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and local isomorphism

Francis Oger

(Received June 28, 2010)

Abstract. For each integer n, an n-folding curve is obtained by folding n times a strip

of paper in two, possibly up or down, and unfolding it with right angles. Generalizing

the usual notion of infinite folding curve, we define complete folding curves as the

curves without endpoint which are unions of increasing sequences of n-folding curves for

n integer.

We prove that there exists a standard way to extend any complete folding curve

into a covering of R2 by disjoint such curves, which satisfies the local isomorphism

property introduced to investigate aperiodic tiling systems. This covering contains at

most six curves.

The infinite folding sequences (resp. curves) usually considered are se-

quences ðakÞk AN � H fþ1;�1g (resp. infinite curves with one endpoint) obtained

as direct limits of n-folding sequences (resp. curves) for n A N. It is well known

(see [3] and [4]) that paperfolding curves are self-avoiding and that, in some

cases, including the Heighway Dragon curve, a small number of copies of the

same infinite folding curve can be used to cover R2 without overlapping. On

the other hand, the last property is not true in some other cases.

In the present paper, we define complete folding sequences (resp. curves) as

the sequences ðakÞk AZ H fþ1;�1g (resp. the infinite curves without endpoint)

which are direct limits of n-folding sequences (resp. curves) for n A N. Any

infinite folding sequence (resp. curve) in the classical sense can be extended into

a complete folding sequence (resp. curve). On the other hand, most of the

complete folding sequences (resp. curves) cannot be obtained in that way.

We prove that any complete folding curve, and therefore any infinite

folding curve, can be extended in an essentially unique way into a covering of

R2 by disjoint complete folding curves which satisfies the local isomorphism

property. We show that a covering obtained from an infinite folding curve can

contain complete folding curves which are not extensions of infinite folding

curves.
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One important argument in the proofs is the derivation of paperfolding

curves, which is investigated in Section 2. Another one is the local isomor-

phism property for complete folding sequences (cf. Section 1) and for cover-

ings of R2 by sets of disjoint complete folding curves (cf. Section 3). The

local isomorphism property was originally used to investigate aperiodic tiling

systems. Actually, we have an interpretation of complete folding sequences as

tilings of R, and an interpretation of coverings of R2 by disjoint complete

folding curves as tilings of R2.

1. Paperfolding sequences

The notions usually considered (see for instance [5]), and which we define

first, are those of n-folding sequence (sequence obtained by folding n times a

strip of paper in two), and y-folding sequence (sequence indexed by N� ¼
N� f0g which is obtained as a direct limit of n-folding sequences for n A N).

Then we introduce complete folding sequences, which are sequences

indexed by Z, also obtained as direct limits of n-folding sequences for

n A N. We describe the finite subwords of each such sequence. Using this

description, we show that complete folding sequences satisfy properties similar

to those of aperiodic tiling systems: they form a class defined by a set of local

rules, neither of them is periodic, but all of them satisfy the local isomor-

phism property introduced for tilings. It follows that, for each such sequence,

there exist 2o isomorphism classes of sequences which are locally isomorphic

to it.

Definitions. For each n A N and each sequence S ¼ ða1; . . . ; anÞH fþ1;

�1g, we write jSj ¼ n and S ¼ ð�an; . . . ;�a1Þ. We say that a sequence

ða1; . . . ; anÞ is a subword of a sequence ðb1; . . . ; bpÞ or ðbkÞk AN � or ðbkÞk AZ
if there exists h such that ak ¼ bkþh for 1a ka n.

Definition. For each n A N, an n-folding sequence is a sequence ða1; . . . ;
a2n�1ÞH fþ1;�1g obtained by folding n times a strip of paper in two, with

each folding being done independently up or down, unfolding it, and writing

ak ¼ þ1 (resp. ak ¼ �1) for each k A f1; . . . ; 2n � 1g such that the k-th fold

from the left has the shape of a4 (resp.5) (we obtain the empty sequence for

n ¼ 0).

Properties. The following properties are true for each n A N:

1) If S is an n-folding sequence, then S is also an n-folding sequence.

2) The ðnþ 1Þ-folding sequences are the sequences ðS;þ1;SÞ and the se-

quences ðS;�1;SÞ, where S is an n-folding sequence.

3) There exist 2n n-folding sequences (proof by induction on n using 2)).
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4) Any sequence ða1; . . . ; a2 nþ1�1Þ is an ðnþ 1Þ-folding sequence if and only

if ða2kÞ1aka2 n�1 is an n-folding sequence and a1þ2k ¼ ð�1Þka1 for 0a

ka 2n � 1.

5) If nb 2 and if ða1; . . . ; a2n�1Þ is an n-folding sequence, then a2 rð1þ2kÞ ¼
ð�1Þka2 r for 0a ra n� 2 and 0a ka 2n�r�1 � 1 (proof by induction on

n using 4)).

Definition. An y-folding sequence is a sequence ðanÞn AN � such that

ða1; . . . ; a2 n�1Þ is an n-folding sequence for each n A N�.

Definition. A finite folding sequence is a subword of an n-folding

sequence for an integer n.

Examples. The sequence ðþ1;þ1;þ1Þ is a finite folding sequence since it

is a subword of the 3-folding sequence ð�1;þ1;þ1;þ1;�1;�1;þ1Þ. On the

other hand, ðþ1;þ1;þ1Þ is not a 2-folding sequence and ðþ1;þ1;þ1;þ1Þ is

not a finite folding sequence.

Definition. A complete folding sequence is a sequence ðakÞk AZ H fþ1;

�1g such that its finite subwords are finite folding sequences.

Examples. For each y-folding sequence S ¼ ðanÞn AN � , write S ¼
ð�a�nÞn A�N � . Then ðS;þ1;SÞ and ðS;�1;SÞ are complete folding sequences

since ð�a2n�1; . . . ;�a1;þ1; a1; . . . ; a2n�1Þ and ð�a2 n�1; . . . ;�a1;�1; a1; . . . ; a2 n�1Þ
are ðnþ 1Þ-folding sequences for each n A N. In Section 3, we give examples

of complete folding sequences which are not obtained in that way.

It follows from the property 5) above that, for each complete folding

sequence ðahÞh AZ and each n A N, there exists k A Z such that akþl�2 nþ1 ¼
ð�1Þ lak for each l A Z. Moreover we have:

Proposition 1.1. Consider a sequence S ¼ ðahÞh AZ H fþ1;�1g. For each

n A N, suppose that there exists hn A Z such that ahnþk�2 nþ1 ¼ ð�1Þkahn for each

k A Z, and consider En ¼ hn þ 2nZ and Fn ¼ hn þ 2nþ1Z. Then, for each n A N:

1) Z� En ¼ fh A Z j ahþk�2nþ1 ¼ ah for each k A Zg and Z� En is the disjoint

union of F0; . . . ;Fn�1;

2) for each h A En, ðah�2 nþ1; . . . ; ahþ2 n�1Þ is an ðnþ 1Þ-folding sequence;

3) for each h A Z, if ðah�2nþ1þ1; . . . ; ahþ2 nþ1�1Þ is an ðnþ 2Þ-folding sequence,

then h A En.

Proof. It follows from the definition of the integers hn that the sets

Fn are disjoint. For each n A N, we have En ¼ Z� ðF0 U � � �UFn�1Þ since

Z� ðF0 U � � �UFn�1Þ is of the form hþ 2nZ and hn does not belong to

F0 U � � �UFn�1.
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For each n A N, there exists no h A En such that ahþk�2nþ1 ¼ ah for each

k A Z, since we have En ¼ ðhn þ 2nþ1ZÞU ðhnþ1 þ 2nþ1ZÞ, ahnþ2 nþ1 ¼ �ahn and

ahnþ1þ2 nþ2 ¼ �ahnþ1
. On the other hand, we have ahmþk�2mþ2 ¼ ahm for 0a

ma n� 1 and k A Z, and therefore ahþk�2 nþ1 ¼ ah for h A F0 U � � �UFn�1 and

k A Z, which completes the proof of 1).

We show 2) by induction on n. The case n ¼ 0 is clear. If 2) is true for

n, then, for each h A Enþ1, the induction hypothesis applied to ðahþ2kÞk AZ
implies that ðah�2 nþ1þ2kÞ1aka2 nþ1�1 is an ðnþ 1Þ-folding sequence; it follows that

ðah�2 nþ1þ1; . . . ; ahþ2nþ1�1Þ is an ðnþ 2Þ-folding sequence, since ah�2 nþ1þ1þ2k ¼
ð�1Þkah�2nþ1þ1 for 0a ka 2nþ1 � 1.

Concerning 3), we observe that, for each h A Z, if ðah�2 nþ1þ1; . . . ; ahþ2nþ1�1Þ
is an ðnþ 2Þ-folding sequence, then ahþ2 n ¼ �ah�2 n . According to 1), it fol-

lows h� 2n A En, and therefore h A En. 9

Corollary 1.2. Any sequence ðahÞh AZ H fþ1;�1g is a complete folding

sequence if and only if, for each n A N, there exists hn A Z such that ahnþk�2nþ1 ¼
ð�1Þkahn for each k A Z.

For each complete folding sequence S and each n A N, the sets En and Fn

of Proposition 1.1 do not depend on the choice of hn. We denote them by

EnðSÞ and FnðSÞ. We write En and Fn instead of EnðSÞ and FnðSÞ if it creates

no ambiguity.

Corollary 1.3. Any complete folding sequence is nonperiodic.

Proof. Let S ¼ ðahÞh AZ be such a sequence, and let r be an integer such

that ahþr ¼ ah for each h A Z. For each n A N, it follows from 1) of Prop-

osition 1.1 that rþ ðZ� EnÞ ¼ Z� En, whence rþ En ¼ En and r A 2nZ.

Consequently, we have r ¼ 0. 9

Now, for each complete folding sequence S ¼ ðahÞh AZ, we describe the

finite subwords of S and we count those which have a given length.

Lemma 1.4. For each n A N and for any r; s A Z, we have r� s A 2nþ1Z if

ðarþ1; . . . ; arþtÞ ¼ ðasþ1; . . . ; asþtÞ for t ¼ supð2n; 7Þ.

Proof. If r� s B 2Z, then we have for instance r A E1 and s A F0. It

follows arþ1 ¼ �arþ3 ¼ arþ5 ¼ �arþ7 since rþ 1 A F0. Moreover, we have

asþ5 ¼ �asþ1 if sþ 1 A F1, and asþ7 ¼ �asþ3 if sþ 3 A F1. One of these two

possibilities is necessarily realized since sþ 1 A E1, which contradicts ðarþ1; . . . ;

arþ7Þ ¼ ðasþ1; . . . ; asþ7Þ.
If r� s A 2kZ� 2kþ1Z with 1a ka n, then we consider h A f1; . . . ; 2kg

such that rþ h A Fk�1. We have arþhþm�2k ¼ ð�1Þmarþh for each m A Z, and
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in particular asþh ¼ �arþh, which contradicts ðarþ1; . . . ; arþtÞ ¼ ðasþ1; . . . ; asþtÞ
since 1a ha 2k a t. 9

Proposition 1.5. Consider n A N and write T ¼ ðahþ1; . . . ; ahþ2n�1Þ with

h A En. Then any sequence of lengtha 2nþ1 � 1 is a subword of S if and

only if there exist z; h A f�1;þ1g such that it can be written in one of the

forms:

(1) ðT1; z;T2Þ with T1 final segment of T and T2 initial segment of T;

(2) ðT1; z;T2Þ with T1 final segment of T and T2 initial segment of T;

(3) ðT1; z;T ; h;T2Þ with T1 final segment and T2 initial segment of T;

(4) ðT1; z;T ; h;T2Þ with T1 final segment and T2 initial segment of T.

If supð2n; 7Þa ta 2nþ1 � 1, then any subword of length t of S can be written in

exactly one way in one of the forms (1), (2), (3), (4).

Proof. We can suppose h A Fn since T and T play symmetric roles in the

Proposition. Then we have ðakþ1; . . . ; akþ2n�1Þ ¼ T for k A Fn and ðakþ1; . . . ;

akþ2n�1Þ ¼ T for k A Enþ1. It follows that each subword of S of lengtha

2nþ1 � 1 can be written in one of the forms (1), (2), (3), (4).

Now, we are going to prove that each sequence of one of these forms can

be expressed as a subword of S in such a way that the part T1 is associated to

the final segment of a sequence ðakþ1; . . . ; akþ2 n�1Þ with k A En.

