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Abstract. Let S be a nonempty set of prime numbers. In the present paper, we con-

tinue the study, initiated in a previous paper by the second author, of the combinatorial

anabelian geometry of semi-graphs of anabelioids of pro-S PSC-type, i.e., roughly

speaking, semi-graphs of anabelioids associated to pointed stable curves. Our first

main result is a partial generalization of one of the main combinatorial anabelian results

of this previous paper to the case of nodally nondegenerate outer representations, i.e.,

roughly speaking, a sort of abstract combinatorial group-theoretic generalization of the

scheme-theoretic notion of a family of pointed stable curves over the spectrum of a

discrete valuation ring. We then apply this result to obtain a generalization, to the case

of proper hyperbolic curves, of a certain injectivity result, obtained in another paper by

the second author, concerning outer automorphisms of the pro-S fundamental group of a

configuration space associated to a hyperbolic curve, as the dimension of this configuration

space is lowered from two to one. This injectivity allows one to generalize a certain

well-known injectivity theorem of Matsumoto to the case of proper hyperbolic curves.
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Introduction

Let S be a nonempty set of prime numbers. In the present paper, we

continue the study, initiated in [Mzk4] by the second author, of the combi-

natorial anabelian geometry of semi-graphs of anabelioids of pro-S PSC-type,

i.e., roughly speaking, semi-graphs of anabelioids associated to pointed stable

curves. In particular, it was shown in [Mzk4] (cf. [Mzk4], Corollary 2.7, (iii))

that in the case of a semi-graph of anabelioids of pro-S PSC-type that arises

from a stable log curve over a log point (i.e., the spectrum of an algebraically

closed field k of characteristic p B S equipped with the log structure determined

by the morphism of monoids N C 1 7! 0 A k), the semi-graph of anabelioids in

question may be reconstructed group-theoretically from the outer action of the

pro-S logarithmic fundamental group of the log point (which is noncanonically

isomorphic to the maximal pro-S quotient ẐZS of ẐZ) on the pro-S fundamental

group of the semi-graph of anabelioids. As discussed in the introduction to

[Mzk4], this result may be regarded as a substantial refinement of the pro-l

criterion of Takayuki Oda for a proper hyperbolic curve over a discretely

valued field to have good reduction (i.e., a special fiber whose associated semi-

graph consists of a single vertex and no edges). We shall refer to an outer

action of the type just described as an outer representation of IPSC-type (cf.

Definition 2.4, (i)).

In the present paper, the theory of [Mzk4] is generalized to the case of

nodally nondegenerate outer representations, or outer representations of NN-type,

for short (cf. Definition 2.4, (iii)). Indeed, our first main result (cf. Corollary

4.2; Remark 4.2.1) is the following partial generalization of [Mzk4], Corollary

2.7, (iii).

Theorem A (Graphicity of certain group-theoretically cuspidal isomor-

phisms). Let S be a nonempty set of prime numbers, G and H semi-graphs

of anabelioids of pro-S PSC-type (cf. [Mzk4], Definition 1.1, (i)), PG (respec-

tively, PH) the pro-S fundamental group of G (respectively, H), a : PG !@ PH

an isomorphism of profinite groups, I and J profinite groups, rI : I ! AutðGÞ
and rJ : J ! AutðHÞ continuous homomorphisms, and b : I !@ J an isomorphism

of profinite groups. Suppose that the following three conditions are satisfied:

( i ) The diagram

I ���! OutðPGÞ

b

???y
???yOutðaÞ

J ���! OutðPHÞ

—where the right-hand vertical arrow is the homomorphism induced
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by a; the upper and lower horizontal arrows are the homomorphisms

determined by rI and rJ , respectively—commutes.

( ii ) rI , rJ are of NN-type (cf. Definition 2.4, (iii)).

(iii) CuspðGÞ0q, and the isomorphism a is group-theoretically cuspidal

(i.e., roughly speaking, preserves cuspidal inertia groups—cf. [Mzk4],

Definition 1.4, (iv)).

Then the isomorphism a is graphic (i.e., roughly speaking, is compatible with the

respective semi-graph structures—cf. [Mzk4], Definition 1.4, (i)).

The notion of an outer representation of NN-type may be regarded as a

natural outgrowth of the philosophy pursued in [Mzk4] of reducing (various

aspects of ) the classical pro-S scheme-theoretic arithmetic geometry of stable

curves over a discrete valuation ring whose residue characteristic is not con-

tained in S to a matter of combinatorics. Ideally, one would like to reduce the

entire profinite classical scheme-theoretic arithmetic geometry of hyperbolic

curves over number fields or p-adic local fields to a matter of combinatorics,

but since this task appears to be too formidable at the time of writing, we

concentrate on the pro-prime-to-p aspects of stable log curves over a log

point. On the other hand, whereas the outer representations of IPSC-type

studied in [Mzk4] literally arise from (log) scheme theory (i.e., a stable log

curve over a log point), the outer representations of NN-type studied in the

present paper are defined in purely combinatorial terms, without reference to

any scheme-theoretic family of stable log curves. If one thinks of a stable log

curve as a sort of ‘‘rational point’’ of the moduli stack of stable curves, then

this point of view may be thought of as a sort of abandonment of the point of

view implicit in the so-called ‘‘Section Conjecture’’: that is to say, instead of

concerning oneself with the issue of precisely which group-theoretic objects

arise from a scheme-theoretic rational point (as is the case with the Section

Conjecture),

one takes the definition of group-theoretic objects via purely combinatorial/

group-theoretic conditions—i.e., group-theoretic objects which do not nec-

essarily arise from scheme theory—as the starting point of one’s research,

and one regards as the goal of one’s research the study of the intrinsic

combinatorial geometry of such group-theoretic objects (i.e., without regard

to the issue of the extent to which these objects arise from scheme theory).

This point of view may be seen throughout the development of the theory of

the present paper, as well as in the theory of [Mzk6].

On the other hand, from a more concrete point of view, the theory of

the present paper was motivated by the goal of generalizing the injectivity

portion of [Mzk7], Theorem A, (i), to proper hyperbolic curves in the case of

the homomorphism induced by the projection from two-dimensional to one-
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dimensional configuration spaces (cf. Theorem B below). The main injectivity

result that was proven in [Mzk7] (namely, [Mzk7], Corollary 2.3) was obtained

by applying the combinatorial anabelian result given in [Mzk4], Corollary 2.7,

(iii). On the other hand, this result of [Mzk4] is insu‰cient in the case of

proper hyperbolic curves. To see why this is so, we begin by recalling that this

result of [Mzk4] is applied in [Mzk7] (cf. the discussion of ‘‘canonical splittings’’

in the Introduction to [Mzk7]) to study the degenerations of families of

hyperbolic curves that arise when

(a) a moving point on an a‰ne hyperbolic curve collides with a cusp.

On the other hand, since proper hyperbolic curves have no cusps, in order to

apply the techniques for proving injectivity—involving ‘‘canonical splittings’’—

developed in [Mzk7], it is necessary to consider the degenerations of families of

hyperbolic curves that arise when

(b) a moving point on a (not necessarily a‰ne) ‘‘degenerate hyperbolic

curve’’ (i.e., a stable curve) collides with a node.

Since the local pro-S fundamental group in a neighborhood of a cusp or a

node—i.e., the profinite group that corresponds to the ‘‘fundamental group of

the base space of the degenerating family of hyperbolic curves under consid-

eration’’—is isomorphic (in both the cuspidal and nodal cases!) to the (same!)

profinite group ẐZS, one might at first glance think that the situation of (b) may

also be analyzed via the results of [Mzk7]. Put another way, both (a) and (b)

involve a continuous action of a profinite group isomorphic to ẐZS on a semi-

graph of anabelioids of pro-S PSC-type. On the other hand, closer inspection

reveals that there is a fundamental intrinsic di¤erence between the situations

of (a) and (b). Indeed, in the situation of (a), we apply the reconstruction

algorithms developed in [Mzk4], which depend in an essential way on a certain

positivity, namely, the positivity of the period matrix—which implies, in par-

ticular, the nondegeneracy of this period matrix—of the Jacobians of the

various coverings of the degenerating family of curves under consideration

(cf. the proof of [Mzk4], Proposition 2.6). By contrast, one verifies easily that

the symmetry in a neighborhood of a node induced by switching the two

branches of the node implies that an analogous ‘‘positivity of the period

matrix’’ of the Jacobians of the various coverings of the degenerating

family of curves under consideration can only hold in the sitation of (b) if

this ‘‘positivity’’ satisfies the property of being invariant with respect to

multiplication by �1—which is absurd!

In particular, one concludes that the situation of (b) can never be ‘‘abstractly

group-theoretically isomorphic’’ to the situation of (a). This was what led

the second author to seek, in cooperation with the first author, a (partial)

generalization (cf. Theorem A) of [Mzk4], Corollary 2.7, (iii), to the case of
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arbitrary nodally nondegenerate outer representations (which includes the situ-

ation of (b)—cf. Proposition 2.14, as it is applied in the proof of Corollary 5.3).

In passing, we note that the sense in which Theorem A is only a partial

generalization (cf. Remark 4.2.1) of [Mzk4], Corollary 2.7, (iii), is interesting

in light of the above discussion of positivity. Indeed, in the case of [Mzk4],

Corollary 2.7, (iii), it is not necessary to assume that the semi-graph of

anabelioids of pro-S PSC-type under consideration has any cusps. On the

other hand, in the case of Theorem A, it is necessary to assume that the semi-

graph of anabelioids of pro-S PSC-type under consideration has at least one

cusp (cf. condition (iii) of Theorem A). That is to say, this state of a¤airs

suggests that perhaps there is some sort of ‘‘general principle’’ underlying these

results—which, at the time of writing, the authors have yet to succeed in

making explicit—that requires the existence of at least one cusp, whether that

cusp lie in the ‘‘base of the degenerating family of curves under consideration’’

(cf. (a); [Mzk4], Corollary 2.7, (iii)) or in the ‘‘fibers of this degenerating

family’’ (cf. (b); condition (iii) of Theorem A).

The content of the various sections of the present paper may be sum-

marized as follows. In § 1, we review various ‘‘well-known’’ aspects of the

combinatorial group-theoretic geometry of semi-graphs of anabelioids of pro-S

PSC-type—i.e., without considering any continuous action of a profinite group

on the semi-graph of anabelioids under consideration. In § 2, we define and

develop the basic theory surrounding nodally nondegenerate outer representa-

tions. In § 3, we discuss various analogues of the combinatorial group-theoretic

geometry reviewed in § 1 in the case of nodally nondegenerate outer repre-

sentations. In § 4, we observe that the theory developed in § 1, § 2, and § 3

is su‰cient to prove the analogue discussed above (i.e., Theorem A) of the

combinatorial anabelian result given in [Mzk4], Corollary 2.7, (iii), in the case

of nodally nondegenerate outer representations. In § 5, we apply this result

(i.e., Theorem A) to generalize (cf. the above discussion) [Mzk7], Corollary 2.3,

to the case of not necessarily a‰ne curves (cf. Corollary 5.3). Finally, in § 6,

we discuss various consequences of the injectivity result proven in § 5. The first

of these is the following partial generalization (cf. Theorem 6.1) of [Mzk7],

Theorem A.

Theorem B (Partial profinite combinatorial cuspidalization). Let S be a set

of prime numbers which is either of cardinality one or equal to the set of all

prime numbers, n a positive integer, X a hyperbolic curve of type ðg; rÞ over an

algebraically closed field of characteristic B S, Xn the n-th configuration space

of X (i.e., roughly speaking, the complement of the diagonals in the product of n

copies of X—cf. [MzTa], Definition 2.1, (i)), Pn the maximal pro-S quotient

of the fundamental group of Xn, and OutFCðPnÞJOutðPnÞ the subgroup of
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the group OutðPnÞ consisting of the outomorphisms (cf. the discussion entitled

‘‘Topological groups’’ in § 0) of Pn which are FC-admissible (i.e., roughly

speaking, preserve fiber subgroups and cuspidal inertia groups—cf. [Mzk7],

Definition 1.1, (ii)). Set n0 ¼
def

2 if X is a‰ne, i.e., rb 1; n0 ¼
def

3 if X is proper,

i.e., r ¼ 0 (cf. [Mzk7], Theorem A). Then the natural homomorphism

OutFCðPnþ1Þ ! OutFCðPnÞ

induced by the projection Xnþ1 ! Xn obtained by forgetting the ðnþ 1Þ-st factor
is injective if nb 1 and bijective if nb n0 þ 1. Moreover, the image of the

natural inclusion

Sn ,! OutðPnÞ

—where we write Sn for the symmetric group on n letters—obtained by

permuting the various factors of the configuration space Xn is contained in

the centralizer ZOutðPnÞðOutFCðPnÞÞ.

In Corollary 6.6, we also give a discrete analogue of the profinite result

constituted by Theorem B.

In passing, we observe that the injectivity portion of the pro-l case of

Theorem B may be derived from the Lie-theoretic version of Theorem B that

was obtained (in the mid-1990’s!) by Naotake Takao (cf. [Tk], Corollary 2.7).

In this context, we note that the point of view of [Tk] di¤ers quite substantially

from the point of view of the present paper and is motivated by the goal of

completing the proof of a certain conjecture of Takayuki Oda concerning pro-l

outer Galois actions associated to various moduli stacks of stable curves.

Nevertheless, this point of view of [Tk] is interesting in light of the point of

view discussed above to the e¤ect that the content of [Mzk4]—and hence also

of Theorem A above—may be thought of as a sort of substantial refinement of

Oda’s good reduction criterion.

Theorem B allows one to obtain the following generalization (cf. Corol-

laries 6.2; 6.3, (i)) to not necessarily a‰ne hyperbolic curves of a well-known

injectivity result of Matsumoto (cf. [Mts], Theorems 2.1, 2.2).

Theorem C (Kernels of outer representations arising from hyperbolic

curves). Let S be a set of prime numbers which is either of cardinality one

or equal to the set of all prime numbers, X a hyperbolic curve over a perfect field

k such that every element of S is invertible in k, k an algebraic closure of k, n a

positive integer, Xn the n-th configuration space of X, Gk ¼def Galðk=kÞ, DXn
the

maximal pro-S quotient of the fundamental group of Xn nk k, and DP1
knf0;1;yg

the maximal pro-S quotient of the fundamental group of P1
k
nf0; 1;yg. Then

the following hold:
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( i ) The kernel of the natural outer representation

rS
Xn=k

: Gk ! OutðDXn
Þ

is independent of n and contained in the kernel of the natural outer

representation

rS
P1
knf0;1;yg=k

: Gk ! OutðDP1

k
nf0;1;ygÞ:

(ii) Suppose that S is the set of all prime numbers. (Thus, k is neces-

sarily of characteristic zero.) Write Q for the algebraic closure of

Q determined by k and GQ ¼
def

GalðQ=QÞ. Then the kernel of the

homomorphism rS
Xn=k

is contained in the kernel of the outer homo-

morphism

Gk ! GQ

determined by the natural inclusion Q ,! k.

In particular, if k is a number field or p-adic local field (cf. the discussion entitled

‘‘Numbers’’ in § 0), and S is the set of all prime numbers, then the outer

representation

rS
X=k : Gk ! Outðp1ðX nk kÞÞ

determined by the natural exact sequence

1! p1ðX nk kÞ ! p1ðXÞ ! Gk ! 1

is injective.

Finally, we remark that in [Bg], a result that corresponds to a certain

special case of Theorem C, (i), is asserted (cf. [Bg], Theorem 2.5). At the time

of writing, the authors of the present paper were not able to follow the proof of

this result given in [Bg]. Nevertheless, in a sequel to the present paper, we

hope to discuss in more detail the relationship between the theory of the present

paper and the interesting geometric ideas of [Bg] concerning the issue of

‘‘canonical liftings’’ of cycles on a Riemann surface.

0. Notations and conventions

Sets: If S is a set, then we shall denote by 2S the power set of S and by

Sa the cardinality of S.

Numbers: The notation N will be used to denote the set or (additive)

monoid of nonnegative rational integers. The notation Z will be used to

denote the set, group, or ring of rational integers. The notation Q will be used

to denote the set, group, or field of rational numbers. The notation ẐZ will be
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used to denote the profinite completion of Z. If p is a prime number, then

the notation Zp (respectively, Qp) will be used to denote the p-adic completion

of Z (respectively, Q).

A finite extension field of Q will be referred to as a number field. If p is a

prime number, then a finite extension field of Qp will be referred to as a p-adic

local field.

Monoids: We shall write M gp for the groupification of a monoid M.

Topological groups: Let G be a topological group and HJG a closed

subgroup of G. Then we shall denote by ZGðHÞ (respectively, NGðHÞ;
respectively, CGðHÞ) the centralizer (respectively, normalizer; respectively, com-

mensurator) of H in G, i.e.,

ZGðHÞ ¼
def fg A G j ghg�1 ¼ h for any h A Hg;

NGðHÞ ¼def fg A G j g �H � g�1 ¼ Hg;

CGðHÞ ¼
def fg A G jH V g �H � g�1 is of finite index in H and g �H � g�1g;

we shall refer to ZðGÞ ¼def ZGðGÞ as the center of G. It is immediate from the

definitions that

ZGðHÞJNGðHÞJCGðHÞ; HJNGðHÞ:

We shall say that the subgroup H is commensurably terminal in G if

H ¼ CGðHÞ.
We shall say that a profinite group G is slim if ZGðHÞ ¼ f1g for any open

subgroup H of G.

Let S be a set of prime numbers, l a prime number, and G a profinite

group. Then we shall write GS for the maximal pro-S quotient of G and

GðlÞ ¼def Gflg.
We shall write G ab for the abelianization of a profinite group G, i.e., the

quotient of G by the closure of the commutator subgroup of G.

If G is a profinite group, then we shall denote the group of automorphisms

of G by AutðGÞ and the group of inner automorphisms of G by InnðGÞJ
AutðGÞ. Conjugation by elements of G determines a surjection of groups

G !! InnðGÞ. Thus, we have a homomorphism of groups G ! AutðGÞ whose
image is InnðGÞJAutðGÞ. We shall denote by OutðGÞ the quotient of AutðGÞ
by the normal subgroup InnðGÞJAutðGÞ and refer to an element of OutðGÞ
as an outomorphism of G. In particular, if G is center-free, then the natural

homomorphism G ! InnðGÞ is an isomorphism; thus, we have an exact sequence

of groups

1! G ! AutðGÞ ! OutðGÞ ! 1:
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If, moreover, G is topologically finitely generated, then one verifies easily that

the topology of G admits a basis of characteristic open subgroups, which thus

induces a profinite topology on the groups AutðGÞ and OutðGÞ with respect

to which the above exact sequence determines an exact sequence of profinite

groups. If r : J ! OutðGÞ is a continuous homomorphism, then we shall

denote by

G z
out

J

the profinite group obtained by pulling back the above exact sequence of

profinite groups via r. Thus, we have a natural exact sequence of profinite

groups
1! G ! G z

out
J ! J ! 1:

One verifies easily (cf. [Hsh], Lemma 4.10) that if an automorphism a of G z
out

J

preserves the subgroup GJG z
out

J and induces the identity automorphisms of

the subquotients G and J, then the automorphism a is the identity auto-

morphism of G z
out

J.

If M and N are topological modules, then we shall refer to a homo-

morphism of topological modules f : M ! N as a split injection if there exists a

homomorphism of topological modules c : N !M such that c � f : M !M is

the identity automorphism of M.

Semi-graphs: Let G be a connected semi-graph. Then we shall say that

G is untangled if every closed edge of G abuts to two distinct vertices.

Log stacks: Let X log and Y log be log stacks whose underlying (algebraic)

stacks we denote by X and Y , respectively; MX and MY the respective sheaves

of monoids on X and Y defining the log structures of X log and Y log;

f log : X log ! Y log a morphism of log stacks. Then we shall refer to the

quotient of MX by the image of the morphism f �1MY !MX induced by f log

as the relative characteristic sheaf of f log; we shall refer to the relative

characteristic sheaf of the morphism X log ! X (where, by abuse of notation,

we write X for the log stack obtained by equipping X with the trivial log

structure) induced by the natural inclusion O�X ,!MX as the characteristic sheaf

of X log.

Curves: We shall use the terms ‘‘hyperbolic curve’’, ‘‘cusp’’, ‘‘stable log

curve’’, ‘‘smooth log curve’’, and ‘‘tripod ’’ as they are defined in [Mzk4], § 0;

[Hsh], § 0. If ðg; rÞ is a pair of natural numbers such that 2g� 2þ r > 0, then

we shall denote by Mg; r the moduli stack of r-pointed stable curves of genus g

over Z whose r marked points are equipped with an ordering, Mg; r JMg; r the

open substack of Mg; r parametrizing smooth curves, and M log
g; r the log stack

obtained by equipping Mg; r with the log structure associated to the divisor with

normal crossings Mg; rnMg; r JMg; r.
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Let n be a positive integer and X log a stable log curve of type ðg; rÞ over a
log scheme S log. Then we shall refer to the log scheme obtained by pulling

back the (1-)morphism M
log
g; rþn !M log

g; r given by forgetting the last n points via

the classifying (1-)morphism S log !M log
g; r of X log as the n-th log configuration

space of X log.

1. Some complements concerning semi-graphs of anabelioids of PSC-type

In this section, we give some complements to the theory of semi-graphs of

anabelioids of PSC-type developed in [Mzk4].

A basic reference for the theory of semi-graphs of anabelioids of PSC-type

is [Mzk4]. We shall use the terms ‘‘semi-graph of anabelioids of PSC-type’’,

‘‘PSC-fundamental group of a semi-graph of anabelioids of PSC-type’’, ‘‘finite

étale covering of semi-graphs of anabelioids of PSC-type’’, ‘‘vertex’’, ‘‘edge’’,

‘‘cusp’’, ‘‘node’’, ‘‘verticial subgroup’’, ‘‘edge-like subgroup’’, ‘‘nodal subgroup’’,

‘‘cuspidal subgroup’’, and ‘‘sturdy’’ as they are defined in [Mzk4], Definition

1.1. Also, we shall refer to the ‘‘PSC-fundamental group of a semi-graph of

anabelioids of PSC-type’’ simply as the ‘‘fundamental group’’ (of the semi-

graph of anabelioids of PSC-type). That is to say, we shall refer to the

maximal pro-S quotient of the fundamental group of a semi-graph of

anabelioids of PSC-type (as a semi-graph of anabelioids!) as the ‘‘fundamental

group of the semi-graph of anabelioids of PSC-type’’. In this section, let S

be a nonempty set of prime numbers, G a semi-graph of anabelioids of pro-S

PSC-type, and G the underlying semi-graph of G. (In particular, G is a finite

semi-graph.) Also, let us fix a universal covering ~GG! G with underlying

projective system of semi-graphs ~GG (i.e., the projective system consisting of the

underlying graphs G0 of the connected finite étale subcoverings G 0 of ~GG! G)

and denote by PG the (pro-S) fundamental group of G.

