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ABSTRACT. Let X be a nonempty set of prime numbers. In the present paper, we con-
tinue the study, initiated in a previous paper by the second author, of the combinatorial
anabelian geometry of semi-graphs of anabelioids of pro-X PSC-type, i.e., roughly
speaking, semi-graphs of anabelioids associated to pointed stable curves. Our first
main result is a partial generalization of one of the main combinatorial anabelian results
of this previous paper to the case of nodally nondegenerate outer representations, i.e.,
roughly speaking, a sort of abstract combinatorial group-theoretic generalization of the
scheme-theoretic notion of a family of pointed stable curves over the spectrum of a
discrete valuation ring. We then apply this result to obtain a generalization, to the case
of proper hyperbolic curves, of a certain injectivity result, obtained in another paper by
the second author, concerning outer automorphisms of the pro-2' fundamental group of a
configuration space associated to a hyperbolic curve, as the dimension of this configuration
space is lowered from two to one. This injectivity allows one to generalize a certain
well-known injectivity theorem of Matsumoto to the case of proper hyperbolic curves.
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Introduction

Let 2 be a nonempty set of prime numbers. In the present paper, we
continue the study, initiated in [Mzk4] by the second author, of the combi-
natorial anabelian geometry of semi-graphs of anabelioids of pro-X PSC-type,
i.e., roughly speaking, semi-graphs of anabelioids associated to pointed stable
curves. In particular, it was shown in [Mzk4] (cf. [Mzk4], Corollary 2.7, (iii))
that in the case of a semi-graph of anabelioids of pro-X PSC-type that arises
from a stable log curve over a log point (i.e., the spectrum of an algebraically
closed field k of characteristic p ¢ X equipped with the log structure determined
by the morphism of monoids N3 1+ 0 € k), the semi-graph of anabelioids in
question may be reconstructed group-theoretically from the outer action of the
pro-X logarithmic fundamental group of the log point (which is noncanonically
isomorphic to the maximal pro-X quotient Z* of Z) on the pro-X fundamental
group of the semi-graph of anabelioids. As discussed in the introduction to
[Mzk4], this result may be regarded as a substantial refinement of the pro-/
criterion of Takayuki Oda for a proper hyperbolic curve over a discretely
valued field to have good reduction (i.e., a special fiber whose associated semi-
graph consists of a single vertex and no edges). We shall refer to an outer
action of the type just described as an outer representation of IPSC-type (cf.
Definition 2.4, (i)).

In the present paper, the theory of [Mzk4] is generalized to the case of
nodally nondegenerate outer representations, or outer representations of NN-type,
for short (cf. Definition 2.4, (iii)). Indeed, our first main result (cf. Corollary
4.2; Remark 4.2.1) is the following partial generalization of [Mzk4], Corollary
2.7, (iii).

THEOREM A (Graphicity of certain group-theoretically cuspidal isomor-
phisms). Let X be a nonempty set of prime numbers, 4 and H semi-graphs
of anabelioids of pro-X PSC-type (cf. [Mzk4|, Definition 1.1, (1)), Ily (respec-
tively, Iy ) the pro-X fundamental group of 4 (respectively, # ), o : Iy = I,
an isomorphism of profinite groups, I and J profinite groups, p; : I — Aut(9)
and p; : J — Aut(H#) continuous homomorphisms, and B : I = J an isomorphism
of profinite groups. Suppose that the following three conditions are satisfied:

(1) The diagram

I —— Out(H{g/)

ﬁl lolu(a)

J —— Out(H;g/)

—where the right-hand vertical arrow is the homomorphism induced
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by o, the upper and lower horizontal arrows are the homomorphisms
determined by p; and p;, respectively—commutes.

(it) py, p; are of NN-type (cf. Definition 2.4, (iii)).

(iii) Cusp(¥9) # &, and the isomorphism o is group-theoretically cuspidal
(i.e., roughly speaking, preserves cuspidal inertia groups—cf. [Mzk4],
Definition 1.4, (iv)).

Then the isomorphism o is graphic (i.e., roughly speaking, is compatible with the
respective semi-graph structures—cf. [Mzk4], Definition 1.4, (i)).

The notion of an outer representation of NN-type may be regarded as a
natural outgrowth of the philosophy pursued in [Mzk4] of reducing (various
aspects of ) the classical pro-X scheme-theoretic arithmetic geometry of stable
curves over a discrete valuation ring whose residue characteristic is not con-
tained in X to a matter of combinatorics. Ideally, one would like to reduce the
entire profinite classical scheme-theoretic arithmetic geometry of hyperbolic
curves over number fields or p-adic local fields to a matter of combinatorics,
but since this task appears to be too formidable at the time of writing, we
concentrate on the pro-prime-to-p aspects of stable log curves over a log
point. On the other hand, whereas the outer representations of IPSC-type
studied in [Mzk4] literally arise from (log) scheme theory (i.e., a stable log
curve over a log point), the outer representations of NN-type studied in the
present paper are defined in purely combinatorial terms, without reference to
any scheme-theoretic family of stable log curves. If one thinks of a stable log
curve as a sort of ‘“rational point” of the moduli stack of stable curves, then
this point of view may be thought of as a sort of abandonment of the point of
view implicit in the so-called “Section Conjecture’: that is to say, instead of
concerning oneself with the issue of precisely which group-theoretic objects
arise from a scheme-theoretic rational point (as is the case with the Section
Conjecture),

one takes the definition of group-theoretic objects via purely combinatorialf
group-theoretic conditions—i.e., group-theoretic objects which do not nec-
essarily arise from scheme theory—as the starting point of one’s research,
and one regards as the goal of one’s research the study of the intrinsic
combinatorial geometry of such group-theoretic objects (i.e., without regard
to the issue of the extent to which these objects arise from scheme theory).

This point of view may be seen throughout the development of the theory of
the present paper, as well as in the theory of [Mzk6].

On the other hand, from a more concrete point of view, the theory of
the present paper was motivated by the goal of generalizing the injectivity
portion of [Mzk7|, Theorem A, (i), to proper hyperbolic curves in the case of
the homomorphism induced by the projection from two-dimensional to one-
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dimensional configuration spaces (cf. Theorem B below). The main injectivity
result that was proven in [Mzk7] (namely, [Mzk7], Corollary 2.3) was obtained
by applying the combinatorial anabelian result given in [Mzk4], Corollary 2.7,
(iii). On the other hand, this result of [Mzk4| is insufficient in the case of
proper hyperbolic curves. To see why this is so, we begin by recalling that this
result of [Mzk4] is applied in [Mzk7] (cf. the discussion of “canonical splittings”
in the Introduction to [Mzk7]) to study the degenerations of families of
hyperbolic curves that arise when

(a) a moving point on an affine hyperbolic curve collides with a cusp.
On the other hand, since proper hyperbolic curves have no cusps, in order to
apply the techniques for proving injectivity—involving “‘canonical splittings”—
developed in [Mzk7], it is necessary to consider the degenerations of families of
hyperbolic curves that arise when

(b) a moving point on a (not necessarily affine) “degenerate hyperbolic

curve” (i.e., a stable curve) collides with a node.

Since the local pro-2 fundamental group in a neighborhood of a cusp or a
node—i.e., the profinite group that corresponds to the “fundamental group of
the base space of the degenerating family of hyperbolic curves under consid-
eration”—is isomorphic (in both the cuspidal and nodal cases!) to the (same!)
profinite group Z*, one might at first glance think that the situation of (b) may
also be analyzed via the results of [Mzk7]. Put another way, both (a) and (b)
involve a continuous action of a profinite group isomorphic to Z> on a semi-
graph of anabelioids of pro-X PSC-type. On the other hand, closer inspection
reveals that there is a fundamental intrinsic difference between the situations
of (a) and (b). Indeed, in the situation of (a), we apply the reconstruction
algorithms developed in [Mzk4], which depend in an essential way on a certain
positivity, namely, the positivity of the period matrix—which implies, in par-
ticular, the nondegeneracy of this period matrix—of the Jacobians of the
various coverings of the degenerating family of curves under consideration
(cf. the proof of [Mzk4], Proposition 2.6). By contrast, one verifies easily that

the symmetry in a neighborhood of a node induced by switching the two
branches of the node implies that an analogous ‘“positivity of the period
matrix”’ of the Jacobians of the various coverings of the degenerating
family of curves under consideration can only hold in the sitation of (b) if
this “positivity”’ satisfies the property of being invariant with respect to
multiplication by —1—which is absurd!

In particular, one concludes that the situation of (b) can never be “abstractly
group-theoretically isomorphic” to the situation of (a). This was what led
the second author to seek, in cooperation with the first author, a (partial)
generalization (cf. Theorem A) of [Mzk4], Corollary 2.7, (iii), to the case of
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arbitrary nodally nondegenerate outer representations (which includes the situ-
ation of (b)—cf. Proposition 2.14, as it is applied in the proof of Corollary 5.3).

In passing, we note that the sense in which Theorem A is only a partial
generalization (cf. Remark 4.2.1) of [Mzk4]|, Corollary 2.7, (iii), is interesting
in light of the above discussion of positivity. Indeed, in the case of [Mzk4|,
Corollary 2.7, (iii), it is not necessary to assume that the semi-graph of
anabelioids of pro-2 PSC-type under consideration has any cusps. On the
other hand, in the case of Theorem A, it is necessary to assume that the semi-
graph of anabelioids of pro-X PSC-type under consideration has at least one
cusp (cf. condition (iii) of Theorem A). That is to say, this state of affairs
suggests that perhaps there is some sort of “general principle” underlying these
results—which, at the time of writing, the authors have yet to succeed in
making explicit—that requires the existence of at least one cusp, whether that
cusp lie in the “base of the degenerating family of curves under consideration”
(cf. (a); [Mzk4], Corollary 2.7, (iii)) or in the “fibers of this degenerating
family” (cf. (b); condition (iii) of Theorem A).

The content of the various sections of the present paper may be sum-
marized as follows. In §1, we review various ‘“‘well-known” aspects of the
combinatorial group-theoretic geometry of semi-graphs of anabelioids of pro-X
PSC-type—i.c., without considering any continuous action of a profinite group
on the semi-graph of anabelioids under consideration. In §2, we define and
develop the basic theory surrounding nodally nondegenerate outer representa-
tions. In §3, we discuss various analogues of the combinatorial group-theoretic
geometry reviewed in §1 in the case of nodally nondegenerate outer repre-
sentations. In §4, we observe that the theory developed in §1, §2, and §3
is sufficient to prove the analogue discussed above (i.e., Theorem A) of the
combinatorial anabelian result given in [Mzk4], Corollary 2.7, (iii), in the case
of nodally nondegenerate outer representations. In §5, we apply this result
(i.e., Theorem A) to generalize (cf. the above discussion) [Mzk7], Corollary 2.3,
to the case of not necessarily affine curves (cf. Corollary 5.3). Finally, in §6,
we discuss various consequences of the injectivity result proven in §5. The first
of these is the following partial generalization (cf. Theorem 6.1) of [Mzk7],
Theorem A.

THEOREM B (Partial profinite combinatorial cuspidalization). Let X be a set
of prime numbers which is either of cardinality one or equal to the set of all
prime numbers, n a positive integer, X a hyperbolic curve of type (g,r) over an
algebraically closed field of characteristic ¢ X, X, the n-th configuration space
of X (i.e., roughly speaking, the complement of the diagonals in the product of n
copies of X—cf. [MzTa|, Definition 2.1, (i)), II, the maximal pro-X quotient
of the fundamental group of X,, and Out™C(II,) = Out(Il,) the subgroup of
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the group Out(Il,) consisting of the outomorphisms (cf. the discussion entitled
“Topological groups” in §0) of II, which are FC-admissible (ie., roughly
speaking, preserve fiber subgroups and cuspidal inertia groups—cf. [Mzk7],
Definition 1.1, (ii)).  Set ny ) if X is affine, ie., r > 1, ny &y if X is proper,
ie, r=0 (cf [Mzk7], Theorem A). Then the natural homomorphism

out™(11,,,) — out™(11,)

induced by the projection X,+1 — X, obtained by forgetting the (n+ 1)-st factor
is injective if n > 1 and bijective if n > no+ 1. Moreover, the image of the
natural inclusion

S, — Out(I1,)

—where we write S, for the symmetric group on n letters—obtained by
permuting the various factors of the configuration space X, is contained in
the centralizer Zoy (OutFC(H )

In Corollary 6.6, we also give a discrete analogue of the profinite result
constituted by Theorem B.

In passing, we observe that the injectivity portion of the pro-l case of
Theorem B may be derived from the Lie-theoretic version of Theorem B that
was obtained (in the mid-1990’s!) by Naotake Takao (cf. [Tk], Corollary 2.7).
In this context, we note that the point of view of [Tk] differs quite substantially
from the point of view of the present paper and is motivated by the goal of
completing the proof of a certain conjecture of Takayuki Oda concerning pro-/
outer Galois actions associated to various moduli stacks of stable curves.
Nevertheless, this point of view of [Tk] is interesting in light of the point of
view discussed above to the effect that the content of [Mzk4]—and hence also
of Theorem A above—may be thought of as a sort of substantial refinement of
Oda’s good reduction criterion.

Theorem B allows one to obtain the following generalization (cf. Corol-
laries 6.2; 6.3, (i)) to not necessarily affine hyperbolic curves of a well-known
injectivity result of Matsumoto (cf. [Mts], Theorems 2.1, 2.2).

THEOREM C (Kernels of outer representations arising from hyperbolic
curves). Let X be a set of prime numbers which is either of cardinality one
or equal to the set of all prime numbers, X « hyperbolic curve over a perfect field
k such that every element of X is invertible in k, k an algebrazc closure of k, n a
positive integer, X,, the n-th configuration space of X, Gk Gal(k/k) Ay, the
maximal pro-X quotient of the fundamental group of X, ®kk and API\{()] o}
the maximal pro-% quotient of the fundamental group of Pl M0, 1,00} Then
the following hold:
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(1) The kernel of the natural outer representation

is independent of n and contained in the kernel of the natural outer
representation
2 .
P01}k * Ok = Out(dp1ygo,1,))-
(i) Suppose that X is the set of all prime numbers. (Thus, k is neces-
sarily of characteristic zero.) Write Q for the algebraic closure of
Q determined by k and Gq &f Gal(Q/Q). Then the kernel of the
homomorphism pi K 8 contained in the kernel of the outer homo-
morphism
Gk — GQ

determined by the natural inclusion Q — k.
In particular, if k is a number field or p-adic local field (cf. the discussion entitled
“Numbers” in §0), and X is the set of all prime numbers, then the outer
representation

pf/k : Gy — Out(n; (X ®y k))
determined by the natural exact sequence
1 = m(X ®ck) = m(X) = G — 1
is injective.