First we show this property for the sequences of the form (1) or (3). It

su‰ces to prove that, for any z; h A f�1;þ1g, there exists k A Fn such that

ak�2n ¼ z and ak ¼ h, since these two equalities imply ðak�2 nþ1þ1; . . . ; akþ2 n�1Þ ¼
ðT ; z;T ; h;TÞ. We consider l A Fn such that al ¼ h. We have alþr�2 nþ2 ¼ h for

each r A Z. Moreover, fl þ r � 2nþ2 � 2n j r A Zg is equal to Fnþ1 or Enþ2. In

both cases, there exists r A Z such that alþr�2 nþ2�2 n ¼ z, and it su‰ces to take

k ¼ l þ r � 2nþ2 for such an r.

Now we show the same property for the sequences of the form (2) or

(4). It su‰ces to prove that, for any z; h A f�1;þ1g, there exists k A Fn

such that ak ¼ z and akþ2 n ¼ h, since these two equalities imply ðak�2 nþ1; . . . ;

akþ2nþ1�1Þ ¼ ðT ; z;T ; h;TÞ. We consider l A Fn such that al ¼ z. We have

alþr�2 nþ2 ¼ z for each r A Z. Moreover, fl þ r � 2nþ2 þ 2n j r A Zg is equal to

Fnþ1 or Enþ2. In both cases, there exists r A Z such that alþr�2 nþ2þ2 n ¼ h, and it

su‰ces to take k ¼ l þ r � 2nþ2 for such an r.

Now, suppose that two expressions of the forms (1), (2), (3), (4) give the

same sequence of length t with supð2n; 7Þa ta 2nþ1 � 1. Consider two

sequences ðarþ1; . . . ; arþtÞ and ðasþ1; . . . ; asþtÞ which realize these expressions

in such a way that, in each of them, the part T1 of the expression is associated

to a final segment of a sequence ðakþ1; . . . ; akþ2 n�1Þ with k A En, while the part

T2 is associated to an initial segment of a sequence ðalþ1; . . . ; alþ2 n�1Þ with

l ¼ k þ 2n or l ¼ k þ 2nþ1. Then, by Lemma 1.4, the equality ðarþ1; . . . ; arþtÞ
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¼ ðasþ1; . . . ; asþtÞ implies r� s A 2nþ1Z. It follows that the two expressions are

equal. 9

Corollary 1.6. Any finite folding sequence U is a subword of S if and

only if U is a subword of S.

Proof. For each sequence T ¼ ðahþ1; . . . ; ahþ2 n�1Þ with n A N and h A En,

the sequence U is of the form (1) (resp. (2), (3), (4)) relative to T if and only if

U is of the form (2) (resp. (1), (4), (3)) relative to T . 9

It follows from the Corollary below that, for each integer nb 3, each

complete folding sequence has exactly 8 subwords which are n-folding se-

quences:

Corollary 1.7. Consider n A N and write T ¼ ðahþ1; . . . ; ahþ2 n�1Þ with

h A En. Then any ðnþ 2Þ-folding sequence is a subword of S if and only if it

can be written in the form ðT ;�z;T ; h;T ; z;TÞ or ðT ;�z;T ; h;T ; z;TÞ with

z; h A fþ1;�1g.

Proof. For each k A Z, if ðak�2 nþ1þ1; . . . ; akþ2 nþ1�1Þ is an ðnþ 2Þ-folding
sequence, then k A En by 3) of Proposition 1.1. Consequently, we have

ðakþ1; . . . ; akþ2n�1Þ ¼ T or ðakþ1; . . . ; akþ2 n�1Þ ¼ T , and ðak�2 nþ1þ1; . . . ; akþ2nþ1�1Þ
is of the required form.

In order to prove that each sequence of that form is a subword of S,

we consider k A Enþ1 and we write U ¼ ðakþ1; . . . ; akþ2 nþ1�1Þ. We have U ¼
ðT ; e;TÞ or U ¼ ðT ; e;TÞ with e ¼H1. Here we only consider the first case;

the second one can be treated in the same way since T and T play symmetric

roles in the Corollary.

We apply Proposition 1.5 for nþ 1 instead of n, and we consider the forms

(1), (2), (3), (4) relative to U . For any z; h A fþ1;�1g, the sequence ðT ;�z;

T ; h;T ; z;TÞ is a subword of S because it is equal to ðU ; h;UÞ or to ðU ; h;UÞ,
and therefore of the form (1) or (2) relative to U . The sequence ðT ;�z;T ; h;

T ; z;TÞ is also a subword of S because it is of the form ðT ; a;U ; b;TÞ or

ðT ; a;U ; b;TÞ with a; b A fþ1;�1g, and therefore of the form (3) or (4) relative

to U . 9

The following result generalizes [1, Th., p. 27] to complete folding

sequences:

Theorem 1.8. The sequence S has 4t subwords of length t for each integer

tb 7 and 2, 4, 8, 12, 18, 23 subwords of length t ¼ 1; 2; 3; 4; 5; 6.

Proof. The proof of the Theorem for t ¼ 1; 2; 3; 4; 5; 6 is based on

Proposition 1.5. We leave it to the reader.
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For tb 7, we consider the integer nb 2 such that 2n a ta 2nþ1 � 1, and

we write T ¼ ðahþ1; . . . ; ahþ2 n�1Þ with h A En. By Proposition 1.5, it su‰ces to

count the subwords of length t of S which are in each of the forms (1), (2), (3),

(4) relative to T .

Each of the forms (1), (2) gives jT1j þ jT2j ¼ t� 1, and therefore jT1jb
ðt� 1Þ � ð2n � 1Þ ¼ t� 2n. As jT1ja 2n � 1, we have ð2n � 1Þ � ðt� 2nÞ þ 1

¼ 2nþ1 � t possible values for jT1j. Consequently, there exist 4ð2nþ1 � tÞ
sequences associated to these two forms, since there are 2 possible values

for z.

Each of the forms (3), (4) gives jT1j þ jT2j ¼ t� 2n � 1, and therefore

jT1ja t� 2n � 1. We have t� 2n possible values for jT1j. Consequently,

there exist 8ðt� 2nÞ sequences associated to these two forms, since there are 4

possible values for ðz; hÞ. Now, the total number of subwords of length t in S

is 4ð2nþ1 � tÞ þ 8ðt� 2nÞ ¼ 4t. 9

For each sequence ðahÞh AZ H fþ1;�1g, we define a tiling of R as follows:

the tiles are the intervals ½k; k þ 1� for k A Z, where the ‘‘colour’’ of the

endpoint k (resp. k þ 1) is the sign of ak (resp. akþ1). Each tile is of one of the

forms ½þ;þ�, ½þ;��, ½�;þ�, ½�;��, and each pair of consecutive tiles is of one

of the forms ð½þ;þ�; ½þ;þ�Þ, ð½þ;þ�; ½þ;��Þ, ð½þ;��; ½�;þ�Þ, ð½þ;��; ½�;��Þ,
ð½�;þ�; ½þ;þ�Þ, ð½�;þ�; ½þ;��Þ, ð½�;��; ½�;þ�Þ, ð½�;��; ½�;��Þ.

Concerning the theory of tilings, the reader is referred to [7], which

presents classical results and gives generalizations based on mathematical

logic. Two tilings of Rn are said to be isomorphic if they are equivalent

up to translation, and locally isomorphic if they contain the same bounded sets

of tiles modulo translations.

We say that two sequences ðahÞh AZ; ðbhÞh AZ H fþ1;�1g are isomorphic

(resp. locally isomorphic) if they are equivalent up to translation (resp. they

have the same finite subwords). This property is true if and only if the

associated tilings are isomorphic (resp. locally isomorphic). It follows from the

definitions that any sequence ðahÞh AZ H fþ1;�1g is a complete folding se-

quence if it is locally isomorphic to such a sequence.

Corollary 1.9. Any complete folding sequence S ¼ ðahÞh AZ is locally

isomorphic to S ¼ ð�a�hÞh AZ, but not locally isomorphic to �S ¼ ð�ahÞh AZ.

Proof. The first statement is a consequence of Corollary 1.6 since each

finite folding sequence T is a subword of S if and only if T is a subword of S.

In order to prove the second statement, we consider T ¼ ðahþ1; ahþ2; ahþ3Þ
with h A E2. We have �T 0T since ahþ3 ¼ �ahþ1. By Corollary 1.7, the

4-folding sequences which are subwords of S are the sequences ðT ;�z;T ;

h;T ; z;TÞ and ðT ;�z;T ; h;T ; z;TÞ for z; h A fþ1;�1g, while the 4-folding
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sequences which are subwords of �S are the sequences ð�T ;�z;�T ; h;�T ;

z;�TÞ and ð�T ;�z;�T ; h;�T ; z;�TÞ for z; h A fþ1;�1g. Consequently, S

and �S have no 4-folding sequence in common. 9

Remark. For each y-folding sequence S, it follows from Corollary 1.9

that T ¼ ðS;þ1;SÞ and U ¼ ðS;�1;SÞ are locally isomorphic, since U ¼ T .

We say that a tiling T of Rn satisfies the local isomorphism property if, for

each bounded set of tiles FHT, there exists r A Rþ
� such that each ball of

radius r in Rn contains the image of F under a translation. Then any tiling U

is locally isomorphic to T provided that each bounded set of tiles contained in

U is the image under a translation of a set of tiles contained in T.

We say that a sequence ðahÞh AZ H fþ1;�1g satisfies the local isomorphism

property if the associated tiling satisfies the local isomorphism property.

Like Robinson tilings and Penrose tilings, complete folding sequences are

aperiodic in the following sense:

1) they form a class defined by a set of rules which can be expressed by first-

order sentences (for each n A N, we write a sentence which says that each

subword of length 2n of the sequence considered is a subword of an

ðnþ 1Þ-folding sequence);

2) neither of them is periodic, but all of them satisfy the local isomorphism

property.

The second statement of 2) follows from the Theorem below:

Theorem 1.10. Let S ¼ ðahÞh AZ be a complete folding sequence, let T be a

finite subword of S, and let r be an integer such that jT ja 2 r. Then T is a

subword of ðahþ1; . . . ; ahþ10�2 r�2Þ for each h A Z.

Proof. There exists k A Er such that T is a subword of ðak�2 rþ1; . . . ;

akþ2 r�1Þ. We have ðak�2 rþ1; . . . ; akþ2 r�1Þ ¼ ðU ; z;UÞ with z ¼ ak and U ¼
ðakþ1; . . . ; akþ2 r�1Þ.

If k A Erþ1, we consider m A Frþ1 such that am ¼ z; we have amþn�2 rþ2 ¼
ð�1Þnz for each n A Z. If k A Fr, we write m ¼ k; we have amþn�2 rþ1 ¼ ð�1Þnz
for each n A Z. In both cases, for each n A Z, we have amþn�2 rþ3 ¼ z and

ðamþn�2 rþ3�2 rþ1; . . . ; amþn�2 rþ3þ2 r�1Þ ¼ ðU ; z;UÞ.
For each h A Z, there exists n A Z such that h�mþ 2r a n � 2rþ3 a h�

mþ 9 � 2r � 1, which implies hþ 1amþ n � 2rþ3 � 2 r þ 1 and hþ 10 � 2r � 2b

mþ n � 2rþ3 þ 2r � 1. Then ðamþn�2 rþ3�2 rþ1; . . . ; amþn�2 rþ3þ2 r�1Þ is a subword of

ðahþ1; . . . ; ahþ10�2 r�2Þ, which completes the proof of the Theorem since T is a

subword of ðamþn�2 rþ3�2 rþ1; . . . ; amþn�2 rþ3þ2 r�1Þ. 9

The second part of the Theorem below is similar to results which were

proved for Robinson tilings and Penrose tilings:
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Theorem 1.11. 1) There exist 2o complete folding sequences which are

pairwise not locally isomorphic.

2) For each complete folding sequence S, there exist 2o isomorphism

classes of sequences which are locally isomorphic to S.

Proof of 1). It follows from Proposition 1.1 that each complete folding

sequence ðahÞh AZ is completely determined by the following operations:

– successively for each n A N, we choose among the 2 possible values the

smallest h A NVFn, then we fix ah A fþ1;�1g;
– for the unique h A 7

n AN En if it exists, we fix ah A fþ1;�1g.
Moreover, each possible sequence of choices determines a complete folding

sequence.

Now, it follows from Corollary 1.7 that, for each complete folding se-

quence S and each integer m, there exist an integer n > m and a complete

folding sequence T such that S and T contain as subwords the same m-folding

sequences, but not the same n-folding sequences.