Definition 1.1.

( i ) We shall denote by VertðGÞ (respectively, CuspðGÞ; NodeðGÞ) the

set of the vertices (respectively, cusps; nodes) of G.

( ii ) We shall write

Vertð ~GGÞ ¼def lim � VertðG 0Þ;

Cuspð ~GGÞ ¼def lim � CuspðG 0Þ;

Nodeð ~GGÞ ¼def lim � NodeðG 0Þ

—where the projective limits are over all connected finite étale

subcoverings G 0 ! G of the fixed universal covering ~GG! G.
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( iii ) We shall write

VCNðGÞ ¼def VertðGÞ t CuspðGÞ tNodeðGÞ;

EdgeðGÞ ¼def CuspðGÞ tNodeðGÞ;

VCNð ~GGÞ ¼def Vertð ~GGÞ t Cuspð ~GGÞ tNodeð ~GGÞ;

Edgeð ~GGÞ ¼def Cuspð ~GGÞ tNodeð ~GGÞ:

( iv ) Let

V : EdgeðGÞ ! 2VertðGÞ

ðrespectively; C : VertðGÞ ! 2CuspðGÞ;

N : VertðGÞ ! 2NodeðGÞ;

E : VertðGÞ ! 2EdgeðGÞÞ

be the map obtained by sending e A EdgeðGÞ (respectively, v A
VertðGÞ; v A VertðGÞ; v A VertðGÞ) to the set of vertices (respectively,

cusps; nodes; edges) of G to which e abuts (respectively, which abut

to v; which abut to v; which abut to v). Also, we shall write

V : Edgeð ~GGÞ ! 2Vertð ~GGÞ

ðrespectively; C : Vertð ~GGÞ ! 2Cuspð ~GGÞ;

N : Vertð ~GGÞ ! 2Nodeð ~GGÞ;

E : Vertð ~GGÞ ! 2Edgeð ~GGÞÞ

for the map induced by the various V’s (respectively, C’s; N’s; E’s)

involved.

( v ) Let ~zz A VCNð ~GGÞ. Suppose that G 0 ! G is a connected finite étale

subcovering of ~GG! G. Then we shall denote by ~zzðG 0Þ A VCNðG 0Þ
the image of ~zz in VCNðG 0Þ.

( vi ) Let v A VertðGÞ, ~vv A Vertð ~GGÞ be such that ~vvðGÞ ¼ v. Then it is

easily verified that there exists a unique verticial subgroup P~vv of

PG associated to the vertex v such that for every connected finite

étale subcovering G 0 ! G of ~GG! G, it holds that the subgroup

P~vv VPG 0 JPG 0—where we write PG 0 JPG for the open subgroup

corresponding to G 0 ! G—is a verticial subgroup of PG 0 associated

to ~vvðG 0Þ A VertðG 0Þ; thus, the element ~vv determines a particular

verticial subgroup of PG associated to the vertex v. We shall refer

to this verticial subgroup of PG determined by ~vv as the verticial

subgroup of PG associated to ~vv and denote it by P ~vv.
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In a similar vein, for ~ee A Cuspð ~GGÞ (respectively, ~ee A Nodeð ~GGÞ;
~ee A Edgeð ~GGÞ), by a similar argument to the argument just applied

to define the verticial subgroup of PG associated to ~vv, the element

~ee determines a particular cuspidal (respectively, nodal; edge-like)

subgroup of PG associated to the cusp (respectively, node; edge)

~eeðGÞ of G. We shall refer to this cuspidal (respectively, nodal;

edge-like) subgroup of PG as the cuspidal (respectively, nodal; edge-

like) subgroup of PG associated to ~ee and denote it by P~ee.

( vii ) Let n be a natural number, and v;w A VertðGÞ. Then we shall

write dðv;wÞa n if the following conditions are satisfied:

(1) If n ¼ 0, then v ¼ w.

(2) If nb 1, then there exist n nodes e1; . . . ; en A NodeðGÞ of G

and n� 1 vertices v1; . . . ; vn�1 A VertðGÞ of G such that, for

1a ia n, it holds that VðeiÞ ¼ fvi�1; vig—where we write

v0 ¼
def

v and vn ¼
def

w.

Moreover, we shall write dðv;wÞ ¼ n if dðv;wÞa n and dðv;wÞE
n� 1. If dðv;wÞ ¼ n, then we shall say that the distance between v

and w is equal to n.

(viii) Let ~vv; ~ww A Vertð ~GGÞ. Then we shall write

dð~vv; ~wwÞ ¼def sup
G 0
fdð~vvðG 0Þ; ~wwðG 0ÞÞg A NU fyg

—where G 0 ranges over the connected finite étale subcoverings

G 0 ! G of ~GG! G. If dð~vv; ~wwÞ ¼ n A NU fyg, then we shall say that

the distance between ~vv and ~ww is equal to n.

Remark 1.1.1. Let ~zz A VCNð ~GGÞ, and z ¼def ~zzðGÞ A VCNðGÞ. Then whereas

~zz completely determines the subgroup P~zz, z only determines the PG-conjugacy

class of the subgroup P ~zz.

Definition 1.2. We shall say that the semi-graph of anabelioids of pro-S

PSC-type G is untangled if the underlying semi-graph of G is untangled (cf. the

discussion entitled ‘‘Semi-graphs’’ in § 0).

Remark 1.2.1.

( i ) It follows from a similar argument to the argument in the discussion

entitled ‘‘Curves’’ in [Mzk6], § 0, that there exists a connected finite

étale covering G 0 ! G of G such that G 0 is untangled.

( ii ) It is easily verified that if G is untangled, then every finite étale

covering G 0 ! G of G is untangled.

(iii) It follows from (i) and (ii) that for every ~ee A Nodeð ~GGÞ, we have

Vð~eeÞa¼ 2.
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Definition 1.3.

( i ) We shall denote by P
ab=edge
G the quotient of P ab

G by the closed

subgroup generated by the images in P ab
G of the edge-like subgroups

of PG.

( ii ) Let ~vv A Vertð ~GGÞ. Then we shall denote by P
ab=edge
~vv the quotient of

the abelianization P ab
~vv by the closed subgroup generated by the

images in P ab
~vv of P~ee JP ~vv—where ~ee ranges over elements of Eð~vvÞ.

(Here, we note that it follows from [Mzk4], Proposition 1.5, (i), that

for ~ee A Edgeð ~GGÞ, it holds that ~ee A Eð~vvÞ if and only if P~ee JP~vv.)

(iii) Let v A VertðGÞ. Then observe that conjugation by elements of PG

determines natural isomorphisms between the various P
ab=edge
~vv , as ~vv

ranges over the elements of Vertð ~GGÞ such that v ¼ ~vvðGÞ. We shall

denote the resulting profinite group by P ab=edge
v .

Lemma 1.4 (Verticial decompositions inside ab/edge-quotients). The natural

homomorphism

0
v AVertðGÞ

P ab=edge
v ! P

ab=edge
G

is a split injection (cf. the discussion entitled ‘‘Topological groups’’ in § 0) whose

image is a free ẐZS-module of finite rank (cf. [Mzk4], Remark 1.1.4).

Proof. It follows immediately from the well-known structure of the

maximal pro-S quotient of the fundamental group of a smooth curve over

an algebraically closed field of characteristic B S that the quotient by the image

of the natural homomorphism in question is a free ẐZS-module. Therefore,

to verify Lemma 1.4, it su‰ces to verify that the natural homomorphism

in question is injective. Now suppose that we have been given, for each

v A VertðGÞ, a connected finite étale covering Hv ! Gv of the anabelioid Gv

corresponding to v A VertðGÞ which arises from an open subgroup of P ab=edge
v .

Then to verify the desired injectivity, it su‰ces to verify that there exists a

connected finite étale covering F! G of G which arises from an open

subgroup of P
ab=edge
G such that, for each v A VertðGÞ, any connected component

of the restriction of F! G to Gv is isomorphic to Hv over Gv. To this end,

for v A VertðGÞ, write ðP ab=edge
v !!Þ Av for the Galois group of the connected

finite étale covering Hv ! Gv,

A0v ¼def
Y

w AVertðGÞnfvg
Aw JA ¼def

Y
w AVertðGÞ

Aw;

Fv ! Gv for the (not necessarily connected) finite étale covering of Gv ob-

tained as the disjoint union of copies of Hv indexed by the elements of A0v,

and, for e A EðvÞ, FvjGe
! Ge for the finite étale covering of Ge obtained as

287Nodally nondegenerate outer representations



the restriction of Fv ! Gv to the anabelioid Ge corresponding to e A NðvÞ.
Then the natural action of A0v on A0v and the tautological action of Av on Hv

over Gv naturally determine an action of A on Fv over Gv. Moreover, one

verifies immediately that this A-action determines a structure of A-torsor on

the covering Fv ! Gv. Therefore, by gluing the various Fv (for v A vertðGÞ) by
A-equivariant isomorphisms between the various FvjGe

(for e A NodeðGÞ), we

obtain a finite étale covering F! G, any connected component of which

satisfies the desired condition. This completes the proof of the injectivity of the

homomorphism in question. r

Remark 1.4.1. The following two assertions follow immediately from

Lemma 1.4.

( i ) If Pv JPG is a verticial subgroup of PG, then the natural homo-

morphism P ab=edge
v ! P

ab=edge
G is injective.

(ii) If v1; v2 A VertðGÞ are distinct, then for any verticial subgroups

Pv1 ;Pv2 JPG associated to v1, v2, the intersection of the images

of Pv1 and Pv2 in P
ab=edge
G is trivial.

Lemma 1.5 (Intersections of edge-like subgroups). Let ~ee1; ~ee2 A Edgeð ~GGÞ.
Then the following conditions are equivalent:

( i ) ~ee1 ¼ ~ee2.

(ii) P~ee1 VP~ee2 0 f1g.
In particular, if P~ee1 VP ~ee2 0 f1g, then P~ee1 ¼ P~ee2 .

Proof. The implication

ðiÞ ) ðiiÞ

is immediate; thus, to verify Lemma 1.5, it su‰ces to prove the implication

ðiiÞ ) ðiÞ:

To this end, let us assume that P~ee1 VP ~ee2 0 f1g. Since PG is torsion-free

(cf. [Mzk4], Remark 1.1.3), by projecting to the maximal pro-l quotients, for

some l A S, of suitable open subgroups of the various pro-S groups involved,

we may assume without loss of generality that S ¼ flg. In particular, since

P~ee1 and P~ee2 are isomorphic to Zl , we may assume without loss of generality

that P~ee1 VP~ee2 is open in P~ee1 and P~ee2 . Thus, by replacing G by a connected

finite étale covering of G, we may assume without loss of generality that

P~ee1 ¼ P~ee2 . Then condition (i) follows from [Mzk4], Proposition 1.2, (i). r

Lemma 1.6 (Group-theoretic characterization of subgroups of edge-like

subgroups). Let JJPG be a nontrivial procyclic closed subgroup of PG.

Then the following conditions are equivalent:

( i ) J is contained in aðnÞ—necessarily unique (cf. Lemma 1.5)—edge-like

subgroup.
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(ii) There exists a connected finite étale covering Gy ! G of G such that

for any connected finite étale covering G 0 ! G of G that factors

through Gy ! G, the image of the composite

J VPG 0 ,! PG 0 !! P
ab=edge

G 0

is trivial.

Proof. The implication

ðiÞ ) ðiiÞ

is immediate; thus, to verify Lemma 1.6, it su‰ces to prove the implication

ðiiÞ ) ðiÞ:

To this end, let us assume that condition (ii) holds. Now since edge-like

subgroups are commensurably terminal (cf. [Mzk4], Proposition 1.2, (ii)), it

su‰ces to verify condition (i) under the further assumption that Gy ¼ G (cf.

the uniqueness portion of condition (i)). Moreover, since PG is torsion-free

(cf. [Mzk4], Remark 1.1.3), to verify condition (i), we may assume without loss

of generality (cf. the uniqueness portion of condition (i))—by projecting to the

maximal pro-l quotients, for some l A S, of suitable open subgroups of the

various pro-S groups involved—that S ¼ flg.
If HJPG is an open subgroup of PG, then let us denote by GH ! G the

connected finite étale covering of G corresponding to the open subgroup

HJPG (i.e., PGH
¼ HJPG). Now we claim that

(�) for any normal open subgroup NJPG of PG, there exists an edge

of GJ�N at which the connected finite étale covering GN ! GJ�N is totally

ramified, i.e., there exists an edge e A EdgeðGJ�NÞ such that the composite

of natural homomorphisms

Pe ,! PGJ�N ¼ J �N !! ðJ �NÞ=N
is surjective.

Indeed, since J is procyclic, it follows that ðJ �NÞ=N is cyclic; in particular, we

obtain a natural surjection P ab
GJ�N
!! ðJ �NÞ=N. Moreover, since ðJ �NÞ=N is

generated by the image of J, it follows from condition (ii) that the composite of

natural homomorphisms

0
e 0 AEdgeðGJ�N Þ

Pe 0 ! P ab
GJ�N
!! ðJ �NÞ=N

is surjective. Therefore, it follows from the fact that ðJ �NÞ=N is a cyclic

l-group that there exists an edge e of GJ�N such that the composite of the

natural homomorphisms Pe ,! PGJ�N ¼ J �N !! ðJ �NÞ=N is surjective, as

desired. This completes the proof of ð�Þ.
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If NJPG is a normal open subgroup, then let us denote by EN J
EdgeðGNÞ the subset of EdgeðGNÞ consisting of edges which are fixed by the

natural action of J on GN . Then it follows from ð�Þ that for any normal open

subgroup NJPG, it holds that EN is nonempty; thus, since EN is finite, the

projective limit lim �N
EN—where N ranges over the normal open subgroups of

PG—is nonempty. Note that since 7
N
N—where N ranges over the normal

open subgroups of PG—is f1g, it follows that each element of the projective

limit lim �N
EN naturally determines an element of Edgeð ~GGÞ. Let ~ee A Edgeð ~GGÞ

be an element of Edgeð ~GGÞ determined by an element of lim �N
EN 0q. Then

it follows from the various definitions involved that JJP~ee. This completes

the proof of the implication

ðiiÞ ) ðiÞ: r

Remark 1.6.1. When Gy ¼ G and NodeðGÞ ¼q, Lemma 1.6 follows

immediately from [Naka], Lemma 2.1.4.

Lemma 1.7 (Intersections of verticial and edge-like subgroups). Let

~vv A Vertð ~GGÞ, and ~ee A Edgeð ~GGÞ. Then the following conditions are equivalent:

( i ) ~ee A Eð~vvÞ.
(ii) P~vv VP ~ee 0 f1g.

In particular, if P~vv VP~ee 0 f1g, then P~ee JP~vv.

Proof. The implication

ðiÞ ) ðiiÞ

is immediate; thus, to verify Lemma 1.7, it su‰ces to prove the implication

ðiiÞ ) ðiÞ:
To this end, let us assume that P~vv VP ~ee 0 f1g. Since PG is torsion-free (cf.

[Mzk4], Remark 1.1.3), by projecting to the maximal pro-l quotients, for some

l A S, of suitable open subgroups of the various pro-S groups involved, we

may assume without loss of generality that S ¼ flg. In particular, since P~ee

is isomorphic to Zl , we may assume without loss of generality that P ~vv VP ~ee

is open in P ~ee. Thus, by replacing G by a connected finite étale covering of G,

we may assume without loss of generality that P~ee JP~vv. Then condition (i)

follows from [Mzk4], Proposition 1.5, (i) (cf. also [Mzk4], Proposition 1.2, (i)).

r

Lemma 1.8 (Nonexistence of loops). Let ~vv1; ~vv2 A Vertð ~GGÞ be such that

~vv1 0 ~vv2. Then
ðNð~vv1ÞVNð~vv2ÞÞaa 1;

f~vv A Vertð ~GGÞ j dð~vv; ~vv1Þ ¼ dð~vv; ~vv2Þ ¼ 1gaa 1:

Proof. If the cardinality of either of the sets equipped with a superscript

‘‘a’’ isb 2, then the o¤ending edges or vertices give rise to a loop of ~GG, i.e.,
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a projective system of loops (that map isomorphically to one another) in the

various semi-graphs that appear in the projective system ~GG. On the other

hand, since ~GG is a universal covering of G, one verifies immediately that no

such projective system of loops exists. Thus, we obtain a contradiction. This

completes the proof of Lemma 1.8. r

Remark 1.8.1.

( i ) Let ~vv A Vertð ~GGÞ. Recall that if ~ee A Nð~vvÞ, then the inclusion P~ee JP ~vv

is strict (i.e., P ~ee 0P~vv). In particular, it follows immediately that

either Nð~vvÞ ¼q or Nð~vvÞab 2.

( ii ) Let ~vv1; ~vv2 A Vertð ~GGÞ. Then, in light of (i), it follows immediately

from Lemma 1.8 that the following assertion holds:

~vv1 ¼ ~vv2 if and only if Nð~vv1Þ ¼Nð~vv2Þ:

(iii) Let ~ee1; ~ee2 A Nodeð ~GGÞ. Then it follows immediately from Lemma 1.8

that the following assertion holds:

If ~ee1 0 ~ee2; then ðVð~ee1ÞVVð~ee2ÞÞaa 1:

In particular, it follows from Remark 1.2.1, (iii), that the following

assertion holds:

~ee1 ¼ ~ee2 if and only if Vð~ee1Þ ¼Vð~ee2Þ:

Lemma 1.9 (Graph-theoretic geometry via verticial subgroups). For i ¼ 1; 2,

let ~vvi A Vertð ~GGÞ. Then the following hold:

( i ) If P~vv1 VP~vv2 0 f1g, then either P~vv1 ¼ P~vv2 or P~vv1 VP ~vv2 is a nodal

subgroup of PG.

(ii) Consider the following three (mutually exclusive) conditions:

(1) dð~vv1; ~vv2Þ ¼ 0.

(2) dð~vv1; ~vv2Þ ¼ 1.

(3) dð~vv1; ~vv2Þb 2.

Then we have equivalences

ð1Þ , ð1 0Þ; ð2Þ , ð2 0Þ , ð2 00Þ; ð3Þ , ð3 0Þ

with the following four conditions:

(1 0) P~vv1 ¼ P~vv2 .

(2 0) P~vv1 0P~vv2 ; P~vv1 VP~vv2 0 f1g.
(2 00) P~vv1 VP~vv2 is a nodal subgroup of PG.

(3 0) P~vv1 VP ~vv2 ¼ f1g.

Proof. First, we consider assertion (i). Suppose that H ¼def P~vv1 VP~vv2 0
f1g, and P~vv1 0P~vv2 (so ~vv1 0 ~vv2—cf. [Mzk4], Proposition 1.2, (i)). Note that to

verify assertion (i), it su‰ces to show that H is a nodal subgroup of PG. Also,

we observe that since nodal and verticial subgroups of PG are commensurably
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terminal in PG (cf. [Mzk4], Proposition 1.2, (ii)), it follows that we may assume

without loss of generality—by replacing G by a connected finite étale covering

of G—that ~vv1ðGÞ0 ~vv2ðGÞ.
Let JJH be a nontrivial procyclic closed subgroup of H. Then we

claim that J is contained in an edge-like subgroup of PG. Indeed, since

JJH ¼ P~vv1 VP~vv2—where ~vv1 0 ~vv2—it follows from Remark 1.4.1, (ii), to-

gether with our assumption that ~vv1ðGÞ0 ~vv2ðGÞ, that the image of J in P
ab=edge
G

is trivial. Thus, by applying this observation to the various connected finite

étale coverings of G involved, we conclude that J satisfies condition (ii) in the

statement of Lemma 1.6. In particular, it follows from Lemma 1.6 that J is

contained in an edge-like subgroup. This completes the proof of the above

claim. On the other hand, if P~ee is an edge-like subgroup of PG such that

JJP~ee, then it follows from Lemma 1.7 that the inclusion JJP ~ee implies

that P~ee is in fact nodal, and, moreover, that P~ee JP ~vv1 VP ~vv2 ¼ H.

By the above discussion, it follows that

H ¼ 6
~ee ANð~vv1ÞVNð~vv2Þ

P~ee:

On the other hand, it follows from Lemma 1.8 that the cardinality of the

intersection Nð~vv1ÞVNð~vv2Þ isa 1. Therefore, it follows that H is a nodal

subgroup of PG. This completes the proof of assertion (i).

Next, we consider assertion (ii). The equivalence

ð1Þ , ð1 0Þ

follows from [Mzk4], Proposition 1.2, (i). In light of this equivalence, the

implications

ð2Þ ) ð2 0Þ ) ð2 00Þ

follow from assertion (i), while the implication

ð2 00Þ ) ð2Þ

follows from Lemma 1.7. The equivalence

ð3Þ , ð3 0Þ

then follows from the equivalences

ð1Þ , ð1 0Þ; ð2Þ , ð2 0Þ: r

Remark 1.9.1. It follows immediately from the various definitions

involved that for any semi-graph of anabelioids of pro-S PSC-type G, there

exists, in the terminology of [Mzk6], Definition 1.2, (ii), an IPSC-extension

1! PG ! PI ! I ! 1:
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Therefore, Lemma 1.9 may also be obtained as a consequence of [Mzk6],

Proposition 1.3, (iv).

Lemma 1.10 (Conjugates of verticial subgroups). Suppose that G is

untangled. Let ~vv; ~vv 0 A Vertð ~GGÞ be such that ~vvðGÞ ¼ ~vv 0ðGÞ. Then ~vv0 ~vv 0 if

and only if P~vv VP~vv 0 ¼ f1g.