Finally, we remark that in [Bg], a result that corresponds to a certain
special case of Theorem C, (i), is asserted (cf. [Bg], Theorem 2.5). At the time
of writing, the authors of the present paper were not able to follow the proof of
this result given in [Bg]. Nevertheless, in a sequel to the present paper, we
hope to discuss in more detail the relationship between the theory of the present

paper and the interesting geometric ideas of [Bg] concerning the issue of
“canonical liftings” of cycles on a Riemann surface.

0. Notations and conventions

Sets: If S is a set, then we shall denote by 25 the power set of S and by
S# the cardinality of S.

Numbers: The notation N will be used to denote the set or (additive)
monoid of nonnegative rational integers. The notation Z will be used to
denote the set, group, or ring of rational integers. The notation Q will be used
to denote the set, group, or field of rational numbers. The notation Z will be
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used to denote the profinite completion of Z. If p is a prime number, then
the notation Z, (respectively, Q,) will be used to denote the p-adic completion
of Z (respectively, Q).

A finite extension field of Q will be referred to as a number field. 1f p is a
prime number, then a finite extension field of Q, will be referred to as a p-adic
local field.

Monoids: We shall write M®P for the groupification of a monoid M.

Topological groups: Let G be a topological group and H = G a closed
subgroup of G. Then we shall denote by Zg(H) (respectively, Ng(H);
respectively, Cq(H)) the centralizer (respectively, normalizer; respectively, com-
mensurator) of H in G, ie.,

ZG(H)déf{geGthgf1 =h for any he H},

f _
No(H)E {geGlg-H-g' = H},

Cs(H) &f {ge G|HNg-H-g " is of finite index in H and g-H g '};

we shall refer to Z(G) & Zi(G) as the center of G. It is immediate from the

definitions that
Zs(H) = Ng(H) < Cq(H); H < Ng(H).

We shall say that the subgroup H is commensurably terminal in G if
H = Cg(H).

We shall say that a profinite group G is slim if Zg(H) = {1} for any open
subgroup H of G.

Let X2 be a set of prime numbers, / a prime number, and G a profinite
group. Then we shall write G* for the maximal pro-X quotient of G and
G & G,

We shall write G%° for the abelianization of a profinite group G, i.e., the
quotient of G by the closure of the commutator subgroup of G.

If G is a profinite group, then we shall denote the group of automorphisms
of G by Aut(G) and the group of inner automorphisms of G by Inn(G) <
Aut(G). Conjugation by elements of G determines a surjection of groups
G — Inn(G). Thus, we have a homomorphism of groups G — Aut(G) whose
image is Inn(G) < Aut(G). We shall denote by Out(G) the quotient of Aut(G)
by the normal subgroup Inn(G) = Aut(G) and refer to an element of Out(G)
as an outomorphism of G. In particular, if G is center-free, then the natural
homomorphism G — Inn(G) is an isomorphism; thus, we have an exact sequence
of groups

1 - G — Aut(G) — Out(G) — 1.
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If, moreover, G is topologically finitely generated, then one verifies easily that
the topology of G admits a basis of characteristic open subgroups, which thus
induces a profinite topology on the groups Aut(G) and Out(G) with respect
to which the above exact sequence determines an exact sequence of profinite
groups. 1If p:J — Out(G) is a continuous homomorphism, then we shall
denote by
out
G >xJ

the profinite group obtained by pulling back the above exact sequence of
profinite groups via p. Thus, we have a natural exact sequence of profinite
groups out
l1-G—-G>xJ—J—1.

One verifies easily (cf. [Hsh], Lemma 4.10) that if an automorphism « of G X
preserves the subgroup G < G X J and induces the identity automorphisms of
the subquotientgutG and J, then the automorphism o is the identity auto-
morphism of G X J.

If M and N are topological modules, then we shall refer to a homo-
morphism of topological modules ¢ : M — N as a split injection if there exists a
homomorphism of topological modules y : N — M such that yo¢: M — M is
the identity automorphism of M.

Semi-graphs: Let I" be a connected semi-graph. Then we shall say that
I is untangled if every closed edge of I' abuts to two distinct vertices.

Log stacks: Let X'°¢ and Y'°¢ be log stacks whose underlying (algebraic)
stacks we denote by X and Y, respectively; .#x and .4y the respective sheaves
of monoids on X and Y defining the log structures of X'°¢ and Y'°¢;
flog: xlog _, ylog 3 morphism of log stacks. Then we shall refer to the
quotient of .#y by the image of the morphism f~'.#y — .4y induced by f'°2
as the relative characteristic sheaf of f1°2; we shall refer to the relative
characteristic sheaf of the morphism X!°¢ — X (where, by abuse of notation,
we write X for the log stack obtained by equipping X with the trivial log
structure) induced by the natural inclusion Oy — .#y as the characteristic sheaf
of X'log,

Curves: We shall use the terms “hyperbolic curve”, “cusp”, “stable log
curve”, “smooth log curve”, and “tripod” as they are defined in [Mzk4]|, §0;
[Hsh], §0. If (g,r) is a pair of natural numbers such that 2g — 2 + r > 0, then
we shall denote by .#, , the moduli stack of r-pointed stable curves of genus g
over Z whose r marked points are equipped with an ordering, My, < M, , the
open substack of .4, , parametrizing smooth curves, and ./’ the log stack
obtained by equipping .#, , with the log structure associated to the divisor with

normal crossings A, ,\My, = My,
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Let n be a positive integer and X'°¢ a stable log curve of type (g,r) over a
log scheme S'°2. Then we shall refer to the log scheme obtained by pulling
back the (1-)morphism ﬁ;ﬁﬂ,l — ﬁ;_";‘g given by forgetting the last n points via
the classifying (1-)morphism S'°® — 7% of X'°¢ as the n-th log configuration

space of X'°g,

1. Some complements concerning semi-graphs of anabelioids of PSC-type

In this section, we give some complements to the theory of semi-graphs of
anabelioids of PSC-type developed in [Mzk4].

A basic reference for the theory of semi-graphs of anabelioids of PSC-type
is [Mzk4]. We shall use the terms “semi-graph of anabelioids of PSC-type”,
“PSC-fundamental group of a semi-graph of anabelioids of PSC-type”, “‘finite
étale covering of semi-graphs of anabelioids of PSC-type”, “‘vertex”, “edge”,
“cusp”, “node”, “verticial subgroup”, “edge-like subgroup”, “nodal subgroup”,
“cuspidal subgroup”, and “sturdy” as they are defined in [Mzk4|, Definition
1.1. Also, we shall refer to the “PSC-fundamental group of a semi-graph of
anabelioids of PSC-type” simply as the “fundamental group” (of the semi-
graph of anabelioids of PSC-type). That is to say, we shall refer to the
maximal pro-2 quotient of the fundamental group of a semi-graph of
anabelioids of PSC-type (as a semi-graph of anabelioids!) as the “fundamental
group of the semi-graph of anabelioids of PSC-type”. In this section, let X
be a nonempty set of prime numbers, ¥ a semi-graph of anabelioids of pro-X
PSC-type, and G the underlying semi-graph of 4. (In particular, G is a finite
semi-graph.) Also, let us fix a universal covering % — 4 with underlying
projective system of semi-graphs G (i.e., the projective system consisting of the
underlying graphs G’ of the connected finite étale subcoverings %' of ¥ — %)
and denote by I1y4 the (pro-X) fundamental group of %.

DEeFINITION 1.1.
(1) We shall denote by Vert(¥9) (respectively, Cusp(¥%); Node(%)) the
set of the vertices (respectively, cusps; nodes) of ¥.
(ii) We shall write
Vert(%) def lim Vert(%');
Cusp(9) & lim Cusp(%');
Node(9) & lim Node(%")

—where the projective limits are over all connected finite étale
subcoverings 4’ — % of the fixed universal covering 4 — ¥.
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(iii) We shall write
VCN(%) ¥ Vert(%) U Cusp(%) U Node(%);
Edge(¥%) = Cusp(¥%) L Node(9);
VCN(9) & Vert(4) L Cusp(%) L Node(%);
Edge(%9) =] Cusp(%) LI Node(%).
(iv) Let
7" : Edge(%) — 2Vert(®)
(respectively, % : Vert(%) — 2CuP(@);
N2 Vert(9) — 2Node(®),
& : Vert(9) — 28de()

be the map obtained by sending e e Edge(¥) (respectively, ve
Vert(%); v e Vert(9); v e Vert(%)) to the set of vertices (respectively,
cusps; nodes; edges) of ¢ to which e abuts (respectively, which abut
to v; which abut to v; which abut to v). Also, we shall write

7" : Edge(%) — 2Vert¥)

(respectively, @ : Vert(%) — 2Cup(9),

N2 Vert(9) — 2Node(®),
& : Vert(9) — 284z(9))

for the map induced by the various ¥"’s (respectively, €’s; A’s; &’s)
involved.

(v) Let 2e VCN(%). Suppose that ¥’ — % is a connected finite étale
subcovering of 4 — %. Then we shall denote by Z(%4’) e VCN(%)
the image of z in VCN(%').

(vi) Let ve Vert(%), e Vert(9) be such that #(%) =v. Then it is
easily verified that there exists a wumique verticial subgroup I7; of
Iy associated to the vertex v such that for every connected finite
étale subcovering ¥’ — % of ¢ — ¥, it holds that the subgroup
;NI < Il,—where we write 11, < I14 for the open subgroup
corresponding to ¥’ — %—is a verticial subgroup of I associated
to 9(%4’') e Vert(¢'); thus, the element ¢ determines a particular
verticial subgroup of 174 associated to the vertex v. We shall refer
to this verticial subgroup of I14 determined by o as the verticial
subgroup of Ily associated to v and denote it by I7;.
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In a similar vein, for & e Cusp(¥) (respectively, ée Node(%);
¢ € Edge(9)), by a similar argument to the argument just applied
to define the verticial subgroup of I14 associated to o, the element
¢ determines a particular cuspidal (respectively, nodal; edge-like)
subgroup of I1y4 associated to the cusp (respectively, node; edge)
e(%9) of 9. We shall refer to this cuspidal (respectively, nodal,
edge-like) subgroup of ITy as the cuspidal (respectively, nodal; edge-
like) subgroup of Ily associated to € and denote it by I1;.

Let n be a natural number, and v,w € Vert(¥9). Then we shall

write d(v,w) < n if the following conditions are satisfied:

(1) If n=0, then v =w.

(2) If n>1, then there exist n nodes ej,...,e, € Node(¥9) of ¢
and n— 1 vertices vy,...,v,-1 € Vert(9) of ¢ such that, for

1 <i<n, it holds that 7 (e;) = {v;—1,v;}—where we write

vo &y and Up I
Moreover, we shall write o(v,w) =n if d(v,w) <n and o(v,w) £
n—1. If 5(v,w) = n, then we shall say that the distance between v
and w is equal to n.

Let o,w e Vert(9). Then we shall write

5(5,w) ¥ sup{o(5(9"), w(%'))} e NU {0}
o

—where %' ranges over the connected finite étale subcoverings
Y - Gof 9 —%. Ifd®,w)=neNU{o0}, then we shall say that
the distance between v and w is equal to n.

REMARK 1.1.1. Let Ze VCN(9), and =z &f Z(9) e VCN(%). Then whereas
z completely determines the subgroup I1;, z only determines the Il4-conjugacy
class of the subgroup I7;.

DeriNiTION 1.2, We shall say that the semi-graph of anabelioids of pro-~
PSC-type ¥ is untangled if the underlying semi-graph of ¢ is untangled (cf. the
discussion entitled ““Semi-graphs” in §0).

REMARK 1.2.1.

(1)

It follows from a similar argument to the argument in the discussion
entitled “Curves” in [Mzk6], §0, that there exists a connected finite
étale covering 4’ — % of % such that %' is untangled.

It is easily verified that if % is untangled, then every finite étale
covering 4’ — 4 of 4 is untangled.

It follows from (i) and (i) that for every ée Node(%), we have
7 (e)” =2.
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DEerINITION 1.3.

(i) We shall denote by IT2*/°**° the quotient of I72® by the closed
subgroup generated by the images in H;b of the edge-like subgroups

(ii) Let #eVert(4). Then we shall denote by I7°*°® the quotient of
the abelianization Hgb by the closed subgroup generated by the
images in I72° of IT; < I1;—where é ranges over elements of &(%).
(Here, we note that it follows from [Mzk4], Proposition 1.5, (i), that
for ée Edge(%), it holds that ée &(3) if and only if I7; < IT;.)

(iii) Let ve Vert(9). Then observe that conjugation by elements of /1y
determines natural isomorphisms between the various I72”°*°, as &
ranges over the elements of Vert(%) such that v = 5(%). We shall
denote the resulting profinite group by [73%/°dee,

LeEmMMA 1.4 (Verticial decompositions inside abjedge-quotients). The natural
homomorphism

P ab/edge
@ H;ib/edge N H{g /edg
ve Vert(9)

is a split injection (cf. the discussion entitled “Topological groups” in §0) whose
image is a free Z*-module of finite rank (cf. [Mzk4], Remark 1.1.4).

Proor. It follows immediately from the well-known structure of the
maximal pro-X quotient of the fundamental group of a smooth curve over
an algebraically closed field of characteristic ¢ 2 that the quotient by the image
of the natural homomorphism in question is a free 7% -module. Therefore,
to verify Lemma 1.4, it suffices to verify that the natural homomorphism
in question is injective. Now suppose that we have been given, for each
v e Vert(¥), a connected finite étale covering #, — ¥, of the anabelioid ¥,
corresponding to v € Vert(%) which arises from an open subgroup of [72%/¢%,
Then to verify the desired injectivity, it suffices to verify that there exists a
connected finite étale covering # — ¥ of % which arises from an open
subgroup of IT2”*** such that, for each v € Vert(%), any connected component
of the restriction of ¥ — ¥ to %, is isomorphic to #, over %4,. To this end,
for ve Vert(%), write (I13%°% —) 4, for the Galois group of the connected
finite étale covering J#, — %,

def def
4. I 4avc4a= [ A
we Vert(9)\{v} we Vert(9)
Fy — 9, for the (not necessarily connected) finite étale covering of %, ob-
tained as the disjoint union of copies of #, indexed by the elements of 4.,
and, for ee &(v), #l|y — Y. for the finite étale covering of ¥, obtained as
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the restriction of %, — %, to the anabelioid ¥, corresponding to e e A7 (v).
Then the natural action of 4., on 4., and the tautological action of 4, on %,
over %, naturally determine an action of 4 on &%, over 4,. Moreover, one
verifies immediately that this A-action determines a structure of A-torsor on
the covering %, — %,. Therefore, by gluing the various %, (for v € vert(¥9)) by
A-equivariant isomorphisms between the various #[, (for ee Node(%)), we
obtain a finite étale covering & — ¥, any connected component of which
satisfies the desired condition. This completes the proof of the injectivity of the
homomorphism in question. O

Remark 1.4.1. The following two assertions follow immediately from
Lemma 1.4.
(i) If I, = Ily is a verticial subgroup of I1y, then the natural homo-
morphism [72b/¢d —, T3P/ §s injecrive.
(i) If vy,vy € Vert(9) are distinct, then for any verticial subgroups
11,11, < Ily associated to v;, v, the intersection of the images

of I, and IT, in I3 is trivial.