Proof of 2). The sequence S is not periodic by Corollary 1.3, and

satisfies the local isomorphism property according to Theorem 1.10. By [7,

Corollary 3.7], it follows that there exist 2o isomorphism classes of sequences

which are locally isomorphic to S. 9

Remark. Concerning logic, we note two di¤erences between complete

folding sequences and Robinson or Penrose tilings. First, the set of all

complete folding sequences is defined by a countable set of first-order sentences,

and not by only one sentence. Second, it is the union of 2o classes for

elementary equivalence, i.e. local isomorphism, instead of being a single class.

2. Paperfolding curves: self-avoiding, derivatives, exterior

In the present section, we define n-folding curves, finite folding curves, y-

folding curves and complete folding curves associated to n-folding sequences,

finite folding sequences, y-folding sequences and complete folding sequences.

We show their classical properties: self-avoiding, existence of ‘‘derivatives.’’

Then we prove that any complete folding curve divides the set of all points

of Z2 which are ‘‘exterior’’ to it into zero, one or two ‘‘connected components,’’

and that these components are infinite.

As an application, we consider curves which are limits of successive anti-

derivatives of a complete folding curve. Any such curve is equal to the closure

of its interior. We show that, except in a special case, its exterior is the union

of zero, one or two connected components. In some cases, its boundary is a

fractal.
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Finally we prove that, for each finite subcurve F of a complete folding

curve C, there exist everywhere in C some subcurves which are parallel to F .

We provide R2 with the euclidean distance defined as dððx; yÞ; ðx 0; y 0ÞÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx 0 � xÞ2 þ ðy 0 � yÞ2

q
for any x; y; x 0; y 0 A R.

We fix a A R�
þ small compared to 1. For any x; y A Z and any z; h A

fþ1;�1g, we consider (cf. Fig. 1) the segments of curves

CHðx; y; z; hÞ ¼ ½ðxþ a; yþ zaÞ; ðxþ 2a; yÞ�U ½ðxþ 2a; yÞ; ðxþ 1� 2a; yÞ�

U ½ðxþ 1� 2a; yÞ; ðxþ 1� a; yþ haÞ�

and

CV ðx; y; z; hÞ ¼ ½ðxþ za; yþ aÞ; ðx; yþ 2aÞ�U ½ðx; yþ 2aÞ; ðx; yþ 1� 2aÞ�

U ½ðx; yþ 1� 2aÞ; ðxþ ha; yþ 1� aÞ�:

We say that ½ðx; yÞ; ðxþ 1; yÞ� is the support of CHðx; y; z; hÞ and ½ðx; yÞ;
ðx; yþ 1Þ� is the support of CV ðx; y; z; hÞ.

We denote by Cþ
Hðx; y; z; hÞ the segment CHðx; y; z; hÞ oriented from left to

right, and C�
H ðx; y; z; hÞ the segment CHðx; y; z; hÞ oriented from right to left.

Similarly, we denote by Cþ
V ðx; y; z; hÞ the segment CV ðx; y; z; hÞ oriented from

Fig. 1
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bottom to top, and C�
V ðx; y; z; hÞ the segment CV ðx; y; z; hÞ oriented from top

to bottom. From now on, all the segments considered are oriented.

We associate to Cþ
Hðx; y; z; hÞ the tile

Pþ
Hðx; y; z; hÞ ¼ fðu; vÞ A R2 j ju� ðxþ 1=2Þj þ jv� yja 1=2g

U fðu; vÞ A R2 j supðju� ðxþ 1� aÞj; jv� ðyþ haÞjÞa ag

� fðu; vÞ A R2 j supðju� ðxþ aÞj; jv� ðyþ zaÞjÞ < ag;

and to C�
Hðx; y; z; hÞ the tile

P�
Hðx; y; z; hÞ ¼ fðu; vÞ A R2 j ju� ðxþ 1=2Þj þ jv� yja 1=2g

U fðu; vÞ A R2 j supðju� ðxþ aÞj; jv� ðyþ zaÞjÞa ag

� fðu; vÞ A R2 j supðju� ðxþ 1� aÞj; jv� ðyþ haÞjÞ < ag:

Similarly, we associate to Cþ
V ðx; y; z; hÞ the tile

Pþ
V ðx; y; z; hÞ ¼ fðu; vÞ A R2 j ju� xj þ jv� ðyþ 1=2Þja 1=2g

U fðu; vÞ A R2 j supðju� ðxþ haÞj; jv� ðyþ 1� aÞjÞa ag

� fðu; vÞ A R2 j supðju� ðxþ zaÞj; jv� ðyþ aÞjÞ < ag;

and to C�
V ðx; y; z; hÞ the tile

P�
V ðx; y; z; hÞ ¼ fðu; vÞ A R2 j ju� xj þ jv� ðyþ 1=2Þja 1=2g

U fðu; vÞ A R2 j supðju� ðxþ zaÞj; jv� ðyþ aÞjÞa ag

� fðu; vÞ A R2 j supðju� ðxþ haÞj; jv� ðyþ 1� aÞjÞ < ag:

We note that each tile is obtained from a square, which has a diagonal of

length 1 with endpoints in Z2, by putting ‘‘bumps’’ on two of its four edges.

We say that two segments C1, C2 are consecutive if they just have one

common point and if the end of C1 is the beginning of C2. This property is

true if and only if the intersection of the associated tiles consists of an edge

with a bump (see Fig. 1). The supports of two consecutive segments form a

right angle.

A finite (resp. infinite, complete) curve is a sequence ðC1; . . . ;CnÞ (resp.

ðCiÞi AN � , ðCiÞi AZ) of segments with Ci, Ciþ1 consecutive for each integer i such

that Ci and Ciþ1 exist.

We identify two finite curves if they only di¤er in the beginning of the first

segment and the end of the last one. We also identify two infinite curves if

they only di¤er in the beginning of the first segment.
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In the case of a complete curve, the tiles and the squares obtained by

erasing their bumps cover the same part of R2.

We say that a curve ðC1; . . . ;CnÞ (resp. ðCiÞi AN � , ðCiÞi AZ) is self-avoiding if

we have Ci VCj ¼ q for j j � ijb 2. Such a curve defines an injective con-

tinuous function from a closed connected subset of R to R2.

The tiles associated to the segments of a self-avoiding curve are non-

overlapping, except possibly because of the bump at the end of the last

segment.

We consider that two curves ðC1; . . . ;CmÞ and ðD1; . . . ;DnÞ can be con-

catenated if the end of the support of Cm and the beginning of the support

of D1 form a right angle. Then we modify the end of Cm and the beginning

of D1 in order to make them consecutive.

For each finite curve ðCiÞ1aian (resp. infinite curve ðCiÞi AN � , complete

curve ðCiÞi AZ), we consider the sequence ðhiÞ1aian�1 (resp. ðhiÞi AN � , ðhiÞi AZ)
defined as follows: for each i, we write hi ¼ þ1 (resp. hi ¼ �1) if we turn

left (resp. right) when we pass from Ci to Ciþ1. Two curves are associated

to the same sequence if and only if they are equivalent modulo a positive

isometry.

For each segment of curve D, we denote by D the segment obtained from

D by changing the orientation. If a finite curve C ¼ ðC1; . . . ;CnÞ is associated

to S ¼ ðh1; . . . ; hn�1Þ, then C ¼ ðCn; . . . ;C1Þ is associated to S ¼ ð�hn�1; . . . ;

�h1Þ. If a complete curve C ¼ ðCiÞi AZ is associated to S ¼ ðhiÞi AZ, then C ¼
ðC�iþ1Þi AZ is associated to S ¼ ð�h�iÞi AZ.

For each segment of curve D with support ½X ;Y � and oriented from X

to Y , we call X , Y the endpoints, X the initial point and Y the terminal point

of D. The initial point of a curve ðC1; . . . ;CnÞ is the initial point of C1, and

its terminal point is the terminal point of Cn. The vertices of a curve are the

endpoints of its segments.

We say that two segments of curves, or two curves, are parallel (resp.

opposite) if they are equivalent modulo a translation (resp. a rotation of

angle p).

We have Z2 ¼ M1 UM2 and M1 VM2 ¼ q for M1 ¼ fðx; yÞ A Z2 j xþ y

oddg and M2 ¼ fðx; yÞ A Z2 j xþ y eveng. We denote by M one of these two

sets and we consider, on the one hand the curves with supports of length 1 and

vertices in Z2, on the other hand the curves with supports of length
ffiffiffi
2

p
and

vertices in M.

Let C be a segment of the second system, let X be its initial point and let

X 0 be its terminal point. Then, in the first system, there exist two curves

ðA1;A2Þ and ðB1;B2Þ, associated to the sequences ð�1Þ and ðþ1Þ, such that X

is the initial point of A1 and B1, and X 0 is the terminal point of A2 and B2 (see

Fig. 2A).
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Now, consider in the second system a segment C 0 such that ðC;C 0Þ is a

curve associated to a sequence ðeÞ with e A fþ1;�1g. Let X 00 be the terminal

point of C 0. In the first system, denote by ðA 0
1;A

0
2Þ and ðB 0

1;B
0
2Þ the curves

associated to the sequences ð�1Þ and ðþ1Þ, such that X 0 is the initial point of

A 0
1 and B 0

1, and X 00 is the terminal point of A 0
2 and B 0

2.

Then (see Fig. 2B), ðA1;A2;B
0
1;B

0
2Þ and ðB1;B2;A

0
1;A

0
2Þ are curves asso-

ciated to ð�1; e;þ1Þ and ðþ1; e;�1Þ. Each of these curves has X , X 0, X 00

among its vertices, and crosses the curve ðC;C 0Þ near X 0. Moreover ðA1;A2;

A 0
1;A

0
2Þ and ðB1;B2;B

0
1;B

0
2Þ are not curves.

For each curve ðC1; . . . ;C2nÞ (resp. ðCiÞi AN � , ðCiÞi AZ) of the first system

and each curve ðD1; . . . ;DnÞ (resp. ðDiÞi AN � , ðDiÞi AZ) of the second system, we

say that C is an antiderivative of D or that D is the derivative of C if, for each

integer i:

a) if Diþ1 exists, then C2iþ1 and Diþ1 have the same initial point;

b) if Di exists, then C2i and Di have the same terminal point;

c) if Di and Diþ1 exist, then C crosses D near the terminal point of Di (we say

that C alternates around D).

Each curve of the second system has exactly two antiderivatives in the first

one. Each curve C of the first system has at most one derivative in the second

one. If that derivative exists, then the sequence ðh1; . . . ; h2n�1Þ (resp. ðhiÞi AN � ,

ðhiÞi AZ) of elements of f�1;þ1g associated to C satisfies h2iþ1 ¼ ð�1Þ ih1 for

each integer i such that h2iþ1 exists. Conversely, if this condition is satisfied,

then the derivative of C is defined by taking for M the set M1 or M2 which

contains the initial point of C1, and replacing each pair of segments ðC2i�1;C2iÞ
with a segment Di.

For the definition of the derivative of a complete curve ðCiÞi AZ, we permit

ourselves to change the initial point of indexation, i.e. to replace ðCiÞi AZ with

ðCiþkÞi AZ for an integer k. With this convention, the derivative exists if and

only if h2i ¼ ð�1Þ ih0 for each i A Z or h2iþ1 ¼ ð�1Þ ih1 for each i A Z. If these

Fig. 2A Fig. 2B
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two conditions are simultaneously satisfied, we obtain two di¤erent derivatives;

in that situation, which only concerns one isometry class of curves, we consider

that the derivative is not defined.

We define by induction the n-th derivative C ðnÞ of a curve C, with C ð0Þ ¼ C

and C ðnþ1Þ derivative of C ðnÞ for each n A N, as well as the n-th antideriva-

tives. It is convenient to represent the successive derivatives of a curve C on

the same figure in such a way that C ðnÞ alternates around C ðnþ1Þ for each n A N

such that C ðnþ1Þ exists. This convention will be used later in the paper.

For each n A N, we call an n-folding curve any finite curve associated to an

n-folding sequence. For each n-folding sequence obtained by folding n times

a strip of paper, we obtain the associated n-folding curve by keeping the strip

folded according to right angles instead of unfolding it completely.

We see by induction on n that the n-folding curves are the n-th anti-

derivatives of the curves which consist of one segment. Consequently, up to

isometry and up to the orientation, there exist one 2-folding curve (cf. Fig. 3A),

two 3-folding curves (cf. Fig. 3B), and four 4-folding curves (cf. Fig. 3C).

