains a curve parallel to 4 and the
image of &, under a translation. W

Remark. It follows that any co-folding curve C is contained in exactly
two coverings of R? by sets of complete folding curves which satisfy the local
isomorphism property. These coverings only differ in the way to connect the
four segments whose supports contain the origin of C.

REMARK. Let C be a complete folding curve and let S be the associated
sequence. By Theorem 3.10, C is contained in a covering % of R? by a set of
complete folding curves which satisfies the local isomorphism property. Ac-
cording to Theorem 3.7, there is also a covering Z of R? by a complete folding
curve D associated to a sequence which is locally isomorphic to S. Moreover,
9 satisfies the local isomorphism property by Corollary 3.6. If we choose D
with the same type as C, then ¥ and 2 are locally isomorphic according to
Theorem 3.2. On the other hand, ¥ and ¢ do not contain the same number
of curves if {C} is not a covering of R

COROLLARY 3.11. 1) There exist 2% pairwise not locally isomorphic cover-
ings of R? by sets of complete folding curves which satisfy the local isomorphism
property.

2) If € is such a covering, then there exist 2% isomorphism classes of
coverings of R* which are locally isomorphic to €.

Proor. For any complete folding sequences S, T, consider two curves
C, D associated to S, T which have the same type. By Theorem 3.10, there
exist two coverings 4, 2 of R2, respectively containing C, D, by sets of
complete folding curves which satisfy the local isomorphism property.

By Theorem 3.2, ¢ and & are locally isomorphic if and only if S and T
are locally isomorphic. In particular, the property 1) above follows from the
property 1) of Theorem 1.11.
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Moreover, if € and & are isomorphic, then C is isomorphic to one of the
curves of 2, and S is isomorphic to one of their associated sequences. Con-
sequently, the property 2) above follows from the property 2) of Theorem 1.11,
since any covering of R? by a set of complete folding curves which satisfies the
local isomorphism property contains at most countably many curves (and in
fact at most 6 curves by Theorem 3.12 below). W

Now we investigate the number of curves in a covering of R? by complete
folding curves.

THEOREM 3.12. If a covering of R* by a set of complete folding curves
satisfies the local isomorphism property, then it contains at most 6 curves.

Proor. For each X € R?, each complete folding curve C and each n e N,
write 6,(X,C) =4""-infscp, ) d(X,S). We have 8,(X,C)=dy(X,, C*),
where X, is the image of X in a representation of C*” which gives the
length 1 to the supports of the segments.

Now consider R € Ey(C) and S, T € E4(C) which are joined by a 4-folding
subcurve of C having R as a vertex. Then, according to Figure 3C, we have
inf(d(X,S),d(X,T)) < \/(d(X,R)+3)>+22 = \/d(X,R)* +6d(X,R) + 13;
this maximum is reached with the second of the four 4-folding curves of Figure
3C, for each point X which is at the left and at a distance > 3 from the middle
of the segment ST.

Consequently we have J1(X,C) < (1/4)\/60()(, C)? 4 66(X, C) + 13.
For 6y(X, C) < 1.16, it follows

31(X, C) < (1/4)/(1.16)> +6(1.16) + 13 < 1.16.

For 6y(X, C) = 1.16, it follows

31(X, C)/6(X, C) < (1411 + 6/60(X, C) + 13/86(X, C)?

< (1/4)\/1+6/(1.16) + 13/(1.16)° < 0.995.

For each complete folding curve C, each X € R?> and each neN, the
argument above applied to C" gives d,.1(X,C) < 1.16 if 6,(X,C) < 1.16
and J,41(X, C) < (0.995)0,(X, C) if 6,(X,C) > 1.16. In particular, we have
on(X,C) < 1.16 for n large enough.

For each covering {C},...,Ci} of R? by a set of complete folding curves
which satisfies the local isomorphism property, consider X € R? and n e N*
such that J,(X,C;) < 1.16 for 1 <i<k. Let Y be the image of X in a repre-
sentation of C1(4"),...,C,£4") which gives the length 1 to the supports of the
segments. Then we have 6o(Y,C*") < 1.16 for 1 <i <k.
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Write Y =(y,z) and consider w,ve€Z such that |y—u|<1/2 and
|z—v| <1/2. Then each Cl-(4"> has a vertex among the points listed below,
since no other point (w,x) e Z* satisfies d((w,x), (¥,2)) < 1.16:

(u,v),(u—l,v),(qul,v),(u,v—1),(u,v+l)
if |y—u|<0.16 and |z —v| <0.16;

wu—1lv—1),u—-Lv),u—1v+1),wmv—-1),(uv),(uv+1)

if y<u-—0.16;

(u,v—=1), (u,v), (w,v+ 1), (u+ Lv—=1),(u+ Lv),(u+1,v+1)
if y>u+0.16;

(wu—1v—-1),(uo—1),(u+1,0-1),(u—1,v),(u0), (u+1,0v)
if z<v—0.16;

(u—1,0v), (u,v),(u+ 1,v),(u—1vo+ 1), (u,o+ 1), (u+1,v+ 1),
if z>v+0.16.