LEMMA 1.5 (Intersections of edge-like subgroups). Ler é,é, € Edge(%).
Then the following conditions are equivalent:

(i) & =e.

(i) Iz NI # {1}.
In particular, if II; NII; # {1}, then II; = II;,.

Proor. The implication
(i) = (ii)
is immediate; thus, to verify Lemma 1.5, it suffices to prove the implication
(il) = (i).
To this end, let us assume that I7; NIl; # {1}. Since Iy is torsion-free
(cf. [Mzk4|, Remark 1.1.3), by projecting to the maximal pro-/ quotients, for
some [ € X, of suitable open subgroups of the various pro-X groups involved,
we may assume without loss of generality that ~ = {/}. In particular, since
Il and Il; are isomorphic to Z;, we may assume without loss of generality
that I1; N1I; is open in I1; and I1;. Thus, by replacing 4 by a connected
finite étale covering of %, we may assume without loss of generality that
II;, = II;,. Then condition (i) follows from [Mzk4|, Proposition 1.2, (i). [

LemMA 1.6 (Group-theoretic characterization of subgroups of edge-like
subgroups). Let J = Ily be a nontrivial procyclic closed subgroup of Ilg.
Then the following conditions are equivalent:

(i) J is contained in a(n)—necessarily unique (cf. Lemma 1.5)—edge-like

subgroup.



Nodally nondegenerate outer representations 289

(i) There exists a connected finite étale covering 9" — G of G such that
for any connected finite étale covering 9' — % of % that factors
through 41 — 4, the image of the composite

JﬂH(@/ — H%, — Hab/edge

g!
is trivial.
Proor. The implication
(i) = (i)
is immediate; thus, to verify Lemma 1.6, it suffices to prove the implication
(i) = (1).
To this end, let us assume that condition (ii) holds. Now since edge-like
subgroups are commensurably terminal (cf. [Mzk4], Proposition 1.2, (ii)), it
suffices to verify condition (i) under the further assumption that 47 =% (cf.
the uniqueness portion of condition (i)). Moreover, since Ily is torsion-free
(cf. [Mzk4], Remark 1.1.3), to verify condition (i), we may assume without loss
of generality (cf. the uniqueness portion of condition (i))—by projecting to the
maximal pro-/ quotients, for some /€ X, of suitable open subgroups of the
various pro-X groups involved—that X = {/}.
If H < 14 is an open subgroup of Iy, then let us denote by 9y — ¥ the

connected finite étale covering of % corresponding to the open subgroup
Hc Iy (e, Ily, = H < Ily). Now we claim that

(x) for any normal open subgroup N < Ily of Iy, there exists an edge
of %, at which the connected finite étale covering ¥y — %,y is totally
ramified, i.e., there exists an edge e € Edge(%,.n) such that the composite
of natural homomorphisms

M.—My,,=J-N— (J-N)/N

J-N

s surjective.

Indeed, since J is procyclic, it follows that (J - N)/N is cyclic; in particular, we
obtain a natural surjection H;tj’w — (J-N)/N. Moreover, since (J-N)/N is
generated by the image of J, it follows from condition (ii) that the composite of
natural homomorphisms

@ Mo 1P, — (- N)N

95N
e’ eEdge(9,n)

is surjective. Therefore, it follows from the fact that (J-N)/N is a cyclic
[-group that there exists an edge e of %,y such that the composite of the
natural homomorphisms 17, — Ilg,, =J-N — (J-N)/N is surjective, as
desired. This completes the proof of (x).



290 Yuichiro HosHr and Shinichi MoCHIZUKI

If N<Ily is a normal open subgroup, then let us denote by Ey <
Edge(¢y) the subset of Edge(%y) consisting of edges which are fixed by the
natural action of J on ¥y. Then it follows from (x) that for any normal open
subgroup N < Ilg, it holds that Ey is nonempty; thus, since Ey is finite, the
projective limit lim, Ey—where N ranges over the normal open subgroups of
I14—is nonempty. Note that since () y N—where N ranges over the normal
open subgroups of ITy—is {1}, it follows that each element of the projective
limit lim, Ey naturally determines an element of Edge(%). Let éc Edge(9)
be an element of Edge(¥) determined by an element of lim, Ey # . Then
it follows from the various definitions involved that J < I7;. This completes
the proof of the implication

(i) = (i). O
REMARK 1.6.1. When %' =% and Node(%) = &, Lemma 1.6 follows
immediately from [Naka], Lemma 2.1.4.

Lemma 1.7 (Intersections of verticial and edge-like subgroups). Let
e Vert(9), and ée Edge(%). Then the following conditions are equivalent:
(i) eeé(d).
() ;NI #{1}.
In particular, if II;N1I; # {1}, then II; < I;.

Proor. The implication
(i) = (i)
is immediate; thus, to verify Lemma 1.7, it suffices to prove the implication
(i) = (i).
To this end, let us assume that I7T; N I1; # {1}. Since 1y is torsion-free (cf.
[Mzk4], Remark 1.1.3), by projecting to the maximal pro-/ quotients, for some
[ € X, of suitable open subgroups of the various pro-X groups involved, we
may assume without loss of generality that 2 = {/}. In particular, since I1;
is isomorphic to Z;, we may assume without loss of generality that I7; N I1;
is open in Il;. Thus, by replacing % by a connected finite étale covering of ¥,
we may assume without loss of generality that I7; = IT;. Then condition (i)
follows from [Mzk4|, Proposition 1.5, (i) (cf. also [Mzk4], Proposition 1.2, (i)).
O
LemMa 1.8 (Nonexistence of loops). Let oy,, € Vert(9) be such that
D1 # 0y. Then
(N E)NAN (@) <1

{6 e Vert(9) |8(5, 1) = 0(5,8r) = 1}7 < 1.

Proor. If the cardinality of either of the sets equipped with a superscript
“#” is > 2, then the offending edges or vertices give rise to a loop of G, i.e.,
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a projective system of loops (that map isomorphically to one another) in the
various semi-graphs that appear in the projective system G. On the other
hand, since % is a universal covering of %, one verifies immediately that no
such projective system of loops exists. Thus, we obtain a contradiction. This
completes the proof of Lemma 1.8. O

REMARK 1.8.1.

(i) Let#e Vert(4). Recall that if & e .47(#), then the inclusion I7; < IT;
is strict (i.e., II; # II;). In particular, it follows immediately that
either () = & or N (D)" = 2.

(ii) Let &),0, € Vert(%). Then, in light of (i), it follows immediately
from Lemma 1.8 that the following assertion holds:

U =10y if and only if N (D1) = N(Da).

(iii) Let é;,é, € Node(#). Then it follows immediately from Lemma 1.8
that the following assertion holds:

If & #é, then (¥ (&) NV (&))* < 1.

In particular, it follows from Remark 1.2.1, (iii), that the following
assertion holds:

é =& if and only if  ¥7(é;) = 7 (&).

LemMA 1.9 (Graph-theoretic geometry via verticial subgroups). For i =1,2,
let ©; € Vert(9). Then the following hold:
(1) If I NIT5 # {1}, then either II; = II; or II; NIl is a nodal
subgroup of I1y.
(i) Consider the following three (mutually exclusive) conditions:
(1) o(v1,02) =0.
(2) o(v1,02) = 1.
(3) 5(171,172) > 2.
Then we have equivalences

Hed);  @e)=2") @)e3)

with the following four conditions:
(1/) Iy, = IT5,.

(2) My # 5 15 N 115 # {1}
(2") Mg NI, is a nodal subgroup of Ilg.
(3/) Hﬁlﬂnﬁz:{l}'

Proor. First, we consider assertion (i). Suppose that H &f II5 NI, #

{1}, and IT; # II;, (so &, # Up—cf. [Mzk4], Proposition 1.2, (i)). Note that to
verify assertion (i), it suffices to show that H is a nodal subgroup of IT4. Also,
we observe that since nodal and verticial subgroups of I1y are commensurably
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terminal in I1y (cf. [Mzk4], Proposition 1.2, (ii)), it follows that we may assume
without loss of generality—by replacing ¢ by a connected finite étale covering
of ¥—that 9,(9) # 02(9).

Let J < H be a nontrivial procyclic closed subgroup of H. Then we
claim that J is contained in an edge-like subgroup of ITy. Indeed, since
J € H = II; N [T;,—where ) # t,—it follows from Remark 1.4.1, (ii), to-
gether with our assumption that (%) # (%), that the image of J in 72"/
is trivial. Thus, by applying this observation to the various connected finite
étale coverings of ¢ involved, we conclude that J satisfies condition (ii) in the
statement of Lemma 1.6. In particular, it follows from Lemma 1.6 that J is
contained in an edge-like subgroup. This completes the proof of the above
claim. On the other hand, if I7; is an edge-like subgroup of I74 such that
J < II;, then it follows from Lemma 1.7 that the inclusion J < I1; implies
that I7; is in fact nodal, and, moreover, that [1; < IT; NIl; = H.

By the above discussion, it follows that

H= ) I
ge N (5NN ()
On the other hand, it follows from Lemma 1.8 that the cardinality of the
intersection A"(%;) N .A"(D,) is < 1. Therefore, it follows that H is a nodal
subgroup of ITy. This completes the proof of assertion (i).
Next, we consider assertion (ii). The equivalence

(1) & (1)

follows from [Mzk4], Proposition 1.2, (i). In light of this equivalence, the
implications

2)=@2)=(2"
follow from assertion (i), while the implication
2" =2
follows from Lemma 1.7. The equivalence
(3) = (3)
then follows from the equivalences
e )  2)«@2). O

Remark 1.9.1. It follows immediately from the wvarious definitions
involved that for any semi-graph of anabelioids of pro-2 PSC-type ¥, there
exists, in the terminology of [Mzk6|, Definition 1.2, (ii), an IPSC-extension

11—y —II; - 1—1.
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Therefore, Lemma 1.9 may also be obtained as a consequence of [Mzk6]|,
Proposition 1.3, (iv).

Lemma 1.10 (Conjugates of verticial subgroups). Suppose that % is

untangled. Ler o, € Vert(9) be such that 9(9) =10 (9). Then v#70 if
and only if ;N ITy = {1}.

Proor. The sufficiency of the condition is immediate; thus, to prove
Lemma 1.10, it suffices to verify the necessity of the condition. To this end,
let us assume that © # #’. Then there exists a connected finite étale subcover-
ing 9’ — % of 9 — % such that 5(%9') # #'(%'). On the other hand, since %
is untangled, and ©(%) =1'(%), it follows that A" (3(9")N AN (0'(9)) = &.
Thus, II; NI NI, = {1} by Lemma 1.9, (ii); in particular, since IT; is
torsion-free (cf. [Mzk4], Remark 1.1.3), we obtain that IT; NIy = {1}, as
desired. N

Remark 1.10.1. It follows immediately from Lemma 1.10 that the
following assertion holds:

Suppose that ¥ is untangled. Let v e Vert(9) be a vertex of 4, I1, < Ilg
a verticial subgroup associated to v, and y € IIg\Il,. Then II,Ny-II,-

yt={1}.

DeriNiTION 1.11. Suppose that 4 is sturdy. Then by eliminating the
cusps (i.e., the open edges) of the semi-graph G, and, for each vertex v of ¥,
replacing the anabelioid %, corresponding to v by the anabelioid %, of finite
étale coverings of %, that restrict to a trivial covering over the cusps of % that
abut to v, we obtain a semi-graph of anabelioids of pro-X PSC-type 4. (Thus,
the pro-X fundamental group of %, may be naturally identified, up to inner
automorphism, with the quotient of /7, by the subgroup of I7, topologically
normally generated by the 11, < I1,, for e € 4(v).) We shall refer to ¥ as the
compactification of % (cf. [Mzk4], Remark 1.1.6).

REMARK 1.11.1. It follows immediately from the definition of the com-
pactification that the quotient of I1y by the closed subgroup of I74 topolog-
ically normally generated by the cuspidal subgroups of Ily is naturally
isomorphic, up to inner automorphism, to the fundamental group I7; of %.
In particular, we have a natural outer surjection /1y — I1;.

By analogy to the terms “‘group-theoretically verticial” and “‘group-
theoretically cuspidal” introduced in [Mzk4| (cf. [Mzk4], Definition 1.4, (iv)),
we make the following definition.

DermNiTION 1.12. Let # be a semi-graph of anabelioids of pro-X PSC-
type, Il the (pro-X) fundamental group of #, and «: Ily = I, an iso-
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morphism of profinite groups. Then we shall say that « is group-theoretically
nodal if, for any e € Node(¥), the image o(/1;) < I, is a nodal subgroup of
IT,,, and, moreover, every nodal subgroup of IT, arises in this fashion.

PRrOPOSITION 1.13 (Group-theoretical verticiality and nodality). Let S be a
semi-graph of anabelioids of pro-X PSC-type, Il the fundamental group of H,
and o : I1y = I, a group-theoretically verticial isomorphism. Then o is group-
theoretically nodal

Proor. This follows immediately from Lemma 1.9, (i). O

LeEmMA 1.14 (Graphicity of certain group-theoretically cuspidal and verticial
isomorphisms). Let # be a semi-graph of anabelioids of pro-X PSC-type, and
Iy the fundamental group of #. If an isomorphism o : Il = Il satisfies the
Sollowing two conditions, then o is graphic (cf. [Mzk4], Definition 1.4, (i)):

(i) o is group-theoretically cuspidal.