We call y-folding curve (resp. finite folding curve, complete folding curve)

each curve associated to an y-folding sequence (resp. a finite folding sequence,

a complete folding sequence). Any curve ðCiÞi AN � (resp. ðCiÞi AZ) is an y-

folding curve (resp. a complete folding curve) if and only if it is indefinitely

derivable.

The successive antiderivatives of a paperfolding curve, as well as its suc-

cessive derivatives if they exist, are also paperfolding curves.

Proposition 2.1. Antiderivatives of self-avoiding curves are self-avoiding.

Proof. Consider a curve C whose derivative D is self-avoiding. If C is

not self-avoiding, then there exist two segments of C which have the same

support. These two segments are necessarily coming from segments of D

which have a common endpoint.

In order to prove that this situation is impossible, we consider the function

t which is defined on the set of all supports of segments of D with tð½ðu; vÞ;

Fig. 3A. one 2-folding curve Fig. 3B. two 3-folding curves
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ðuþ 1; vþ eÞ�Þ ¼ þ1 (resp. �1) for each ðu; vÞ A Z2 and each e A f�1;þ1g such

that C is above (resp. below) D on ½ðu; vÞ; ðuþ 1; vþ eÞ�. It su‰ces to observe

that the equality tð½ðu 0; v 0Þ; ðu 0 þ 1; v 0 þ e 0Þ�Þ ¼ ð�1Þu
0�utð½ðu; vÞ; ðuþ 1; vþ eÞ�Þ

is true wherever t is defined. In fact, it is true for the supports of consecutive

segments of D because C alternates around D, and it is proved in the general

case by induction on the number of consecutive segments between the two

segments considered. 9

Corollary 2.2. Paperfolding curves are self-avoiding.

Proof. For each integer n, each n-folding curve is self-avoiding because

it is the n-th antiderivative of a self-avoiding curve which consists of one

segment. Each finite folding curve is self-avoiding since it is a subcurve of

an n-folding curve for an integer n. Complete folding curves and y-folding

curves are self-avoiding because their finite subcurves are self-avoiding.

Another proof is given by [4, Observation 1.11, p. 134]. 9

For each self-avoiding curve C and any x; y A Z, we write:

rCð½ðx; yÞ; ðxþ 1; yÞ�Þ ¼ þ1 (resp. �1) if C contains a segment with the initial

point ðx; yÞ (resp. ðxþ 1; yÞ) and the terminal point ðxþ 1; yÞ (resp. ðx; yÞ);
rCð½ðx; yÞ; ðx; yþ 1Þ�Þ ¼ þ1 (resp. �1) if C contains a segment with the initial

point ðx; yÞ (resp. ðx; yþ 1Þ) and the terminal point ðx; yþ 1Þ (resp. ðx; yÞ).
There exists e A f�1;þ1g such that rCð½ðx; yÞ; ðxþ 1; yÞ�Þ ¼ ð�1Þy�xþe and

rCð½ðx; yÞ; ðx; yþ 1Þ�Þ ¼ ð�1Þy�xþeþ1 wherever rC is defined. In fact, e is the

same for the supports of two consecutive segments, and we see that it is the

same for the supports of any two segments by induction on the number of

Fig. 3C. four 4-folding curves
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consecutive segments between them. We extend the definition of rC , according

to this property, to the set of all intervals ½ðx; yÞ; ðxþ 1; yÞ� or ½ðx; yÞ; ðx; yþ 1Þ�
with x; y A Z.

For each self-avoiding curve C ¼ ðCiÞi AZ and any pairs ðCi;Ciþ1Þ,
ðCj;Cjþ1Þ of consecutive segments, if Ci and Cj have the same terminal point,

then, by the property of rC stated above, we turn left when passing from Ci

to Ciþ1 if and only if we turn left when passing from Cj to Cjþ1. For each

X A Z2, we write sCðXÞ ¼ þ1 (resp. �1) if X is the common endpoint of two

consecutive segments Ci, Ciþ1 of C and if we turn left (resp. right) when

passing from Ci to Ciþ1.

It follows from the definition of derivatives that, for each k A N:

a) if C ð2kÞ exists, then there exists X2k A Z2 such that the set of all vertices of

C ð2kÞ is contained in E2kðCÞ ¼ X2k þ 2kZ2;

b) if C ð2kþ1Þ exists, then there exists X2kþ1 A Z2 such that the set of all vertices

of C ð2kþ1Þ is contained in E2kþ1ðCÞ ¼ X2kþ1 þ ð2k; 2kÞZþ ð2k;�2kÞZ.
The set EnðCÞ is defined for each n A N such that C ðnÞ exists. If C ðnþ1Þ

exists, then we have Enþ1ðCÞHEnðCÞ; we write FnðCÞ ¼ EnðCÞ � Enþ1ðCÞ.
If S ¼ ðhiÞi AZ is the sequence associated to a complete folding curve C ¼

ðCiÞi AZ, then, for each i A Z and each n A N, the terminal point of Ci belongs to

EnðCÞ if and only if i belongs to EnðSÞ.
The following lemma applies, in particular, to complete folding curves:

Lemma 2.3. Let C be a derivable self-avoiding complete curve. Consider a

square Q ¼ ½x; xþ 1� � ½y; yþ 1� with x; y A Z. If four vertices of Q are end-

points of segments of C, then at least three segments of C, with two of them

consecutive, have supports which are edges of Q. If three vertices of Q are

endpoints, then the two edges determined by these vertices are supports of

segments of C, or neither of them is a support. If C is derivable twice and if

two vertices of Q are endpoints, then they are necessarily adjacent.

Proof. We denote by W , X , Y , Z the vertices of Q taken consecutively,

and we show that the cases excluded by the Lemma are impossible.

First suppose that an edge of Q, for instance WX , is the support of a

segment of C, that a vertex of Q which does not belong to this edge, for

instance Z, is a vertex of C, and that the edges of Q which contain this vertex

are not supports of segments of C. Consider the two pairs of consecutive

segments of C which respectively have W and Z as a common endpoint.

Then the property of rC implies that these two pairs both have the orientation

shown by Figure 4A, or both have the contrary orientation, which contradicts

the connectedness of C (see Fig. 4A).

Then suppose that two opposite edges of Q, for instance WX and YZ, are

supports of segments of C, and that the two preceding segments, as well as the
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two following segments, have supports which are not edges of Q. Then the

property of rC implies that the two sequences of three consecutive segments

formed from these six segments both have the orientation shown by Figure 4B,

or both have the contrary orientation. Suppose for instance that X and Z

belong to F0ðCÞ. Then the two pairs of segments of C, extracted from the

two sequences, which respectively have X and Z as a common endpoint, give

opposite segments of D, which contradicts the property of rD (see Fig. 4B).

Now suppose that W , X , Y , Z are vertices of C and that no edge of Q is

the support of a segment of C. Then the property of rC implies that the pairs

of segments of C which respectively have W , X , Y , Z as a common endpoint

all have the orientation shown by Figure 4C, or all have the contrary orienta-

tion. Suppose for instance that W and Y belong to F0ðCÞ. Then the pairs of

segments of C which respectively have W and Y as a common endpoint give

opposite segments of D, which contradicts the property of rD (see Fig. 4C).

Finally suppose that C is derivable twice and that only two opposite

vertices of Q, for instance W and Y , are vertices of C. If W and Y belong

Fig. 4A Fig. 4B

Fig. 4C Fig. 4D
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to F0ðCÞ, then, as in the previous case, the pairs of segments of C which

respectively have W and Y as a common endpoint give opposite segments of

D, which contradicts the property of rD.

If W and Y belong to E1ðCÞ, we consider the two squares of width
ffiffiffi
2

p

which have WY as their common edge. As W and Y are vertices of D, one of

the squares has an edge adjacent to WY which is the support of a segment

of D. On the other hand, as the center X or Z of that square is not a vertex

of C, the edge WY and the opposite edge are not supports of segments of D,

which contradicts the two first statements of the Lemma applied to D. 9

Definitions. For any X ;Y A Z2, a path from X to Y is a sequence

(X0; . . . ;XnÞHZ2 with n A N, X0 ¼ X , Xn ¼ Y and dðXi�1;XiÞ ¼ 1 for 1a

ia n. For each complete curve C, we call exterior of C and we denote by

ExtðCÞ the set of all points of Z2 which are not vertices of C. A connected

component of ExtðCÞ is a subset K which is maximal for the following

property: any two points of K are connected by a path which only contains

points of K .

Theorem 2.4. The exterior ExtðCÞ of a complete folding curve C is the

union of 0, 1 or 2 infinite connected components, and each of these components is

the intersection of ExtðCÞ with one of the 2 connected components of R2 � C.

Lemma 2.4.1. The connected components of ExtðCÞ are infinite.

Proof of Lemma 2.4.1. For each n A N, we have ExtðC ðnÞÞ ¼ ExtðCÞV
EnðCÞ since each point of EnðCÞ is a vertex of C ðnÞ if and only if it is a vertex

of C.

If K is a connected component of ExtðCÞ, then K VEnðCÞ is a union of

connected components of ExtðC ðnÞÞ for each n A N. Otherwise, the smallest

integer n such that this property is false satisfies nb 1, and En�1ðCÞ contains

the consecutive vertices W ;X ;Y ;Z of a square of width ð
ffiffiffi
2

p
Þn�1 with W ;Y A

ExtðC ðnÞÞ, W A K , Y B K and X , Z vertices of C ðn�1Þ, which contradicts

Lemma 2.3 applied to C ðn�1Þ.

For each connected component K of ExtðCÞ and each n A N, we have

qWK VEnþ1ðCÞWK VEnðCÞ, or K VEnðCÞ is a union of connected compo-

nents which consist of one point; in fact, for any X ;Y A EnðCÞ with dðx; yÞ ¼
ð

ffiffiffi
2

p
Þn, we have X A FnðCÞ and Y A Enþ1ðCÞ, or Y A FnðCÞ and X A Enþ1ðCÞ.

Consequently, in order to prove that ExtðCÞ has no finite connected compo-

nent, it su‰ces to show that each ExtðC ðnÞÞ has no connected component which

consists of one point.

Suppose that there exist a twice derivable complete curve D and a point

U ¼ ðu; vÞ A Z2 such that fUg is a connected component of ExtðDÞ. Write

W ¼ ðu� 1; vÞ, X ¼ ðu; vþ 1Þ, Y ¼ ðuþ 1; vÞ and Z ¼ ðu; v� 1Þ.
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If U belongs to F0ðDÞ, then W , X , Y , Z belong to E1ðDÞ and they

are vertices of Dð1Þ. By Lemma 2.3, two consecutive segments of Dð1Þ have

supports which are edges of WXYZ. As D alternates around Dð1Þ, it follows

that U is a vertex of D, whence a contradiction.

If U belongs to E1ðDÞ, consider the point S (resp. T) which forms a square

with X , U , W (resp. X , U , Y ). Then SX or XT is the support of a segment

of D since X is a vertex of D.

Suppose for instance that XT is the support of a segment of D. As Y is a

vertex of D contrary to U , Lemma 2.3 implies that TY is also the support of a

segment of D. As X and Y belong to F0ðDÞ, it follows from the property of

rD (see Fig. 4D) that there exist two parallel segments of Dð1Þ such that T is

the terminal point of one of them and the initial point of the other one, whence

a contradiction. 9

Proof of Theorem 2.4. Write C ¼ ðCiÞi AZ. Consider a connected com-

ponent K of ExtðCÞ and write M ¼ fX A Z2 � K j dðX ;KÞ ¼ 1g.
Denote by W the set of all squares S ¼ ½x; xþ 1� � ½y; yþ 1� with x; y A Z

such that K contains one or two vertices of S. For each S A W, if K contains

one vertex X of S, consider the segment ES of length
ffiffiffi
2

p
joining the vertices of

S adjacent to X . If K contains two vertices of S, consider the segment ES of

length 1 joining the two other vertices, which are adjacent by Lemma 2.3.

The endpoints of the segments ES for S A W belong to M. We are going

to prove that each U A M is an endpoint of exactly two such segments.

We consider the points V ;W ;X ;Y A Z2 with dðU ;VÞ ¼ dðU ;WÞ ¼ dðU ;XÞ ¼
dðU ;YÞ ¼ 1 such that VWXY is a square, V , W are vertices of C, and X A K .