Proof. The su‰ciency of the condition is immediate; thus, to prove

Lemma 1.10, it su‰ces to verify the necessity of the condition. To this end,

let us assume that ~vv0 ~vv 0. Then there exists a connected finite étale subcover-

ing G 0 ! G of ~GG! G such that ~vvðG 0Þ0 ~vv 0ðG 0Þ. On the other hand, since G

is untangled, and ~vvðGÞ ¼ ~vv 0ðGÞ, it follows that Nð~vvðG 0ÞÞVNð~vv 0ðG 0ÞÞ ¼q.

Thus, P~vv VP~vv 0 VPG 0 ¼ f1g by Lemma 1.9, (ii); in particular, since P~vv is

torsion-free (cf. [Mzk4], Remark 1.1.3), we obtain that P~vv VP~vv 0 ¼ f1g, as

desired. r

Remark 1.10.1. It follows immediately from Lemma 1.10 that the

following assertion holds:

Suppose that G is untangled. Let v A VertðGÞ be a vertex of G, Pv JPG

a verticial subgroup associated to v, and g A PGnPv. Then Pv V g �Pv �
g�1 ¼ f1g.

Definition 1.11. Suppose that G is sturdy. Then by eliminating the

cusps (i.e., the open edges) of the semi-graph G, and, for each vertex v of G,

replacing the anabelioid Gv corresponding to v by the anabelioid Gv of finite

étale coverings of Gv that restrict to a trivial covering over the cusps of G that

abut to v, we obtain a semi-graph of anabelioids of pro-S PSC-type G. (Thus,

the pro-S fundamental group of Gv may be naturally identified, up to inner

automorphism, with the quotient of Pv by the subgroup of Pv topologically

normally generated by the Pe JPv, for e A CðvÞ.) We shall refer to G as the

compactification of G (cf. [Mzk4], Remark 1.1.6).

Remark 1.11.1. It follows immediately from the definition of the com-

pactification that the quotient of PG by the closed subgroup of PG topolog-

ically normally generated by the cuspidal subgroups of PG is naturally

isomorphic, up to inner automorphism, to the fundamental group PG of G.

In particular, we have a natural outer surjection PG !! PG.

By analogy to the terms ‘‘group-theoretically verticial’’ and ‘‘group-

theoretically cuspidal’’ introduced in [Mzk4] (cf. [Mzk4], Definition 1.4, (iv)),

we make the following definition.

Definition 1.12. Let H be a semi-graph of anabelioids of pro-S PSC-

type, PH the (pro-S) fundamental group of H, and a : PG !@ PH an iso-

293Nodally nondegenerate outer representations



morphism of profinite groups. Then we shall say that a is group-theoretically

nodal if, for any ~ee A Nodeð ~GGÞ, the image aðP~eeÞJPH is a nodal subgroup of

PH, and, moreover, every nodal subgroup of PH arises in this fashion.

Proposition 1.13 (Group-theoretical verticiality and nodality). Let H be a

semi-graph of anabelioids of pro-S PSC-type, PH the fundamental group of H,

and a : PG !@ PH a group-theoretically verticial isomorphism. Then a is group-

theoretically nodal.

Proof. This follows immediately from Lemma 1.9, (i). r

Lemma 1.14 (Graphicity of certain group-theoretically cuspidal and verticial

isomorphisms). Let H be a semi-graph of anabelioids of pro-S PSC-type, and

PH the fundamental group of H. If an isomorphism a : PG !@ PH satisfies the

following two conditions, then a is graphic (cf. [Mzk4], Definition 1.4, (i)):

( i ) a is group-theoretically cuspidal.

(ii) For any sturdy connected finite étale covering G 0 ! G of G such that

the corresponding covering H 0 !H of H (relative to the isomor-

phism a) is sturdy, the induced isomorphism (cf. (i), Remark 1.11.1)

PG 0 !
@

PH 0

—where we write G 0 (respectively, H 0) for the semi-graph of anabe-

lioids of PSC-type obtained as the compactification (cf. Definition

1.11) of G 0 (respectively, H 0)—is group-theoretically verticial.

Proof. Since the isomorphism PG 0 !
@

PH 0 is group-theoretically verticial

(cf. condition (ii)), it follows from Proposition 1.13 that the isomorphism

PG 0 !
@

PH 0 is group-theoretically nodal. Therefore, it follows immediately

from (i) that a is graphically filtration-preserving (cf. [Mzk4], Definition 1.4,

(iii)). Thus, it follows from [Mzk4], Theorem 1.6, (ii), that a is graphic, as

desired. r

Lemma 1.15 (Chains of length two lifting adjacent vertices). Let ~vv1; ~vv2 A
Vertð ~GGÞ be such that if we write vi ¼

def
~vviðGÞ, then dðv1; v2Þ ¼ 1. Then there

exist ~ww1; ~uu1; ~ww2 A Vertð ~GGÞ which satisfy the following conditions (which imply that

dð~ww1; ~uu1Þ ¼ 2):

( i ) v1 ¼ ~ww1ðGÞ ¼ ~uu1ðGÞ; v2 ¼ ~ww2ðGÞ.
( ii ) dð~ww1; ~uu1Þb 2.

(iii) dð~ww2; ~ww1Þ ¼ dð~ww2; ~uu1Þ ¼ 1.

Proof. First, we observe that by replacing G by a connected finite étale

covering of G, we may assume without loss of generality that G is sturdy

(cf. [Mzk4], Remark 1.1.5) and untangled (cf. Remark 1.2.1, (i)). Then it is

easily verified that there exists a nontrivial connected finite étale covering of
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the anabelioid Gv2 corresponding to v2 which is unramified over the nodes

and cusps of G which abut to v2. In light of the unramified nature of this

connected finite étale covering of Gv2 , by gluing this covering to a split covering

over the remaining portion of G, we obtain a connected finite étale covering

H! G. Then it follows immediately from the various definitions involved

that the set V1 (respectively, V2) of vertices of H which lie over v1 (respec-

tively, v2) is of cardinalityb 2 (respectively, of cardinality 1). Thus, there exist

vertices w1; u1 A V1, w2 A V2 such that w1 0 u1 (which, since G is untangled,

implies that dðw1; u1Þb 2—cf. condition (ii)), and, moreover, dðw2;w1Þ ¼
dðw2; u1Þ ¼ 1 (cf. condition (iii)). In particular, it follows immediately that

there exist elements ~ww1; ~uu1; ~ww2 A Vertð ~GGÞ which satisfy the three conditions in the

statement of Lemma 1.15. This completes the proof of Lemma 1.15. r

2. Nodally nondegenerate outer representations

In this section, we define the notion of an outer representation of NN-type

and verify various fundamental properties of such outer representations.

If G is a semi-graph of anabelioids of pro-S PSC-type for some non-

empty set of prime numbers S, then since the fundamental group PG of G is

topologically finitely generated, the profinite topology of PG induces (profinite)

topologies on AutðPGÞ and OutðPGÞ (cf. the discussion entitled ‘‘Topological

groups’’ in § 0). Moreover, if we write

AutðGÞ

for the group of automorphisms of G, then by the discussion preceding [Mzk4],

Lemma 2.1, the natural homomorphism

AutðGÞ ! OutðPGÞ

is an injection with closed image. (Here, we recall that an automorphism of a

semi-graph of anabelioids consists of an automorphism of the underlying semi-

graph, together with a compatible system of isomorphisms between the various

anabelioids at each of the vertices and edges of the underlying semi-graph

which are compatible with the various morphisms of anabelioids associated to

the branches of the underlying semi-graph—cf. [Mzk3], Definition 2.1; [Mzk3],

Remark 2.4.2.) Thus, by equipping AutðGÞ with the topology induced via this

homomorphism by the topology of OutðPGÞ, we may regard AutðGÞ as being

equipped with the structure of a profinite group.

Definition 2.1.

( i ) Let I be a profinite group, S a nonempty set of prime numbers, G a

semi-graph of anabelioids of pro-S PSC-type, PG the fundamental
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group of G, and r : I ! AutðGÞ a homomorphism of profinite groups.

Then we shall refer to the pair

ðG; r : I ! AutðGÞ ð,! OutðPGÞÞÞ

as an outer representation of pro-S PSC-type. Moreover, we shall

refer to an outer representation of pro-S PSC-type for some non-

empty set of prime numbers S as an outer representation of PSC-type.

For simplicity, we shall also refer to the underlying homomorphism

‘‘r’’ of an outer representation of pro-S PSC-type (respectively, of

PSC-type) as an outer representation of pro-S PSC-type (respectively,

outer representation of PSC-type).

(ii) Let ðG; rI : I ! AutðGÞÞ, ðH; rJ : J ! AutðHÞÞ be outer representa-

tions of PSC-type. Then we shall refer to a pair

ða : G!@ H; b : I !@ JÞ

consisting of an isomorphism a of semi-graphs of anabelioids and an

isomorphism b of profinite groups such that the diagram

I ���!rI AutðGÞ

b

???y
???yAutðaÞ

J ���!
rJ

AutðHÞ

—where the right-hand vertical arrow is the isomorphism induced by

a—commutes as an isomorphism of outer representations of PSC-type.

Remark 2.1.1. It follows immediately that a ‘‘pro-S IPSC-extension’’

1! PG ! PI ! I ! 1

(i.e., roughly speaking, an extension that arises from a stable log curve over a

log point—cf. [Mzk6], Definition 1.2, (ii)) gives rise to an outer representation

I ! OutðPGÞ that factors through AutðGÞJOutðPGÞ; in particular, we obtain

an outer representation of pro-S PSC-type I ! AutðGÞ.

In the following, let us fix a nonempty set of prime numbers S and an

outer representation of pro-S PSC-type

ðG; rI : I ! AutðGÞ ð,! OutðPGÞÞÞ

and write PI ¼def PG z
out

I (cf. the discussion entitled ‘‘Topological groups’’ in

§ 0); thus, we have an exact sequence

1! PG ! PI ! I ! 1:
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Definition 2.2.

( i ) Let v A VertðGÞ be a vertex of G and Pv JPG a verticial subgroup

of PG associated to v. Then we shall write

Dv ¼def NPI
ðPvÞJPI ðrespectively; Iv ¼def ZPI

ðPvÞJDvÞ

and refer to Dv (respectively, Iv) as a decomposition (respectively, an

inertia) subgroup of PI associated to the vertex v, or, alternatively,

the decomposition (respectively, inertia) subgroup of PI associated to

the verticial subgroup Pv JPG. If, moreover, the verticial subgroup

Pv is the verticial subgroup associated to an element ~vv A Vertð ~GGÞ
(cf. Definition 1.1, (vi)), then we shall write D~vv ¼def Dv (respectively,

I~vv ¼def Iv) and refer to D~vv (respectively, I~vv) as the decomposition (respec-

tively, inertia) subgroup of PI associated to ~vv.

( ii ) Let e A CuspðGÞ be a cusp of G and Pe JPG an edge-like subgroup

of PG associated to e. Then we shall write

De ¼
def

NPI
ðPeÞJPI ðrespectively; Ie ¼

def
Pe JDeÞ

and refer to De (respectively, Ie) as a decomposition (respectively, an

inertia) subgroup of PI associated to the cusp e, or, alternatively, the

decomposition (respectively, inertia) subgroup of PI associated to the

edge-like subgroup Pe JPG. If, moreover, the edge-like subgroup

Pe is the edge-like subgroup associated to an element ~ee A Cuspð ~GGÞ
(cf. Definition 1.1, (vi)), then we shall write D~ee ¼def De (respectively,

I~ee ¼def Ie) and refer to D~ee (respectively, I~ee) as the decomposition (respec-

tively, inertia) subgroup of PI associated to ~ee.

(iii) Let e A NodeðGÞ be a node of G and Pe JPG an edge-like subgroup

of PG associated to e. Then we shall write

De ¼
def

NPI
ðPeÞJPI ðrespectively; Ie ¼

def
ZPI
ðPeÞJDeÞ

and refer to De (respectively, Ie) as a decomposition (respectively, an

inertia) subgroup of PI associated to the node e, or, alternatively, the

decomposition (respectively, inertia) subgroup of PI associated to the

edge-like subgroup Pe JPG. If, moreover, the edge-like subgroup

Pe is the edge-like subgroup associated to an element ~ee A Nodeð ~GGÞ
(cf. Definition 1.1, (vi)), then we shall write D~ee ¼def De (respectively,

I~ee ¼def Ie) and refer to D~ee (respectively, I~ee) as the decomposition (respec-

tively, inertia) subgroup of PI associated to ~ee.

Lemma 2.3 (Basic properties of inertia subgroups).

( i ) Let ~vv A Vertð ~GGÞ. Then f1g ¼ I~vv VPG; in particular, the homomor-

phism I~vv ! I induced by the surjection PI !! I is injective.

(ii) Let ~ee A Nodeð ~GGÞ, ~vv A Vð~eeÞ. Then I~vv J I~ee.
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Proof. Assertion (i) follows from the commensurable terminality of P ~vv

in PG (cf. [Mzk4], Proposition 1.2, (ii)), together with the slimness of P ~vv

(cf. [Mzk4], Remark 1.1.3). Assertion (ii) follows from the fact that P~ee JP~vv,

together with the definitions of inertia subgroups of vertices and nodes. r

The following definition will play a central role in the present paper.

Definition 2.4.

( i ) We shall say that the outer representation of pro-S PSC-type rI is

of IPSC-type (where the ‘‘IPSC’’ stands for ‘‘inertial pointed stable

curve’’) if rI is isomorphic, as an outer representation of PSC-type

(cf. Definition 2.1, (ii)), to the outer representation of PSC-type

determined by (cf. Remark 2.1.1) an ‘‘IPSC-extension’’ (i.e., roughly

speaking, an extension that arises from a stable log curve over a log

point—cf. [Mzk6], Definition 1.2, (ii)).

( ii ) We shall say that the outer representation of pro-S PSC-type rI of

VA-type (where the ‘‘VA’’ stands for ‘‘verticially admissible’’) if the

following two conditions are satisfied:

(1) I is isomorphic to ẐZS as an abstract profinite group.

(2) For every ~vv A Vertð ~GGÞ, the image of the injection I~vv ,! I (cf.

Lemma 2.3, (i)) is open in I .

We shall say that the outer representation of pro-S PSC-type rI is

of SVA-type (where the ‘‘SVA’’ stands for ‘‘strictly verticially ad-

missible’’) if, in addition to the above condition (1), the following

condition is satisfied:

(2 0) For every ~vv A Vertð ~GGÞ, the injection I~vv ,! I is bijective.

(iii) We shall say that the outer representation of pro-S PSC-type rI is of

NN-type (where the ‘‘NN’’ stands for ‘‘nodally nondegenerate’’) if rI
is of VA-type, and, moreover, the following condition is satisfied:

(3) For every ~ee A Nodeð ~GGÞ, the homomorphism I~vv1 � I~vv2 ! I~ee—

where we write f~vv1; ~vv2g ¼Vð~eeÞJVertð ~GGÞ—induced by the inclu-

sions I~vv1 ; I~vv2 J I~ee (cf. Lemma 2.3, (ii)) is injective, and its image

is open in I~ee.

We shall say that the outer representation of pro-S PSC-type rI is of

SNN-type (where the ‘‘SNN’’ stands for ‘‘strictly nodally nondegen-

erate’’) if rI is of SVA-type and of NN-type.

Remark 2.4.1. Note that it is not the case that condition (2) of Definition

2.4 is implied by conditions (1) and (3) of Definition 2.4. Indeed, it is easily

verified that if VertðGÞ ¼ fvg, and NodeðGÞ ¼q (so Pv ¼ PG), then any

injection ẐZS ,! OutðPGÞ satisfies conditions (1) and (3), but fails to satisfy

condition (2). (Moreover, it is also easily verified that such an injection exists.)

On the other hand, when NodeðGÞ0q, it is not clear to the authors at the
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time of writing whether or not condition (2) of Definition 2.4 is implied by

conditions (1) and (3) of Definition 2.4.

Remark 2.4.2. It follows from [Mzk6], Proposition 1.3, (ii), (iii), that if rI
is of IPSC-type, then rI is of SNN-type, i.e.,

IPSC-type ¼) SNN-type ¼) NN-type

+ +
SVA-type ¼) VA-type:

Lemma 2.5 (Group structure of inertia subgroups). If rI is of VA-type, then

the following hold:

( i ) Let ~vv A Vertð ~GGÞ. Then as an abstract profinite group, I~vv is isomorphic

to ẐZS.

( ii ) Let ~ee A Cuspð ~GGÞ. Then as an abstract profinite group, I~ee is isomor-

phic to ẐZS.

(iii) Let ~ee A Nodeð ~GGÞ. Then as an abstract profinite group, I~ee is isomor-

phic to ẐZS � ẐZS.

(iv) Let ~ee A Nodeð ~GGÞ. Then P~ee ¼ I~ee VPG; thus, we have an exact se-

quence

1! P~ee ! I~ee ! ImðI~ee ! IÞ ! 1

—where we write ImðI~ee ! IÞ for the image of the composite I~ee ,!
PI !! I . Moreover, the subgroup ImðI~ee ! IÞJ I is open in I .

In particular, for ~vv A Vð~eeÞ, the image of the homomorphism

I~vv �P ~ee ! I~ee induced by the natural inclusions I~vv, P ~ee J I~ee is open

in I~ee. If, moreover, for ~vv A Vð~eeÞ, the composite I~vv ,! PI !! I is

surjective (or, equivalently, bijective), then the homomorphism

I~vv �P ~ee ! I~ee induced by the natural inclusions I~vv, P~ee J I~ee is bijective.

Proof. Assertion (i) (respectively, (ii)) follows from conditions (1) and (2)

of Definition 2.4 (respectively, from Definition 2.2, (ii)). Assertion (iv) follows

from the commensurable terminality of P ~ee in PG (cf. [Mzk4], Proposition 1.2,

(ii)), together with condition (2) of Definition 2.4. Assertion (iii) follows from

the fact that I~ee is an extension of ẐZS by ẐZS and abelian (cf. assertion (iv)).

r

Lemma 2.6 (Stability of verticial admissibility and nodal nondegeneracy).

Suppose that rI is of VA-type (respectively, of NN-type). Then the following

hold:

( i ) Let PI 0 JPI be an open subgroup of PI , PG 0 ¼
def

PI 0 VPG, and I 0

the image of the composite PI 0 ,! PI !! I . Thus, we have an exact

sequence

1! PG 0 ! PI 0 ! I 0 ! 1;
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the open subgroup PG 0 JPG determines a covering G 0 ! G of G;

the outer representation I 0 ! OutðPG 0 Þ determined by PI 0 factors

through rI 0 : I
0 ! AutðG 0Þ. Then rI 0 is of VA-type (respectively, of

NN-type).

(ii) Suppose that G is sturdy. Then the outer representation of pro-S

PSC-type rI : I ! AutðGÞ—where we write G for the compactification

of G—induced by rI is of VA-type (respectively, of NN-type).

Proof. First, we prove assertion (i). It follows immediately from the

various definitions involved that rI 0 is of VA-type. Moreover, it follows from

Lemma 2.5, (i), (iv), that the various ‘‘I~vv’’ (respectively, ‘‘I~ee’’) are torsion-free,

and, moreover, that the commensurability class of the subgroup ‘‘I~vv’’ (respec-

tively, ‘‘I~ee’’) is una¤ected by passing from PI to PI 0 . Thus, condition (3) of

Definition 2.4 for rI 0 follows from condition (3) of Definition 2.4 for rI . This

completes the proof of assertion (i).

Next, we verify assertion (ii). First, let us observe that condition (1) of

Definition 2.4 for rI follows from condition (1) of Definition 2.4 for rI . Next,

let us observe that it follows from Lemma 2.3, (i) (respectively, Lemma 2.5,

(iv)), that for ~vv A Vertð ~GGÞ (respectively, ~ee A Nodeð ~GGÞ), the natural surjection

PG !! PG induces an open injection between the respective subgroups ‘‘I~vv’’

(respectively, ‘‘I~ee’’). Thus, condition (2) (respectively, (3)) of Definition 2.4 for

rI follows from condition (2) (respectively, (3)) of Definition 2.4 for rI . This

completes the proof of assertion (ii). r

Lemma 2.7 (Group structure of decomposition subgroups). If rI is of VA-

type, then the following hold:

( i ) Let ~vv A Vertð ~GGÞ. Then P ~vv ¼ D~vv VPG; thus, we have an exact se-

quence

1! P~vv ! D~vv ! ImðD~vv ! IÞ ! 1

—where we write ImðD~vv ! IÞ for the image of the composite D~vv ,!
PI !! I . Moreover, the subgroup ImðD~vv ! IÞJ I is open in I .

In particular, the image of the homomorphism I~vv �P~vv ! D~vv

induced by the natural inclusions I~vv, P ~vv JD~vv is open in D~vv. If,

moreover, the composite I~vv ,! PI !! I is surjective (or, equivalently,

bijective), then the homomorphism I~vv �P ~vv ! D~vv is bijective.

( ii ) Let ~ee A Cuspð ~GGÞ. Then P ~ee ¼ D~ee VPG; thus, we have an exact se-

quence

1! P~ee ! D~ee ! ImðD~ee ! IÞ ! 1

—where we write ImðD~ee ! IÞ for the image of the composite D~ee ,!
PI !! I . Moreover, the subgroup ImðD~ee ! IÞJ I is open in I .
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In particular, for ~vv A Vð~eeÞ, the image of the homomorphism

I~vv �P ~ee ! D~ee induced by the natural inclusions I~vv, P~ee JD~ee is open

in D~ee. If, moreover, for ~vv A Vð~eeÞ, the composite I~vv ,! PI !! I

is surjective (or, equivalently, bijective), then the homomorphism

I~vv �P ~ee ! D~ee induced by the natural inclusions I~vv, P~ee JD~ee is

bijective.

(iii) Let ~ee A Nodeð ~GGÞ. Then P ~ee ¼ D~ee VPG; thus, we have an exact

sequence

1! P~ee ! D~ee ! ImðD~ee ! IÞ ! 1

—where we write ImðD~ee ! IÞ for the image of the composite D~ee ,!
PI !! I . Moreover, the subgroup ImðD~ee ! IÞJ I is open in I .