(ii) For any sturdy connected finite étale covering 4' — 4 of 4 such that

the corresponding covering H' — H of H (relative to the isomor-
phism o) is sturdy, the induced isomorphism (cf. (i), Remark 1.11.1)

H((// —>H7/,

—where we write 4' (respectively, #') for the semi-graph of anabe-
lioids of PSC-type obtained as the compactification (cf. Definition
1.11) of 4’ (respectively, #')—is group-theoretically verticial.

PROOF. Since the isomorphism I7;, — I, is group-theoretically verticial
(cf. condition (ii)), it follows from Proposition 1.13 that the isomorphism
Il; — Il is group-theoretically nodal. Therefore, it follows immediately
from (i) that o is graphically filtration-preserving (cf. [Mzk4], Definition 1.4,
(iii)). Thus, it follows from [Mzk4], Theorem 1.6, (ii), that o is graphic, as
desired. O

LemMA 1.15 (Chains of length two lifting adjacent vertices). Let #1,0; €
Vert(¥¢ ) be such that lf we write v; def 0;(9), then o(vi,v2) = 1. Then there
exist wy, iy, w, € Vert(¥9 ) which satisfy the following conditions (which imply that

o(wy, i) =2):
(1 ) U] = ﬂll (g> = ﬁl(g); Uy = ﬂ/z(g).
(i) SOy, i) > 2.
(i) S(iwa, W) = O, diy) = 1.

Proor. First, we observe that by replacing ¢ by a connected finite étale
covering of ¥, we may assume without loss of generality that ¥ is sturdy
(cf. [Mzk4], Remark 1.1.5) and untangled (cf. Remark 1.2.1, (i)). Then it is
easily verified that there exists a nontrivial connected finite étale covering of
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the anabelioid ¥,, corresponding to v, which is unramified over the nodes
and cusps of ¥ which abut to v;. In light of the unramified nature of this
connected finite étale covering of %,,, by gluing this covering to a split covering
over the remaining portion of ¥, we obtain a connected finite étale covering
H — %. Then it follows immediately from the various definitions involved
that the set 77 (respectively, ¥3) of vertices of # which lie over v; (respec-
tively, v2) is of cardinality > 2 (respectively, of cardinality 1). Thus, there exist
vertices wy,u; € ¥1, wo € ¥5 such that wy # u; (which, since ¥ is untangled,
implies that J(wj,u;) > 2—cf. condition (ii)), and, moreover, J(wa, w;) =
O(wa,u;) =1 (cf. condition (iii)). In particular, it follows immediately that
there exist elements wy,u;, Wy € Vert(@) which satisfy the three conditions in the
statement of Lemma 1.15. This completes the proof of Lemma 1.15. ]

2. Nodally nondegenerate outer representations

In this section, we define the notion of an outer representation of NN-type
and verify various fundamental properties of such outer representations.

If 4 is a semi-graph of anabelioids of pro-X PSC-type for some non-
empty set of prime numbers X, then since the fundamental group I74 of ¥ is
topologically finitely generated, the profinite topology of IT4 induces (profinite)
topologies on Aut(/ly) and Out(Ily) (cf. the discussion entitled ““Topological
groups” in §0). Moreover, if we write

Aut(9)

for the group of automorphisms of ¢, then by the discussion preceding [Mzk4],
Lemma 2.1, the natural homomorphism

Aut(9) — Out(Ily)

is an injection with closed image. (Here, we recall that an automorphism of a
semi-graph of anabelioids consists of an automorphism of the underlying semi-
graph, together with a compatible system of isomorphisms between the various
anabelioids at each of the vertices and edges of the underlying semi-graph
which are compatible with the various morphisms of anabelioids associated to
the branches of the underlying semi-graph—cf. [Mzk3], Definition 2.1; [Mzk3],
Remark 2.4.2.) Thus, by equipping Aut(¥) with the topology induced via this
homomorphism by the topology of Out(Ily), we may regard Aut(¥9) as being
equipped with the structure of a profinite group.

DErINITION 2.1.
(i) Let I be a profinite group, 2 a nonempty set of prime numbers, ¥ a
semi-graph of anabelioids of pro-X PSC-type, I14 the fundamental
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group of 4, and p : I — Aut(%) a homomorphism of profinite groups.
Then we shall refer to the pair

(G,p:1— Aut(9) (— Out(Ily)))

as an outer representation of pro-X PSC-type. Moreover, we shall
refer to an outer representation of pro-X PSC-type for some non-
empty set of prime numbers 2 as an outer representation of PSC-type.
For simplicity, we shall also refer to the underlying homomorphism
“p” of an outer representation of pro-X PSC-type (respectively, of
PSC-type) as an outer representation of pro-X PSC-type (respectively,
outer representation of PSC-type).

Let (9,p;: 1 — Au(9)), (A#,p, : J — Aut(A)) be outer representa-
tions of PSC-type. Then we shall refer to a pair

(0: %S H,B: 1)
consisting of an isomorphism o of semi-graphs of anabelioids and an
isomorphism f of profinite groups such that the diagram

I - Aut(9)

ﬂl JAul(z)

J —— Aut(#)
Py

—where the right-hand vertical arrow is the isomorphism induced by
oa—commutes as an isomorphism of outer representations of PSC-type.

Remark 2.1.1. It follows immediately that a “pro-X IPSC-extension”

1=y —1I; —-1—1

(i.e., roughly speaking, an extension that arises from a stable log curve over a
log point—cf. [Mzk6], Definition 1.2, (ii)) gives rise to an outer representation
I — Out(I1g) that factors through Aut(%) = Out(Ily); in particular, we obtain
an outer representation of pro-X PSC-type I — Aut(%).

In the following, let us fix a nonempty set of prime numbers X2 and an

outer representation of pro-X PSC-type

(G,p;: I — Aut(9) (— Out(lly)))

out .
and write IT; & 11, > I (cf. the discussion entitled “Topological groups” in
§0); thus, we have an exact sequence

1—-Hy —1I; —1—1.
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DEFINITION 2.2.

(1)

(iif)

Let v e Vert(%9) be a vertex of ¥ and I1, = Il4 a verticial subgroup
of Iy associated to v. Then we shall write
D, Np,(IT,) < II; (respectively, I, &f Zi,(I1,) < Dy)

and refer to D, (respectively, I,) as a decomposition (respectively, an
inertia) subgroup of II; associated to the vertex v, or, alternatively,
the decomposition (respectively, inertia) subgroup of II; associated to
the verticial subgroup I, = Il4. 1If, moreover, the verticial subgroup
I, is the verticial subgroup associated to an element & € Vert(%)
(cf. Definition 1.1, (vi)), then we shall write Dj D, (respectively,
LY I,) and refer to Dj (respectively, I;) as the decomposition (respec-
tively, inertia) subgroup of II; associated to ¥.

Let e € Cusp(¥%) be a cusp of & and 11, < 14 an edge-like subgroup
of I14 associated to e. Then we shall write

D, def Np,(I1,) < II; (respectively, I, def 1, = D,)

and refer to D, (respectively, I,) as a decomposition (respectively, an
inertia) subgroup of Il associated to the cusp e, or, alternatively, the
decomposition (respectively, inertia) subgroup of Il associated to the
edge-like subgroup Il, < Il4. 1f, moreover, the edge-like subgroup
II, is the edge-like subgroup associated to an element & e Cusp(%)
(cf. Definition 1.1, (vi)), then we shall write D; D, (respectively,
LY 1,) and refer to D; (respectively, I3) as the decomposition (respec-
tively, inertia) subgroup of II; associated to eé.

Let e e Node(¥) be a node of ¥ and I, < Iy an edge-like subgroup
of Il4 associated to e. Then we shall write

D, Ny, (11,) <, (respectively, I, & Zy,(11,) < D,)

and refer to D, (respectively, 1,) as a decomposition (respectively, an
inertia) subgroup of IT; associated to the node e, or, alternatively, the
decomposition (respectively, inertia) subgroup of Il; associated to the
edge-like subgroup Il, = Ily. If, moreover, the edge-like subgroup
11, is the edge-like subgroup associated to an element e e Node(@)
(cf. Definition 1.1, (vi)), then we shall write D; D, (respectively,
LY 1,) and refer to D; (respectively, I;) as the decomposition (respec-
tively, inertia) subgroup of II; associated to e.

LemMA 2.3 (Basic properties of inertia subgroups).

(1)
(i)

Let veVert(9). Then {1} =1I;NIly; in particular, the homomor-
phism I; — I induced by the surjection I} — I is injective.
Let ¢ e Node(¥9), ve v (é). Then I; = I,
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ProoF. Assertion (i) follows from the commensurable terminality of II;
in I1y (cf. [Mzk4], Proposition 1.2, (ii)), together with the slimness of II;
(cf. [Mzk4], Remark 1.1.3). Assertion (ii) follows from the fact that /7, < I1;,
together with the definitions of inertia subgroups of vertices and nodes. []

The following definition will play a central role in the present paper.

DEFINITION 2.4.

(1) We shall say that the outer representation of pro-X PSC-type p; is
of IPSC-type (where the “IPSC” stands for “inertial pointed stable
curve”) if p, is isomorphic, as an outer representation of PSC-type
(cf. Definition 2.1, (ii)), to the outer representation of PSC-type
determined by (cf. Remark 2.1.1) an “IPSC-extension” (i.e., roughly
speaking, an extension that arises from a stable log curve over a log
point—cf. [Mzk6], Definition 1.2, (ii)).

(ii) We shall say that the outer representation of pro-X PSC-type p; of
VA-type (where the “VA” stands for “verticially admissible™) if the
following two conditions are satisfied:

(1) I is isomorphic to Z* as an abstract profinite group.

(2) For every ¥ e Vert(%), the image of the injection I; — I (cf.
Lemma 2.3, (i)) is open in I.

We shall say that the outer representation of pro-X PSC-type p; is

of SVA-type (where the “SVA” stands for “strictly verticially ad-

missible”) if, in addition to the above condition (1), the following

condition is satisfied:

(2") For every e Vert(%), the injection I — I is bijective.

(i) We shall say that the outer representation of pro-X PSC-type p; is of
NN-type (where the “NN” stands for “nodally nondegenerate™) if p;
is of VA-type, and, moreover, the following condition is satisfied:
(3) For every ée Node(%), the homomorphism I; x I, — I;—

where we write {#1,5,} = ¥"(¢) = Vert(%)—induced by the inclu-
sions I, l;, = I (cf. Lemma 2.3, (ii)) is injective, and its image
is open in I;.
We shall say that the outer representation of pro-2 PSC-type p; is of
SNN-type (where the “SNN” stands for “strictly nodally nondegen-
erate”) if p; is of SVA-type and of NN-type.

REMARK 2.4.1. Note that it is not the case that condition (2) of Definition
2.4 is implied by conditions (1) and (3) of Definition 2.4. Indeed, it is easily
verified that if Vert(9) = {v}, and Node(¥9) =& (so II, = Ilg), then any
injection Z* — Out(Ily) satisfies conditions (1) and (3), but fails to satisfy
condition (2). (Moreover, it is also easily verified that such an injection exists.)
On the other hand, when Node(¥) # (7, it is not clear to the authors at the
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time of writing whether or not condition (2) of Definition 2.4 is implied by
conditions (1) and (3) of Definition 2.4.

REMARK 2.4.2. It follows from [Mzk6], Proposition 1.3, (ii), (iii), that if p;
is of IPSC-type, then p; is of SNN-type, i.e.,

IPSC-type = SNN-type = NN-type

4 U
SVA-type = VA-type.

LeEmMA 2.5 (Group structure of inertia subgroups). If p, is of VA-type, then
the following hold:

(i) Let 5 e Vert(4). Then as an abstract profinite group, I is isomorphic
o 1%

(ii) Let ée Cusp(%). Then as an abstract profinite group, I; is isomor-
phic fo VA

(ili) Let ée Node(9). Then as an abstract profinite group, I; is isomor-
phic 10 Z* x Z*.

(iv) Let éeNode(9). Then II; = I;NIly; thus, we have an exact se-
quence

@

@

l-I; > L—>Im(l; - 1) — 1

—where we write Im(l; — I) for the image of the composite I; —
II; — I. Moreover, the subgroup Im(l; — I) = I is open in I.

In particular, for ©e v'(€), the image of the homomorphism
I; x I1; — I; induced by the natural inclusions I, Il1; < I; is open
in I;. If, moreover, for ©e ¥ (€), the composite Iy — I} — I is
surjective (or, equivalently, bijective), then the homomorphism
I; x I1; — I; induced by the natural inclusions Iy, II; < I is bijective.

ProoF. Assertion (i) (respectively, (ii)) follows from conditions (1) and (2)
of Definition 2.4 (respectively, from Definition 2.2, (ii)). Assertion (iv) follows
from the commensurable terminality of Il; in Ily (cf. [Mzk4], Proposition 1.2,
(i1)), together with condition (2) of Definition 2.4. Assertion (iii) follows from
the fact that I; is an extension of Z* by Z* and abelian (cf. assertion (iv)).

O

LEmMA 2.6 (Stability of verticial admissibility and nodal nondegeneracy).
Suppose that p; is of VA-type (respectively, of NN-type). Then the following
hold:

(i) Let II; < II; be an open subgroup of II;, Iy def Iy NIy, and I’
the image of the composite Il; — I} — I.  Thus, we have an exact
sequence

1My —HOp —1'—1;
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the open subgroup Iy < Iy determines a covering 4' — 4 of %;
the outer representation I' — Out(Ily ) determined by Il factors
through p; : I' — Aut(%9'). Then p; is of VA-type (respectively, of
NN-type).

(i) Suppose that 4 is sturdy. Then the outer representation of pro-X
PSC-type p; : I — Aut(%)—where we write % for the compactification
of 9—induced by p; is of VA-type (respectively, of NN-type).

Proor. First, we prove assertion (i). It follows immediately from the
various definitions involved that p;, is of VA-type. Moreover, it follows from
Lemma 2.5, (i), (iv), that the various “I;” (respectively, “I;”") are torsion-free,
and, moreover, that the commensurability class of the subgroup “I;” (respec-
tively, “I;”) is unaffected by passing from II; to II;. Thus, condition (3) of
Definition 2.4 for p,, follows from condition (3) of Definition 2.4 for p;. This
completes the proof of assertion (i).