We denote by P, Q, R, S the squares determined by the pairs of edges

ðUV ;UWÞ, ðUW ;UX Þ, ðUX ;UY Þ, ðUY ;UVÞ.
As C is connected, the fourth vertex of P does not belong to K , and P

does not belong to W. On the other hand, Q belongs to W since X belongs

to K contrary to U and W .

If Y is a vertex of C, then R belongs to W since X belongs to K and U , Y

do not belong to K . Moreover, Lemma 2.3 implies that the fourth vertex of S

is a vertex of C, since UV is the support of a segment of C contrary to UY .

Consequently, S does not belong to W.

If Y is not a vertex of C, then, by Lemma 2.3, the fourth vertex of R is

not a vertex of C, and therefore belongs to K . Consequently, Y belongs to

K , S belongs to W and R does not belong to W.

Moreover, U is the common endpoint of EQ and ER if Y is a vertex of C,

and the common endpoint of EQ and ES if Y is not a vertex of C.

As K is infinite by Lemma 2.4.1, it follows that the segments ES for S A W

form an unbounded self-avoiding curve E. The vertices of E are the points
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of M. One connected component of R2 � E contains K , but contains no point

of C and no point of Z2 which does not belong to K .

The points of M taken along E form a sequence ðXiÞi AZ. For each

X A M, denote by rðX Þ the unique integer j such that X is the terminal point

of Cj and the initial point of Cjþ1. Suppose for instance rðX0Þ < rðX1Þ.
Then, using the connectedness of C, we see by induction on i that rðXiÞ <
rðXiþ1Þ for each i A Z.

Now suppose that there exists a connected component L0K of ExtðCÞ
such that K and L are contained in the same connected component of

R2 � C. Then there exists i A Z such that L is contained in the loop formed

by C between Xi and Xiþ1, and L is finite contrary to Lemma 2.4.1. 9

Now, we apply Theorem 2.4 to limits of complete folding curves. We

give less details in this part, which will not be used in the remainder of the

paper.

We consider some complete folding curves Cn ¼ ðCn;pÞp AZ with Cn ¼ C
ð1Þ
nþ1

for each n A N. We suppose that the curves Cn are represented on the same

figure in such a way that:

– C0 has vertices in Z2 and supports of length 1;

– all the segments Cn;1 have the same initial point;

– Cnþ1 alternates around Cn for each n A N.

We denote by L the limit of the curves Cn considered as representations of

functions from R to R2.

The curve L is associated to a function from R to R2 which is continuous

everywhere, but derivable nowhere. Moreover, L is closed as a subset of

R2. By Theorem 3.1 below, L contains arbitrarily large open balls. It follows

from Proposition 2.6 and Theorem 3.1 that L is equal to the closure of its

interior.

Now, we consider the complete folding sequences ðhn;pÞp AZ associated

to the curves Cn. We say that ðhn;1Þn AN is ultimately alternating if we have

hn;1 ¼ ð�1Þn for n large enough, or hn;1 ¼ ð�1Þnþ1 for n large enough.

Corollary 2.5. If ðhn;1Þn AN is not ultimately alternating, then R2 � L is

the union of 0, 1 or 2 unbounded connected components.

Proof. For each n A N, we have ExtðCnÞHR2 � L since ðhm;1Þm AN is

not ultimately alternating. By Theorem 2.4, it su‰ces to show that, for each

n A N, any X ;X 0 A ExtðCnÞ belong to the same connected component of R2 � L

if they belong to the same connected component of ExtðCnÞ. Moreover, it is

enough to prove this property when dðX ;X 0Þ ¼ ð1=
ffiffiffi
2

p
Þn.

We consider some distinct points Y , Y 0, Z, Z 0, U , V with YY 0 and ZZ 0

parallel to XX 0 such that XX 0Y 0Y (resp. XX 0Z 0Z) is a square of center U
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(resp. V ). Then XX 0, XY , XZ, X 0Y 0, X 0Z 0 are not supports of segments of

Cn. Consequently, at least one of the points U , V is not a vertex of Cnþ1.

If U (resp. V ) is not a vertex of Cnþ1, then the open triangle XUX 0 (resp.

XVX 0) is contained in R2 � L. It follows that X and X 0 belong to the same

connected component of R2 � L. 9

Remark. Let L be the limit of the curves Cn, where C0 is the curve C

of Example 3.13 below and hn;1 ¼ ð�1Þnþ1 for nb 1. Then we have ½ð0; 1Þ;
ð2; 1Þ�HL even though ð1; 1Þ is not a vertex of C0. It follows that ð1; 0Þ
belongs to a bounded connected component of R2 � L. It can be proved that

R2 � L has infinitely many such components.

Examples. The limit curve L obtained from the curve C of Example 3.13

by writing hn;1 ¼ þ1 for nb 1 is called a dragon curve. It follows from [6]

that the interior of L is a union of countably many bounded connected

components. According to [2], the boundary of L is a fractal.

On the other hand, Example 3.8 gives a case with L ¼ R2. Using a

similar construction, we can obtain L such that its boundary is a line. If L is

one of the limit curves obtained from the curves of Example 3.14 by writing

hn;1 ¼ ð�1Þnþ1 for nb 1, then its boundary is the union of two or four half-

lines with the same origin.

The Proposition below is not a priori obvious since two curves associated

to the same folding sequence are not necessarily parallel.

Proposition 2.6. For each complete folding curve C ¼ ðChÞh AZ, for each

n A N and for any i; j A Z, ðCjþ1; . . . ;Cjþ88nÞ contains a curve which is parallel

and another curve which is opposite to ðCiþ1; . . . ;CiþnÞ.

For the proof of Proposition 2.6, we fix C, n, i, j and we write A ¼
ðCiþ1; . . . ;CiþnÞ. We consider the integer m such that 2m�1 < na 2m, and the

sequence S ¼ ðhhÞh AZ associated to C.

Lemma 2.6.1. There exists k A Emþ2ðSÞ such that ðCkþ1; . . . ;Ckþ2mþ2Þ con-

tains a subcurve which is parallel or opposite to A.

Proof of Lemma 2.6.1. We can suppose that there exists l A Emþ2ðSÞ such
that i þ 1a la i þ n� 1 since, otherwise, there exists k A Emþ2ðSÞ such that

AH ðCkþ1; . . . ;Ckþ2mþ2Þ.
Then, for each h A fi þ 1; . . . ; i þ n� 1g � flg, we have h A Z� En, and

therefore hh ¼ hhþ2mþ1þr�2mþ2 for each r A Z. We also have hlþ2mþ1þr�2mþ2 ¼
ð�1Þrhlþ2mþ1 for each r A Z. Consequently, there exists r A Z such that hl ¼
hlþ2mþ1þr�2mþ2 , and therefore hh ¼ hhþ2mþ1þr�2mþ2 for i þ 1a ha i þ n� 1.
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Now the supports of Ciþ1 and Ciþ1þ2mþ1þr�2mþ2 are parallel or opposite since

ði þ 1þ 2mþ1 þ r � 2mþ2Þ � ði þ 1Þ is even. It follows that ðCiþ1þ2mþ1þr�2mþ2 ; . . . ;

Ciþnþ2mþ1þr�2mþ2Þ is parallel or opposite to A. 9

Proof of Proposition 2.6. By Lemma 2.6.1, we can suppose that there

exists k A Emþ2ðSÞ such that ka i and k þ 2mþ2 b i þ n. For each r A Z, we

write C �
r ¼ ðCkþ1þr�2mþ2 ; . . . ;Ckþðrþ1Þ�2mþ2Þ. We consider the ðmþ 2Þ-th deriva-

tive D ¼ ðDrÞr AZ of C, indexed in such a way that, for each r A Z, the initial

point of Dr is the initial point of Ckþ1þr�2mþ2 .

For any r; s A Z, we have

ðhkþ1þr�2mþ3 ; . . . ; hkþ2mþ2�1þr�2mþ3Þ ¼ ðhkþ1þs�2mþ3 ; . . . ; hkþ2mþ2�1þs�2mþ3Þ:

Consequently, C �
2r and C �

2s are parallel (resp. opposite) if and only if D2r and

D2s are parallel (resp. opposite). The same property is true for the copies of A

contained in C �
2r and C �

2s.

As we have 88n > 11 � 2mþ2, there exists r A Z such that ðCjþ1; . . . ;Cjþ88nÞ
contains ðC �

2r; . . . ;C
�
2rþ8Þ. Moreover, ðD2r; . . . ;D2rþ8Þ is necessarily contained

in a 4-folding curve. It follows (see Fig. 3C) that there exist p; q A f0; 1; 2;
3; 4g such that D2rþp and D2rþq are opposite. Then C �

2rþp and C �
2rþq are also

opposite, as well as the copies of A that they contain. Consequently, one of

these copies is parallel to A. 9

3. Coverings of R2 by sets of disjoint complete folding curves

Consider W ¼ R2 or W ¼ ½a; b� � ½c; d � with a; b; c; d A Z, bb aþ 1 and

db cþ 1. Let E be a set of segments with supports contained in W. We say

that E is a covering of W if it satisfies the following conditions:

1) each interval ½ðx; yÞ; ðxþ 1; yÞ� or ½ðx; yÞ; ðx; yþ 1Þ� contained in W, with

x; y A Z, is the support of a unique segment of E;

2) if two distinct non consecutive segments of E have a common endpoint X ,

then they can be completed into pairs of consecutive segments, with all

four segments having distinct supports which contain X .

The set E is a covering of R2 (resp. ½a; b� � ½c; d �) if and only if the tiles

associated to the segments belonging to E form a tiling of R2 (resp. a patch

which covers ½a; b� � ½c; d �).
For each covering E of R2, if each finite sequence of consecutive segments

belonging to E is a folding curve, then E is a covering of R2 by complete folding

curves, in the sense that E is a union of disjoint complete folding curves.

We say that a covering of R2 by complete folding curves satisfies the

local isomorphism property if the associated tiling satisfies the local isomor-

phism property. Two such coverings are said to be locally isomorphic if the

associated tilings are locally isomorphic.
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It often happens that a covering of R2 by complete folding curves satisfies

the local isomorphism property. In particular, we show that this property is

satisfied by any covering of R2 by 1 complete folding curve, or by 2 complete

folding curves associated to the ‘‘positive’’ folding sequence. Two complete

folding curves associated to the ‘‘alternating’’ folding sequence do not give a

covering of R2, but we prove that a covering of R2 which satisfies the local

isomorphism property is obtained naturally from these 2 curves by adding 4

other complete folding curves.

We characterize the coverings of R2 by sets of complete folding curves

which satisfy the local isomorphism property, and the pairs of locally iso-

morphic such coverings. We show that each complete folding curve can be

completed in a quasi-unique way into such a covering and that, for each

complete folding sequence S, there exists a covering of R2 by a complete

folding curve associated to a sequence which is locally isomorphic to S.

Finally, we prove that each complete folding curve covers a ‘‘significant’’

part of R2. In that way, we show that the maximum number of disjoint

complete folding curves in R2, and therefore the maximum number of complete

folding curves in a covering of R2, is at most 24. We also prove that such a

covering cannot contain more than 6 curves if it satisfies the local isomorphism

property.

The following result will be used frequently in the proofs:

Theorem 3.1. There exists a function f : N ! N with exponential growth

such that, for each integer n, each n-folding curve contains a covering of a square

½x; xþ f ðnÞ� � ½y; yþ f ðnÞ� with x; y A Z.

Proof. By Figure 3C, each 4-folding curve contains a copy, up to

isometry and modulo the orientation, of the curve given by Figure 5A. Con-

sequently, each 5-folding curve contains a copy of the curve given by Figure

5B, and each 6-folding curve contains a copy of one of the two curves given by

Figures 5C and 5D.

For each X ¼ ðx; yÞ A Z2 and each k A N�, we write LðX ; kÞ ¼ fðu; vÞ A
R2 j ju� xj þ jv� yja kg. We say that a folding curve C covers LðX ; kÞ if

Fig. 5A Fig. 5B
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each interval ½ðu; vÞ; ðuþ 1; vÞ� or ½ðu; vÞ; ðu; vþ 1Þ� with u; v A Z contained in

LðX ; kÞ is the support of a segment of C.

The curve in Figure 5C covers LðY ; 2Þ, and each of its two antiderivatives

covers LðX ; 2Þ where X is the point corresponding to Y . Each antiderivative

of the curve in Figure 5D covers LðW ; 2Þ or LðX ; 2Þ where W and X are the

points corresponding to Y and Z. Consequently, each 7-folding curve covers

an LðU ; 2Þ.
For each k A N�, if a folding curve C covers an LðX ; kÞ, then each second

antiderivative D of C covers an LðY ; 2k � 1Þ. More precisely, if we put D on

the figure containing C, then D covers LðX ; k � 1=2Þ, and we obtain a curve

which covers an LðY ; 2k � 1Þ when we apply a homothety of ratio 2 in order

to give the length 1 to the supports of the segments of D.