In particular, the image of the natural inclusion I~ee ,! D~ee is open

in D~ee. If, moreover, for ~vv A Vð~eeÞ, the composite I~vv ! I is surjective

(or, equivalently, bijective), then the natural inclusion I~ee ,! D~ee is

bijective.

Proof. The computation of the intersection with PG in assertion (i)

(respectively, (ii); (iii)) follows from the commensurable terminality of P~vv

(respectively, P~ee; P~ee) in PG (cf. [Mzk4], Proposition 1.2, (ii)). The fact

that the images of the respective decomposition subgroups in I are open

follows from condition (2) of Definition 2.4. The final portion of assertion

(i) (respectively, (ii); (iii)) then follows immediately from Lemma(s) 2.3, (i)

(respectively, 2.3, (i); 2.3, (i), and 2.5, (iv)) r

Remark 2.7.1. It follows immediately from Lemmas 2.5, 2.7 that the

following assertion holds:

Let ~vv A Vertð ~GGÞ (respectively, ~ee A Cuspð ~GGÞ; ~ee A Nodeð ~GGÞ). If rI is of

SVA-type, then

D~vv ¼ I~vv �P~vv ¼ I~vv �P~vv

ðrespectively; D~ee ¼ I~vv �P~ee ¼ I~vv �P~ee; for any ~vv A Vð~eeÞ;

D~ee ¼ I~ee ¼ I~vv �P~ee ¼ I~vv �P~ee; for any ~vv A Vð~eeÞÞ:

Remark 2.7.2. Let ~ee1; ~ee2 A Edgeð ~GGÞ. If rI is of VA-type, then the

following three conditions are equivalent:

( i ) ~ee1 ¼ ~ee2.

( ii ) I~ee1 ¼ I~ee2 .

(iii) D~ee1 ¼ D~ee2 .

Indeed, the implications

ðiÞ ) ðiiÞ; ðiÞ ) ðiiiÞ
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are immediate. On the other hand, if condition (ii) (respectively, (iii)) is

satisifed, then P~ee1 ¼ I~ee1 VPG ¼ I~ee2 VPG ¼ P~ee2 [cf. Definition 2.2, (ii); Lemma

2.5, (iv)] (respectively, P ~ee1 ¼ D~ee1 VPG ¼ D~ee2 VPG ¼ P~ee2 [cf. Lemma 2.7, (ii),

(iii)]). Thus, it follows from [Mzk4], Proposition 1.2, (i), that ~ee1 ¼ ~ee2.

Definition 2.8. Suppose that rI is of SVA-type. Then we shall denote

by

G½rI �

the connected semi-graph of anabelioids (cf. [Mzk3], Definition 2.1) defined

as follows: The underlying graph of G½rI � is the underlying graph of G.

The anabelioid corresponding to a vertex v A VertðGÞ (respectively, an edge

e A EdgeðGÞ) is the connected anabelioid determined by the decomposition

subgroup, regarded up to inner automorphism, Dv JPI (respectively,

De JPI ) associated to v (respectively, e); for v A VðeÞ, the associated mor-

phism of anabelioids is the morphism determined by the natural inclusion

De ð¼ Iv �PeÞ ,! Dv ð¼ Iv �PvÞ (cf. Remark 2.7.1).

Remark 2.8.1.

( i ) Note that the fundamental group of the anabelioid corresponding to

a vertex of G½rI � (i.e., the decomposition subgroup, regarded up to

inner automorphism, associated to the vertex) is not center-free (cf.

Lemma 2.7, (i)). In particular, the semi-graph of anabelioids G½rI � is
not of PSC-type.

(ii) Let PG½rI � be the pro-S fundamental group (i.e., the maximal pro-S

quotient of the fundamental group) of the connected semi-graph of

anabelioids G½rI � (cf. the discussion following [Mzk3], Definition 2.1).

Then it follows from the definition of PG½rI � that the inductive

system of homomorphisms determined by the natural outer inclu-

sions Dv ,! PI and De ,! PI gives rise to a natural outer homo-

morphism

PG½rI � ! PI :

Lemma 2.9 (An isomorphism of fundamental groups). Suppose that rI is of

SVA-type. Let PG½rI � be the pro-S fundamental group of the connected semi-

graph of anabelioids G½rI �. Then the homomorphism PG½rI � ! PI defined in

Remark 2.8.1, (ii), is an isomorphism.

Proof. First, we observe (cf. Remark 2.7.1) that the decomposition

subgroup Dz—where z A VCNðGÞ—is an extension of I by Pz. Now it is

easily verified that the profinite Galois covering of G½rI � determined by the
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various quotients Dz !! I (i.e., that arise as composites Dz ,! PI !! I ) is

isomorphic to G; thus, we obtain an exact sequence

1! PG ! PG½rI � ! I ! 1:

On the other hand, it follows from the construction of this profinite covering

G! G½rI �, together with the definition of the homomorphism PG½rI � ! PI ,

that the composite PG ! PG½rI � ! PI coincides with the natural inclusion

PG ,! PI . Thus, the bijectivity of the homomorphism PG½rI � ! PI follows

from the ‘‘Five Lemma’’. This completes the proof of Lemma 2.9. r

Definition 2.10. Let ðg; rÞ be a pair of natural numbers such that

2g� 2þ r > 0, k an algebraically closed field of characteristic B S, s A Mg; rðkÞ
a k-valued geometric point of Mg; r (cf. the discussion entitled ‘‘Curves’’ in § 0),

and s log : SpecðkÞ log !M log
g; r the strict morphism of log stacks whose underlying

morphism of stacks is the morphism corresponding to s.

( i ) We shall denote by X log
s the stable log curve determined by s log.

( ii ) We shall denote by Gs the semi-graph of anabelioids of pro-S PSC-

type determined by the stable log curve X log
s (cf. [Mzk4], Example

2.5).

(iii) Write Qs for the monoid obtained as the stalk of the characteristic

sheaf (cf. the discussion entitled ‘‘Log stacks’’ in § 0) of M log
g; r at s,

and

Is ¼
def

HomðQgp
s ; ẐZð1ÞSÞ

—where the ‘‘ð1Þ’’ denotes a ‘‘Tate twist’’. Recall (cf. [Knud],

Theorem 2.7) that it follows from the well-known geometry of the

irreducible components of the divisor that defines the log structure

of M log
g; r that we have a natural decomposition

Qs F 0
e ANodeðGsÞ

Ne

—where we write Ne for a copy of N indexed by e A NodeðGsÞ; thus,
we obtain a decomposition

Is F 0
e ANodeðGsÞ

L½e�

—where we write L½e� for a copy of ẐZð1ÞS indexed by e A NodeðGsÞ.
(iv) It follows from the various definitions involved that, if we write

pS
1 ðX log

s Þ for the maximal pro-S quotient of the logarithmic funda-
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mental group of X log
s , then we have a natural exact sequence of

profinite group

1! PGs
! pS

1 ðX log
s Þ ! Is ! 1

—which gives rise to an outer representation Is ! OutðPGs
Þ that

factors through AutðGsÞJOutðPGs
Þ. Write

rs : Is ! AutðGsÞ

for the resulting homomorphism of profinite groups and PIs ¼
def

PGs
z
out

Is. Thus, we have a natural isomorphism of profinite groups

pS
1 ðX log

s Þ !
@

PIs .

( v ) Let s 0 A Mg; rþ1ðkÞ be a k-valued geometric point of Mg; rþ1 that

corresponds to a node of Xs. Then it follows immediately from the

various definitions involved that the quotient of PGs 0—where we use

the notation obtained by applying (ii) to s 0—by the closed subgroup

of PGs 0 topologically normally generated by the edge-like subgroups

of PGs 0 associated to the (rþ 1)-st cusp is naturally isomorphic to

PGs
; in particular, we have a natural surjection PGs 0 !! PGs

. We

shall denote by

Ns 0=s : NodeðGs 0 Þ ! NodeðGsÞ

the map which—as is easily verified—is uniquely determined by the

following condition:

If e A NodeðGs 0 Þ, and Pe JPGs 0 is an edge-like subgroup

associated to e, then the image of Pe via the above surjection

PGs 0 !! PGs
is an edge-like subgroup associated to Ns 0=sðeÞ A

NodeðGs 0 Þ.

Lemma 2.11 (Log fundamental groups in a neighborhood of a node). In the

notation of Definition 2.10, let e A NodeðGsÞ be a node of Gs, and s 0 A Mg; rþ1ðkÞ
a k-valued geometric point that corresponds to the node of Xs determined by e.

Then the following hold:

( i ) The inverse image N�1s 0=sðeÞ consists of precisely two elements e1; e2 A
NodeðGs 0 Þ; the map

NodeðGs 0 Þnfe1; e2g ! NodeðGsÞnfeg

determined by Ns 0=s is bijective.

( ii ) Write Is 0 for the result of applying Definition 2.10, (iii), to s 0. Then

the homomorphism Is 0 ! PIs induced on maximal pro-S quotients of

log fundamental groups by (the strict morphism of log schemes whose

underlying morphism of schemes is the morphism corresponding to) s 0
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is injective, and its image is an inertia subgroup Ie of PIs associated

to e. Moreover, if, in the notation of (i), we write

M0e1; e2 ¼
def 0

f ANodeðGs 0 Þnfe1; e2g
L½ f �J Is 0 ;

then for i ¼ 1; 2, there exists a vertex vi A VðeÞJVertðGsÞ of Gs

such that the subgroup obtained as the image of the composite of the

injections

L½ei�lM0e1; e2 ,! Is 0 ,! PIs

is an inertia subgroup Ivi of PIs associated to vi. In this situation, we

shall refer to vi as the vertex associated to ei.

(iii) Let

M0e ¼def 0
f ANodeðGsÞnfeg

L½ f �J Is:

Then the homomorphism Is 0 ! Is induced by M
log

g; rþ1 !M log
g; r (i.e., the

composite Is 0 ,! PIs !! Is) coincides with the homomorphism

L½e1�lL½e2�lM0e1; e2 ¼ Is 0 ! Is ¼ L½e�lM0e

determined by the homomorphism

L½e1�lL½e2� ! L½e�

ða; bÞ 7! aþ b

and the isomorphism

M0e1; e2 !
@

M0e

induced by the bijective portion of Ns 0=s (cf. (i)).

Proof. Assertion (i) follows immediately from the various definitions

involved. Assertions (ii) and (iii) follow by computing the log structures

involved by means of a chart for the morphism X log
s ! SpecðkÞ log at the

k-valued point s 0 of Xs. r

Remark 2.11.1. In the notation of Definition 2.10, let ~ee A Nodeð ~GGsÞ,
e ¼def ~eeðGsÞ A NodeðGsÞ, s 0 A Mg; rþ1ðkÞ a k-valued geometric point that corre-

sponds to the node of Xs determined by e, and fe1; e2g ¼ N�1s 0=sðeÞJNodeðGs 0 Þ
(cf. Lemma 2.11, (i)). Moreover, for i ¼ 1; 2, let us denote by ~vvi the (unique!)

element of Vertð ~GGsÞ such that ~vvi A Vð~eeÞ, and, moreover, ~vviðGsÞ is the vertex

associated to ei (cf. Lemma 2.11, ðiiÞÞ. (Thus, Vð~eeÞ ¼ f~vv1; ~vv2g.) Then it

follows from Lemma 2.11 that if we identify M0e with M0e1:e2 via the

isomorphism of Lemma 2.11, (iii), then the following assertion holds:
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The isomorphisms I~vvi !
@

L½ei�lM0e (cf. Lemma 2.11, (ii)), I~ee !@ Is 0 !@

L½e1�lL½e2�lM0e (cf. Lemma 2.11, (ii), (iii); Definition 2.10, (iii)), and

Is !@ L½e�lM0e (cf. Lemma 2.11, (iii); Definition 2.10, (iii)) fit into the

following commutative diagram

I~vv1 � I~vv2 ���! I~ee ���! Is

o

???y o

???y
???yo

ðL½e1�lM0eÞ � ðL½e2�lM0eÞ ���! L½e1�lL½e2�lM0e ���! L½e�lM0e

ða;m; b; nÞ ���! ða; b;mþ nÞ
ða; b;mÞ ���! ðaþ b;mÞ

—where the upper left-hand horizontal arrow I~vv1 � I~vv2 ! I~ee is the homo-

morphism induced by the natural inclusions I~vv1 , I~vv2 J I~ee (cf. Lemma 2.3,

ðiiÞÞ, and the upper right-hand horizontal arrow I~ee ! Is is the composite

I~ee ,! PIs !! Is.

Lemma 2.12 (The invertibility of a certain homomorphism of free modules).

Let A be a commutative ring with unity, M a free A-module of finite rank, N

a free A-module of rank 1, r : N ! NlM a homomorphism of A-modules,

r1 : N ! N the composite of r and the first projection NlM !! N, and

N1 �N2 ¼def fðNlMÞ �NlM Ng � fðNlMÞ �NlM Ng

! N0 ¼
def ðNlNlMÞ �NlM N ! ðNlMÞ �NlM N

—where the definition of ‘‘N1’’ (respectively, ‘‘N2’’) is to be understood as the

first (respectively, second) module in brackets ‘‘f�g’’; the notation ‘‘ð�Þ �NlM

ð�Þ’’ denotes the fiber product of modules over NlM—the diagram obtained

via r from the diagram

ðNlMÞ � ðNlMÞ !NlNlM ! NlM

ða;m; b; nÞ 7! ða; b;mþ nÞ
ða; b;mÞ 7! ðaþ b;mÞ:

Then the following hold:

( i ) N1 and N2 are free A-modules of rank 1, and N0 is a free A-module of

rank 2.

(ii) If f is a homomorphism of free A-modules of rank 1, then let us

denote by DðfÞJ SpecðAÞ the open subscheme of SpecðAÞ on which

(the homomorphism of OSpecðAÞ-modules determined by) f is an isomor-

phism. Then Dðr1Þ ¼ DðdetðN1 �N2 ! N0ÞÞ (cf. (i)).
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Proof. Assertion (i) is immediate from the definition of N1, N2, and N0.

Thus, to complete the proof of Lemma 2.12, it su‰ces to verify assertion (ii).

To this end, since the various definitions of modules and homomorphisms in

the statement of Lemma 2.12 are compatible with base-change, we may assume

without loss of generality that A is a field. On the other hand, if A is a field,

then r1 is either zero or an isomorphism, so it follows immediately from an easy

computation that Dðr1Þ and DðdetðN1 �N2 ! N0ÞÞ coincide. This completes

the proof of assertion (ii). r

Lemma 2.13 (Injectivity and images of homomorphisms of ẐZS-modules). In

the notation of Definition 2.10, let r : I ¼def ẐZS ! Is be a homomorphism of

profinite groups, and

J~vv1 � J~vv2 ¼
def ðI~vv1 �Is IÞ � ðI~vv2 �Is IÞ ! J~ee ¼def I~ee �Is I ! I

the diagram of homomorphisms of profinite groups obtained via r from the

upper row of the diagram in Remark 2.11.1. Then the following conditions are

equivalent:

( i ) The image of the composite

I !r Is FL½e�lM0e !
pr

L½e�

is open in L½e�.
(ii) The first arrow J~vv1 � J~vv2 ! J~ee of the above sequence is injective, and

its image is open in J~ee.

Proof. It follows immediately from the various definitions involved that

the implication

ðiÞ ) ðiiÞ ðrespectively; ðiiÞ ) ðiÞÞ

follows from the inclusion ‘‘DðrÞJDðdetðN1 �N2 ! N0ÞÞ’’ (respectively,

‘‘DðdetðN1 �N2 ! N0ÞÞJDðrÞ’’) implicit in Lemma 2.12, (ii). Here, we

consider the case of ‘‘Dð�Þ’’ that arise from an open ideal of the topological

ring ẐZS, i.e., an ideal generated by a nonzero element of Z. r

Proposition 2.14 (Nodal nondegeneracy of certain outer representations).

In the notation of Definition 2.10, let r : I ¼def ẐZS ! Is be a homomorphism of

profinite groups, rI : I ! AutðGsÞ the outer representation of pro-S PSC-type

obtained as the composite

I !r Is �!
rs

AutðGsÞ;

and PI ¼
def

PGs
z
out

I . In the following, for ~zz A VCNð ~GGsÞ, we shall write J~zz for

the inertia subgroup ‘‘I~zz’’ of PI (i.e., to avoid confusion with the corresponding

inertia subgroups of PIs). Then the following hold:
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( i ) rI is of SVA-type.

(ii) If ~ee A Nodeð ~GGsÞ, then the following two conditions are equivalent:

(1) The image of the composite

I ��!r Is F 0
e ANodeðGsÞ

L½e� ��!pr~eeðGsÞ
L½~eeðGsÞ�

is open in L½~eeðGsÞ�.
(2) If Vð~eeÞ ¼ f~vv1; ~vv2g, then the homomorphism J~vv1 � J~vv2 ! J~ee induced

by the inclusions J~vv1 , J~vv2 J J~ee is injective, and its image is open

in J~ee.

In particular, if the image of the composite

I !r Is F 0
e ANodeðGsÞ

L½e� !
prf

L½ f �

is open in L½ f � for every f A NodeðGÞ, then rI is of SNN-type.

Proof. The various assertions of Proposition 2.14 follow immediately

from the various definitions involved, together with Lemma 2.13. r

Remark 2.14.1. In the notation of Proposition 2.14, it is not di‰cult to

show—by applying various well-known group-theoretic constructions of certain

natural isomorphisms between the various copies of ẐZð1ÞS involved—that the

condition on the homomorphism r : I ! Is that the composite rs � r be of

IPSC-type is equivalent to the condition on r that there exists an isomorphism

I FHomðNgp; ẐZð1ÞSÞ

with respect to which r is positive definite in the sense that it arises (by applying

the functor ‘‘Homð�; ẐZð1ÞSÞ’’) from a homomorphism of monoids Qs ! N

such that for any f A NodeðGsÞ, the composite

Nf ,! 0
e ANodeðGsÞ

Ne FQs ! N

is nonzero. On the other hand, it follows from Proposition 2.14 that the

(necessarily strict) nodal nondegeneracy of rI is equivalent to the nondegeneracy

of r, i.e., the condition that the image of the composite

I !r Is F 0
e ANodeðGsÞ

L½e� !
prf

L½ f �

be open for every f A NodeðGsÞ. That is to say,

IPSC-type ¼) ðSÞNN-type

m m
positive definite ¼) nondegenerate:
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3. Group-theoretic aspects of the geometry of the underlying semi-graphs

In this section, we consider the geometry of the underlying semi-graph

associated to a semi-graph of anabelioids of PSC-type from a group-theoretic

point of view in the context of outer representations of NN-type (cf. [Mzk6],

Proposition 1.3, for an analogous discussion in the case of outer representations

of IPSC-type).

In this section, let S be a nonempty set of prime numbers, G a semi-graph

of anabelioids of pro-S PSC-type, PG the fundamental group of G, rI : I !
AutðGÞ an outer representation of NN-type, and PI ¼def PG z

out
I .

Lemma 3.1 (Contagious conditions). Let ðCÞ be a condition on an element

of Vertð ~GGÞ which satisfies the following property ð�Þ:

ð�Þ: Let ~vv1; ~vv2 A Vertð ~GGÞ be such that dð~vv1ðGÞ; ~vv2ðGÞÞa 1. Then ~vv1 sat-

isfies the condition (C) if and only if ~vv2 satisfies the condition (C).

Suppose that there exists an element of Vertð ~GGÞ which satisfies the condition (C).

Then every element of Vertð ~GGÞ satisfies the condition (C).

Proof. This follows immediately from the connectedness of the under-

lying semi-graph of a semi-graph of anabelioids of PSC-type. r

Lemma 3.2 (Verticial decompositions inside ab/(edgeBiner)-quotients). Let

P
ab=edge
I be the quotient of the abelianization P ab

I by the closed subgroup

generated by the images in P ab
I of the edge-like subgroups of PG. Suppose that

rI is of SNN-type. Then the following hold:

( i ) For ~vv A Vertð ~GGÞ, write M~vv for the image of the composite I~vv ,! PI !!
P

ab=edge
I . Then the closed subgroup M~vv JP

ab=edge
I is independent of

the choice of the element ~vv A Vertð ~GGÞ. Denote this closed subgroup by

M. In the following, we shall write

P
ab=ðedgeþinerÞ
I ¼def P ab=edge

I =M:

(ii) The composite of the injection of Lemma 1.4 with the natural inclusion

PG ,! PI induces a split injection (cf. the discussion entitled ‘‘Topo-

logical groups’’ in § 0)

0
v AVertðGÞ

P ab=edge
v ,! P

ab=ðedgeþinerÞ
I

(cf. Definition 1.3, (i)) whose image is a free ẐZS-module of finite rank.

Proof. First, we verify assertion (i). If NodeðGÞ ¼q, then assertion

(i) is immediate; thus, assume that NodeðGÞ0q. Next, let us fix an element

~vv0 A Vertð ~GGÞ. For ~vv A Vertð ~GGÞ, we shall say that ~vv satisfies the condition ð� trivÞ
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if the image of I~vv in the quotient P
ab=edge
I =M~vv0 is trivial. To verify assertion

(i), it is immediate that it su‰ces to show that any ~vv A Vertð ~GGÞ satisfies

(� triv). Therefore, to verify assertion (i), it follows from Lemma 3.1 that it

su‰ces to show that the condition (� triv) satisfies the property ð�Þ in the

statement of Lemma 3.1. To this end, let ~vv; ~vv 0 A Vertð ~GGÞ be such that

dð~vvðGÞ; ~vv 0ðGÞÞa 1, and ~vv satisfies ð� trivÞ. Let De JPI be a decomposition

subgroup associated to e A Nð~vvðGÞÞVNð~vv 0ðGÞÞ. Then since the image of I~vv
in P

ab=edge
I =M~vv0 is trivial, and De is generated by an edge-like subgroup and

a conjugate of I~vv (cf. Remark 2.7.1), it follows that the image of De in

P
ab=edge
I =M~vv0 is trivial. Therefore, since there exists a conjugate of I~vv 0 con-

tained in De, we conclude that the image of I~vv 0 in P
ab=edge
I =M~vv0 is trivial; in

particular, ~vv 0 satisfies ð� trivÞ. This completes the proof of assertion (i).