Next, we verify assertion (ii). First, let us observe that condition (1) of
Definition 2.4 for p; follows from condition (1) of Definition 2.4 for p;. Next,
let us observe that it follows from Lemma 2.3, (i) (respectively, Lemma 2.5,
(iv)), that for e Vert(%) (respectively, ée Node(%)), the natural surjection
Iy — I1; induces an open injection between the respective subgroups “I;”
(respectively, “I;”"). Thus, condition (2) (respectively, (3)) of Definition 2.4 for
p; follows from condition (2) (respectively, (3)) of Definition 2.4 for p;. This
completes the proof of assertion (ii). O

LemMA 2.7 (Group structure of decomposition subgroups). If p, is of VA-
type, then the following hold:

(1) Let veVert(9). Then II; = D;NIly, thus, we have an exact se-
quence

11—l — Dy — Im(Dy — 1) — 1

—where we write Im(Dy — I) for the image of the composite Dz —
II; — I. Moreover, the subgroup Im(D; — I) = I is open in I.

In particular, the image of the homomorphism I; x II; — Dj
induced by the natural inclusions Iz, II; = Dy is open in D; If,
moreover, the composite I; — II; — I is surjective (or, equivalently,
bijective ), then the homomorphism I; x II; — Dy is bijective.

(ii) Let ée Cusp(9). Then IT; = D;N\ Iy, thus, we have an exact se-
quence

l—-0HI; - D; —» Im(D; —» I) — 1

—where we write Im(D;z — I) for the image of the composite Dz —
II; — I.  Moreover, the subgroup Im(D; — I) =1 is open in I.
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In particular, for ©e v (&), the image of the homomorphism
I; x II; — D; induced by the natural inclusions I;, Il; = D; is open
in Ds. If, moreover, for ve V' (é), the composite Iy — I} — I
is surjective (or, equivalently, bijective), then the homomorphism
I; x II; — D; induced by the natural inclusions I;, Il; < D; is

bijective.
(iii) Let éeNode(¥9). Then II; = D;NIly thus, we have an exact
sequence

1—>Hé—>D§—>Im(Dé—>I)—>1

—where we write Im(D;z — I) for the image of the composite D —
II; — I.  Moreover, the subgroup Im(D; — I) =1 is open in I.

In particular, the image of the natural inclusion I; — D; is open
in Dg.  If, moreover, for v € ¥°(€), the composite I; — I is surjective
(or, equivalently, bijective), then the natural inclusion I; — D; is
bijective.

ProorF. The computation of the intersection with I74 in assertion (i)
(respectively, (ii); (iii)) follows from the commensurable terminality of II;
(respectively, I1;; II;) in Ily (cf. [Mzk4], Proposition 1.2, (ii)). The fact
that the images of the respective decomposition subgroups in I are open
follows from condition (2) of Definition 2.4. The final portion of assertion
(i) (respectively, (ii); (iii)) then follows immediately from Lemma(s) 2.3, (i)
(respectively, 2.3, (i); 2.3, (i), and 2.5, (iv)) O

REMARK 2.7.1. It follows immediately from Lemmas 2.5, 2.7 that the
following assertion holds:

Let e Vert(9) (respectively, ée Cusp(%9); éeNode(9)). If p, is of
SV A-type, then
Dy =1y Iy = I; x I
(respectively, D; =I5 - Il; = I; x II;, for any © € ¥7(e);
D;=L=1I II; =I; x II;, for any 9 € 7'(e)).

REMARK 2.7.2. Let &,é, e Edge(9). If p, is of VA-type, then the
following three conditions are equivalent:

(i) & =é.

(11) ]é] = Ie'z'

(iii) Dg = Dg,.
Indeed, the implications
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are immediate. On the other hand, if condition (ii) (respectively, (iii)) is
satisifed, then I1; = I;, N Ily = I;, N I14 = I1;, [cf. Definition 2.2, (ii); Lemma
2.5, (iv)] (respectively, 11 = D NIly = Dy, NIy = I1;, [cf. Lemma 2.7, (ii),
(iii)]). Thus, it follows from [Mzk4], Proposition 1.2, (i), that &, = é,.

DEerINITION 2.8.  Suppose that p; is of SVA-type. Then we shall denote
by

Yp/

the connected semi-graph of anabelioids (cf. [Mzk3], Definition 2.1) defined
as follows: The underlying graph of %[p,;] is the underlying graph of %.
The anabelioid corresponding to a vertex v e Vert(¥) (respectively, an edge
e € Edge(¥)) is the connected anabelioid determined by the decomposition
subgroup, regarded up to inner automorphism, D, < I1; (respectively,
D, < II;) associated to v (respectively, e); for ve ¥7(e), the associated mor-
phism of anabelioids is the morphism determined by the natural inclusion
D, (=1,-11,) = D, (=1,-II,) (cf. Remark 2.7.1).

ReEmARK 2.8.1.

(i) Note that the fundamental group of the anabelioid corresponding to
a vertex of ¥[p,] (i.e., the decomposition subgroup, regarded up to
inner automorphism, associated to the vertex) is not center-free (cf.
Lemma 2.7, (i)). In particular, the semi-graph of anabelioids ¥[p,] is
not of PSC-type.

(ii) Let I14),, be the pro-X fundamental group (i.e., the maximal pro-X
quotient of the fundamental group) of the connected semi-graph of
anabelioids ¥[p,] (cf. the discussion following [Mzk3], Definition 2.1).
Then it follows from the definition of Iy, that the inductive
system of homomorphisms determined by the natural outer inclu-
sions D, — II; and D, — II; gives rise to a natural outer homo-
morphism

gy — M.

LeEMMA 2.9 (An isomorphism of fundamental groups). Suppose that p; is of
SVA-type. Let Iy, be the pro-X fundamental group of the connected semi-
graph of anabelioids %[p;|. Then the homomorphism Iy, — Il; defined in
Remark 2.8.1, (ii), is an isomorphism.

Proor. First, we observe (cf. Remark 2.7.1) that the decomposition
subgroup D.—where z € VCN(¥)—is an extension of I by II,. Now it is
easily verified that the profinite Galois covering of ¥[p,] determined by the
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various quotients D, — I (i.e., that arise as composites D, — II; — I) is
isomorphic to ¥; thus, we obtain an exact sequence

| = Iy — ly,) — 1 — 1.

On the other hand, it follows from the construction of this profinite covering
% — 9|p,], together with the definition of the homomorphism 74, — I,
that the composite 11y — Il — II; coincides with the natural inclusion
Il4 — II;. Thus, the bijectivity of the homomorphism 114, — II; follows
from the “Five Lemma”. This completes the proof of Lemma 2.9. O

DeFiNiTION 2.10. Let (g,r) be a pair of natural numbers such that
29 —2+4r >0, k an algebraically closed field of characteristic ¢ X, s € .4, (k)
a k-valued geometric point of ./, , (cf. the discussion entitled ““Curves” in §0),
and s'°¢ : Spec(k)'® — .4Z!°¢ the strict morphism of log stacks whose underlying
morphism of stacks is the morphism corresponding to s.
(i) We shall denote by X!°¢ the stable log curve determined by s'°g.
(ii) We shall denote by %, the semi-graph of anabelioids of pro-Z PSC-
type determined by the stable log curve X°2 (cf. [Mzk4], Example
2.5).
(iii) Write Q; for the monoid obtained as the stalk of the characteristic
sheaf (cf. the discussion entitled “Log stacks” in §0) of %g"f at s,
and

1, Hom (0¥, Z(1)%)
—where the “(1)” denotes a “Tate twist”. Recall (cf. [Knud],
Theorem 2.7) that it follows from the well-known geometry of the
irreducible components of the divisor that defines the log structure
of %_éorg that we have a natural decomposition

Oy ~ @ N.

eeNode(%,)

—where we write N, for a copy of N indexed by e € Node(%;); thus,
we obtain a decomposition

L~ & Al

eeNode(%,)

—where we write A[e] for a copy of Z(1)* indexed by e € Node(%,).
(iv) It follows from the various definitions involved that, if we write
ni (X[°#) for the maximal pro-X quotient of the logarithmic funda-
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mental group of X[°¢, then we have a natural exact sequence of
profinite group

1 — My — nlz(XSlog) — I, — 1

—which gives rise to an outer representation Iy — Out(I1g, ) that
factors through Aut(¥;) < Out({14,). Write

P Iy — Aut(%)

for thte resulting homomorphism of profinite groups and I7, &f

Iy, % I;. Thus, we have a natural isomorphism of profinite groups
n(Xloe) = ;.

Let s € My ,.1(k) be a k-valued geometric point of .#,,,1 that
corresponds to a node of X;. Then it follows immediately from the
various definitions involved that the quotient of /74 ,—where we use
the notation obtained by applying (ii) to s'—Dby the closed subgroup
of I14, topologically normally generated by the edge-like subgroups
of I14, associated to the (r+ 1)-st cusp is naturally isomorphic to
Il4; in particular, we have a natural surjection I14, — Il4. We
shall denote by

N, /s Node(%,) — Node(%;)

the map which—as is easily verified—is uniquely determined by the
following condition:

If eeNode(%,), and II, = Il4, is an edge-like subgroup
associated to e, then the image of /7, via the above surjection
Il4, — Ilg4, is an edge-like subgroup associated to 9, /(e) €
Node(%y).

LemMA 2.11 (Log fundamental groups in a neighborhood of a node). In the
notation of Definition 2.10, let e € Node(%,) be a node of %, and s' € My ;.1 (k)
a k-valued geometric point that corresponds to the node of X determined by e.
Then the following hold:

(1)

(ii)

The inverse image %;}J(e) consists of precisely two elements ¢;,¢; €
Node(%y), the map

Node(%,)\{e1, e2} — Node(%;)\{e}

determined by My s is bijective.

Write Iy for the result of applying Definition 2.10, (iii), to s’. Then
the homomorphism Iy — II; induced on maximal pro-X quotients of
log fundamental groups by (the strict morphism of log schemes whose
underlying morphism of schemes is the morphism corresponding to) s’
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is injective, and its image is an inertia subgroup I, of Il; associated
to e. Moreover, if, in the notation of (i), we write

def

M?éé'l-,ﬂ’z = A[f] c Iy,

S eNode(%,)\{er, 2}

then for i=1,2, there exists a vertex v; € ¥ (e) < Vert(¥9%;) of %
such that the subgroup obtained as the image of the composite of the
injections

Ale]] @ M ey o, — Iy — I,

is an inertia subgroup I, of I1; associated to v;. In this situation, we
shall refer to v; as the vertex associated to e;.
(i) Let
def

M#e = A[f]EIS'

/eNode(%,)\{e}

Then the homomorphism Iy — I induced by eﬂ_;,o,il — /%_Jf);? (ie., the
composite Iy — II; — I;) coincides with the homomorphism

Ale)] @ Ales] @ Myeye, = Iy — Iy = Ale] @ My,
determined by the homomorphism
Aler] @ Ales] — Ale]
(a,b) —a+b

and the isomorphism

M#ﬂ-,ez = M#é’
induced by the bijective portion of Ny (cf. (i)).

ProOF. Assertion (i) follows immediately from the various definitions
involved. Assertions (ii) and (iii) follow by computing the log structures
involved by means of a chart for the morphism X'°¢ — Spec(k)'¢ at the
k-valued point s’ of Xj. O

REMARK 2.11.1. In the notation of Definition 2.10, let &e Node(%),
edéfé(%) e Node(%,), s' € My 1(k) a k-valued geometric point that corre-
sponds to the node of X; determined by e, and {ej,ex} = SJES_,}A.(e) < Node(%y)
(cf. Lemma 2.11, (i)). Moreover, for i = 1,2, let us denote by #; the (unique!)
element of Vert(%,) such that #; € ¥'(¢), and, moreover, #;(%,) is the vertex
associated to e¢; (cf. Lemma 2.11, (ii)). (Thus, ¥7(é) = {01,02}.) Then it
follows from Lemma 2.11 that if we identify M., with M., . via the
isomorphism of Lemma 2.11, (iii), then the following assertion holds:
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The isomorphisms [; — Ale;]] @ M, (cf. Lemma 2.11, (i), I = Iy —
Ale)] @ Alea) ® M4, (cf. Lemma 2.11, (ii), (iii); Definition 2.10, (iii)), and
I, = Ale] ® My, (cf. Lemma 2.11, (iii); Definition 2.10, (iii)) fit into the
following commutative diagram

15] X I{,z - 1; [N I

| | |
(ler]) ® M) x (Alex] ® M) —— Aler] @ Ales] @ My —— Ale] ® My,

(a,m,b,n) — (a,b,m+n)
(a,b,m) —— (a+b,m)

—where the upper left-hand horizontal arrow Ij x I, — I; is the homo-
morphism induced by the natural inclusions f;, [z < Iz (cf. Lemma 2.3,
(ii)), and the upper right-hand horizontal arrow I; — I, is the composite
Ie“ — Il I, — I R

LeEMMA 2.12 (The invertibility of a certain homomorphism of free modules).
Let A be a commutative ring with unity, M a free A-module of finite rank, N
a free A-module of rank 1, p: N — N @ M a homomorphism of A-modules,
p1: N — N the composite of p and the first projection N@® M — N, and

Ny x No B {(N@® M) xyou N} x {(N@® M) xyou N}
SN NOND®M) xygu N — (N® M) xyou N

—where the definition of “N,”" (respectively, “N,”’) is to be understood as the
first (respectively, second) module in brackets “{—}"; the notation “(=) Xygu
(=) denotes the fiber product of modules over N @ M—the diagram obtained
via p from the diagram

(N@M)X(N@M)HN@N@M—) NOM
(a,m,b,n) — (a,b,m+n)
(a,b,m) +— (a+b,m).

Then the following hold:
(i) Np and N, are free A-modules of rank 1, and Ny is a free A-module of
rank 2.
(i) If ¢ is a homomorphism of free A-modules of rank 1, then let us
denote by D(¢§) < Spec(A) the open subscheme of Spec(A) on which
(the homomorphism of Uspec(4y-modules determined by) ¢ is an isomor-
phism.  Then D(p,) = D(det(N; x Ny — Ny)) (cf. (i)).
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PrOOF. Assertion (i) is immediate from the definition of N;, N,, and Nj.
Thus, to complete the proof of Lemma 2.12, it suffices to verify assertion (ii).
To this end, since the various definitions of modules and homomorphisms in
the statement of Lemma 2.12 are compatible with base-change, we may assume
without loss of generality that 4 is a field. On the other hand, if 4 is a field,
then p, is either zero or an isomorphism, so it follows immediately from an easy
computation that D(p,) and D(det(N; x N» — Ny)) coincide. This completes
the proof of assertion (ii). O

LEmMMA 2.13 (Injectivity and images of homomorphisms of Z*-modules). In
the notation of Definition 2.10, let p: 197> — Iy be a homomorphism of
profinite groups, and

To, ¥ Jo, L (I, 5o D) x Iy, <1 1) = Je & L x T — 1
the diagram of homomorphisms of profinite groups obtained via p from the
upper row of the diagram in Remark 2.11.1. Then the following conditions are
equivalent:

(i) The image of the composite

I 5 I~ Al ® M., > A

is open in Alel.
(i) The first arrow Js x J5, — Js of the above sequence is injective, and
its image is open in Js.