We see by induction on n that each ð2nþ 7Þ-folding curve covers an

LðX ; 2n þ 1Þ. 9

For each complete folding curve C ¼ ðCiÞi AZ, there are two possibilities:

– either all the segments Ci for i A E1 have horizontal supports, and we say

that C has the type H;

– or all the segments Ci for i A E1 have vertical supports, and we say that C

has the type V .

Theorem 3.2. Let C, D be coverings of R2 by sets of complete folding

curves which satisfy the local isomorphism property. Then C and D are locally

isomorphic if and only if each curve of C and each curve of D have the same type

and have locally isomorphic associated sequences.

Remark. In particular, if a covering of R2 by a set of complete folding

curves satisfies the local isomorphism property, then all the curves have the

same type and have locally isomorphic associated sequences.

Proof of Theorem 3.2. First we show that the condition is necessary.

Let C ¼ ðCiÞi AZ be a curve of C and let D ¼ ðDiÞi AZ be a curve of D. Con-

sider a finite subcurve F of C.

Fig. 5C Fig. 5D
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As C satisfies the local isomorphism property, there exists an integer n

such that each square ½x; xþ n� � ½y; yþ n� with x; y A Z contains a subcurve of

a curve of C which is parallel to F . As C is locally isomorphic to D, each

square ½x; xþ n� � ½y; yþ n� with x; y A Z also contains a subcurve of a curve

of D which is parallel to F . According to Theorem 3.1, there exist x; y A Z

such that ½x; xþ n� � ½y; yþ n� is covered by D. It follows that D contains a

subcurve which is parallel to F . In particular, the folding sequence associated

to F is a subword of the folding sequence associated to D.

Now, take for F a 3-folding subcurve ðCiþ1; . . . ;Ciþ8Þ of C, and consider

j A Z such that ðDjþ1; . . . ;Djþ8Þ is parallel to F . Then we have i A E1ðCÞ and

j A E1ðDÞ. It follows that C and D have the same type.

It remains to be proved that the condition is su‰cient. We show that, for

each finite set E of tiles, if C contains the image of E under a translation, then

D contains the image of E under a translation; the converse can be proved in

the same way.

As C satisfies the local isomorphism property, there exists an integer m

such that each square ½a; aþm� � ½b; bþm� contains a set of tiles of C which is

the image of E under a translation. By Theorem 3.1, there exists an integer n

such that each n-folding curve contains a covering of a square ½a; aþm� �
½b; bþm�. For such an n, each n-folding subcurve of a curve of C contains the

image of E under a translation.

We can take nb 3. Then each n-folding subcurve F of a curve of D is

parallel or opposite to a subcurve of a curve of C since each curve of C and

each curve of D have the same type and have locally isomorphic associated

sequences. Now, it follows from Proposition 2.6 applied to C that such an F

is parallel to a subcurve of a curve of C, and therefore contains the image of E

under a translation. 9

For any disjoint complete folding curves C, D, we call boundary between C

and D the set of all points of Z2 which are vertices of two segments of C and

two segments of D.

Proposition 3.3. Let nb 1 be an integer and let C be a covering of R2 by

a set of complete folding curves which satisfies the local isomorphism property.

Then the curves of C define the same En, and their n-th derivatives form a

covering of R2 by a set of complete folding curves which satisfies the local

isomorphism property. If the boundary between two curves C;D A C is non-

empty, then the boundary between C ðnÞ and DðnÞ is nonempty.

Proof. By induction, it su‰ces to show the Proposition for n ¼ 1. Con-

sequently, it su‰ces to prove that, for each covering C of R2 by a set of

complete folding curves which satisfies the local isomorphism property, if the
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boundary between two curves C;D A C is nonempty, then we have E1ðCÞ ¼
E1ðDÞ, the curves C ð1Þ and Dð1Þ are disjoint and the boundary between C ð1Þ and

Dð1Þ is nonempty. Then each point of E1ðCÞ will be an endpoint of 4 segments

of Cð1Þ ¼ fC ð1Þ jC A Cg since it is an endpoint of 4 segments of C, and Cð1Þ will

satisfy the local isomorphism property like C.

We write C ¼ ðCiÞi AZ and D ¼ ðDiÞi AZ. We denote by S ¼ ðziÞi AZ and

T ¼ ðhiÞi AZ the associated sequences. We consider a point X which belongs

to the boundary between C and D. We write A ¼ ðCi�4; . . . ;Ciþ3Þ and B ¼
ðDj�4; . . . ;Djþ3Þ, where i (resp. j) is the integer such that X is the common

endpoint of Ci and Ciþ1 (resp. Dj and Djþ1). As C satisfies the local iso-

morphism property, it follows from Theorem 3.1 applied to C that there exist

a translation t of R2 and two sequences A 0 ¼ ðCk�4; . . . ;Ckþ3Þ and B 0 ¼
ðCl�4; . . . ;Clþ3Þ such that tðAÞ ¼ A 0 and tðBÞ ¼ B 0.

If X belongs to F0ðCÞ, then we have i A F0ðSÞ, and therefore zi�4 ¼
�zi�2 ¼ zi ¼ �ziþ2, which implies zk�4 ¼ �zk�2 ¼ zk ¼ �zkþ2 and k A F0ðSÞ.
Consequently, we have tðXÞ A F0ðCÞ and l A F0ðSÞ, which implies zl�4 ¼ �zl�2

¼ zl ¼ �zlþ2 and hj�4 ¼ �hj�2 ¼ hj ¼ �hjþ2. It follows that X belongs to

F0ðDÞ. We show in the same way that X belongs to F0ðCÞ if it belongs to

F0ðDÞ. Consequently, we have F0ðCÞ ¼ F0ðDÞ.
If X belongs to F0ðCÞ ¼ F0ðDÞ, then the segment of C ð1Þ obtained from

ðCi;Ciþ1Þ and the segment of Dð1Þ obtained from ðDj;Djþ1Þ have supports

which are opposite edges of a square of center X and width
ffiffiffi
2

p
. Moreover,

the segments of C ð1Þ obtained from ðCk;Ckþ1Þ and ðCl ;Clþ1Þ have supports

which are opposite edges of a square of center tðXÞ and width
ffiffiffi
2

p
. By

Lemma 2.3, a third edge of the second square is the support of a segment of

C ð1Þ obtained from one of the pairs ðCk�2;Ck�1Þ, ðCkþ2;Ckþ3Þ, ðCl�2;Cl�1Þ,
ðClþ2;Clþ3Þ. Consequently, a third edge of the first square is the support of a

segment of C ð1Þ obtained from one of the pairs ðCi�2;Ci�1Þ, ðCiþ2;Ciþ3Þ, or the
support of a segment of Dð1Þ obtained from one of the pairs ðDj�2;Dj�1Þ,
ðDjþ2;Djþ3Þ. In both cases, C ð1Þ and Dð1Þ have a common vertex.

If X belongs to E1ðCÞ ¼ E1ðDÞ, then X is a common vertex of C ð1Þ and

Dð1Þ. Moreover, the two segments of C ð1Þ and the two segments of Dð1Þ which

have X as an endpoint all have di¤erent supports since they are the images

under t�1 of the four segments of C ð1Þ which have tðXÞ as an endpoint. As

this property is true for each point of the boundary between C and D which

belongs to E1ðCÞ ¼ E1ðDÞ, the curves C ð1Þ and Dð1Þ are disjoint. 9

Remark. If the boundary between two curves C;D A C is finite, then it

contains a point of Ey. Otherwise, for n large enough, it would contain no

point of En, and the boundary between C ðnÞ and DðnÞ would be empty, contrary

to Proposition 3.3.
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If two disjoint complete folding curves C, D have the same type and if

E1ðCÞ ¼ E1ðDÞ, then we have sCðX Þ ¼ sDðXÞ for each point X of the bound-

ary between C and D. Consequently, for each covering C of R2 by a set of

complete folding curves which have the same type and define the same set E1,

there exists a unique function sC : Z2 ! f�1;þ1g such that sCðXÞ ¼ sCðXÞ
for each curve C A C and each vertex X of C.

Lemma 3.4. Let C and D be coverings of R2 by sets of complete folding

curves. Suppose that all the curves have the same type, define the same sets Ek

and have locally isomorphic associated sequences. Then, for each n A N�, each

X A Z2 � E2n�1 and each U A 2nZ2, we have sCðXÞ ¼ sDðU þ XÞ.

Proof. For each integer ka 2n� 1, we have Fk þ 2nZ2 ¼ Fk and there-

fore U þ Fk ¼ Fk. In particular, X and U þ X belong to Fm for the same

integer ma 2n� 2. As each curve of C and each curve of D have the same

type and define the same E1, the map Z ! U þ Z induces a bijection from the

set of all supports of segments of C to the set of all supports of segments of D

which respects the orientation of the segments.

We consider a curve C ¼ ðCiÞi AZ A C indexed in such a way that the

terminal point of C2m is X , and a curve D ¼ ðDiÞi AZ A D indexed in such a way

that the support of D2m is U þ S, where S is the support of C2m . The initial

point Y of C1 and the initial point Z of D1 belong to Emþ1 since X and U þ X

belong to Fm.

The sequences ðziÞi AZ and ðhiÞi AZ associated to C and D are locally iso-

morphic. Consequently, we have ðz1; . . . ; z2m�1Þ ¼ ðh1; . . . ; h2m�1Þ since X and

U þ X belong to Fm, and therefore ðD1; . . . ;D2mÞ ¼ U þ ðC1; . . . ;C2mÞ and Z ¼
U þ Y . As U þ Fmþ1 ¼ Fmþ1, it follows that Y and Z both belong to Fmþ1,

or both belong to Emþ2. In both cases, we have ðz1; . . . ; z2mþ1�1Þ ¼ ðh1; . . . ;
h2mþ1�1Þ since C is locally isomorphic to D, and therefore sCðX Þ ¼ z2m ¼ h2m ¼
sDðU þ XÞ. 9

Theorem 3.5. Let C be a covering of R2 by a set of complete folding

curves. Then C satisfies the local isomorphism property if and only if all the

curves have the same type, define the same sets Ek and have locally isomorphic

associated sequences.

Proof. The condition is necessary according to Proposition 3.3 and the

remark after Theorem 3.2. Now we show that it is su‰cient.

For each X ¼ ðx; yÞ A Z2 and each k A N�, we write SX ;k ¼ ½x; xþ k� �
½y; yþ k�, and we denote by EX ;k the set of all segments of C whose supports

are contained in SX ;k. It su‰ces to prove that, for each X A Z2 and each

k A N�, there exists l A N� such that each SY ; l contains some Z A Z2 with

EZ;k ¼ ðZ � XÞ þ EX ;k.
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We consider the largest integer m such that SX ;k contains a point of

Fm, and an integer n such that ma 2n� 2. For each U A 2nZ2, we have,

according to Lemma 3.4, sCðU þ YÞ ¼ sCðYÞ for each Y A Z2 � E2n�1, and in

particular for each Y A SX ;k which does not belong to Ey.

If SX ;k VEy ¼ q, it follows that EUþX ;k ¼ U þ EX ;k for each U A 2nZ2,

since the curves of C have the same type. Then we have the required property

for l ¼ 2n.

If SX ;k contains the unique point W of Ey, then we still have EUþX ;k ¼
U þ EX ;k for each U A 2nZ2 such that sCðU þWÞ ¼ sCðWÞ, since the curves

of C have the same type. Moreover, we have E2n ¼ W þ 2nZ2 since W

belongs to E2n. We consider V A 2nZ2 such that V þW A F2n and sCðV þWÞ
¼ sCðWÞ. We have V þ W þ 2nþ1Z2 ¼ fY A Z2 jY A F2n and sCðYÞ ¼
sCðWÞg, and therefore EUþVþX ;k ¼ U þ V þ EX ;k for each U A 2nþ1Z2. Con-

sequently we have the required property for l ¼ 2nþ1. 9

Now we consider the coverings which consist of one complete folding

curve. The following result is a particular case of Theorem 3.5. It applies to

the folding curves considered in Theorem 3.7 and Example 3.8 below.

Corollary 3.6. Any covering of R2 by a complete folding curve satisfies

the local isomorphism property.