Finally, we observe that assertion (ii) follows from a similar argument

involving coverings—this time of G½rI � (cf. Definition 2.8) as opposed to G—to

the argument applied in the proof of Lemma 1.4. r

Remark 3.2.1. Suppose that rI is of SNN-type. Let ~vv1; ~vv2 A Vertð ~GGÞ.
Then it follows immediately from Remark 1.4.1, (ii); Lemma 3.2 that the

following assertion holds:

If ~vv1ðGÞ0 ~vv2ðGÞ, then the image of the intersection

ðI~vv1 �D~vv2ÞVP ~vv1 JPG

in P
ab=edge
G is trivial.

Indeed, it follows from Lemma 3.2, (i); Remark 2.7.1, together with the various

definitions involved, that the image of I~vv1 (respectively, D~vv2 ) in P
ab=ðedgeþinerÞ
I is

trivial (respectively, coincides with the image of P ~vv2 JPG). But, by Lemmas

1.4; 3.2, (ii), this implies that the image of ðI~vv1 �D~vv2ÞVP ~vv1 in P
ab=edge
G is contained

in the intersection of the images ofP~vv2 andP~vv1 inP
ab=edge
G . Therefore, the above

assertion follows from Remark 1.4.1, (ii).

Remark 3.2.2. In fact, it is not di‰cult to verify that both the statement

and the proof of Lemma 3.2 remain valid even under the weaker assumption

that rI is of SVA-type.

Lemma 3.3 (Submodules of free Zl -modules). Let l be a prime number, r

a positive integer; also, for 1a ja r, let cj A Zlnf0g. For 1a ia l, 1a ja r,

set Mi; j ¼
def

Zl , M0 ¼
def

Zl ; write ii; j A Mi; j , i0 A M0 for the generators correspond-

ing to the element ‘‘1’’. Next, let us write Mdiag J0
i; j
Mi; j for the submodule

obtained as the image of the diagonal homomorphism Zl ,!0
i; j
Mi; j ,

N ¼def 0
i; j

Mi; j

 !,
Mdiag

( )
lM0
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and regard M0 as a submodule of N via the inclusion M0 F 0lM0 ,! N.

Then if we denote by H the submodule of N generated by the elements of N

determined by the ðlrþ 1Þ-tuples of the form

ð0; . . . ; 0; cj � ii; j; 0; . . . ; 0; i0Þ

—where ði; jÞ ranges over pairs of natural numbers such that 1a ia l,

1a ja r—then H VM0 J l �M0.

Proof. Suppose that the element h A H determined byX
i; j

di; jð0; . . . ; 0; cj � ii; j ; 0; . . . ; 0; i0Þ

¼ . . . ; di; jcj � ii; j; . . . ;
X
i; j

di; j � i0

 !
A 0

i; j

Mi; j

 !
lM0

—where di; j A Zl—is contained in M0. Now let us observe that the homo-

morphism f

N ¼ 0
i; j

Mi; j

 !,
Mdiag

( )
lM0 ! 0

ði; jÞ0ð1;1Þ
Mi; j

 !
lM0

ð½ðli; jÞi; j�; l0Þ 7! ððli; j � l1;1Þði; jÞ0ð1;1Þ; l0Þ

—where we write ‘‘½?�’’ for the image of ‘‘?’’ in the module ‘‘f�g’’, and

‘‘lð�Þ’’ is an element of ‘‘Mð�Þ’’—is an isomorphism. Thus, by applying f to

h A H VM0, we conclude that di; jcj � d1;1c1 ¼ 0, for 1a ia l, 1a ja r; in

particular, it follows that di; jcj is independent of the pair ði; jÞ, hence that

ðdi; j � di 0; jÞcj ¼ 0. But, since cj 0 0, this implies that di; j is independent of i,

hence—since i ranges over the integers from 1 to l—that
P

i; j di; j A l � Zl , as

desired. r

Lemma 3.4 (Existence of certain coverings). Suppose that the following two

conditions are satisfied:

(a) rI is of SNN-type.

(b) G is sturdy and untangled (cf. Definition 1.2).

If, by abuse of notation, we write G for the underlying semi-graph of G½rI � (cf.
Definition 2.8), then, for a vertex v (respectively, an edge e) of G, let us write Dv

(respectively, De) for the connected anabelioid corresponding to v (respectively,

e), and PDv
(respectively, PDe

) for the fundamental group of the connected

anabelioid Dv (respectively, De) [so it follows from the definition of G½rI � that
PDv

, PDe
are naturally isomorphic, up to inner automorphism, to Dv, De,
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respectively]. Fix a vertex v0 A VertðGÞ. Then there exists a connected cover-

ing of semi-graphs of anabelioids (cf. [Mzk3], Definition 2.2, (i))

H! G½rI �

of G½rI � such that if we denote the underlying semi-graph of H by H and use

analogous notation for H to the notation introduced above for G½rI �, then the

following conditions are satisfied:

(1) The set of vertices of H which lie over v0 consists of precisely one

element w0, and the image of the outer injection PDw0
,! PDv0

FDv0

induced by the morphism Dw0
! Dv0 does not contain the normal

subgroup Iv0 JDv0 , i.e., ‘‘Iv0 UPDw0
’’.

(2) For any v1 A VertðGÞ such that dðv0; v1Þ ¼ 1, the set of vertices of H

which lie over v1 consists of precisely one element w1, and the image

of the outer injection PDw1
,! PDv1

FDv1 induced by the morphism

Dw1
! Dv1 contains the normal subgroup Iv1 JDv1 , i.e., ‘‘Iv1 JPDw1

’’.

(3) For any v A VertðGÞ such that dðv0; vÞb 2, and any vertex w of H

which lies over v, the morphism Dw ! Dv is an isomorphism.

(4) For any e A NodeðGÞ such that v0 B VðeÞ, and any closed edge f of H

which lies over e, the morphism Df ! De is an isomorphism.

(5) For any e A CuspðGÞ, and any open edge f of H which lies over e,

the image of the outer injection PDf
,! PDe

FDe induced by the

morphism Df ! De contains the normal subgroup Pe JDe, i.e.,

‘‘Pe JPDf
’’.

Proof. To verify Lemma 3.4, by replacing G by the compactification

of G (cf. Definition 1.11), we may assume without loss of generality that

CuspðGÞ ¼q, and hence that condition (5) is satisfied automatically. More-

over, by projecting to the maximal pro-l quotients, for some l A S, of the

various pro-S groups involved, to verify Lemma 3.4, we may assume without

loss of generality that S ¼ flg.
Write

Va1 JVertðGÞ

for the set of vertices v of G such that dðv0; vÞa 1,

V¼1 JVa1

for the set of vertices v of G such that dðv0; vÞ ¼ 1 (i.e., V¼1 ¼Va1nfv0g),

N0 JNodeðGÞ

for the set of nodes of G which abut to v0 (i.e., N0 ¼def Nðv0Þ), and

N1 JNodeðGÞ
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for the set of nodes e of G such that VðeÞVV¼1 0q and v0 B VðeÞ. Then

we claim that there exists a connected finite étale covering of semi-graphs of

anabelioids F! G½rI � of G½rI � such that if we denote the underlying semi-

graph of F by F and use analogous notation for F to the notation introduced

in the statement of Lemma 3.4, then the following conditions are satisfied:

( i ) The connected finite étale covering of semi-graphs of anabelioids

F! G½rI � of G½rI � is Galois, and its Galois group is isomorphic to

Z=lZ.

( ii ) For any v A Va1, the set of vertices of F which lie over v consists

of precisely one element u, and the image of the outer injection

PDu
,! PDv

FDv induced by the morphism Du ! Dv contains the

normal subgroup Iv JDv, i.e., ‘‘Iv JPDu
’’.

(iii) For any v A VertðGÞ such that dðv0; vÞb 2, and any vertex u of F

which lies over v, the morphism Du ! Dv is an isomorphism.

(iv) For any e A NodeðGÞ, and any edge h of F which lies over e, the

morphism Dh ! De is an isomorphism.

Indeed, since G is sturdy (cf. condition (b)), it follows that P ab=edge
v 0 f1g (cf.

Definition 1.3, (iii)) for any v A VertðGÞ. Thus, the above claim follows

immediately from the existence of the natural split injection

0
v AVertðGÞ

P ab=edge
v ,! P

ab=ðedgeþinerÞ
I

of Lemma 3.2, (ii).

In light of the above claim, to complete the proof of Lemma 3.4, we may

replace G½rI � by F and assume in the following that

(�1) there exists an action of a group F isomorphic to Z=lZ on G½rI �
such that the induced action of F on VertðGÞ fixes every element of Va1,

and the induced action of F on N0 is free.

Now let Pv0 JPG be a verticial subgroup associated to v0; write Dv0 JPI

(respectively, Iv0 JPI ) for the decomposition (respectively, inertia) subgroup

associated to Pv0 . Next, for e A N0, write ve for the unique element of

VðeÞnfv0gJV¼1 (cf. assumption (b)); let Pe JPG be an edge-like subgroup

associated to e such that Pe JPv0 ; write Ie for the inertia subgroup associated

to Pe. Next, let Ive JPI be an inertia subgroup associated to ve such that

Ive J Ie. (Here, we note that it is easily verified that such an Ive exists.) Thus,

Ie ¼ Pe � Iv0 JPv0 � Iv0 ¼ Dv0 (cf. Remark 2.7.1); in particular, Ive JDv0 .

Next, write H for the Zl-submodule of the free Zl-module

Dab
v0
ðFP ab

v0
� Iv0Þ generated by the images of the composite homomorphisms

Ive ,! Dv0 !! Dab
v0
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—where e ranges over elements of N0. Then we claim that

ð�2Þ H V ImðIv0ÞJ l � ImðIv0Þ

—where we write ImðIv0Þ for the image of the composite Iv0 ,! Dv0 !! Dab
v0
.

Indeed, by the well-known structure of the maximal pro-l quotient of the

fundamental group of a smooth curve over an algebraically closed field of

characteristic0 l, there exists a topological generator ie A Pe of Pe such that

the inclusions Iv0 ,! Dab
v0

and Pe ,! Dab
v0

determine a split injection

0
e AN0

Pe

 !,
Zl � ðieÞe AN0

( )
l Iv0 ,! Dab

v0

into Dab
v0
. Now let us fix a topological generator iv0 A Iv0 and denote by ive A Ive

the topological generator of Ive obtained as the image of iv0 A Iv0 via the

composite isomorphism Iv0 !
@

I  @ Ive (cf. Definition 2.4, (2 0)). Then it follows

from condition (3) of Definition 2.4 that the natural inclusions Iv0 , Ive ,! Ie
determine an open subgroup Iv0 � Ive J Ie (cf. condition (a)); in particular, there

exists an element cve A Zlnf0g such that ive ¼ cve ie þ iv0 . Moreover, since we

have an action of F on G½rI � as in (�1), we obtain, for any e A N0 and s A F,

that cve ¼ cves . Therefore, ð�2Þ follows immediately from Lemma 3.3.

In light of ð�2Þ, there exists an open subgroup H 0JDab
v0

such that HJH 0

and ImðIv0ÞUH 0. Thus, since H is stabilized by the action of F on Dab
v0
,

it follows (for instance, by replacing H 0 by the intersection of the translates of

H 0 by the action of F) that we may assume that H 0 is stabilized by the action

of F on Dab
v0
. Write Dw0

JDv0 for the inverse image of H 0JDab
v0

via the

natural surjection Dv0 !! Dab
v0
. Then it follows immediately from the definition

of Dw0
that the following hold:

( v ) Dw0
is open and normal in Dv0 , and, moreover, Dw0

is stabilized by

the induced outer action of F on Dv0 .

( vi ) For any e A N0, we have Ive JDw0
; in particular, by (v), for any

e A N0, every Dv0 -conjugate of Ive is contained in Dw0
.

(vii) Iv0 UDw0
.

Write Dw0
! Dv0 for the connected finite étale covering of anabelioids corre-

sponding to the open subgroup Dw0
JDv0 of Dv0 ;

Gsub

for the connected sub-semi-graph of G whose set of vertices is Va1 JVertðGÞ,
and whose set of edges is N0 UN1; and

G½rI �
sub
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for the semi-graph of anabelioids determined by restricting G½rI � to Gsub (cf.

the discussion preceding [Mzk3], Definition 2.2). Then since we have an action

of F on G½rI � as in ð�1Þ, it follows from (v) that for any e A N0 and s A F, the

ramification indices of this covering Dw0
! Dv0 at the cusps of Dv0 determined

by e and es coincide. Thus, it follows from (vi) (together with the elementary

fact that there exist l � 1 elements ai A Z—where 1a ia l � 1—such that the

ai’s and
P l�1

i¼1 ai are prime to l) that one may extend this covering Dw0
! Dv0 to

a connected finite étale covering Hsub ! G½rI �
sub which satisfies the following

conditions:

(viii) The set of vertices of Hsub (i.e., the underlying semi-graph of Hsub)

which lie over an element of Va1 consists of precisely one element.

( ix ) For any e A N0, if we denote by we the—necessarily unique (cf.

(viii))—vertex of Hsub which lies over ve A V¼1, by Dwe
the anabe-

lioid corresponding to we, and by PDwe
the fundamental group

of Dwe
, then the image of the outer injection PDwe

,! PDve
FDve

contains the normal subgroup Ive JDve .

( x ) Hsub ! G½rI �
sub restricts to the trivial covering over every edge

corresponding to an element of N1.

Moreover, it follows immediately from (x) that one may extend the covering

Hsub ! G½rI �
sub obtained above to a connected finite étale covering H! G½rI �

of G½rI � such that

(xi) H! G½rI � restricts to the trivial covering over the vertices v of G

such that dðv0; vÞb 2.

Now by (vii) and (viii) (respectively, (viii) and (ix); (xi); (x) and (xi)), this

covering H! G½rI � satisfies condition (1) (respectively, (2); (3); (4)). This

completes the proof of Lemma 3.4. r

Remark 3.4.1. In light of the isomorphism of Lemma 2.9, the content of

Lemma 3.4 admits the following interpretation:

Suppose that rI is of SNN-type, and that G is sturdy and untangled. Let

~vv0 A Vertð ~GGÞ. Then there exists an open subgroup PJPI of PI which

satisfies the following conditions:

( i ) If ~vv A Vertð ~GGÞ satisfies dð~vv0ðGÞ; ~vvðGÞÞ ¼ 0 (i.e., v0ðGÞ ¼ vðGÞ), then

I~vv UP.

( ii ) If ~vv A Vertð ~GGÞ satisfies dð~vv0ðGÞ; ~vvðGÞÞ ¼ 1, then I~vv JP.

(iii) If ~vv A Vertð ~GGÞ satisfies dð~vv0ðGÞ; ~vvðGÞÞb 2, then D~vv JP.

(iv) If ~ee A Edgeð ~GGÞ satisfies ~eeðGÞ B Eð~vv0ðGÞÞ, then D~ee JP.

( v ) If ~ee A Cuspð ~GGÞ, then P ~ee JP.

Remark 3.4.2. Let PJPI be the open subgroup of Remark 3.4.1.

Then the following assertion holds:
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For ~ee A Nodeð ~GGÞ, consider the following conditions:

( i ) ~ee A Nð~vv0Þ.
( i 0 ) ~eeðGÞ A Nð~vv0ðGÞÞ.
( ii ) P~ee UP.

(ii 0) bg A PG such that g �P~ee � g�1 UP.

Then

ðiÞ ) ðiiÞ ) ðii 0Þ , ði 0Þ:

Indeed, if condition (i) is satisfied, but condition (ii) is not satisfied, then it

follows from condition (ii) in Remark 3.4.1 that I~ee ¼ I~vv �P ~ee JP (cf. Remark

2.7.1), where we write ~vv for the unique element of Vð~eeÞnf~vv0g; thus, since

I~vv0 J I~ee, we obtain that I~vv0 JP—in contradiction to condition (i) in Remark

3.4.1. This completes the proof of the implication

ðiÞ ) ðiiÞ:

The implication

ðiiÞ ) ðii0Þ

is immediate. Next, if condition (i 0) is not satisfied, then by applying condition

(iv) in Remark 3.4.1 to the PG-conjugates of ~ee, we conclude (since P ~ee JD~ee)

that condition (ii 0) is not satisfied. This completes the proof of the implication

ðii 0Þ ) ði 0Þ:

Finally, by applying the implication ‘‘ðiÞ ) ðiiÞ’’ to a suitable PG-conjugate

of ~ee, we obtain the implication

ði 0Þ ) ðii 0Þ:

Proposition 3.5 (Graph-theoretic geometry via inertia subgroups). Let

~vv A Vertð ~GGÞ, ~ee A Edgeð ~GGÞ. Then the following conditions are equivalent:

( i ) ~vv A Vð~eeÞ.
(ii) I~vv VD~ee 0 f1g.

In particular, if I~vv VD~ee 0 f1g, then I~vv JD~ee.

Proof. The implication

ðiÞ ) ðiiÞ

is immediate from the various definitions involved; thus, to complete the proof

of Proposition 3.5, it su‰ces to verify the implication

ðiiÞ ) ðiÞ:
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To this end, let us assume that condition (ii) is satisfied. Then since I~vv is

torsion-free (cf. Lemma 2.5, (i)), to verify condition (i), by replacing PI by an

open subgroup of PI , we may assume without loss of generality that rI is

of SNN-type, and that G is sturdy (cf. [Mzk4], Remark 1.1.5) and untangled

(cf. Remark 1.2.1, (i)); moreover, by projecting to the maximal pro-l quotients,

for some l A S, of suitable open subgroups of the various pro-S groups

involved, to verify condition (i), we may assume without loss of generality

that S ¼ flg. On the other hand, since I~vv is isomorphic to Zl as an abstract

profinite group (cf. Lemma 2.5, (i)), by replacing I by an open subgroup of I ,

to verify condition (i), we may assume without loss of generality that I~vv JD~ee.

Assume that ~vv B Vð~eeÞ, i.e., that condition (i) is not satisfied. Then by

applying Remark 3.4.1, where we take ‘‘~vv0’’ to be ~vv, there exists an open

subgroup PJPI such that I~vv UP (cf. condition (i) in Remark 3.4.1), and,

moreover, D~ee JP (cf. condition (iv) in Remark 3.4.1); in particular, I~vv UD~ee—

in contradiction to our assumption that I~vv JD~ee. This completes the proof of

the implication in question. r

Remark 3.5.1. Let ~vv1; ~vv2 A Vertð ~GGÞ. Then it follows immediately from

Proposition 3.5 that the following assertion holds:

If I~vv1 V I~vv2 0 f1g; then Nð~vv1Þ ¼Nð~vv2Þ:

Indeed, suppose that I~vv1 V I~vv2 0 f1g. Now if ~ee A Nð~vv1Þ, then it follows from

Proposition 3.5 that I~vv1 JD~ee; thus, since I~vv1 V I~vv2 0 f1g, it follows that

I~vv2 VD~ee 0 f1g. In particular, again by Proposition 3.5, we obtain that

~ee A Nð~vv2Þ. This completes the proof of the above assertion.

In particular, it follows from Remark 1.8.1, (ii), that the following

assertion holds:

~vv1 ¼ ~vv2 if and only if I~vv1 V I~vv2 0 f1g:

Lemma 3.6 (Centralizers, normalizers, and commensurators of verticial

inertia subgroups). Let JJ I~vv be a nontrivial closed subgroup of I~vv, where

~vv A Vertð ~GGÞ. Then the following hold:

( i ) P~vv ¼ ZPI
ðJÞVPG ¼ NP I

ðJÞVPG ¼ CPI
ðJÞVPG.

(ii) If rI is of SNN-type, then D~vv ¼ ZPI
ðJÞ ¼ NPI

ðJÞ ¼ CPI
ðJÞ.

Proof. First, we prove assertion (i). If NodeðGÞ ¼q, then assertion

(i) is immediate from the various definitions involved; thus, assume that

NodeðGÞ0q. Since it is immediate that P~vv JZPI
ðJÞVPG, to prove asser-

tion (i), it su‰ces to verify that CPI
ðJÞVPG JP~vv. To this end, let us assume

that ðCPI
ðJÞVPGÞnP~vv 0q (where ‘‘n’’ denotes the set-theoretic complement).

Let g A ðCPI
ðJÞVPGÞnP~vv; write ~vvg for the element of Vertð ~GGÞ that corresponds
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to the verticial subgroup g �P ~vv � g�1 JPG. Then since g B P~vv, it follows from

the commensurable terminality of P~vv in PG (cf. [Mzk4], Proposition 1.2, (ii))

that P ~vv 0 g �P~vv � g�1; in particular, it follows that ~vv0 ~vvg. On the other

hand, since g A CPI
ðJÞ, it follows that J V ðg � J � g�1Þ0 f1g; thus, it follows

from Remark 3.5.1 that ~vv ¼ ~vvg—a contradiction. This completes the proof of

assertion (i).

Next, we prove assertion (ii). Since rI is of SNN-type, it follows from

Remark 2.7.1 (cf. also Lemma 2.5, (i)) that D~vv JZPI
ðI~vvÞJZPI

ðJÞ, and that

the composite D~vv JPI !! I is surjective. Thus, assertion (ii) follows from

assertion (i), together with Remark 2.7.1. r

Lemma 3.7 (Centralizers, normalizers, and commensurators of edge-like

inertia subgroups). Let ~ee A Edgeð ~GGÞ. Then the following hold:

( i ) P ~ee ¼ ZPI
ðI~eeÞVPG ¼ NP I

ðI~eeÞVPG ¼ CP I
ðI~eeÞVPG.

(ii) If rI is of SNN-type, then D~ee ¼ ZPI
ðI~eeÞ ¼ NPI

ðI~eeÞ ¼ CP I
ðI~eeÞ.

Proof. Assertion (i) in the case where ~ee A Cuspð ~GGÞ follows from the

commensurable terminality of P~ee in PG (cf. [Mzk4], Proposition 1.2, (ii)),

together with the definition of an inertia subgroup of a cusp. Assertion (i) in

the case where ~ee A Nodeð ~GGÞ follows from a similar argument to the argument

used in the proof of Lemma 3.6, (i), together with Remark 2.7.2. Assertion (ii)

follows from a similar argument to the argument used in the proof of Lemma

3.6, (ii). r

Proposition 3.8 (Graph-theoretic geometry via edge-like decomposition

subgroups). For i ¼ 1; 2, let ~eei A Edgeð ~GGÞ. Then the following hold:

( i ) Consider the following three (mutually exclusive) conditions:

(1) ~ee1 ¼ ~ee2.