Proor. It follows immediately from the various definitions involved that
the implication

(i) = (ii) (respectively, (ii) = (i))

follows from the inclusion “D(p) < D(det(N; x N» — Ny))” (respectively,
“D(det(N; x N, — Ny)) < D(p)”) implicit in Lemma 2.12, (ii). Here, we
consider the case of “D(—)” that arise from an open ideal of the topological
ring Z*, i.e., an ideal generated by a nonzero clement of Z. O

PropPOSITION 2.14 (Nodal nondegeneracy of certain outer representations).
In the notation of Definition 2.10, let p : 1%z I; be a homomorphism of
profinite groups, p; : I — Aut(9;) the outer representation of pro-X PSC-type

obtained as the composite

10552 Au(g,),

t
and I def Iy NI In the following, for ze VCN(¥,), we shall write J; for
the inertia subgroup “I;” of Il (i.e., to avoid confusion with the corresponding
inertia subgroups of II; ). Then the following hold:
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(1) p; is of SVA-type.
(i) If e e Node(¥;), then the following two conditions are equivalent:

(1) The image of the composite

2oL~ @ Al =2 A6(9,)]
eeNode(¥,)
is open in A[e(%Y)).

(2) If v'(e) = {v1,02}, then the homomorphism J; x J5 — Js induced
by the inclusions J;, Js, < Js is injective, and its image is open
in Jé’.

In particular, if the image of the composite
155> @ Al Al

eeNode(%,)
is open in A[f] for every f e Node(¥9), then p; is of SNN-type.

Proor. The various assertions of Proposition 2.14 follow immediately
from the various definitions involved, together with Lemma 2.13. O

REmMARK 2.14.1. In the notation of Proposition 2.14, it is not difficult to
show—Dby applying various well-known group-theoretic constructions of certain
natural isomorphisms between the various copies of Z(1)* involved—that the
condition on the homomorphism p: [ — I; that the composite p,op be of
IPSC-type is equivalent to the condition on p that there exists an isomorphism

I ~ Hom(N®, Z(1)%)

with respect to which p is posmve definite in the sense that it arises (by applying
the functor “Hom(—,Z(1)*)”) from a homomorphism of monoids Q; — N
such that for any f € Node(%,), the composite

Ny — 6—) N, ~Q;, — N
eeNode(¥,)

is nonzero. On the other hand, it follows from Proposition 2.14 that the
(necessarily strict) nodal nondegeneracy of p; is equivalent to the nondegeneracy
of p, i.e., the condition that the image of the composite

125~ @ A2 Al

eeNode(%,)
be open for every f e Node(%,). That is to say,
IPSC-type = (S)NN-type

0 0

positive definite = nondegenerate.
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3. Group-theoretic aspects of the geometry of the underlying semi-graphs

In this section, we consider the geometry of the underlying semi-graph
associated to a semi-graph of anabelioids of PSC-type from a group-theoretic
point of view in the context of outer representations of NN-type (cf. [Mzk6],
Proposition 1.3, for an analogous discussion in the case of outer representations
of IPSC-type).

In this section, let 2 be a nonempty set of prime numbers, ¥ a semi-graph
of anabelioids of pro-2 PSC-type, I14 the fundamental group of ¥4, p, : [ —

def out

Aut(¥9) an outer representation of NN-type, and Il; = II4 X 1.

Lemma 3.1 (Contagious conditions). Let (C) be a condition on an element

of Vert(%9) which satisfies the following property (x):

(x): Let 01,0, € Vert(9) be such that 6(0,(9),02(9)) < 1. Then ¥, sat-
isfies the condition (C) if and only if ¥, satisfies the condition (C).

Suppose that there exists an element of Vert(9) which satisfies the condition (C).

Then every element of Vert(9) satisfies the condition (C).

Proor. This follows immediately from the connectedness of the under-
lying semi-graph of a semi-graph of anabelioids of PSC-type. O

LemmA 3.2 (Verticial decompositions inside ab/(edge-+iner)-quotients). Let
H?b/ “€ pe the quotient of the abelianization 11 }lb by the closed subgroup
generated by the images in H?b of the edge-like subgroups of Ily. Suppose that
pr is of SNN-type. Then the following hold:

(i) Forve Vert(@), write My for the image of the composite Iy — Il; —

H,ab/ € Then the closed subgroup Mj < IT ,ab/ *% js independent of

the choice of the element © € Vert(9). Denote this closed subgroup by
M. In the following, we shall write

H?b/(edgeﬂner) déf H';lb/edge/M.

(i) The composite of the injection of Lemma 1.4 with the natural inclusion
Ily — II; induces a split injection (cf. the discussion entitled “Topo-
logical groups” in §0)

(‘D Hgb/edge o H;’xb/ (edge+iner)
ve Vert(%)

(¢f. Definition 1.3, (1)) whose image is a free 2% -module of finite rank.

Proor. First, we verify assertion (i). If Node(¥9) = (J, then assertion
(i) is immediate; thus, assume that Node(¥%) # . Next, let us fix an element

ip € Vert(9). For i € Vert(%), we shall say that i satisfies the condition (x)
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if the image of J; in the quotient /7°°/°*€/M; is trivial. To verify assertion
(i), it is immediate that it suffices to show that any & e Vert(%) satisfies
(+'™).  Therefore, to verify assertion (i), it follows from Lemma 3.1 that it
suffices to show that the condition (x) satisfies the property (x) in the
statement of Lemma 3.1. To this end, let 7,7’ eVert(@) be such that
0(5(%),9'(%9)) <1, and © satisfies (+"V). Let D, < IT; be a decomposition
subgroup associated to e e A (3(9)) N A(?'(9)). Then since the image of I
n I72/% /)f is trivial, and D, is generated by an edge-like subgroup and
a conjugate of I (cf. Remark 2.7.1), it follows that the image of D, in
IT2°/*% ) Ar s rivial.  Therefore, since there exists a conjugate of Iy con-
tained in D,, we conclude that the image of I in H?b/ edge/M,go is trivial; in
particular, 7’ satisfies (). This completes the proof of assertion (i).
Finally, we observe that assertion (ii) follows from a similar argument
involving coverings—this time of %[p,;] (cf. Definition 2.8) as opposed to ¥—to

the argument applied in the proof of Lemma 1.4. O

REMARK 3.2.1. Suppose that p; is of SNN-type. Let 0,0, € Vert(¥9).
Then it follows immediately from Remark 1.4.1, (ii); Lemma 3.2 that the
following assertion holds:

If 5,(9) # 0,(9), then the image of the intersection

(15] 'Dgz)ﬂH,jl < H{g

. abjedge . . .
in IT3°/°% s trivial.

Indeed, it follows from Lemma 3.2, (i); Remark 2.7.1, together with the various
definitions involved, that the image of Iy, (respectively, Dy,) in I7°%(cdetine)
trivial (respectively, coincides with the image of I7; < Ily). But, by Lemmas
1.4; 3.2, (ii), this implies that the image of (13 - D3,) N 115 in H;b/ «dee s contained
in the intersection of the images of 75, and IT;, in IT2”/***.  Therefore, the above

assertion follows from Remark 1.4.1, (ii). '

ReEmARK 3.2.2. In fact, it is not difficult to verify that both the statement
and the proof of Lemma 3.2 remain valid even under the weaker assumption
that p; is of SVA-type.

LEMMA 3.3 (Submodules of free Z,-modules). Let | be a prime number, r
a positive integer; also, for 1 < j <r, let ;e Z\{0}. For1<i<l 1<j<v,
set M ; def 7, M, def Z;; write 1;,; € M, j, 10 € My for the generators correspond-
ing to the element “1”. Next, let us write Mgiag S @i’j M; ; for the submodule
obtained as the image of the diagonal homomorphism 21, — C—Di,j M; ;,

NY¥ { (@Mz]> /Mdiag} @ M,
i,j
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and regard My as a submodule of N via the inclusion My ~0@® My — N.
Then if we denote by H the submodule of N generated by the elements of N
determined by the (Ir+ 1)-tuples of the form

(0,...,0,CI"liﬂ_}',O,...,O,lo)

—where (i,j) ranges over pairs of natural numbers such that 1<i<]|,
1 <j<r—then HNMy <[ - M.

PrOOF. Suppose that the element 4 € H determined by

Z d,;.,»(O, Cen 707 Cj . llﬂf’ O, ce 707 l())
i,j

= (-“;di,jcj'li‘j7-~~7zdi,j’10> € (@de') (—BM()
ij LJ

—where d; ; € Z;—is contained in M. Now let us observe that the homo-
morphism ¢

NZ{(@Mi.j>/Mdiag}@Mo—> ( MLJ')@MO
ij (i,/)#(1,1)

([(41); ;1 20) = (i j = 21,00 jy 21,1y %0)

—where we write “[?]” for the image of “?” in the module “{-}”, and
“A(-)” 1s an element of “M_)”—is an isomorphism. Thus, by applying ¢ to
he HN My, we conclude that d; jc; —dici =0, for 1 <i</, 1<j<r in
particular, it follows that d; ;c; is independent of the pair (i, ), hence that
(di,j —dy,j)c; = 0. But, since ¢; # 0, this implies that d; ; is independent of i,
hence—since i ranges over the integers from 1 to /[—that Zi‘,j dijel-1;, as
desired. O

Lemma 3.4 (Existence of certain coverings). Suppose that the following two
conditions are satisfied:

(a) p; is of SNN-type.

(b) ¢ is sturdy and untangled (cf. Definition 1.2).
If, by abuse of notation, we write G for the underlying semi-graph of 9[p;] (cf.
Definition 2.8 ), then, for a vertex v (respectively, an edge e) of G, let us write 2,
(respectively, 9,) for the connected anabelioid corresponding to v (respectively,
e), and I, (respectively, Ilg,) for the fundamental group of the connected
anabelioid 9, (respectively, 9.) [so it follows from the definition of %[p;] that
Iy, Ilg, are naturally isomorphic, up to inner automorphism, to D,, D,,
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respectively |.  Fix a vertex vy € Vert(¥). Then there exists a connected cover-
ing of semi-graphs of anabelioids (cf. [Mzk3], Definition 2.2, (i))

H — Gpi]

of G|p;| such that if we denote the underlying semi-graph of # by H and use
analogous notation for # to the notation introduced above for 9|p,), then the
following conditions are satisfied:

(1) The set of vertices of H which lie over vy consists of precisely one
element wo, and the image of the outer injection 11, — Ilg, ~ D,
induced by the morphism 92,, — Z,, does not contain the normal
subgroup I, = Dy, ie., “I,, £ g, "

(2) For any vy € Vert(9) such that d(vo,v1) =1, the set of vertices of H
which lie over vy consists of precisely one element wy, and the image
of the outer injection Ilg, — Ilg, ~ D, induced by the morphism
Dy, — Dy, contains the normal subgroup I, < D,,, ie., “I, < I P,

(3) For any ve Vert(9) such that 6(vo,v) > 2, and any vertex w of H
which lies over v, the morphism 9, — %, is an isomorphism.

(4) For any e € Node(¥9) such that vy ¢ ¥ (e), and any closed edge [ of H
which lies over e, the morphism %y — 9. is an isomorphism.

(5) For any e € Cusp(¥9), and any open edge f of H which lies over e,
the image of the outer injection Ily, — Ilg, ~ D, induced by the
morphism %y — 9, contains the normal subgroup I, < D,, ie.,
“I, <My,

Proor. To verify Lemma 3.4, by replacing 4 by the compactification
of @ (cf. Definition 1.11), we may assume without loss of generality that
Cusp(¥%) = &, and hence that condition (5) is satisfied automatically. More-
over, by projecting to the maximal pro-/ quotients, for some /€2, of the
various pro-X groups involved, to verify Lemma 3.4, we may assume without
loss of generality that X = {/}.

Write

V<1 < Vert(9)
for the set of vertices v of % such that d(vg,v) < 1,
Y1 S V<
for the set of vertices v of ¥ such that d(vo,v) =1 (i.e., Y21 = V<i\{vo}),
Ao < Node(¥9)
def

for the set of nodes of ¥ which abut to vy (i.e., A4y = A (vy)), and
A1 € Node(¥9)
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for the set of nodes e of ¥ such that ¥ (e)N ¥ # & and vy ¢ ¥"(¢). Then
we claim that there exists a connected finite étale covering of semi-graphs of
anabelioids & — %[p;] of ¥[p,] such that if we denote the underlying semi-
graph of & by F and use analogous notation for % to the notation introduced
in the statement of Lemma 3.4, then the following conditions are satisfied:
(1) The connected finite étale covering of semi-graphs of anabelioids
F — Y[p,] of ¥[p,] is Galois, and its Galois group is isomorphic to
Z7/I7.
(ii) For any ve ¥, the set of vertices of F which lie over v consists
of precisely one element u, and the image of the outer injection
Iy, — IIg, ~ D, induced by the morphism 2, — &, contains the
normal subgroup [, < D,, ie., “I, = Ily,”.
(i) For any ve Vert(9) such that d(vy,v) > 2, and any vertex u of F
which lies over v, the morphism 2, — %, is an isomorphism.
(iv) For any e € Node(¥9), and any edge & of F which lies over e, the
morphism %, — %, is an isomorphism.
Indeed, since ¥ is sturdy (cf. condition (b)), it follows that J73%/°4 2 {1} (cf.
Definition 1.3, (iii)) for any ve Vert(%4). Thus, the above claim follows
immediately from the existence of the natural split injection

(_D Hab/edge AN H]ab/(edge+iner)

ve Vert(%)

of Lemma 3.2, (ii).
In light of the above claim, to complete the proof of Lemma 3.4, we may
replace %[p;] by # and assume in the following that

(%1) there exists an action of a group @ isomorphic to Z/IZ on 9[p,]
such that the induced action of @ on Vert(9) fixes every element of ¥<i,
and the induced action of @ on A} is free.

Now let 11, = Il4 be a verticial subgroup associated to vy; write D, < I1;
(respectively, I,, = IT;) for the decomposition (respectively, inertia) subgroup
associated to [I7,,. Next, for ee .Vy, write v, for the unique element of
7 (e)\{vo} = 7~ (cf. assumption (b)); let IT, = II4 be an edge-like subgroup
associated to e such that [1, < I1,; write I, for the inertia subgroup associated
to I1,. Next, let I,, < II; be an inertia subgroup associated to v, such that
I,, = I,. (Here, we note that it is easily verified that such an I, exists.) Thus,
I,=1,x 1, = I, x I, =D, (cf. Remark 2.7.1); in particular, [, S D,,.