In the first case, there exist 12 intervals of length 1 with endpoints in Z>
which have exactly one endpoint among the 5 points considered. In each of
the four other cases, there exist 10 intervals of length 1 with endpoints in Z>
which have exactly one endpoint among the 6 points considered.

In all cases, each Cl-(4") has at least 2 segments with supports among these
intervals. It follows k < 6 in the first case and k < 5 in each of the four other
cases since, by Proposition 3.3, Cl(4">,...,C,£4") are disjoint. W

ExampLE 3.13 (curves associated to the positive folding sequence). The
positive folding sequence mentioned in [4, p. 192] is the oco-folding sequence R
obtained as the direct limit of the n-folding sequences R, defined with R, =
(R,,+1,R,) for each neN. According to [3, Th. 4, p. 78], or by Theorem
3.15 below, there exists a covering % of R? by 2 complete folding curves C, D
associated to S = (R, +1, R) and having the same type (see Fig. 7). We have
E(C)=E,(D)=1{(0,0)}, and therefore E;(C)= Ex(D) for each ke N. Tt
follows from Theorem 3.5 that % satisfies the local isomorphism property.

ExaMPLE 3.14 (curves associated to the alternating folding sequence). The
alternating folding sequence described in [4, p. 134] is the co-folding sequence R
obtained as the direct limit of the n-folding sequences R, defined with R, =
(R, (=1)""' R,) for each neN. Contrary to Example 3.13, there exists no
covering of R? by 2 complete folding curves associated to S = (R, +1,R).
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Fig. 7

Now, let T be the complete folding sequence obtained as the direct limit of
the sequences Rj,, where each R,, is identified to its second copy in Ry, » =
(Ryn, —1, Rop, +1, Ry, +1,Ry,).  Then there exists (cf. Fig. 8) a covering %
of R? by 2 curves associated to S, 2 curves associated to 7 and 2 curves
associated to T, with all the curves having the same type.

The 6 curves are associated to locally isomorphic sequences. The point
(0,0) belongs to E,, in the 2 curves which contain it. For each n € N, and in
each of the 2 curves which contain it, the point (2”,0) (resp. (—2",0), (0,2"),
(0,—2")) belongs to F»,, while the point (2”,2") (resp. (—2",2"), (2",—-2"),
(=2", —2")) belongs to F»,.;. Consequently, the 6 curves define the same sets
Ei, and % satisfies the local isomorphism property by Theorem 3.5.

We do not know presently if a covering % of R? by a set of complete
folding curves which satisfies the local isomorphism property can consist of 3, 4
or 5 curves. If E (%) # (J, then € consists of 2 or 6 curves according to the
Theorem below:

TueOREM 3.15. Let C be a curve associated to S = (R,+1,R) or S =
(R,—1,R) where R = (a;),.n+ is an oo-folding sequence. Consider the unique
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Fig. 8

covering € > C of R* by a set of complete folding curves which satisfies the local

isomorphism property.

1) If {neNlay = (=1)"} is finite or cofinite, then € consists of 2 curves
associated to S and 4 other curves.

2) Otherwise, € consists of 2 curves associated to S.

ProOOF. As the other cases can be treated in the same way, we suppose
that C = (Cy),.z is a curve associated to S = (R,+1,R) = (ap),.z, and that
E(C)={(0,0)}. Then % contains a curve D # C such that (0,0) is a vertex
of D. We write D = (Dy), ., with (0,0) terminal point of Dy and initial point
of Dy. The curve D is associated to S, since it is associated to a sequence
T = (bi),ez With T locally isomorphic to S, E,(T) = {0} and by = +1

If {neN|ay = (=1)"} is cofinite (resp. finite), we consider an odd (resp.
even) integer k such that ay» = (—1)" (resp. az» = (—1)""") for n > k. In order
to prove that % contains 6 curves, it suffices to show that C*) is contained in
a covering of R? which satisfies the local isomorphism property and which
consists of 6 complete folding curves. Consequently, it suffices to consider the
case where ay» = (—1)""! for each n e N. But this case is treated in Example
3.14 (see Fig. 8).