(2) ~ee1 0 ~ee2; Vð~ee1ÞVVð~ee2Þ0q.

(3) Vð~ee1ÞVVð~ee2Þ ¼q (which implies that ~ee1 0 ~ee2).

Then we have equivalences

ð1Þ , ð1 0Þ; ð2Þ , ð2 0Þ; ð3Þ , ð3 0Þ

with the following three (mutually exclusive [cf. Lemma 1.5]) con-

ditions:

(1 0) D~ee1 ¼ D~ee2 (so P~ee1 ¼ D~ee1 VPG ¼ D~ee2 VPG ¼ P~ee2—cf. Lemma

2.7, (ii), (iii)).

(2 0) P ~ee1 VP ~ee2 ð¼ D~ee1 VD~ee2 VPGÞ ¼ f1g; D~ee1 VD~ee2 0 f1g.
(3 0) D~ee1 VD~ee2 ¼ f1g.

(ii) Suppose that rI is of SNN-type. Then if condition (2 0) is satisfied,

then Vð~ee1ÞVVð~ee2Þ0q, and, moreover, D~ee1 VD~ee2 ¼ I~vv—where we

write ~vv for the unique element of Vð~ee1ÞVVð~ee2Þ (cf. Lemmas 1.5, 1.8).
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Proof. First, we verify assertion (i). The equivalence

ð1Þ , ð1 0Þ

follows from [Mzk4], Proposition 1.2, (i). The implication

ð2Þ ) ð2 0Þ

follows from Lemma 1.5, together with the fact that I~vv JD~ee1 VD~ee2 , where

~vv A Vð~ee1ÞVVð~ee2Þ (cf. Proposition 3.5). Thus, since it is immediate that the

equivalence

ð3Þ , ð3 0Þ

follows from the equivalences

ð1Þ , ð1 0Þ; ð2Þ , ð2 0Þ;

together with Lemma 1.5, to complete the proof of assertion (i), it su‰ces to

verify the implication

ð2 0Þ ) ð2ÞðyÞ

under the assumption that ~ee1 0 ~ee2 (cf. Lemma 1.5).

If NodeðGÞ ¼q, then ðyÞ is immediate; thus, assume that NodeðGÞ0q.

Now if condition (2 0) is satisfied, then since D~ee1 VD~ee2 VPG ¼ f1g—which

implies, in particular, that the composite D~ee1 VD~ee2 ,! PI !! I is injective—

and I is torsion-free, it follows that the intersection D~ee1 VD~ee2 is torsion-free.

Thus, to prove ðyÞ, by replacing PI by an open subgroup of PI , we may

assume without loss of generality that G is sturdy (cf. [Mzk4], Remark 1.1.5)

and untangled (cf. Remark 1.2.1, (i)), and that rI is of SNN-type; moreover, by

projecting to the maximal pro-l quotients, for some l A S, of suitable open

subgroups of the various pro-S groups involved, to prove ðyÞ, we may assume

without loss of generality that S ¼ flg. Write J ¼def D~ee1 VD~ee2 .

Now we verify ðyÞ in the case where f~ee1; ~ee2gJCuspð ~GGÞ. To this end, let

us assume that condition (2 0) is satisfied. Then it follows from Lemma 2.7,

(ii), that the image of the composite D~eei ,! PI ¼ PG z
out

I !! PG z
out

I—where

we write G for the compactification of G (cf. Definition 1.11)—coincides with

the inertia subgroup I~vvi of PG z
out

I associated to the element ~vvi of VertððGÞ@Þ
determined by the unique element of Vð~eeiÞJVertð ~GGÞ. Thus, since J0 f1g
and J VPG ¼ f1g (cf. condition (2 0)), it follows that I~vv1 V I~vv2 0 f1g; in par-

ticular, it follows from Remark 3.5.1 that ~vv1 ¼ ~vv2, hence—by applying this

conclusion to the various open subgroups of PI—that Vð~ee1Þ ¼Vð~ee2Þ. This

completes the proof of ðyÞ in the case where f~ee1; ~ee2gJCuspð ~GGÞ.

319Nodally nondegenerate outer representations



Next, we verify ðyÞ in the case where f~ee1; ~ee2gUCuspð ~GGÞ. Thus, we

may assume without loss of generality that ~ee1 A Nodeð ~GGÞ. Write Vð~ee1Þ ¼
f~vv; ~vv 0g.

Now we claim that if condition (2 0) is satisfied (i.e., ~ee1 0 ~ee2 and J0 f1g),
and J V I~vv ¼ f1g, then condition (2) is satisfied. Indeed, suppose that condition

(2 0) is satisfied and J V I~vv ¼ f1g, but that condition (2) is not satisfied. Then

since J V I~vv ¼ f1g and ~ee1 A Nodeð ~GGÞ, it follows that ðJ � I~vvÞVPG ¼ ðJ � I~vvÞV
PG (FZl) is an open subgroup of D~ee1 VPG ¼ P~ee1 (FZl) (cf. Remark 2.7.1;

Lemma 3.7); thus, by replacing PI by an open subgroup of PI , we may

assume without loss of generality that ðJ � I~vvÞVPG ¼ P~ee1 . In particular, we

obtain that P~ee1 J J � I~vv JD~ee2 � I~vv. On the other hand, since ~vv 0 B Vð~ee2Þ (by the

assumption that condition (2) is not satisfied), by applying Remark 3.4.1, where

we take ‘‘~vv0’’ to be ~vv 0, we obtain an open subgroup PJPI such that P ~ee1 UP

(cf. the implication ‘‘ðiÞ ) ðiiÞ’’ in Remark 3.4.2), and, moreover, I~vv, D~ee2 JP

(cf. conditions (ii), (iv) in Remark 3.4.1)—in contradiction to the inclusion

P~ee1 JD~ee2 � I~vv. This completes the proof of the above claim.

Next, we claim that if condition (2 0) is satisfied (i.e., ~ee1 0 ~ee2 and J0 f1g),
and J V I~vv 0 f1g, then condition (2) is satisfied. Indeed, suppose that condition

(2 0) is satisfied, and J V I~vv 0 f1g. Then since S ¼ flg, by replacing I by an

open subgroup of I , we may assume that I~vv ¼ J; thus, I~vv ¼ JJD~ee2 . There-

fore, it follows from Proposition 3.5 that ~vv A Vð~ee2Þ; in particular, since

~vv A Vð~ee1ÞVVð~ee2Þ, condition (2) is satisfied. This completes the proof of

the above claim, hence also of the proof of ðyÞ.
Next, we verify assertion (ii). Since condition (2 0) in assertion (i) is

satisfied, we have I~vv JD~ee1 VD~ee2 (cf. Proposition 3.5). Moreover, since D~ee1 V
D~ee2 VPG ¼ f1g, the composite D~ee1 VD~ee2 ,! PI !! I is injective. On the other

hand, since rI is of SNN-type, the composite I~vv ,! PI !! I is bijective.

Therefore, we obtain that I~vv ¼ D~ee1 VD~ee2 , as desired. r

Proposition 3.9 (Graph-theoretic geometry via verticial decomposition sub-

groups). For i ¼ 1; 2, let ~vvi A Vertð ~GGÞ. Then the following hold:

( i ) Consider the following four (mutually exclusive) conditions:

(1) dð~vv1; ~vv2Þ ¼ 0.

(2) dð~vv1; ~vv2Þ ¼ 1.

(3) dð~vv1; ~vv2Þ ¼ 2.

(4) dð~vv1; ~vv2Þb 3.

Then we have equivalences

ð1Þ , ð1 0Þ; ð2Þ , ð2 0Þ; ð3Þ , ð3 0Þ; ð4Þ , ð4 0Þ

with the following four (mutually exclusive [cf. Lemma 1.9, (ii)])

conditions:
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(1 0) P~vv1 ¼ P ~vv2 (so D~vv1 ¼ D~vv2 , I~vv1 ¼ I~vv2).

(2 0) P~vv1 0P~vv2 ; P ~vv1 VP~vv2 ð¼ D~vv1 VD~vv2 VPGÞ0 f1g.
(3 0) P~vv1 VP~vv2 ð¼ D~vv1 VD~vv2 VPGÞ ¼ f1g; D~vv1 VD~vv2 0 f1g.
(4 0) D~vv1 VD~vv2 ¼ f1g.

( ii ) Suppose that rI is of SNN-type. Then if condition (2 0) is satisfied,

then Nð~vv1ÞVNð~vv2Þ0q, and, moreover, D~vv1 VD~vv2 ¼ D~ee—where we

write ~ee for the unique element of Nð~vv1ÞVNð~vv2Þ (cf. Lemmas 1.8; 1.9,

(ii)).

(iii) Suppose that rI is of SNN-type. Then if condition (3 0) is satisfied,

then there exists aðnÞ—necessarily unique (cf. Lemmas 1.8; 1.9, (ii))—

element of ~vv3 A Vertð ~GGÞ such that dð~vv1; ~vv3Þ ¼ dð~vv2; ~vv3Þ ¼ 1, and, more-

over, D~vv1 VD~vv2 ¼ I~vv3 .

Proof. First, we verify assertion (ii). To this end, suppose that rI is of

SNN-type, and that condition (2 0) is satisfied. Then it follows from Lemma

1.9, (ii), that there exists an element ~ee A Nodeð ~GGÞ such that Vð~eeÞ ¼ f~vv1; ~vv2g (i.e.,
~ee A Nð~vv1ÞVNð~vv2Þ). Thus, it follows from Remark 2.7.1 that D~ee JD~vv1 VD~vv2 .

Therefore, since P ~ee ¼ D~ee VPG ¼ D~vv1 VD~vv2 VPG (cf. Lemmas 1.9, (ii); 2.7, (i),

(iii)), and the composite D~ee ,! PI !! I is surjective (since rI is of SNN-type),

it follows immediately that D~ee ¼ D~vv1 VD~vv2 . This completes the proof of

assertion (ii).

Next, we verify assertion (iii). To this end, suppose that rI is of SNN-

type, and that condition (3 0) is satisfied, i.e., that J ¼def D~vv1 VD~vv2 0 f1g, and

J VPG ¼ f1g. Note that it follows from Lemma 1.9, (ii), that ~vv1 0 ~vv2; in

particular, NodeðGÞ0q.

Now we claim that

ð�1Þ J V I~vv1 ¼ J V I~vv2 ¼ f1g.

Indeed, if J V I~vv1 0 f1g, then (since I~vv1 is isomorphic to ẐZS—cf. Lemma 2.5, (i))

by projecting to the maximal pro-l quotients, for some l A S, of suitable open

subgroups of the various pro-S groups involved, we may assume without

loss of generality that J ¼ I~vv1 . But this implies that I~vv1 ¼ JJD~vv2 ¼ ZPI
ðI~vv2Þ

(cf. Lemma 3.6, (ii)), hence that I~vv2 JZPI
ðI~vv1Þ ¼ D~vv1 (cf. Lemma 3.6, (ii)).

Therefore, we obtain that I~vv2 JD~vv1 VD~vv2 ¼ J ¼ I~vv1 ; in particular, it follows

from Remark 3.5.1 that ~vv1 ¼ ~vv2—a contradiction. This completes the proof

of ð�1Þ.
Next, for i ¼ 1; 2, let us write Ji ¼

def ðI~vvi � JÞVPG ð¼ ðI~vvi � JÞVPG—cf.

ð�1Þ). Then for any pair of integers i, j such that fi; jg ¼ f1; 2g, since JJD~vvj ,

it follows that Ji ¼ ðI~vvi � JÞVPG J ðI~vvi �D~vvj ÞVPG; since, moreover, JJD~vvi , it

follows that Ji ¼ ðI~vvi � JÞVPG J ðI~vvi �D~vviÞVPG ¼ P~vvi (cf. Lemma 2.7, (i)). In

particular, it follows that for any pair of integers i, j such that fi; jg ¼ f1; 2g,
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we have Ji J ðI~vvi �D~vvj ÞVP ~vvi . On the other hand, it follows immediately from

ð�1Þ that Ji 0 f1g.
Next, we claim that

ð�2Þ for i ¼ 1; 2, there exists an element ~eei A Eð~vviÞ such that Ji JP~eei .

Indeed, let us first observe that, for any pair of integers i, j such that

fi; jg ¼ f1; 2g, since Ji J ðI~vvi �D~vvj ÞVP~vvi , it follows immediately from Remark

3.2.1 that if ~vv1ðGÞ0 ~vv2ðGÞ, then the image of Ji in P
ab=edge
G is trivial. More-

over, by applying this observation to arbitrary open subgroups HJPI

corresponding to connected finite étale coverings of G½rI � that determine outer

representations of SNN-type, we conclude that, if we write G 0 ! G for the

connected finite étale covering of G determined by H, then the image of

ððI~vvi VHÞ � ðJ VHÞÞVPG 0

in P
ab=edge

G 0
is trivial; but since, for a suitable positive integer n (that depends

on H!), we have

ðJi VPG 0 Þn J ðI n~vvi � J
nÞVPG 0 J ððI~vvi VHÞ � ðJ VHÞÞVPG 0 ;

it follows from the fact that P
ab=edge

G 0
is torsion-free (cf. [Mzk4], Remark 1.1.4)

that the image of Ji VPG 0 in P
ab=edge

G 0
is trivial. Thus, we may apply Lemma

1.6, together with Lemma 1.7, to conclude the existence of an ~eei A Eð~vviÞ, as

desired. This completes the proof of ð�2Þ. Note that since Eð~vv1ÞVEð~vv2Þ ¼q
(cf. Lemma 1.9, (ii)), it follows that ~ee1 0 ~ee2.

Now it follows immediately from the definition of Ji that JJ Ji � I~vvi .
Thus, by ð�2Þ, we obtain that JJ J � I~vvi J Ji � I~vvi JP~eei � I~vvi ¼ D~eei (cf. Remark

2.7.1); in particular, JJD~ee1 VD~ee2 . Now since J0 f1g, and ~ee1 0 ~ee2, it follows

from Proposition 3.8, (i), (ii), that there exists an element ~vv3 A Vertð ~GGÞ such that

~vv3 A Vð~ee1ÞVVð~ee2Þ, and, moreover, ðJJÞ D~ee1 VD~ee2 ¼ I~vv3 . Moreover, since

Eð~vv1ÞVEð~vv2Þ ¼q, it follows that ~ee1; ~ee2 A Nodeð ~GGÞ, and that ~vv3 0 ~vv1; ~vv2; in

particular, it follows that dð~vv3; ~vv1Þ ¼ dð~vv3; ~vv2Þ ¼ 1. Thus, since I~vv3 J I~eei JD~eei J
D~vvi (cf. Remark 2.7.1) for i ¼ 1; 2, it follows that I~vv3 JD~vv1 VD~vv2 ¼ J. This

completes the proof of assertion (iii).

Finally, we verify assertion (i). First, let us observe that the equivalences

ð1Þ , ð1 0Þ; ð2Þ , ð2 0Þ

follow from Lemma 1.9, (ii). Now since the equivalence

ð4Þ , ð4 0Þ

follows from the equivalences

ð1Þ , ð1 0Þ; ð2Þ , ð2 0Þ; ð3Þ , ð3 0Þ
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—together with the mutual exclusivity observed in the statement of Proposition

3.9, (i)—to complete the proof of assertion (i), it su‰ces to verify the

equivalence

ð3Þ , ð3 0Þ:

To this end, assume that condition (3) is satisfied. Then it follows from

Lemma 1.9, (ii), that D~vv1 VD~vv2 VPG ¼ f1g. Now to verify condition (3 0),

by replacing I by an open subgroup of I , we may assume without loss of

generality that rI is of SNN-type (so that we may apply Remark 2.7.1). Since

condition (3) is satisfied, there exists an element ~vv3 A Vertð ~GGÞ such that

dð~vv1; ~vv3Þ ¼ dð~vv2; ~vv3Þ ¼ 1. For i ¼ 1; 2, let ~eei A Nð~vviÞVNð~vv3Þ. Then it follows

that I~vv3 J I~eei JD~eei JD~vvi (cf. Remark 2.7.1); in particular, I~vv3 JD~vv1 VD~vv2 .

Thus, condition (3 0) is satisfied.

Next, let us assume that condition (3 0) is satisfied. Then since D~vv1 V
D~vv2 VPG ¼ f1g—which implies, in particular, that the composite D~vv1 VD~vv2 ,!
PI !! I is injective—and I is torsion-free (cf. condition (1) of Definition 2.4), it

follows that D~vv1 VD~vv2 is torsion-free. Therefore, to verify condition (3), by

replacing I by an open subgroup of I , we may assume without loss of

generality that rI is of SNN-type. Then it follows immediately from assertion

(iii), together with Lemma 1.9, (ii), that condition (3) is satisfied. This com-

pletes the proof of assertion (i). r

4. A combinatorial anabelian theorem for nodally nondegenerate outer

representations

In this section, we prove two combinatorial anabelian results in the style of

[Mzk4] for outer representations of NN-type.

Theorem 4.1 (Group-theoretic verticiality and nodality of certain isomor-

phisms). Let S be a nonempty set of prime numbers, G and H semi-graphs of

anabelioids of pro-S PSC-type, ~vvG A Vertð ~GGÞ, ~vvH A Vertð ~HHÞ, PG (respectively,

PH) the fundamental group of G (respectively, H), a : PG !@ PH an iso-

morphism of profinite groups, I and J profinite groups, rI : I ! AutðGÞ and

rJ : J ! AutðHÞ continuous homomorphisms, and b : I !@ J an isomorphism of

profinite groups. Suppose that the following three conditions are satisfied:

( i ) The diagram

I ���! OutðPGÞ

b

???y
???yOutðaÞ

J ���! OutðPHÞ
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—where the right-hand vertical arrow is the homomorphism induced by

a; the upper and lower horizontal arrows are the homomorphisms

determined by rI and rJ , respectively—commutes.

( ii ) rI , rJ are of NN-type.

(iii) aðP~vvGÞ ¼ P ~vvH .

Then the isomorphism a is group-theoretically verticial, hence, in particular,

group-theoretically nodal (cf. Proposition 1.13).

Proof. Note that to verify Theorem 4.1, it is immediate that by replacing

I by an open subgroup of I , we may assume without loss of generality that rI

and rJ are of SNN-type. Let us denote by ~aa : PI ¼
def

PG z
out

I !@ PJ ¼
def

PH z
out

J

(cf. the discussion entitled ‘‘Topological groups’’ in § 0) the isomorphism deter-

mined by a and b (cf. assumption (i)).

For ~vv A Vertð ~GGÞ, we shall say that ~vv satisfies the condition ð�presÞ if

aðP~vvÞJPH is a verticial subgroup of PH. First, we claim that this condition

ð�presÞ satisfies the property ð�Þ in the statement of Lemma 3.1. To this end,

let ~vv1; ~vv2 A Vertð ~GGÞ be such that dð~vv1ðGÞ; ~vv2ðGÞÞa 1 and, moreover, ~vv1 satisfies

the condition ð�presÞ. Now if ~vv1ðGÞ ¼ ~vv2ðGÞ, then it is immediate that ~vv2
satisfies the condition ð�presÞ; thus, we may assume that ~vv1ðGÞ0 ~vv2ðGÞ. Then

it follows from Lemma 1.15 that there exist ~ww1; ~uu1; ~ww2 A Vertð ~GGÞ which satisfy

the following conditions:

(1) ~vv1ðGÞ ¼ ~ww1ðGÞ ¼ ~uu1ðGÞ; ~vv2ðGÞ ¼ ~ww2ðGÞ.
(2) dð~ww1; ~uu1Þb 2.

(3) dð~ww2; ~ww1Þ ¼ dð~ww2; ~uu1Þ ¼ 1.

Now it follows from condition (1), together with the assumption that ~vv1
satisfies the condition ð�presÞ, that ~ww1 and ~uu1 also satisfy ð�presÞ; in particular,

there exist ~ww 01; ~uu
0
1 A Vertð ~HHÞ such that ~aaðD ~ww1

Þ ¼ D ~ww 0
1
and ~aaðD~uu1Þ ¼ D~uu 0

1
. More-

over, it follows from Proposition 3.9, (iii), together with conditions (2), (3), that

D ~ww1
VD~uu1 ¼ I ~ww2

; in particular, it follows that D ~ww 0
1
VD~uu 0

1
0 f1g and D ~ww 0

1
VD~uu 0

1
V

PH ¼ f1g. Thus, again by Proposition 3.9, (iii), there exists an element

w 02 A Vertð ~HHÞ such that D ~ww 0
1
VD~uu 0

1
¼ I ~ww 0

2
. Now since ~aaðD ~ww1

Þ ¼ D ~ww 0
1
and ~aaðD~uu1Þ

¼ D~uu 0
1
, it follows that ~aaðI ~ww2

Þ ¼ I ~ww 0
2
; thus, it follows from Lemma 3.6, (i), that

aðP ~ww2
Þ ¼ P ~ww 0

2
. In particular, it follows from condition (1) that ~vv2 satisfies

the condition ð�presÞ. This completes the proof of the above claim.

Now in light of the above claim, together with assumption (iii), we may

apply Lemma 3.1 to conclude that the isomorphism a is group-theoretically

verticial. This completes the proof of Theorem 4.1. r

Corollary 4.2 (Graphicity of certain group-theoretically cuspidal isomor-

phisms). Let S be a nonempty set of prime numbers, G and H semi-graphs of

anabelioids of pro-S PSC-type (cf. [Mzk4], Definition 1.1, (i)), PG (respectively,
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PH) the pro-S fundamental group of G (respectively, H), a : PG !@ PH an

isomorphism of profinite groups, I and J profinite groups, rI : I ! AutðGÞ and
rJ : J ! AutðHÞ continuous homomorphisms, and b : I !@ J an isomorphism of

profinite groups. Suppose that the following three conditions are satisfied:

( i ) The diagram

I ���! OutðPGÞ

b

???y
???yOutðaÞ

J ���! OutðPHÞ

—where the right-hand vertical arrow is the homomorphism induced

by a; the upper and lower horizontal arrows are the homomorphisms

determined by rI and rJ , respectively—commutes.