Next, write H for the Z;-submodule of the free Z;-module

Dﬁob (~ Hﬁ)b x I,,)) generated by the images of the composite homomorphisms
ab
bo

I,, - Dy, —» D
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—where e ranges over elements of /. Then we claim that
(x¢2) HNIm(l,) =/ -Im(I,)

—where we write Im(Z,,) for the image of the composite I, — Dy, — D"
Indeed, by the well-known structure of the maximal pro-/ quotient of the
fundamental group of a smooth curve over an algebraically closed field of
characteristic # [/, there exists a topological generator 1, € 11, of II, such that
the inclusions I,, < D and II, — D" determine a split injection

{ < @ He) /Zl . (lﬁ)ee./l’f)} @ IUO - Dfob
(’,Ef/i/f]

into Djfob. Now let us fix a topological generator 1, € I,, and denote by 1, € [,
the topological generator of [, obtained as the image of 1, €1, via the
composite isomorphism [, — I < I, (cf. Definition 2.4, (2')). Then it follows
from condition (3) of Definition 2.4 that the natural inclusions 1, I, — I,
determine an open subgroup I, x I,, < I, (cf. condition (a)); in particular, there
exists an element ¢, € Z;\{0} such that 1, = ¢, 1, +1,. Moreover, since we
have an action of @ on ¥[p;] as in (x;), we obtain, for any e € .4 and o € P,
that ¢,, = ¢y,,. Therefore, (x;) follows immediately from Lemma 3.3.

In light of (x;), there exists an open subgroup H' = Dﬁ? such that H = H'
and Im(l,) ¢ H'. Thus, since H is stabilized by the action of @ on D;‘Ob,
it follows (for instance, by replacing H' by the intersection of the translates of
H'’ by the action of @) that we may assume that H' is stabilized by the action
of ® on D. Write D,, < D,, for the inverse image of H' < D" via the
natural surjection D,, — D", Then it follows immediately from the definition
of D,, that the following hold:

(v) D,, is open and normal in D,,, and, moreover, D,, is stabilized by

the induced outer action of @ on D,,.
(vi) For any ee A4y, we have I, = D,,; in particular, by (v), for any
e e Ny, every Dy -conjugate of [, is contained in D,,.

(vii) Iy, & Dy,.

Write %,,, — Z,, for the connected finite étale covering of anabelioids corre-
sponding to the open subgroup D,, < D,, of D,;

Gsub

for the connected sub-semi-graph of G whose set of vertices is 7<) < Vert(%),
and whose set of edges is AU .47; and

Ylpil b
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for the semi-graph of anabelioids determined by restricting %[p;] to G**° (cf.
the discussion preceding [Mzk3], Definition 2.2). Then since we have an action
of @ on Y[p,;] as in (*), it follows from (v) that for any e € A and o € P, the
ramification indices of this covering %, — %y, at the cusps of Z,, determined
by e and e? coincide. Thus, it follows from (vi) (together with the elementary
fact that there exist / — 1 elements @; € Z—where 1 <i <[/ — 1—such that the
a;’s and Ell;ll a; are prime to [) that one may extend this covering %,,, — 2, to
a connected finite étale covering #*"° — %[p,]**® which satisfies the following
conditions:
(viii) The set of vertices of H™® (i.e., the underlying semi-graph of #*'®)
which lie over an element of ¥ consists of precisely one element.
(ix) For any ee A, if we denote by w, the—necessarily unique (cf.
(viii))—vertex of H*"® which lies over v, € +_1, by &,, the anabe-
lioid corresponding to w,, and by Il5  the fundamental group
of &,,, then the image of the outer injection I14, — Iy, ~ D,
contains the normal subgroup 1, = D,,.
(x) A% — G[p, ™™ restricts to the rrivial covering over every edge
corresponding to an element of /7.
Moreover, it follows immediately from (x) that one may extend the covering
A s Gp,]*"° obtained above to a connected finite étale covering # — %|p,]
of 9[p;] such that
(xi) A# — G[p,] restricts to the trivial covering over the vertices v of ¥
such that d(vg,v) > 2.
Now by (vii) and (viii) (respectively, (viii) and (ix); (xi); (x) and (xi)), this
covering # — %[p,] satisfies condition (1) (respectively, (2); (3); (4)). This
completes the proof of Lemma 3.4. O

REMARK 3.4.1. In light of the isomorphism of Lemma 2.9, the content of
Lemma 3.4 admits the following interpretation:

Suppose that p; is of SNN-type, and that ¥ is sturdy and untangled. Let

Do € Vert(¢). Then there exists an open subgroup I7 < I1; of II; which
satisfies the following conditions:

(i) If oeVert(¥) satisfies 6(29(%),0(%)) =0 (ie., vo(¥9) =v(¥)), then

I; ¢ 1.
i) If o e Vert(9) satisfies d(50(%),5(%)) = 1, then I; < I1.
iii) If o e Vert(9) satisfies d(8(%),5(%)) =2, then D; < II.

(ii)
(iii)
(iv) If e e Edge
(v)

(9) satisfies é(%) ¢ &(50(%)), then D; < I1.
If & e Cusp(9

), then IT; < II.

REmMARK 3.4.2. Let I1 = II; be the open subgroup of Remark 3.4.1.
Then the following assertion holds:
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For é e Node(%), consider the following conditions:
(i) ee AN (bp).
(i) e(9) e N (5(%)).

(i) M, ¢ 1.
(i) Iy e Ily such that y-IM;-y~' & I1.
Then

(i) = (i) = (ii") & {).

Indeed, if condition (i) is satisfied, but condition (ii) is not satisfied, then it
follows from condition (ii) in Remark 3.4.1 that I; = I; - IT; = IT (cf. Remark
2.7.1), where we write ¢ for the unique element of 7¥"(€)\{%o}; thus, since
I;, = I;, we obtain that I;, < IT—in contradiction to condition (i) in Remark
34.1. This completes the proof of the implication

(i) = (ii).
The implication
(i) = (ii’)
is immediate. Next, if condition (i’) is not satisfied, then by applying condition

(iv) in Remark 3.4.1 to the /14-conjugates of ¢, we conclude (since I7; < D;)
that condition (ii’) is not satisfied. This completes the proof of the implication

(i) = (i).

Finally, by applying the implication “(i) = (ii)” to a suitable I1g-conjugate
of €, we obtain the implication

(i) = (ii).

ProOPOSITION 3.5 (Graph-theoretic geometry via inertia subgroups). Let
v e Vert(9), e e Edge(¥9). Then the following conditions are equivalent:

(i) vev(e).

(i) I;ND; # {1}.
In particular, if I; N D; # {1}, then I; = D,.

Proor. The implication

(i) = (i)

is immediate from the various definitions involved; thus, to complete the proof
of Proposition 3.5, it suffices to verify the implication

(i) = (i).
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To this end, let us assume that condition (ii) is satisfied. Then since I; is
torsion-free (cf. Lemma 2.5, (i), to verify condition (i), by replacing I7; by an
open subgroup of I1;, we may assume without loss of generality that p; is
of SNN-type, and that ¥ is sturdy (cf. [Mzk4], Remark 1.1.5) and untangled
(cf. Remark 1.2.1, (i)); moreover, by projecting to the maximal pro-/ quotients,
for some /€2, of suitable open subgroups of the various pro-X groups
involved, to verify condition (i), we may assume without loss of generality
that 2 = {/}. On the other hand, since I; is isomorphic to Z; as an abstract
profinite group (cf. Lemma 2.5, (i)), by replacing / by an open subgroup of I,
to verify condition (i), we may assume without loss of generality that I; = D5.

Assume that 7 ¢ ¥7(é), i.e., that condition (i) is not satisfied. Then by
applying Remark 3.4.1, where we take “0y” to be o, there exists an open
subgroup IT < II; such that I; & IT (cf. condition (i) in Remark 3.4.1), and,
moreover, D; = IT (cf. condition (iv) in Remark 3.4.1); in particular, I; € D;—
in contradiction to our assumption that I; = D;. This completes the proof of
the implication in question. O

REMARK 3.5.1. Let 9,7, € Vert(9). Then it follows immediately from
Proposition 3.5 that the following assertion holds:

If I, NIy, # {1}, then A (5)) = N ().

Indeed, suppose that Iy N1I; # {l1}. Now if &€ A(;), then it follows from
Proposition 3.5 that [; = Dg; thus, since I NI; # {1}, it follows that
I;y N D; # {1}. In particular, again by Proposition 3.5, we obtain that
ée N (). This completes the proof of the above assertion.

In particular, it follows from Remark 1.8.1, (ii), that the following
assertion holds:

b =10y if and only if I, NI, # {1}

LEMMA 3.6 (Centralizers, normalizers, and commensurators of verticial
inertia subgroups). Let J = I; be a nontrivial closed subgroup of I, where
e Vert(%). Then the following hold:

(1) Iy=Zp,(J)NIly = Ny, (J)NIly = Cp,(J) N .

(i) If p; is of SNN-type, then Dy = Zp,(J) = Nig,(J) = Cr,(J).

Proor. First, we prove assertion (i). If Node(¥9) = &, then assertion
(i) is immediate from the various definitions involved; thus, assume that
Node(¥9) # . Since it is immediate that IT; = Zp,(J) N Ilg, to prove asser-
tion (i), it suffices to verify that Cp,(J)NIIy = IT;. To this end, let us assume
that (Cp,(J)NIy)\IT; # & (where “\” denotes the set-theoretic complement).

Let y € (Cpg,(J) N I14)\IT; write 37 for the element of Vert(%) that corresponds
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to the verticial subgroup y - IT;-y~' < IT4. Then since y ¢ IT;, it follows from
the commensurable terminality of II; in I14 (cf. [Mzk4], Proposition 1.2, (ii))
that IT; # - I5-y~'; in particular, it follows that © ##’. On the other
hand, since y € Cp7,(J), it follows that JN(y-J-y~') # {1}; thus, it follows
from Remark 3.5.1 that o = ”—a contradiction. This completes the proof of
assertion (i).

Next, we prove assertion (ii). Since p; is of SNN-type, it follows from
Remark 2.7.1 (cf. also Lemma 2.5, (i)) that Dy = Zy,(I;) = Z,(J), and that
the composite D; = IT; — I is surjective. Thus, assertion (ii) follows from
assertion (i), together with Remark 2.7.1. O

LemMa 3.7 (Centralizers, normalizers, and commensurators of edge-like
inertia subgroups). Let & Edge(9). Then the following hold:

(i) He=Zy,(I) NIy = Ny, (Is) N Iy = Cp,(I) N .

(i) If p; is of SNN-type, then D; = Zp,(I;) = Ny, (I;) = Cp, (1)

ProOOF. Assertion (i) in the case where ée Cusp(¥9) follows from the
commensurable terminality of Il; in Ily (cf. [Mzk4], Proposition 1.2, (ii)),
together with the definition of an inertia subgroup of a cusp. Assertion (i) in
the case where é e Node(%) follows from a similar argument to the argument
used in the proof of Lemma 3.6, (i), together with Remark 2.7.2. Assertion (ii)
follows from a similar argument to the argument used in the proof of Lemma
3.6, (ii). O

ProPOSITION 3.8 (Graph-theoretic geometry via edge-like decomposition
subgroups). For i =1,2, let & € Edge(%). Then the following hold:
(i) Consider the following three (mutually exclusive) conditions:
1) & =é.
2) e #ey V(a)N7(e) # D
(3) v (e))N¥(e) = (which implies that & # é;).
Then we have equivalences

He ) @e@); ©@)e@)

with the following three (mutually exclusive [cf. Lemma 1.5]) con-
ditions:
(1/) Dél = Déz (SO Hél = Dél N Hg(; = Déz N H{(; = Hészf.. Lemma
2.7, (i), (iii)).

(2/) 175101752 (:DglngzmH{g/):{l},' DélmD527é{l}.
(3 De, N Dg, = {1}

(i) Suppose that p; is of SNN-type. Then if condition (2') is satisfied,
then v°(é;)N v (&) # &, and, moreover, D N D = [;—where we
write ¥ for the unique element of ¥" (&) NV (é;) (c¢f. Lemmas 1.5, 1.8).
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Proor. First, we verify assertion (i). The equivalence
(1) & (1)

follows from [Mzk4], Proposition 1.2, (i). The implication
2)=(2)

follows from Lemma 1.5, together with the fact that I; = D; N D;, where
ve v (e)N7(é) (cf. Proposition 3.5). Thus, since it is immediate that the
equivalence

(3)« (3)
follows from the equivalences
e 1) (22,

together with Lemma 1.5, to complete the proof of assertion (i), it suffices to
verify the implication

() 2) =)

under the assumption that é; # é, (cf. Lemma 1.5).

If Node(¥) = (&, then (f) is immediate; thus, assume that Node(¥9) # .
Now if condition (2') is satisfied, then since D; N Dg NIy = {1}—which
implies, in particular, that the composite Ds N D, — II; — I is injective—
and [ is torsion-free, it follows that the intersection Dg N D;, is torsion-fiee.
Thus, to prove (f), by replacing I1; by an open subgroup of II;, we may
assume without loss of generality that ¢ is sturdy (cf. [Mzk4], Remark 1.1.5)
and untangled (cf. Remark 1.2.1, (1)), and that p, is of SNN-type;, moreover, by
projecting to the maximal pro-/ quotients, for some /€ X, of suitable open
subgroups of the various pro-X groups involved, to prove (}), we may assume

without loss of generality that X = {/}. Write J &f D; N Ds,.

Now we verify (1) in the case where {é;,&,} < Cusp(%). To this end, let
us assume that condition (2') is satisfied. Then it fo})luczws from gﬁ?mma 2.7,
(i), that the image of the composite D — II; = Iy X I — II; X I—where
we write 4 for the compactiﬁcatiton of @ (cf. Definition 1.11)—coincides with
the inertia subgroup I of 11 54 I associated to the element #; of Vert((9)™)
determined by the unique element of 77(&) < Vert(4). Thus, since J # {1}
and JNIIy = {1} (cf. condition (2')), it follows that Iy, NI; # {1}; in par-
ticular, it follows from Remark 3.5.1 that #; = 7,, hence—by applying this
conclusion to the various open subgroups of I7,—that ¥"(é) = ¥"(&,). This

completes the proof of () in the case where {é;,é,} < Cusp(9).
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Next, we verify () in the case where {&,é,} ¢ Cusp(%). Thus, we
may assume without loss of generality that & € Node(%). Write 77(é) =
{p,9'}.