The proof of 2) uses arguments similar to those in the proof of Theorem
3.1. For each ke N*, we say that a set & of disjoint curves covers L; =
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{(u,v) € R?||u| + |v] < k} if each interval [(u,v), (u+ 1,0)] or [(u,v), (u,v+ 1)]
with u,v € Z, contained in Ly, is the support of a segment of one of the
curves.

For each set & of disjoint complete folding curves which have the same
type, define the same sets E, and are associated to locally isomorphic se-
quences, if &? covers L; for an integer k > 2, then & covers L., and
therefore covers Ly,;. By induction, it follows that, if &¥) covers L, for an
integer k > 2, then & covers Lj,.

For each k e N, consider / > 2k such that ¢, = ayin. Then {(Cfl;, el
Cﬁl)),(D(f;,...,Df))} covers L, (see Fig. 7 for the case ay = aym = +1).
Consequently, {C/~2K) DU=2K)} covers Lj,,, and the same property is true for
{C,D}. 1

A covering of R? by a set of complete folding curves can contain more
than 6 curves if it does not satisfy the local isomorphism property. For the
complete folding sequence 7' of Example 3.14, Figure 9 gives an example of a
covering of R? by 4 curves associated to 7 and 4 curves associated to —T (T
and —T are not locally isomorphic by Corollary 1.9). Anyway, the Theorem
below implies that the number of complete folding curves in a covering of R? is
at most 24:

Fig. 9



74 Francis OGER

THEOREM 3.16. There exist no more than 24 disjoint complete folding
curves in R

In the proof of Theorem 3.16, we write d((x, y), (x’, ")) = sup(|x’ — x|,
|y" — y|) for any (x,y),(x",»") e R%.

LemMA 3.16.1.  We have 6(X,Y) < 7-2"2 =2 for each integer n > 2 and
for any vertices X, Y of a (2n)-folding curve.

ProoF oF LEMMA 3.16.1. The Lemma is true for n =2 according to
Figure 3C. Now we show that, if it is true for n > 2, then it is true for n+ 1.

Let C be a (2n+ 2)-folding curve, and let Z,...,Z,»2 be its vertices
taken consecutively. Then (Z4;),_;.,» is the sequence of all vertices of the
(2n)-folding curve C® represented on the same figure as C. It follows from
the induction hypothesis applied to C® that we have §(X,Y) < 2(7-2"2 - 2)
for any X,Y € (Z4i)g_;~»». Moreover, for each vertex U of C, there exists
V € (Z4i)g<i<r» such that 6(U,V) < 1. Consequently, we have J(X,Y) <
2(7-2"2—2)+2=17-2""1-2 for any vertices X, ¥ of C. H

LEMMA 3.16.2. Let n > 2 be an integer and let C be a finite folding curve
with two vertices X, Y such that 5(X,Y)>7-2""2—1. Then C contains at

least 2*"~1 segments.

Proor OF LEmMA 3.16.2. By Lemma 3.16.1, we have k >2n+1 for
the smallest integer k& such that C is contained in a k-folding curve D. We
consider the (k — 2)-folding curves Dy, D, D3, D4 such that D = (Dy, D;, D,
D,4). The curve C contains one of the curves D, Dj since the (k — 1)-folding
curves (Dy, D,), (Da,D3), (D3,D4) do not contain C. Consequently, C con-
tains a (2n — 1)-folding curve, which consists of 2?"~! segments. M

PrOOF OF THEOREM 3.16. Let r>2 be an integer and let Ci,...,C,
be disjoint complete folding curves. Consider an integer k and some vertices
Xi,..., X, of Cy,...,C, belonging to [—k,+k]2.

Now consider an integer n>2 and write N =7-2"2+k. For each
ie{l,...,r}, there exist some vertices Y;, Z; of C;, with 6(0,Y;) =N and
5(0,Z;) = N, such that ]|—-N,+N[* contains a subcurve of C; which has X; as
a vertex and Y;, Z; as endpoints.

For each ie {l,...,r}, we have 6(X;, Y;) > N —k =7-2""% and 6(X;, Z;)
>N —k=7-2""2 By Lemma 3.16.2, the part of the subcurve of C; between
X; and Y; (resp. between X; and Z,) contains at least 22"~ segments.

As Cy,...,C, are digjoint, it follows that |—N,+N [2 contains at least
2r- 221 = 221 supports of segments of C;U---UC,. But |—N, —|—N[2 only
contains 2(2N)(2N — 1) < 8N? intervals of the form ](u,v), (u + 1,v)[ or |(u,v),
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(u,v+ 1)[ with u,v € Z. Consequently, we have 2*"r < 8N? and r < N?/2%—3
= (7-2"2 4 k)*/273,

(1]
(2]
(3]
(4]
(5]
(6]

[7]

As the last inequality is true for each n > 2, it follows r <49/2 <25. W
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