( ii ) rI , rJ are of NN-type (cf. Definition 2.4, (iii)).

(iii) CuspðGÞ0q, and the isomorphism a is group-theoretically cuspidal

(cf. [Mzk4], Definition 1.4, (iv)).

Then the isomorphism a is graphic (cf. [Mzk4], Definition 1.4, (i)).

Proof. It is immediate that to verify Corollary 4.2, by replacing PI by

an open subgroup of PI , we may assume without loss of generality that G

and H are sturdy (cf. [Mzk4], Remark 1.1.5), and that rI and rJ are of SNN-

type. Let us denote by ~aa : PI ¼def PG z
out

I !@ PJ ¼def PH z
out

J (cf. the discussion

entitled ‘‘Topological groups’’ in § 0) the isomorphism determined by a and b

(cf. assumption (i)).

Now it follows from Lemma 1.14 that to prove the graphicity of a, it

su‰ces to show that the isomorphism a satisfies condition (ii) in the statement

of Lemma 1.14. Moreover, by replacing G by the ‘‘G 0’’ in the statement of

Lemma 1.14, it su‰ces to show that the isomorphism PG !
@

PH—where we

write G (respectively, HÞ for the compactification (cf. Definition 1.11) of G

(respectively, HÞ—induced by a is group-theoretically verticial. The rest of the

proof of Corollary 4.2 is devoted to the proof of the fact that the isomorphism

PG !
@

PH induced by a is group-theoretically verticial.

Write I ! OutðPGÞ (respectively, J ! OutðPHÞ) for the outer represen-

tation of pro-S PSC-type determined by rI (respectively, rJ ) and

PI ¼def PG z
out

I (respectively, PJ ¼def PH z
out

J). Let ~eeG A Cuspð ~GGÞ (cf. assump-

tion (iii)). Then it follows from assumption (iii) that there exists an element

~eeH A Cuspð ~HHÞ such that ~aaðD~eeGÞ ¼ D~eeH . Moreover, if we denote by ~vvG (re-

spectively, ~vvH) the unique element of VðeGÞ (respectively, VðeHÞ), then it

follows from Remark 2.7.1 that the image of the composite D~eeG ,! PI !! PI

(respectively, D~eeH ,! PJ !! PJ ) coincides with I~vvG (respectively, I~vvH ). There-

fore, it follows from Lemma 3.6, (i), that aðP~vvGÞ ¼ P ~vvH . In particular, we
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may apply Theorem 4.1 to conclude that the isomorphism PG !
@

PH is group-

theoretically verticial. This completes the proof of Corollary 4.2. r

Remark 4.2.1. One may verify the following assertion by applying

[Mzk4], Corollary 2.7, (iii), as in the proof of [Mzk4], Corollary 2.8:

In the notation of Corollary 4.2, if the following three conditions are

satisfied, then a is graphic:

( i ) The diagram

I ���! OutðPGÞ

b

???y
???yOutðaÞ

J ���! OutðPHÞ

—where the right-hand vertical arrow is the homomorphism induced

by a; the upper and lower horizontal arrows are the homomorphisms

determined by rI and rJ , respectively—commutes.

( ii ) rI , rJ are of IPSC-type.

(iii) The isomorphism a is group-theoretically cuspidal.

That is to say, one may think of Corollary 4.2 as a partial (cf. the condition

‘‘CuspðGÞ0q’’ of Corollary 4.2, (iii)) generalization of the above assertion—

whose proof is independent of the methods of [Mzk4].

5. Injectivity via nodally nondegenerate degenerations

In this section, we apply Corollary 4.2, together with a similar argument to

the argument used in the proof of [Mzk7], Corollary 2.3, to prove a certain

injectivity result concerning FC-admissible outomorphisms (cf. the discussion

entitled ‘‘Topological groups’’ in § 0) of pro-S fundamental groups of configura-

tion spaces (cf. Corollary 5.3).

Definition 5.1. Let S be a set of prime numbers which is either of

cardinality one or equal to the set of all prime numbers, ðg; rÞ a pair of natural

numbers such that 2g� 2þ r > 0, n a natural number, S log an fs log scheme

whose underlying scheme is the spectrum of an algebraically closed field of

characteristic B S, and X log an r-pointed stable log curve of genus g over S log,

i.e., the log scheme obtained by pulling back the universal r-pointed stable

log curve of genus g over M log
g; r (cf. the discussion entitled ‘‘Curves’’ in § 0) via a

(1-)morphism S log !M log
g; r .

( i ) We shall denote by X log
n the n-th log configuration space of X log

(cf. the discussion entitled ‘‘Curves’’ in § 0).
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( ii ) We shall denote by Pn the maximal pro-S quotient of the kernel of

the surjection p1ðX log
n Þ !! p1ðS logÞ.

( iii ) For i ¼ 1; 2, we shall denote by

pr
log
i : X log

2 ! X
log
1 ¼ X log

the projection to the factor labeled i, and by

pi : P2 !! P1

the surjection induced by prlogi .

( iv ) We shall denote by P2=1 the kernel of the surjection p1 : P2 !! P1.

( v ) We shall denote by G the connected semi-graph of anabelioids of

pro-S PSC-type arising from the pointed stable curve determined

by the stable log curve X log over S log (cf. [Mzk4], Example 2.5),

and by PG the fundamental group of G. Note that by the various

definitions involved, there exists a natural isomorphism P1 FPG.

In the following, we shall assume that

ðVertðGÞa;NodeðGÞaÞ ¼ ð2; 1Þ

(cf. Remark 5.1.1 below) and write

VertðGÞ ¼ fv1; v2g; NodeðGÞ ¼ feg

(cf. Figure 1). Also, we observe that (it follows immediately from

the various definitions involved that) we have CuspðGÞa¼ r.

( vi ) We shall denote by G=e the connected semi-graph of anabelioids of

pro-S PSC-type arising from the pointed stable curve determined by

the fiber of prlog1 : X log
2 ! X log at the unique node e of X log (cf.

Figure 1), and by PG=e the fundamental group of G=e. Note that by

the various definitions involved, we have

ðVertðG=eÞa;CuspðG=eÞa;NodeðG=eÞaÞ ¼ ð3; rþ 1; 2Þ;

moreover, there exists a natural isomorphism P2=1 FPG=e .

( vii ) For i ¼ 1; 2, there exists a unique vertex of G=e such that the

image via the surjection PG=e FP2=1 !! P1 FPG induced by p2
of a verticial subgroup of PG=e associated to the vertex is a verticial

subgroup of PG associated to vi A VertðGÞ. We shall denote this

vertex by v�i A VertðG=eÞ. On the other hand, there exists a unique

vertex of G=e such that the image via the surjection PG=e FP2=1 !!
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P1 FPG induced by p2 of a verticial subgroup of PG=e associated

to the vertex is an edge-like subgroup of PG associated to the

unique node e A nodeðGÞ. We shall denote this vertex by v�0 A
VertðG=eÞ. Thus, in summary, we have

VertðG=eÞ ¼ fv�1; v�2; v�0g:

(viii) For i ¼ 1; 2, there exists a unique node of G=e such that the subset of

vertices of G=e to which the node abuts is fv�i ; v�0g. We shall denote

this node by e�i A NodeðG=eÞ, i.e., Vðe�i Þ ¼ fv�i ; v�0g. On the other

Fig. 1. G, G=e, and ‘‘P sub
2=1 ’’
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hand, there exists a unique cusp which abuts to v�0. We shall

denote this cusp by e�0 A CuspðG=eÞ. Thus, in summary, we have

NodeðG=eÞ ¼ fe�1; e�2g; Vðe�i Þ ¼ fv�i ; v�0g; Vðe�0Þ ¼ fv�0g:

( ix ) Let Y JX be the irreducible component of the underlying scheme

X of X log corresponding to v1, UY JY the open subscheme of Y

obtained as the complement of the nodes and cusps which abut to

v1, and Y log the smooth log curve (whose underlying scheme is Y )

over S log determined by the hyperbolic curve UY . (Thus, UY JY

is the open subscheme of points at which the log structure of Y log

coincides with the pull-back of the log structure of S log.) Write gY
for the genus of UY and rY for the number of cusps of UY . Let

Y log
n be the n-th log configuration space of Y log (cf. the discussion

entitled ‘‘Curves’’ in § 0). Note that the natural closed immersion

Y ,! X induces a commutative diagram

Y2 ���! X2???y
???ypr1

Y ���! X

—where the left-hand vertical arrow is the morphism induced by

pr1 (cf. the discussion of [Mzk7], Definition 2.1, (iii)).

( x ) We shall denote by P sub
n the maximal pro-S quotient of the kernel

of the surjection p1ðY log
n Þ !! p1ðS logÞ, and by P sub

2=1 the kernel of the

surjection P sub
2 !! P sub

1 induced by the first projection Y
log
2 ! Y log.

Note that if we denote by UYn
JYn the open subscheme of points

at which the log structure of Y log
n coincides with the pull-back of

the log structure of S log, then recall that by the log purity theorem

(cf. [Mzk7], the discussion of § 0), the inclusion UYn
,! Yn induces

a natural isomorphism p1ðUYn
ÞðSÞ !@ P sub

n . Thus, by restricting

coverings of X log
n to UYn

for n ¼ 1; 2, we obtain a commutative

diagram (cf. the discussion of [Mzk7], Definition 2.1, (vi))

1 ���! P sub
2=1 ���! P sub

2 ���! P sub
1 ���! 1???y

???y
???y

1 ���! P2=1ðFPG=eÞ ���! P2 ���!
p1

P1ðFPGÞ ���! 1

—where the right-hand upper horizontal arrow is the surjection

induced by p1, the vertical arrows are injective outer homomor-

phisms, the horizontal sequences are exact, and the image of the
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right-hand vertical arrow is a verticial subgroup of PG associated to

v1 (cf. Figure 1).

Remark 5.1.1. One verifies easily that if 2g� 2þ r > 1 (i.e., ðg; rÞ0
ð0; 3Þ; ð1; 1Þ), then there exists a stable log curve X log as in Definition 5.1 (cf.,

especially, the assumption in Definition 5.1, (v)).

Lemma 5.2 (Basic properties of verticial subgroups). In the notation of

Definition 5.1: For i ¼ 1; 2, let us fix an edge-like subgroup Pe�
i
JPG=e asso-

ciated to e�i A NodeðG=eÞ (Definition 5.1, (viii)). Then the following hold:

( i ) There exists a unique verticial subgroup Pv�
i
(respectively, Pv�

0
) of

PG=e associated to v�i A VertðG=eÞ (respectively, v�0 A VertðG=eÞ) [cf.

Definition 5.1, (vii)] that contains Pe�
i
.

( ii ) There exists a unique P2=1-conjugate of the image of P sub
2=1 via the

left-hand vertical arrow in the diagram of Definition 5.1, (x), that

contains and is topologically generated by the verticial subgroups Pv�
1
,

Pv�
0
JPG=e obtained in (i) in the case where i ¼ 1. By abuse of

notation, we shall denote this particular P2=1-conjugate of the image of

P sub
2=1 by means of the notation ‘‘P sub

2=1 ’’.

(iii) Suppose that Pe�
2
was chosen so that (in the notation of (ii)) we have

Pe�
2
JP sub

2=1 . Then (in the notation of (i) and (ii)) P2=1 is topolog-

ically generated by Pv�
2
and P sub

2=1 .

Proof. These assertions follow from similar arguments to the arguments

used in the proofs of [Mzk7], Proposition 2.2, (ii), (iii). r

The following result is the main result of the present section.

Corollary 5.3 (Injectivity for not necessarily affine hyperbolic curves). In

the notation of Definition 5.1, the natural homomorphism

OutFCðP2Þ ! OutFCðP1Þ

—where we write ‘‘OutFCð�Þ’’ for the subgroup of the group ‘‘Outð�Þ’’ of

outomorphisms (cf. the discussion entitled ‘‘Topological groups’’ in § 0) of ‘‘ð�Þ’’
defined in [Mzk7], Definition 1.1, (ii)—induced by p1 is injective.

Proof. If 2g� 2þ r ¼ 1, then Corollary 5.3 follows from [Mzk7], Cor-

ollary 2.3, (ii); thus, to verify Corollary 5.3, we may assume without loss of

generality that 2g� 2þ r > 1. Note that since 2g� 2þ r > 1, there exists a

stable log curve X log as in Definition 5.1 (cf. Remark 5.1.1). Thus, in the

following, we assume that we are in the situation described in Definition 5.1.

To complete the proof of Corollary 5.3, it su‰ces, by [Mzk7], Proposition

1.2, (iii), to verify the assertion that if an automorphism a of P2 is IFC-
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admissible (cf. [Mzk7], Definition 1.1, (ii)), i.e., a satisfies the following

three conditions (i), (ii), and (iii), then the automorphism a is a X2-inner

automorphism—where we write X2 ¼
def

Kerðp1ÞVKerðp2ÞJP2 (cf. Definition

5.1, (iii)):

( i ) a preserves Kerðp1Þ ð¼ P2=1Þ and Kerðp2Þ.
( ii ) The automorphism of PG=e (FP2=1) obtained as the restriction ajP2=1

of a (cf. (i)) is group-theoretically cuspidal.

(iii) The automorphism of the quotient ðp1; p2Þ : P2 !! P1 �P1 of P2

induced by a (cf. (i)) is the identity automorphism of P1 �P1.

The rest of the proof of Corollary 5.3 is devoted to verifying this assertion.

It follows immediately from (i) and (iii) that we have a commutative

diagram

P1 ���!r OutðP2=1Þ����
???yOutðajP2=1

Þ

P1 ���!
r

OutðP2=1Þ

—where the right-hand vertical arrow is the homomorphism induced by

ajP2=1
, and we write r for the outer representation determined by the exact

sequence

1! P2=1 ! P2 !
p1

P1 ! 1:

Let Pe JP1 be an edge-like subgroup of P1 ðFPGÞ associated to the

unique node e of G. Then it follows immediately from the various definitions

involved that the composite Pe ,! P1 !
r
OutðP2=1Þ factors through AutðG=eÞJ

OutðP2=1Þ; moreover, in light of the well-known local structure of X log in a

neighborhood of the node corresponding to e, it follows immediately from

Proposition 2.14 that the resulting outer representation of pro-S PSC-type

Pe ! AutðG=eÞ is of SNN-type. In particular, it follows immediately from (ii),

together with the fact that G=e has at least one cusp (cf. Definition 5.1, (vi)), that

we may apply Corollary 4.2 to conclude that the restriction ajP2=1
is graphic.

Next, let us fix an edge-like subgroup Pe�
1
JP2=1 associated to e�1 A

NodeðG=eÞ (cf. Definition 5.1, (viii)). Then we claim that there exists an

element g A X2 such that aðPe�
1
Þ ¼ g �Pe�

1
� g�1. Indeed, it follows from the

graphicity of ajP2=1
, together with (iii), that ajP2=1

induces the identity auto-

morphism of the underlying semi-graph of G=e (cf. Definition 5.1, (vii), (viii)),

hence that there exists an element g 0 A P2=1 such that aðPe�
1
Þ ¼ g 0 �Pe�

1
� g 0�1; in

particular, again by (iii), we obtain that p2ðPe�
1
Þ ¼ p2ðg 0Þ � p2ðPe�

1
Þ � p2ðg 0�1Þ.

On the other hand, it follows immediately from the various definitions involved

that p2ðPe�
1
ÞJP1 is an edge-like subgroup of P1 associated to e A NodeðGÞ.
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Thus, it follows from the commensurably terminality of p2ðPe�
1
Þ in P1 (cf.

[Mzk4], Proposition 1.2, (ii)) that p2ðg 0Þ A p2ðPe�
1
Þ. In particular, by multi-

plying g 0 by an appropriate element of Pe�
1
, we obtain an element g, as

desired. This completes the proof of the above claim.

In light of the above claim, we may assume without loss of generality—by

composing a with an appropriate X2-inner automorphism—that aðPe�
1
Þ ¼ Pe�

1
.

Let Pv�
1
, Pv�

0
JP2=1 be the unique verticial subgroups associated, respectively,

to v�1; v
�
0 A VertðG=eÞ that contain the fixed edge-like subgroup Pe�

1
(cf. Lemma

5.2, (i)); P sub
2=1 JP2=1 the unique P2=1-conjugate of the image of the left-hand

vertical arrow in the diagram in Definition 5.1, (x), that contains and is

topologically generated by these verticial subgroups Pv�
1
, Pv�

0
. (cf. Lemma 5.2,

(ii)). Then in light of the graphicity of a, it follows from the fact that aðPe�
1
Þ ¼

Pe�
1
, together with Lemma 5.2, (i), (ii), that aðPv�

1
Þ ¼ Pv�

1
, aðPv�

0
Þ ¼ Pv�

0
, and

aðP sub
2=1Þ ¼ P sub

2=1 .

Next, let us observe that P sub
2=1 is commensurably terminal in P2=1. (In-

deed, this follows by applying [Mzk4], Proposition 1.2, (ii)—where we think of

the fiber of Y log
2 ! Y log over e [by, for instance, deforming the unique node of

this fiber] as a single irreducible component of the fiber of X log
2 ! X log.) Note

that in light of this commensurable terminality, the compatibility of a2=1 with

the outer action of P1 on P2=1 (relative to the identity automorphism of P1—

cf. condition (iii)) implies the compatibility of a2=1jP sub
2=1

with the outer action of

P sub
1 on P sub

2=1 (relative to the identity automorphism of P sub
1 ). Thus, it follows

from the commutative diagram in Definition 5.1, (x) (i.e., by applying the

natural isomorphism P sub
2 FP sub

2=1 z
out

P sub
1 [cf. the discussion entitled ‘‘Topo-

logical groups’’ in § 0]), that the automorphism a2=1jP sub
2=1

arises from an

automorphism a sub of P sub
2 . Moreover, it follows immediately from the

construction of asub (cf. also [Mzk4], Proposition 1.5, (i)) that a sub is IFC-

admissible (cf. [Mzk7], Definition 1.1, (ii)), i.e., that a sub satisfies the analogue

for P sub
2 of the above three conditions (i), (ii), and (iii). Therefore, since the

stable log curve Y log [unlike the stable log curve X log!] necessarily has at least

one cusp, we may apply [Mzk7], Corollary 1.12, (i), and [Mzk7], Corollary 2.3,

(i) (cf. also Remark 5.3.1 below), to conclude that asub is a X sub
2 -inner

automorphism—where we write X sub
2 ¼def X2 VP sub

2 for the analogue of ‘‘X2’’

for P sub
2 . In particular, it follows that a2=1jP sub

2=1
is a X2-inner automorphism.

Now from the point of view of verifying the assertion that a is a X2-

inner automorphism, we may assume without loss of generality—by composing

with an appropriate X2-inner automorphism—that a stabilizes and restricts to

the identity automorphism of P sub
2=1 ; in particular, since Pv�

0
JP sub

2=1 , it follows

that a stabilizes and restricts to the identity automorphism of Pv�
0
.

Let Pe�
2
JP2=1 be an edge-like subgroup associated to e�2 A NodeðG=eÞ

which is contained in Pv�
0
, and Pv�

2
JP2=1 the unique (cf. Lemma 5.2, (i))
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verticial subgroup associated to v�2 A VertðG=eÞ that contains Pe�
2
. Now since

a stabilizes and restricts to the identity automorphism of Pv�
0
, it follows that

aðPe�
2
Þ ¼ Pe�

2
. Thus, in light of the graphicity of a, we may apply Lemma 5.2,

(i), to conclude that aðPv�
2
Þ ¼ Pv�

2
. Next, let us observe that the surjection

Pv�
2
!! p2ðPv�

2
Þ determined by p2 is an isomorphism. Thus, it follows imme-

diately from condition (iii) that ajPv�
2

is the identity automorphism.

Since P2=1 is topologically generated by P sub
2=1 and Pv�

2
(cf. Lemma 5.2,

(iii)), the fact (cf. the above discussion) that ajP sub
2=1

and ajPv�
2

are equal to the

respective identity automorphisms on P sub
2=1 and Pv�

2
implies that ajP2=1

is the

identity automorphism. But this implies that a is the identity automorphism

(cf. the discussion entitled ‘‘Topological groups’’ in § 0). This completes the

proof of Corollary 5.3. r

Remark 5.3.1.

( i ) An alternative approach to the portion in the latter half of the

proof of Corollary 5.3 where one applies [Mzk7], Corollary 2.3, (i),

may be given, at least when ðg; rÞ0 ð2; 0Þ, as follows. One verifies

easily that 3gY � 3þ rY < 3g� 3þ r, and, moreover that, at least

when ðg; rÞ0 ð2; 0Þ, one may always choose X log (in the situation of

Definition 5.1, so ðg; rÞ0 ð0; 3Þ, ð1; 1Þ—cf. Remark 5.1.1) so that

ðgY ; rY Þ0 ð1; 1Þ. Thus, by applying induction on 3g� 3þ r, one

may reduce this portion of the proof of Corollary 5.3 to the case

where 3g� 3þ r ¼ 0, i.e., the case of a tripod. That is to say,

instead of applying [Mzk7], Corollary 2.3, (i), it su‰ces to apply

[Mzk7], Corollary 1.12, (i). In particular, this alternative approach

yields a new proof—at least in the case of ðg; rÞ0 ð1; 1Þ—of [Mzk7],

Corollary 2.3, (ii) (i.e., via Corollary 4.2, as opposed to [Mzk4],

Corollary 2.7, (iii)—cf. Remark 4.2.1).

(ii) In passing, we recall that [Mzk4], Corollary 2.7, (iii), is applied in

various situations throughout [Mzk7]. In fact, however, (cf. the

discussion of (i)) it is not di‰cult to verify that the partial gener-

alization of [Mzk4], Corollary 2.7, (iii), constituted by Corollary 4.2

(cf. Remark 4.2.1) is su‰cient (i.e., in the sense that the condition

‘‘CuspðGÞ0q’’ of Corollary 4.2, (iii), is always satisfied) for verify-

ing the various assertions in [Mzk7] (cf. the proof of [Mzk7], Prop-

osition 1.3, (iv)) that are derived from [Mzk4], Corollary 2.7, (iii).