Theorem 3.7. For each complete folding sequence S, there exists a

covering of R2 by a complete folding curve associated to a sequence which is

locally isomorphic to S.

Proof. Consider a curve C ¼ ðCiÞi AZ associated to S. Let W consist of

the finite curves parallel to subcurves of C, such that ð0; 0Þ is one of their

vertices. For each F A W, denote by NðFÞ the largest integer n such that F

contains a covering of ½�n;þn�2.
For any F ;G A W, write F < G if F HG and NðFÞ < NðGÞ. As S

satisfies the local isomorphism property, the union of any strictly increasing

sequence in W is a covering of R2 by a complete folding curve associated to a

sequence which is locally isomorphic to S.

It remains to be proved that, for each F A W, there exists G > F in W.

According to Proposition 2.6, there is an integer m such that each ðCiþ1; . . . ;

CiþmÞ contains a curve parallel to F . By Theorem 3.1, there exists a finite

subcurve K of C which contains a covering of a square X þ ½�n;þn�2 with

X A Z2 and n ¼ mþNðFÞ þ 1.

Let i be an integer such that X is the terminal point of Ci. Consider a

curve H parallel to F and contained in ðCiþ1; . . . ;CiþmÞ. Denote by t the

translation such that tðF Þ ¼ H. Then t�1ðXÞ belongs to ½�m;þm�2 since
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tðð0; 0ÞÞ belongs to X þ ½�m;þm�2. For G ¼ t�1ðKÞ, we have F HG and G

covers t�1ðXÞ þ ½�n;þn�2. In particular, G covers ½�NðFÞ � 1;þNðFÞ þ 1�2.
9

Remark. There is no covering of R2 by a curve associated to ðS;þ1;SÞ
or to ðS;�1;SÞ, where S is an y-folding sequence. In fact, such a curve C

would contain 4 segments having the point of EyðCÞ as an endpoint, and

EyðS;þ1;SÞ (resp. EyðS;�1;SÞ) would contain 2 integers.

Example 3.8. There exists a covering of R2 by a complete folding curve

defined in an e¤ective way.

Proof. For each ðx; yÞ A Z2 and each n A N�, we say that a ð2nÞ-folding
(resp. ð2nþ 1Þ-folding) curve C covers the isosceles right triangle T ¼ hðx; yÞ;
ðxþ 2n; yÞ; ðx; yþ 2nÞi (resp. T ¼ hðx; yÞ; ðxþ 2n; yþ 2nÞ; ðxþ 2nþ1; yÞi) if it

satisfies the following conditions (cf. Fig. 6A, 6B, 6C):

– each interval ½ðu; vÞ; ðuþ 1; vÞ� or ½ðu; vÞ; ðu; vþ 1Þ� with u; v A Z, contained in

the interior of T , is the support of a segment of C;

– among the intervals ½ðu; vÞ; ðuþ 1; vÞ� or ½ðu; vÞ; ðu; vþ 1Þ� with u; v A Z,

contained in the same vertical or horizontal edge of T , alternatively one

over two is the support of a segment of C;

– no interval ½ðu; vÞ; ðuþ 1; vÞ� or ½ðu; vÞ; ðu; vþ 1Þ� with u; v A Z, contained in

the exterior of T , is the support of a segment of C;

Fig. 6C Fig. 6D

Fig. 6A Fig. 6B
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– the vertex of the right angle of T is the initial or the terminal point of C;

– the vertex of one of the acute angles of T is the initial or the terminal point

of C.

We extend this definition to the isosceles right triangles with vertices in Z2

obtained from T by rotations of angles p=2, p, 3p=2 (cf. Fig. 6D).

Now, let T be one of the isosceles right triangles considered, let k be an

integer, let C be a k-folding curve which covers T , and let S be the sequence

associated to C. If the initial (resp. terminal) point of C is the vertex of the

right angle of T , we associate to ðS;þ1;SÞ and ðS;�1;SÞ (resp. ðS;þ1; SÞ and
ðS;�1; SÞ) two ðk þ 1Þ-folding curves C1 and C2 which contain C. In both

cases, the parts of C1 and C2 which correspond to S respectively cover the

isosceles right triangles T1 and T2 which have one edge of their right angle in

common with T , in such a way that C1 and C2 respectively cover the isosceles

right triangles T UT1 and T UT2 (cf. Fig. 6B, 6C and 6D).

For each n A N� and each triangle T ¼ hðx; yÞ; ðxþ 2n; yþ 2nÞ; ðxþ 2nþ1;

yÞi with ðx; yÞ A Z2, repeat six times the operation above according to Figure

6E, beginning with a ð2nþ 1Þ-folding curve C which covers T . Then we

obtain a ð2nþ 7Þ-folding curve C 0 which contains C. Moreover, C 0 covers a

triangle T 0 ¼ hðx 0; y 0Þ; ðx 0 þ 2nþ3; y 0 þ 2nþ3Þ; ðx 0 þ 2nþ4; y 0Þi with ðx 0; y 0Þ A Z2

and T contained in the interior of T 0. By iterating this process, we obtain a

covering of R2 by a complete folding curve. 9

Proposition 3.9. Let C be a covering of R2 by a set of complete folding

curves which satisfies the local isomorphism property. For each covering D of

R2, the following properties are equivalent:

1) D consists of complete folding curves, and the curves of CUD have the

same type, define the same sets Ek and have locally isomorphic associated

sequences.

2) C ¼ D, or EyðCÞ0q and C, D only di¤er in the way to connect the four

segments which have the unique point of EyðCÞ as an endpoint.

Fig. 6E
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Proof. If 1) is true, then 2) is also true since Lemma 3.4 implies sCðXÞ ¼
sDðXÞ for each X A Z2 � Ey. Conversely, if 2) is true, then 1) follows from

the remark after Corollary 1.9. 9

Remark. If 1) and 2) are true, then D satisfies the local isomor-

phism property by Theorem 3.5, and D is locally isomorphic to C by Theo-

rem 3.2.

Theorem 3.10. For each complete folding curve C, if EyðCÞ is empty or

if the unique point of EyðCÞ is a vertex of C, then C is contained in a unique

covering of R2 by a set of complete folding curves which satisfies the local

isomorphism property. Otherwise, C is contained in exactly two such coverings,

which only di¤er in the way to connect the four segments having the unique point

of Ey as an endpoint.

Proof. It su‰ces to show that C is contained in a covering of R2 by a

set of complete folding curves which satisfies the local isomorphism property.

In fact, for any such coverings C, D, Proposition 3.3 and the remark after

Theorem 3.2 imply that each curve of C and each curve of D have the same

type, define the same sets Ek and have locally isomorphic associated sequences.

Then the Theorem is a consequence of Proposition 3.9 and the Remark just

after.

For each m A N�, denote by Cm the set of all segments of C with supports

in ½�m;þm�2. Let W consist of the pairs ðE;mÞ, where m A N� and E is a

covering of ½�m;þm�2 containing Cm, for which there exists X A Z2 such that

X þ EHC.

For any ðE;mÞ; ðF; nÞ A W, write ðE;mÞ < ðF; nÞ if EHF and m < n.

If ðF; nÞ A W and m A f1; . . . ; n� 1g, then we have ðE;mÞ A W and ðE;mÞ <
ðF; nÞ for the set E of all segments of F with supports in ½�m;þm�2.

First we show that, for each m A N�, there exists ðE;mÞ A W. We can take

m large enough so that C contains some segments with supports in ½�m;þm�2.
We consider a finite curve AHC which contains all these segments. Accord-

ing to Proposition 2.6, there exists an integer k such that each subcurve of

length k of C contains a curve parallel to A.

By Theorem 3.1, C contains a covering of a square X þ ½�k � 2m;

þk þ 2m�2 with X A Z2. The covering of X þ ½�k;þk�2 extracted from C

contains a curve of lengthb k, which itself contains a curve B parallel to

A. We consider Y A Z2 such that Y þ A ¼ B. We have Y A X þ ½�k �m;

þk þm�2, because A contains a point of ½�m;þm�2 and B is contained in

X þ ½�k;þk�2. Consequently, C contains a covering F of Y þ ½�m;þm�2.
We have ðE;mÞ A W for E ¼ �Y þF since F contains the set Y þ Cm of all

segments of B with supports in Y þ ½�m;þm�2.
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Now, according to König’s Lemma, W contains a strictly increasing

sequence ðEm;mÞm AN � . The union C of the sets Em is a covering of R2 which

contains C. Any finite curve AHC is parallel to a subcurve of C since it is

contained in one of the sets Em. In particular, C is a covering of R2 by a set

of complete folding curves. It remains to be proved that C satisfies the local

isomorphism property.

It su‰ces to show that, for each m A N�, there exists n A N� such that

each square X þ ½�n;þn�2 contains the image of Em under a translation. We

consider a point Y A Z2 such that Y þ Em HC, and a finite curve AHC which

contains Y þ Em. By Proposition 2.6, there exists n A N� such that each sub-

curve of length n of C, and therefore each subcurve of length n of a curve of E,

contains a curve parallel to A. Each square X þ ½�n;þn�2 contains a subcurve

of length n of a curve of E, and therefore contains a curve parallel to A and the

image of Em under a translation. 9

Remark. It follows that any y-folding curve C is contained in exactly

two coverings of R2 by sets of complete folding curves which satisfy the local

isomorphism property. These coverings only di¤er in the way to connect the

four segments whose supports contain the origin of C.

Remark. Let C be a complete folding curve and let S be the associated

sequence. By Theorem 3.10, C is contained in a covering C of R2 by a set of

complete folding curves which satisfies the local isomorphism property. Ac-

cording to Theorem 3.7, there is also a covering D of R2 by a complete folding

curve D associated to a sequence which is locally isomorphic to S. Moreover,

D satisfies the local isomorphism property by Corollary 3.6. If we choose D

with the same type as C, then C and D are locally isomorphic according to

Theorem 3.2. On the other hand, C and D do not contain the same number

of curves if fCg is not a covering of R2.

Corollary 3.11. 1) There exist 2o pairwise not locally isomorphic cover-

ings of R2 by sets of complete folding curves which satisfy the local isomorphism

property.

2) If C is such a covering, then there exist 2o isomorphism classes of

coverings of R2 which are locally isomorphic to C.

Proof. For any complete folding sequences S, T , consider two curves

C, D associated to S, T which have the same type. By Theorem 3.10, there

exist two coverings C, D of R2, respectively containing C, D, by sets of

complete folding curves which satisfy the local isomorphism property.

By Theorem 3.2, C and D are locally isomorphic if and only if S and T

are locally isomorphic. In particular, the property 1) above follows from the

property 1) of Theorem 1.11.
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Moreover, if C and D are isomorphic, then C is isomorphic to one of the

curves of D, and S is isomorphic to one of their associated sequences. Con-

sequently, the property 2) above follows from the property 2) of Theorem 1.11,

since any covering of R2 by a set of complete folding curves which satisfies the

local isomorphism property contains at most countably many curves (and in

fact at most 6 curves by Theorem 3.12 below). 9

Now we investigate the number of curves in a covering of R2 by complete

folding curves.

Theorem 3.12. If a covering of R2 by a set of complete folding curves

satisfies the local isomorphism property, then it contains at most 6 curves.

Proof. For each X A R2, each complete folding curve C and each n A N,

write dnðX ;CÞ ¼ 4�n � infS AE4nðCÞ dðX ;SÞ. We have dnðX ;CÞ ¼ d0ðXn;C
ð4nÞÞ,

where Xn is the image of X in a representation of C ð4nÞ which gives the

length 1 to the supports of the segments.

Now consider R A E0ðCÞ and S;T A E4ðCÞ which are joined by a 4-folding

subcurve of C having R as a vertex. Then, according to Figure 3C, we have

infðdðX ;SÞ; dðX ;TÞÞ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdðX ;RÞ þ 3Þ2 þ 22

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dðX ;RÞ2 þ 6dðX ;RÞ þ 13

q
;

this maximum is reached with the second of the four 4-folding curves of Figure

3C, for each point X which is at the left and at a distanceb 3 from the middle

of the segment ST .

Consequently we have d1ðX ;CÞa ð1=4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d0ðX ;CÞ2 þ 6d0ðX ;CÞ þ 13

q
.