6. Consequences of injectivity

In this section, we discuss various consequences of the injectivity result

proven in § 5.
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The following theorem is a generalization of [Mzk7], Theorem A, (i),

(ii).

Theorem 6.1 (Partial profinite combinatorial cuspidalization). Let S be a

set of prime numbers which is either of cardinality one or equal to the set of all

prime numbers, n a positive integer, X a hyperbolic curve of type ðg; rÞ over an

algebraically closed field of characteristic B S, Xn the n-th configuration space

of X (cf. [MzTa], Definition 2.1, (i)), Pn the maximal pro-S quotient of the

fundamental group of Xn, and OutFCðPnÞJOutðPnÞ the subgroup of the group

OutðPnÞ consisting of the outomorphisms (cf. the discussion entitled ‘‘Topolog-

ical groups’’ in § 0) of Pn which are FC-admissible (cf. [Mzk7], Definition 1.1,

(ii)). Set n0 ¼def 2 if X is affine, i.e., rb 1; n0 ¼def 3 if X is proper, i.e., r ¼ 0

(cf. [Mzk7], Theorem A). Then the natural homomorphism

OutFCðPnþ1Þ ! OutFCðPnÞ

induced by the projection Xnþ1 ! Xn obtained by forgetting the ðnþ 1Þ-st factor
is injective if nb 1 and bijective if nb n0 þ 1. Moreover, the image of the

natural inclusion

Sn ,! OutðPnÞ

—where we write Sn for the symmetric group on n letters—obtained by

permuting the various factors of the configuration space Xn is contained in

the centralizer ZOutðPnÞðOutFCðPnÞÞ.

Proof. First, we consider the surjectivity portion of the bijectivity asser-

tion in the statement of Theorem 6.1. This surjectivity already follows from

[Mzk7], Theorem A, (i), if nb 4. Thus, we may assume that n ¼ 3, which

implies that rb 1. Now by [Mzk7], Lemma 2.4; [Mzk7], Theorem 4.1, (ii),

(a), it su‰ces (cf. the proof of the surjectivity portion of [Mzk7], Theorem 4.1,

(i)) to verify (in the notation of [Mzk7]) that OutFCðP3Þcusp ¼ OutFCPðP3Þcusp J
OutFCðP3ÞDþ—where the first equality follows from [Mzk7], Theorem A, (ii).

But this follows from a similar argument to the argument applied to prove

[Mzk7], Corollary 3.4, (iii), by taking the section ‘‘x A X2ðX Þ’’ of loc. cit. to be

the section determined by the diagonal and applying the symmetry observed in

the proof of [Mzk7], Corollary 3.4, (i).

Next, we observe that the assertion concerning the centralizer follows

immediately from the injectivity assertion, together with [Mzk7], Theorem A,

ðiiÞ; [Mzk7], Proposition 1.2, (iii). Thus, to complete the proof of Theorem

6.1, it su‰ces to verify the injectivity assertion. To this end, write P
y
2

(respectively, P
y
1) for the kernel of the surjection Pnþ1 !! Pn�1 (respectively,

Pn !! Pn�1) induced by the projection obtained by forgetting the n-th and
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ðnþ 1Þ-st factors (respectively, the n-th factor). Here, if n ¼ 1, then we set

Pn�1 ¼ P0 ¼def f1g. Then recall (cf. e.g., the proof of [Mzk7], Theorem 4.1, (i))

that we have natural isomorphisms

Pnþ1 FP
y
2 z
out

Pn�1; Pn FP
y
1 z
out

Pn�1

(cf. the discussion entitled ‘‘Topological groups’’ in § 0). Also, we recall (cf.

[MzTa], Proposition 2.4, (i)) that one may interpret the surjection P
y
2 !! P

y
1

induced by the surjection Pnþ1 !! Pn in question as the surjection ‘‘P2 !! P1’’

of Definition 5.1 (i.e., the surjection that arises from the projection

pr2 : X
log
2 ! X log) in the case of an ‘‘X log’’ of type ðg; rþ n� 1Þ. Moreover,

one verifies easily that this interpretation is compatible with the definition of

the various ‘‘Outð�Þ’s’’ involved. Thus, the above natural isomorphisms allow

one to reduce the injectivity in question to the case where n ¼ 1 (cf. the

discussion entitled ‘‘Topological groups’’ in § 0), which follows immediately

from Corollary 5.3 when 2g� 2þ r > 1 (cf. Remark 5.1.1) and from [Mzk7],

Theorem A, (i), when 2g� 2þ r ¼ 1. This completes the proof of Theorem

6.1. r

The following corollary is a generalization of [Mts], Theorem 2.2. Note

that [Mts], Theorem 2.2, corresponds to the following corollary in the case

where k is a subfield of the field of complex numbers, and, moreover, X is a

curve of positive genus that has at least one cusp defined over k.

Corollary 6.2 (Kernels of outer representations arising from hyperbolic

curves). Let S be a set of prime numbers which is either of cardinality one or

equal to the set of all prime numbers, X a hyperbolic curve over a perfect field k

such that every element of S is invertible in k, k an algebraic closure of k, n a

positive integer, Xn the n-th configuration space of X, Gk ¼def Galðk=kÞ, DXn
the

maximal pro-S quotient of the fundamental group of Xn nk k, and DP1
knf0;1;yg

the maximal pro-S quotient of the fundamental group of P1
k
nf0; 1;yg. Then

the following hold:

( i ) The kernel of the natural outer representation

rS
Xn=k

: Gk ! OutðDXn
Þ

is independent of n and contained in the kernel of the natural outer

representation

rS
P1
knf0;1;yg=k

: Gk ! OutðDP1

k
nf0;1;ygÞ:

(ii) Suppose that S is the set of all prime numbers. (Thus, k is necessarily

of characteristic zero.) Write Q for the algebraic closure of Q deter-
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mined by k and GQ ¼
def

GalðQ=QÞ. Then the kernel of the homomor-

phism rS
Xn=k

is contained in the kernel of the outer homomorphism

Gk ! GQ

determined by the natural inclusion Q ,! k.

Proof. Assertion (ii) follows immediately from assertion (i), together with

a well-known injectivity result of Belyi (cf., e.g., the discussion surrounding

[Mts], Theorem 2.2). Thus, to complete the proof of Corollary 6.2, it su‰ces

to verify assertion (i). It follows immediately from Theorem 6.1 that the

kernel of rS
Xn=k

is independent of n. Moreover, if we denote by k 0J k the

minimal Galois extension of k over which every cusp of X is defined, then

by considering the action of Gk on the set of conjugacy classes of edge-like

subgroups of DX associated to cusps of X—a set which admits a natural

bijection with the set of cusps of X (cf. e.g., [Mzk4], Proposition 1.2, (i))—it

follows immediately from the various definitions involved that for any n, the

kernel of the homomorphism rS
Xn=k

is contained in Gk 0 JGk, and that the

restriction of rS
Xn=k

to Gk 0 factors through the subgroup

OutFCðDXn
Þcusp JOutFCðDXn

Þ

defined in [Mzk7], Definition 1.1, (v). Thus, we have continuous homo-

morphisms

ðKerðrS
Xn=k
ÞJÞ Gk 0 ! OutFCðDX3

Þcusp ! OutFCðDP1

k
nf0;1;ygÞ

—where the first arrow is the homomorphism induced by rS
X3=k

, and the second

arrow is the homomorphism determined by the diagonal in X2 (cf. [Mzk7],

Theorem A, (iii)). Moreover, one verifies easily that the composite of these

homomorphisms coincides with rS
P1
k 0 nf0;1;yg=k 0

(cf. the construction of the

homomorphism

OutFCðDX3
Þcusp ! OutFCðDP1

k
nf0;1;ygÞ

in [Mzk7]). Now assertion (i) follows immediately. r

The injectivity portion of assertion (i) (in the case where n ¼ 1) of the

following corollary is a generalization of [Mts], Theorem 2.1. Note that [Mts],

Theorem 2.1, corresponds to the following corollary in the case where X is

a‰ne.

Corollary 6.3 (Injectivity and commensurable terminality for outer rep-

resentations arising from hyperbolic curves). In the situation of Corollary 6.2,

suppose that k is a number field or p-adic local field (cf. the discussion entitled
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‘‘Numbers’’ in § 0), and that S is the set of all prime numbers. Write k0 ¼
def

Q

if k is a number field; k0 ¼def Qp if k is a p-adic local field; AutðX
k
=k0Þ for

the group of k0-linear automorphisms of the scheme X
k
¼def X nk k; rn ¼

def
rS
Xn=k

.

Then the following hold:

( i ) The outer representation

rn : Gk ! OutðDXn
Þ

is injective. Moreover, the outer representations rnþ1 and rn are

compatible, in the evident sense, with the injection OutFCðDXnþ1Þ ,!
OutFCðDXn

Þ of Theorem 6.1.

( ii ) Every a A AutðX
k
=k0Þ induces a k0-linear automorphism of ðXnÞk ¼

def

Xn nk k. In particular, we have a natural outer representation

rn=0 : AutðX
k
=k0Þ ! OutðDXn

Þ

which factors through OutFCðDXn
ÞJOutðDXn

Þ and is compatible with

rn relative to the natural injection Gk ,! AutðX
k
=k0Þ determined by

taking the fiber product over SpecðkÞ with X. Moreover, the outer

representations rnþ1=0 and rn=0 are compatible, in the evident sense,

with the injection OutFCðDXnþ1Þ ,! OutFCðDXn
Þ of Theorem 6.1.

(iii) The outer representation rn=0 of (ii) is injective.

(iv) Suppose that the hyperbolic curve X is of quasi-Belyi type [cf. [Mzk5],

Definition 2.3, (iii)] (respectively, a‰ne; proper). Set n0 ¼
def

1 (re-

spectively, n0 ¼def 2; n0 ¼def 3). Then the image of rn=0 is commensu-

rably terminal in OutFðDXn
Þ (cf. [Mzk7], Definition 1.1, (ii)) for all

nb n0.

Proof. The injectivity portion of assertion (i) follows immediately from

Corollary 6.2, (ii), together with the injectivity of the outer homomorphism

‘‘Gk ! GQ’’ in the statement of Corollary 6.2, (ii), when k is a number field

or p-adic local field. The compatibility portion of assertion (i) follows im-

mediately from the various definitions involved. Assertion (ii) follows imme-

diately from the various definitions involved. Next, we consider assertion (iii).

In light of the compatibility portion of assertion (ii), it su‰ces to verify

assertion (iii) in the case where n ¼ 1. Write AutðX
k
=kÞJAutðX

k
=k0Þ for the

subgroup of k-linear automorphisms. Then the injectivity of the restriction

of r1=0 to AutðX
k
=kÞ is well-known (cf. e.g., the injectivity portion of [Mzk1],

Theorem A). On the other hand, one verifies immediately that by restricting

an automorphism a A AutðX
k
=k0Þ to the base field k, one obtains a natural

exact sequence

1! AutðX
k
=kÞ ! AutðX

k
=k0Þ ! Galðk=k0Þ
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such that the image of the homomorphism AutðX
k
=k0Þ ! Galðk=k0Þ contains

Gk ¼ Galðk=kÞ, hence is open. Thus, it follows immediately from the injec-

tivity portion of assertion (i) (cf. also the first compatibility discussed in

assertion (ii)) that the kernel of r1=0 maps isomorphically to a finite normal

closed subgroup of some open subgroup of the slim profinite group Galðk=k0Þ
(cf. e.g., [Mzk2], Theorem 1.1.1, (ii)), hence is trivial, as desired. This com-

pletes the proof of assertion (iii). Finally, we consider assertion (iv). First, let

us observe that it follows immediately from [Mzk4], Corollary 2.7, (i) (cf.

also [Mzk7], Remark 1.1.3), that the commensurator of the image of rn=0 in

OutFðDXn
Þ is in fact contained in OutFCðDXn

Þ. Thus, it su‰ces to verify

assertion (iv) with ‘‘OutFð�Þ’’ replaced by ‘‘OutFCð�Þ’’. Next, let us observe

that by the injectivity portion of Theorem 6.1, it su‰ces to verify assertion (iv)

in the case where n ¼ n0. Thus, let us assume that n ¼ n0. Then in light of

assertion (iii), together with the fact that DXn
is slim (cf. the discussion entitled

‘‘Topological Groups’’ in § 0; [MzTa], Proposition 2.2, (ii)), assertion (iv) follows

immediately—in the case where the hyperbolic curve X is of quasi-Belyi type

(respectively, is a‰ne; proper)—from the ‘‘Grothendieck Conjecture-type result’’

given in [Mzk5], Corollary 2.3 (respectively, [Mzk6], Corollary 1.11, (iii), (iv);

[Mzk6], Corollary 1.11, (iii), (iv)). r

The following corollary is a generalization of [MtTa], Theorem 1.1. Note

that [MtTa], Theorem 1.1, corresponds to the following corollary in the case

where rb 1.

Corollary 6.4 (Triviality of simultaneously arithmetic-geometric actions).

Let k be a field of characteristic zero, k an algebraic closure of k, ðg; rÞ a pair of

natural numbers such that 2g� 2þ r > 0, ðMg; rÞk the moduli stack of r-pointed

smooth curves of genus g over k whose marked points are equipped with an

ordering, PMg; r
the profinite fundamental group of the stack ðMg; rÞk, and DMg; r

the profinite fundamental group of the stack ðMg; rÞk nk k; thus, we have an exact

sequence

1! DMg; r
! PMg; r

! Galðk=kÞ ! 1:

Moreover, let X be a hyperbolic curve of type ðg; rÞ over k,

rX=k : Galðk=kÞ ! Outðp1ðX nk kÞÞ

the outer representation arising from the hyperbolic curve X over k, i.e., the outer

representation arising from the natural exact sequence

1! p1ðX nk kÞ ! p1ðX Þ ! Galðk=kÞ ! 1;
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and

rg; r : PMg; r
! Outðp1ðX nk kÞÞ

the profinite universal monodromy outer representation over k, i.e., the outer

representation arising from the natural exact sequence

1! p1ðX nk kÞ ! PMg; rþ1 ! PMg; r
! 1:

Then the subgroup

r�1X=kðrg; rðDMg; r
ÞÞJGalðk=kÞ

of Galðk=kÞ is contained in the kernel of the outer homomorphism

Galðk=kÞ ! GalðQ=QÞ

determined by the natural inclusion Q ,! k.

In particular, if k is a number field or p-adic local field, then the intersection

of the image of the outer representation

rX=k : Galðk=kÞ ! Outðp1ðX nk kÞÞ

and the image of the restriction

rg; rjDMg; r
: DMg; r

! Outðp1ðX nk kÞÞ

of rg; r to DMg; r
JPMg; r

is trivial.

Proof. The various assertions of Corollary 6.4 follow from Theorem 6.1

via a similar argument to the argument used in the proof of Corollary 6.2, (i),

(ii). Alternatively, one may derive Corollary 6.4 directly from Corollary 6.2,

(ii)—where we take ‘‘k’’ to be the function field of Mg; r—via a similar argument

to the argument used in the proof of [MtTa], Theorem 1.1, i.e., by considering,

in e¤ect, the semi-direct product decomposition PMg; r
FDMg; r

zGalðk=kÞ deter-
mined by the k-valued point of Mg; r corresponding to X . r

Corollary 6.5 (Outer representations arising from moduli stacks of stable

curves). Let k be a number field or p-adic local field, k an algebraic closure of

k, ðg; rÞ a pair of natural numbers such that 2g� 2þ r > 0, ðMg; rÞk the moduli

stack of r-pointed smooth curves of genus g over k whose marked points are

equipped with an ordering, PMg; r
the profinite fundamental group of the stack

ðMg; rÞk, DMg; r
the profinite fundamental group of the stack ðMg; rÞk nk k, Pg; r

the profinite completion of the surface group of type ðg; rÞ (i.e., the topological

fundamental group of the complement of r distinct points in a compact oriented

topological surface of genus g), and

rg; r : PMg; r
! OutðPg; rÞ
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the profinite universal monodromy outer representation over k. Then the con-

gruence subgroup problem for the pair ðg; rÞ may be resolved in the a‰rmative

(i.e., the restriction of rg; r to DMg; r
JPMg; r

is injective) if and only if the

homomorphism rg; r is injective.

Proof. This follows immediately from Corollary 6.4, by considering a

hyperbolic curve ‘‘X ’’ of type ðg; rÞ that is defined over k (as in the statement

of Corollary 6.4). Alternatively, one may deduce Corollary 6.5 directly from

Corollary 6.2, (ii), by applying Corollary 6.2, (ii), to the function field of Mg; r.

r

The following corollary is a generalization of [Mzk7], Corollary 5.1, (ii),

(iv).

Corollary 6.6 (Discrete combinatorial cuspidalization). Let ðg; rÞ be a

pair of natural numbers such that 2g� 2þ r > 0, n a positive integer, X

a topological surface of type ðg; rÞ (i.e., the complement of r distinct points in a

compact oriented topological surface of genus g), Xn the n-th configuration space

of X, Pn the topological fundamental group of Xn, and OutFCðPnÞJOutðPnÞ
the subgroup of the group OutðPnÞ of outomorphisms (cf. the discussion entitled

‘‘Topological groups’’ in § 0) of Pn defined in the statement of [Mzk7], Corollary

5.1. Then the natural homomorphism

OutFCðPnþ1Þ ! OutFCðPnÞ

induced by the projection Xnþ1 ! Xn obtained by forgetting the ðnþ 1Þ-st factor
is bijective. Moreover, the image of the natural inclusion

Sn ,! OutðPnÞ
—where we write Sn for the symmetric group on n letters—obtained by

permuting the various factors of the configuration space Xn is contained in

the centralizer ZOutðPnÞðOutFCðPnÞÞ.

Proof. The assertion concerning the centralizer follows immediately from

the bijectivity assertion, together with [Mzk7], Corollary 5.1, ðivÞ, and the

easily verified discrete analogue of [Mzk7], Proposition 1.2, (iii) (which may be

verified, for instance, by applying [Mzk7], Corollary 5.1, (i); [Mzk7], Prop-

osition 1.2, (iii)). Thus, to complete the proof of Theorem 6.1, it su‰ces to

verify the bijectivity assertion. Moreover, it follows from [Mzk7], Corollary

5.1, (ii), that to complete the proof of the bijectivity assertion, it su‰ces to

verify the injectivity portion of this bijectivity assertion. On the other hand,

this injectivity follows from Theorem 6.1, together with [Mzk7], Theorem 5.1,

(i). That is to say, the injectivity of the homomorphism OutFCðPnþ1Þ !
OutFCðPnÞ follows from the commutativity of the diagram of natural homo-

morphisms
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OutFCðPnþ1Þ ���! OutFCðP̂Pnþ1Þ???y
???y

OutFCðPnÞ ���! OutFCðP̂PnÞ

—where we write ‘‘P̂Pð�Þ’’ for the profinite completion of ‘‘Pð�Þ’’—together

with the injectivity of the upper horizontal and right-hand vertical arrows of the

diagram. r

Remark 6.6.1. Just as in the case of [Mzk7], Corollary 5.1, there is a

partial overlap between the content of Corollary 6.6 above and Theorems 1, 2

of [IIM].

References

[Bg] M. Boggi, The congruence subgroup property for the hyperelliptic modular group: the

open surface case, Hiroshima Math. J. 39 (2009), 351–362.

[Hsh] Y. Hoshi, Absolute anabelian cuspidalizations of configuration spaces over finite fields,

Publ. Res. Inst. Math. Sci. 45 (2009), 661–744.

[IIM] E. Irmak, N. Ivanov, J. D. McCarthy, Automorphisms of surface braid groups,

preprint (arXiv:math.GT/0306069v1 3 Jun 2003).

[Knud] F. Knudsen, The projectivity of the moduli space of stable curves. II. The stacks Mg; n,

Math. Scand. 52 (1983), 161–199.

[Mts] M. Matsumoto, Galois representations on profinite braid groups on curves, J. Reine

Angew. Math. 474 (1996), 169–219.

[MtTa] M. Matsumoto and A. Tamagawa, Mapping-class-group action versus Galois action

on profinite fundamental groups, Amer. J. Math. 122 (2000), 1017–1026.

[Mzk1] S. Mochizuki, The Local Pro-p Anabelian Geometry of Curves, Invent. Math. 138

(1999), 319–423.

[Mzk2] S. Mochizuki, The Absolute Anabelian Geometry of Hyperbolic Curves, Galois Theory

and Modular Forms, Kluwer Academic Publishers (2003), 77–122.

[Mzk3] S. Mochizuki, Semi-graphs of anabelioids, Publ. Res. Inst. Math. Sci. 42 (2006),

221–322.

[Mzk4] S. Mochizuki, A combinatorial version of the Grothendieck conjecture, Tohoku Math

J. 59 (2007), 455–479.

[Mzk5] S. Mochizuki, Absolute anabelian cuspidalizations of proper hyperbolic curves, J.

Math. Kyoto Univ. 47 (2007), 451–539.

[Mzk6] S. Mochizuki, Topics in Absolute Anabelian Geometry II: Decomposition Groups and

Endomorphisms, RIMS Preprint 1625 (2008); see http://www.kurims.kyoto-u.ac.jp/

~motizuki/papers-english.html for a revised version.

[Mzk7] S. Mochizuki, On the Combinatorial Cuspidalization of Hyperbolic Curves, Osaka J.

Math. 47 (2010), 651–715.

[MzTa] S. Mochizuki and A. Tamagawa, The Algebraic and Anabelian Geometry of Config-

uration Spaces, Hokkaido Math. J. 37 (2008), 75–131.

[Naka] H. Nakamura, Galois rigidity of pure sphere braid groups and profinite calculus, J.

Math. Sci. Univ. Tokyo, 1 (1994), 71–136.

341Nodally nondegenerate outer representations



[Tk] N. Takao, Braid monodromies on proper curves and pro-l Galois representations, to

appear in J. Inst. Math. Jussieu.

Yuichiro Hoshi

Research Institute for Mathematical Sciences

Kyoto University

Kyoto 606-8502, Japan

E-mail: yuichiro@kurims.kyoto-u.ac.jp

Shinichi Mochizuki

Research Institute for Mathematical Sciences

Kyoto University

Kyoto 606-8502, Japan

E-mail: motizuki@kurims.kyoto-u.ac.jp

342 Yuichiro Hoshi and Shinichi Mochizuki