For d0ðX ;CÞa 1:16, it follows

d1ðX ;CÞa ð1=4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1:16Þ2 þ 6ð1:16Þ þ 13

q
< 1:16:

For d0ðX ;CÞb 1:16, it follows

d1ðX ;CÞ=d0ðX ;CÞa ð1=4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6=d0ðX ;CÞ þ 13=d0ðX ;CÞ2

q

a ð1=4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6=ð1:16Þ þ 13=ð1:16Þ2

q
< 0:995:

For each complete folding curve C, each X A R2 and each n A N, the

argument above applied to C ðnÞ gives dnþ1ðX ;CÞ < 1:16 if dnðX ;CÞ < 1:16

and dnþ1ðX ;CÞ < ð0:995ÞdnðX ;CÞ if dnðX ;CÞb 1:16. In particular, we have

dnðX ;CÞ < 1:16 for n large enough.

For each covering fC1; . . . ;Ckg of R2 by a set of complete folding curves

which satisfies the local isomorphism property, consider X A R2 and n A N�

such that dnðX ;CiÞ < 1:16 for 1a ia k. Let Y be the image of X in a repre-

sentation of C
ð4nÞ
1 ; . . . ;C

ð4nÞ
k which gives the length 1 to the supports of the

segments. Then we have d0ðY ;C
ð4nÞ
i Þ < 1:16 for 1a ia k.
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Write Y ¼ ðy; zÞ and consider u; v A Z such that jy� uja 1=2 and

jz� vja 1=2. Then each C
ð4nÞ
i has a vertex among the points listed below,

since no other point ðw; xÞ A Z2 satisfies dððw; xÞ; ðy; zÞÞ < 1:16:

ðu; vÞ; ðu� 1; vÞ; ðuþ 1; vÞ; ðu; v� 1Þ; ðu; vþ 1Þ

if jy� uja 0:16 and jz� vja 0:16;

ðu� 1; v� 1Þ; ðu� 1; vÞ; ðu� 1; vþ 1Þ; ðu; v� 1Þ; ðu; vÞ; ðu; vþ 1Þ

if y < u� 0:16;

ðu; v� 1Þ; ðu; vÞ; ðu; vþ 1Þ; ðuþ 1; v� 1Þ; ðuþ 1; vÞ; ðuþ 1; vþ 1Þ

if y > uþ 0:16;

ðu� 1; v� 1Þ; ðu; v� 1Þ; ðuþ 1; v� 1Þ; ðu� 1; vÞ; ðu; vÞ; ðuþ 1; vÞ

if z < v� 0:16;

ðu� 1; vÞ; ðu; vÞ; ðuþ 1; vÞ; ðu� 1; vþ 1Þ; ðu; vþ 1Þ; ðuþ 1; vþ 1Þ;

if z > vþ 0:16:

In the first case, there exist 12 intervals of length 1 with endpoints in Z2

which have exactly one endpoint among the 5 points considered. In each of

the four other cases, there exist 10 intervals of length 1 with endpoints in Z2

which have exactly one endpoint among the 6 points considered.

In all cases, each C
ð4nÞ
i has at least 2 segments with supports among these

intervals. It follows ka 6 in the first case and ka 5 in each of the four other

cases since, by Proposition 3.3, C
ð4nÞ
1 ; . . . ;C

ð4nÞ
k are disjoint. 9

Example 3.13 (curves associated to the positive folding sequence). The

positive folding sequence mentioned in [4, p. 192] is the y-folding sequence R

obtained as the direct limit of the n-folding sequences Rn defined with Rnþ1 ¼
ðRn;þ1;RnÞ for each n A N. According to [3, Th. 4, p. 78], or by Theorem

3.15 below, there exists a covering C of R2 by 2 complete folding curves C, D

associated to S ¼ ðR;þ1;RÞ and having the same type (see Fig. 7). We have

EyðCÞ ¼ EyðDÞ ¼ fð0; 0Þg, and therefore EkðCÞ ¼ EkðDÞ for each k A N. It

follows from Theorem 3.5 that C satisfies the local isomorphism property.

Example 3.14 (curves associated to the alternating folding sequence). The

alternating folding sequence described in [4, p. 134] is the y-folding sequence R

obtained as the direct limit of the n-folding sequences Rn defined with Rnþ1 ¼
ðRn; ð�1Þnþ1;RnÞ for each n A N. Contrary to Example 3.13, there exists no

covering of R2 by 2 complete folding curves associated to S ¼ ðR;þ1;RÞ.
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Now, let T be the complete folding sequence obtained as the direct limit of

the sequences R2n, where each R2n is identified to its second copy in R2nþ2 ¼
ðR2n;�1;R2n;þ1;R2n;þ1;R2nÞ. Then there exists (cf. Fig. 8) a covering C

of R2 by 2 curves associated to S, 2 curves associated to T and 2 curves

associated to T , with all the curves having the same type.

The 6 curves are associated to locally isomorphic sequences. The point

ð0; 0Þ belongs to Ey in the 2 curves which contain it. For each n A N, and in

each of the 2 curves which contain it, the point ð2n; 0Þ (resp. ð�2n; 0Þ, ð0; 2nÞ,
ð0;�2nÞ) belongs to F2n, while the point ð2n; 2nÞ (resp. ð�2n; 2nÞ, ð2n;�2nÞ,
ð�2n;�2nÞ) belongs to F2nþ1. Consequently, the 6 curves define the same sets

Ek, and C satisfies the local isomorphism property by Theorem 3.5.

We do not know presently if a covering C of R2 by a set of complete

folding curves which satisfies the local isomorphism property can consist of 3, 4

or 5 curves. If EyðCÞ0q, then C consists of 2 or 6 curves according to the

Theorem below:

Theorem 3.15. Let C be a curve associated to S ¼ ðR;þ1;RÞ or S ¼
ðR;�1;RÞ where R ¼ ðahÞh AN � is an y-folding sequence. Consider the unique

Fig. 7
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covering CIC of R2 by a set of complete folding curves which satisfies the local

isomorphism property.

1) If fn A N j a2 n ¼ ð�1Þng is finite or cofinite, then C consists of 2 curves

associated to S and 4 other curves.

2) Otherwise, C consists of 2 curves associated to S.

Proof. As the other cases can be treated in the same way, we suppose

that C ¼ ðChÞh AZ is a curve associated to S ¼ ðR;þ1;RÞ ¼ ðahÞh AZ, and that

EyðCÞ ¼ fð0; 0Þg. Then C contains a curve D0C such that ð0; 0Þ is a vertex

of D. We write D ¼ ðDhÞh AZ with ð0; 0Þ terminal point of D0 and initial point

of D1. The curve D is associated to S, since it is associated to a sequence

T ¼ ðbhÞh AZ with T locally isomorphic to S, EyðTÞ ¼ f0g and b0 ¼ þ1.

If fn A N j a2n ¼ ð�1Þng is cofinite (resp. finite), we consider an odd (resp.

even) integer k such that a2n ¼ ð�1Þn (resp. a2n ¼ ð�1Þnþ1) for nb k. In order

to prove that C contains 6 curves, it su‰ces to show that C ðkÞ is contained in

a covering of R2 which satisfies the local isomorphism property and which

consists of 6 complete folding curves. Consequently, it su‰ces to consider the

case where a2 n ¼ ð�1Þnþ1 for each n A N. But this case is treated in Example

3.14 (see Fig. 8).

The proof of 2) uses arguments similar to those in the proof of Theorem

3.1. For each k A N�, we say that a set E of disjoint curves covers Lk ¼

Fig. 8
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fðu; vÞ A R2 j juj þ jvja kg if each interval ½ðu; vÞ; ðuþ 1; vÞ� or ½ðu; vÞ; ðu; vþ 1Þ�
with u; v A Z, contained in Lk, is the support of a segment of one of the

curves.

For each set E of disjoint complete folding curves which have the same

type, define the same sets En and are associated to locally isomorphic se-

quences, if Eð2Þ covers Lk for an integer kb 2, then E covers L2k�1, and

therefore covers Lkþ1. By induction, it follows that, if Eð2kÞ covers L2 for an

integer kb 2, then E covers Lkþ2.

For each k A N, consider lb 2k such that a2 l ¼ a2 lþ1 . Then fðC ðlÞ
�3; . . . ;

C
ðlÞ
4 Þ; ðDðlÞ

�3; . . . ;D
ðlÞ
4 Þg covers L2 (see Fig. 7 for the case a2 l ¼ a2 lþ1 ¼ þ1).

Consequently, fC ðl�2kÞ;Dðl�2kÞg covers Lkþ2, and the same property is true for

fC;Dg. 9

A covering of R2 by a set of complete folding curves can contain more

than 6 curves if it does not satisfy the local isomorphism property. For the

complete folding sequence T of Example 3.14, Figure 9 gives an example of a

covering of R2 by 4 curves associated to T and 4 curves associated to �T (T

and �T are not locally isomorphic by Corollary 1.9). Anyway, the Theorem

below implies that the number of complete folding curves in a covering of R2 is

at most 24:

Fig. 9
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Theorem 3.16. There exist no more than 24 disjoint complete folding

curves in R2.

In the proof of Theorem 3.16, we write dððx; yÞ; ðx 0; y 0ÞÞ ¼ supðjx 0 � xj;
jy 0 � yjÞ for any ðx; yÞ; ðx 0; y 0Þ A R2.

Lemma 3.16.1. We have dðX ;YÞa 7 � 2n�2 � 2 for each integer nb 2 and

for any vertices X, Y of a ð2nÞ-folding curve.

Proof of Lemma 3.16.1. The Lemma is true for n ¼ 2 according to

Figure 3C. Now we show that, if it is true for nb 2, then it is true for nþ 1.

Let C be a ð2nþ 2Þ-folding curve, and let Z0; . . . ;Z22nþ2 be its vertices

taken consecutively. Then ðZ4iÞ0aia22n is the sequence of all vertices of the

ð2nÞ-folding curve C ð2Þ represented on the same figure as C. It follows from

the induction hypothesis applied to C ð2Þ that we have dðX ;YÞa 2ð7 � 2n�2 � 2Þ
for any X ;Y A ðZ4iÞ0aia22n . Moreover, for each vertex U of C, there exists

V A ðZ4iÞ0aia22n such that dðU ;VÞa 1. Consequently, we have dðX ;YÞa
2ð7 � 2n�2 � 2Þ þ 2 ¼ 7 � 2n�1 � 2 for any vertices X , Y of C. 9

Lemma 3.16.2. Let nb 2 be an integer and let C be a finite folding curve

with two vertices X, Y such that dðX ;Y Þb 7 � 2n�2 � 1. Then C contains at

least 22n�1 segments.

Proof of Lemma 3.16.2. By Lemma 3.16.1, we have kb 2nþ 1 for

the smallest integer k such that C is contained in a k-folding curve D. We

consider the ðk � 2Þ-folding curves D1, D2, D3, D4 such that D ¼ ðD1;D2;D3;

D4Þ. The curve C contains one of the curves D2, D3 since the ðk � 1Þ-folding
curves ðD1;D2Þ, ðD2;D3Þ, ðD3;D4Þ do not contain C. Consequently, C con-

tains a ð2n� 1Þ-folding curve, which consists of 22n�1 segments. 9

Proof of Theorem 3.16. Let rb 2 be an integer and let C1; . . . ;Cr

be disjoint complete folding curves. Consider an integer k and some vertices

X1; . . . ;Xr of C1; . . . ;Cr belonging to ½�k;þk�2.
Now consider an integer nb 2 and write N ¼ 7 � 2n�2 þ k. For each

i A f1; . . . ; rg, there exist some vertices Yi, Zi of Ci, with dð0;YiÞ ¼ N and

dð0;ZiÞ ¼ N, such that ��N;þN½2 contains a subcurve of Ci which has Xi as

a vertex and Yi;Zi as endpoints.

For each i A f1; . . . ; rg, we have dðXi;YiÞbN � k ¼ 7 � 2n�2 and dðXi;ZiÞ
bN � k ¼ 7 � 2n�2. By Lemma 3.16.2, the part of the subcurve of Ci between

Xi and Yi (resp. between Xi and Zi) contains at least 22n�1 segments.

As C1; . . . ;Cr are disjoint, it follows that ��N;þN½2 contains at least

2r � 22n�1 ¼ 22nr supports of segments of C1 U � � �UCr. But ��N;þN½2 only

contains 2ð2NÞð2N � 1Þ < 8N 2 intervals of the form �ðu; vÞ; ðuþ 1; vÞ½ or �ðu; vÞ;
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ðu; vþ 1Þ½ with u; v A Z. Consequently, we have 22nr < 8N 2 and r < N 2=22n�3

¼ ð7 � 2n�2 þ kÞ2=22n�3.

As the last inequality is true for each nb 2, it follows ra 49=2 < 25. 9
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