Now we claim that if condition (2’) is satisfied (i.e., & # &, and J # {1}),
and J N I; = {1}, then condition (2) is satisfied. Indeed, suppose that condition
(2 is satisfied and JNI; = {1}, but that condition (2) is not satisfied. Then
since JNI; = {1} and & € Node(%), it follows that (J-I;) NITy = (J x I;) N
Iy (~7Z,) is an open subgroup of D; NI1y = II; (~Z;) (cf. Remark 2.7.1;
Lemma 3.7); thus, by replacing I7; by an open subgroup of II;, we may
assume without loss of generality that (J-I;) NIlg = IT;. In particular, we
obtain that I7; = J - I; < D;, - I;.  On the other hand, since ' ¢ 77(&,) (by the
assumption that condition (2) is not satisfied), by applying Remark 3.4.1, where
we take “Dyp” to be 7/, we obtain an open subgroup I7 < I such that IT; & IT
(cf. the implication “(i) = (ii)” in Remark 3.4.2), and, moreover, [;, D;, = IT
(cf. conditions (ii), (iv) in Remark 3.4.1)—in contradiction to the inclusion
II; < Dg, - I;. This completes the proof of the above claim.

Next, we claim that if condition (2') is satisfied (i.e., &} # &, and J # {1}),
and J N I; # {1}, then condition (2) is satisfied. Indeed, suppose that condition
(27) is satisfied, and JNI; # {1}. Then since 2 = {/}, by replacing I by an
open subgroup of I, we may assume that [; = J; thus, I; =J < D;,. There-
fore, it follows from Proposition 3.5 that ¢ e ¥7(é); in particular, since
ve v (e)N7(é), condition (2) is satisfied. This completes the proof of
the above claim, hence also of the proof of (f).

Next, we verify assertion (ii). Since condition (2) in assertion (i) is
satisfied, we have I; = Ds N D;, (cf. Proposition 3.5). Moreover, since Dg N
D;, NI14 = {1}, the composite D; N Dz, — II; — I is injective. On the other
hand, since p; is of SNN-type, the composite [y — Il — I is bijective.
Therefore, we obtain that [; = D; N D;,, as desired. O

ProPOSITION 3.9 (Graph-theoretic geometry via verticial decomposition sub-
groups). For i =1,2, let ©; € Vert(%). Then the following hold:
(1) Consider the following four (mutually exclusive) conditions:
(1) o(y,02) =0.
(2) 6(01,02) = 1.
(3) o(vy,02) =2.
4) O(01,02) = 3.
Then we have equivalences

M=)  @e@) @e3) @e¢)

with the following four (mutually exclusive [c¢f. Lemma 1.9, (ii)])
conditions:
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!

(1 ) Hﬁl = Hﬁz (SO D,}l = Df’z: I,jl 2152).

(2/) H,}l # H,}z,' Hﬁl ﬂH,;z (: D,;] ﬂD,}z ﬂng) # {1}

(3’) ]7,;101752 (Z D,;lﬂD,;zﬂHg):{l}; D510D527é{1}.

(4l) Dl71 mDﬁz = {1}

(ii) Suppose that p; is of SNN-type. Then if condition (2') is satisfied,
then A (01) N AN (82) # &, and, moreover, D5 N Dg, = Ds—where we
write € for the unique element of N (D7) N A (D) (cf. Lemmas 1.8; 1.9,
(i)

(iii) Suppose that p; is of SNN-type. Then if condition (3') is satisfied,
then there exists a(n)—necessarily unique (cf. Lemmas 1.8; 1.9, (i) )—
element of ¥y € Vert(9) such that 6(by,93) = 6(ia,03) = 1, and, more-
over, Dy N Dy, = I,.

Proor. First, we verify assertion (ii). To this end, suppose that p; is of
SNN-type, and that condition (2') is satisfied. Then it follows from Lemma
1.9, (ii), that there exists an element & € Node(%) such that 77(&) = {&, 5.} (i.e.,
ee N (01)NA(D2)). Thus, it follows from Remark 2.7.1 that D; < Dy N Dy, .
Therefore, since I1; = D; N 11y = Dy, N Dy, N 11y (cf. Lemmas 1.9, (ii); 2.7, (i),
(iii)), and the composite D; — IT; — I is surjective (since p; is of SNN-type),
it follows immediately that D; = Dz N Dy. This completes the proof of
assertion (ii).

Next, we verify assertion (iii). To this end, suppose that p; is of SNN-
type, and that condition (3’) is satisfied, i.e., that J défD,;l ND; # {1}, and
JNIIy = {1}. Note that it follows from Lemma 1.9, (ii), that ; # D,; in
particular, Node(%) # .

Now we claim that

(*1) Jﬂ]gl :Jﬂlﬁz = {1}

Indeed, if J N 1I; # {1}, then (since I is isomorphic to Z*—cf. Lemma 2.5, (i))
by projecting to the maximal pro-/ quotients, for some / € 2, of suitable open
subgroups of the various pro-X groups involved, we may assume without
loss of generality that J = [;. But this implies that I, =J <= Dy, = Zy,(I5,)
(cf. Lemma 3.6, (ii)), hence that [;, = Zj,(I5) = Dj (cf. Lemma 3.6, (ii)).
Therefore, we obtain that [;, < D; N Dy, =J = I;; in particular, it follows
from Remark 3.5.1 that 0; = v,—a contradiction. This completes the proof
of (*1)

Next, for i=1,2, let us write J; &f (I;, - J)N Iy (= (I, x J) N Hg—cf.
(¥1)). Then for any pair of integers 7, j such that {i, j} = {1,2}, since J < D;,
it follows that J; = (I;, - J) NIy < (I; - Dy) N I14; since, moreover, J < Dy, it
follows that J; = (I, - J) N 11y < (I, - Ds,) N Ty = IT;;, (cf. Lemma 2.7, (i)). In
particular, it follows that for any pair of integers i, j such that {i, j} = {1,2},
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we have J; < (I, - Dy )N 1I5. On the other hand, it follows immediately from
(*1) that J,' # {1}
Next, we claim that

(¥2) for i=1,2, there exists an element ¢é; € &(?;) such that J; = I1,,.

Indeed, let us first observe that, for any pair of integers i, j such that
{i,j} = {1,2}, since J; = (I - Dy) N [T, it follows immediately from Remark
3.2.1 that if 5(%) # 52(%), then the image of J; in II3”** is trivial. More-
over, by applying this observation to arbitrary open subgroups H < I,
corresponding to connected finite étale coverings of ¥[p,] that determine outer
representations of SNN-type, we conclude that, if we write ¥’ — % for the
connected finite étale covering of ¥ determined by H, then the image of

(Is; NH) - (JONH)) Ny

in I7 ;'?/ 4% iS trivial; but since, for a suitable positive integer n (that depends

on H!), we have

(JiNIy)" = (I - I N My = ((I;NH) - (JOH)) Ny,

it follows from the fact that I7 ;'?/ 42 is torsion-free (cf. [Mzk4], Remark 1.1.4)

that the image of J; NI, in IT ;'?/ “d2° is trivial. Thus, we may apply Lemma
1.6, together with Lemma 1.7, to conclude the existence of an &; € &(%;), as
desired. This completes the proof of (x;). Note that since &(3;) N & (%) = &
(cf. Lemma 1.9, (ii)), it follows that &, # é,.

Now it follows immediately from the definition of J; that J < J;- ;.
Thus, by (*2), we obtain that J = J - I, = J; - I;, = II;, - I;, = D;, (cf. Remark
2.7.1); in particular, J < D; N Ds,. Now since J # {1}, and &, # é, it follows
from Proposition 3.8, (i), (ii), that there exists an element #; € Vert(%) such that
v e v (é;)N ¥ (&), and, moreover, (J &) Ds NDs = I;. Moreover, since
E0)NE (D) = &, it follows that él,ézeNode({é), and that 3 # 01,0»; in
particular, it follows that d(%3,01) = d(03,02) = 1. Thus, since I, = I;, = Ds, =
D;, (cf. Remark 2.7.1) for i=1,2, it follows that Iz, = D3 N Dy, =J. This
completes the proof of assertion (iii).

Finally, we verify assertion (i). First, let us observe that the equivalences

M=) @« @)
follow from Lemma 1.9, (ii). Now since the equivalence
(4) < (4)
follows from the equivalences

He 1) @e) 6)e@)
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—together with the mutual exclusivity observed in the statement of Proposition
3.9, (i)—to complete the proof of assertion (i), it suffices to verify the
equivalence

(3) & (3).

To this end, assume that condition (3) is satisfied. Then it follows from
Lemma 1.9, (ii), that Dj N Dy NITy = {1}. Now to verify condition (3'),
by replacing I by an open subgroup of I, we may assume without loss of
generality that p; is of SNN-type (so that we may apply Remark 2.7.1). Since
condition (3) is satisfied, there exists an element #; € Vert(%) such that
o0(01,03) =0(02,03) = 1. For i=1,2, let & € A (3;) N A (03). Then it follows
that I, = I;, = Ds; < Dy, (cf. Remark 2.7.1); in particular, I, < Dy N Dy,.
Thus, condition (3') is satisfied.

Next, let us assume that condition (3’) is satisfied. Then since Dj N
Dj;, NIy = {1}—which implies, in particular, that the composite Dj N D, —
II; — I is injective—and I is torsion-free (cf. condition (1) of Definition 2.4), it
follows that Dj N Dy, is torsion-free. Therefore, to verify condition (3), by
replacing / by an open subgroup of I, we may assume without loss of
generality that p; is of SNN-type. Then it follows immediately from assertion
(iii), together with Lemma 1.9, (ii), that condition (3) is satisfied. This com-
pletes the proof of assertion (i). O

4. A combinatorial anabelian theorem for nodally nondegenerate outer
representations

In this section, we prove two combinatorial anabelian results in the style of
[Mzk4] for outer representations of NN-type.

THEOREM 4.1 (Group-theoretic verticiality and nodality of certain isomor-
phisms). Let X be a nonempty set of prime numbers, 9 and H semi-graphs of
anabelioids of pro-X PSC-type, iy € Vert(%), vy € Vert(#), Iy (respectively,
Iy ) the fundamental group of % (respectively, #), o:Iy = I, an iso-
morphism of profinite groups, I and J profinite groups, p;: 1 — Aut(9) and
py i J — Aut(A) continuous homomorphisms, and f:1 = J an isomorphism of
profinite groups. Suppose that the following three conditions are satisfied:

(1) The diagram
I —— Out(H(g)

BJ lOut(a)

J —— Out(Ily)
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—where the right-hand vertical arrow is the homomorphism induced by
o, the upper and lower horizontal arrows are the homomorphisms
determined by p; and p;, respectively—commutes.
(it) py, p; are of NN-type.
(iii) o(I3,) = 5,
Then the isomorphism o is group-theoretically verticial, hence, in particular,
group-theoretically nodal (c¢f. Proposition 1.13).

ProoF. Note that to verify Theorem 4.1, it is immediate that by replacing

I by an open subgroup of /, we may assume without loss of generality that p,
def out def out

and p; are of SNN-type. Letusdenote by &:1I; = Iy X [ = I1; = Iy X J
(cf. the discussion entitled ““Topological groups” in §0) the isomorphism deter-
mined by o and f (cf. assumption (i)).

For ©e Vert(%), we shall say that i satisfies the condition (xP*) if
a(IT5) = Iy is a verticial subgroup of Il,. First, we claim that this condition
(xP's) satisfies the property (%) in the statement of Lemma 3.1. To this end,
let 4y, € Vert(%) be such that 5(5;(%),5:(%)) < 1 and, moreover, ; satisfies
the condition (xP*%). Now if 7;(¥9) = (%), then it is immediate that o,
satisfies the condition (xP**); thus, we may assume that 7;(¥%) # 2(%9). Then
it follows from Lemma 1.15 that there exist wy,u;, W, € Vert(?) which satisfy
the following conditions:

(1) 01(9) = wi(9) =w(9); 1:2(9) = w2 ().

(2) o(wi,m) = 2.

(3) oWz, w1) =(wa, ) = 1.

Now it follows from condition (1), together with the assumption that 7,
satisfies the condition (xP™), that w; and #; also satisfy (xP™*); in particular,
there exist W], i € Vert(#) such that a(Dy,) = Dy and a(Dy ) = Dy. More-
over, it follows from Proposition 3.9, (iii), together with conditions (2), (3), that
Dy;, N Dy, = Iy,; in particular, it follows that Dy, N Dy # {1} and Dy N Dy N
I, ={1}. Thus, again by Proposition 3.9, (iii), there exists an element
w} € Vert(#) such that Dy N Dy = Iy, Now since a(Dy,) = Dy and a(Dy,)
=Dy, it follows that a(Z,) = Iy thus, it follows from Lemma 3.6, (i), that
a(Il,) = ;. In particular, it follows from condition (1) that o, satisfies
the condition (xP**). This completes the proof of the above claim.

Now in light of the above claim, together with assumption (iii), we may
apply Lemma 3.1 to conclude that the isomorphism o is group-theoretically
verticial. This completes the proof of Theorem 4.1. O

COROLLARY 4.2 (Graphicity of certain group-theoretically cuspidal isomor-
phisms). Let X be a nonempty set of prime numbers, 9 and # semi-graphs of
anabelioids of pro-X PSC-type (c¢f. [Mzk4|, Definition 1.1, (i)), Ily (respectively,
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Il ) the pro-X fundamental group of 9 (respectively, #), o:Ily = I, an

isomorphism of profinite groups, I and J profinite groups, p; : I — Aut(¥%) and

py o — Aut(H) continuous homomorphisms, and f: 1 = J an isomorphism of

profinite groups. Suppose that the following three conditions are satisfied:
(1) The diagram

I —— Out(Ily)

/)’J( lOut(:{)

J —— Out([]_y/)

—where the right-hand vertical arrow is the homomorphism induced
by o; the upper and lower horizontal arrows are the homomorphisms
determined by p; and p;, respectively—commutes.
(ii) p;, p; are of NN-type (c¢f Definition 2.4, (iii)).
(iti) Cusp(9) # &, and the isomorphism o is group-theoretically cuspidal
(¢f. [Mzk4], Definition 1.4, (iv)).
Then the isomorphism o is graphic (cf. [Mzkd|, Definition 1.4, (i)).

Proor. It is immediate that to verify Corollary 4.2, by replacing I1; by
an open subgroup of I1;, we may assume without loss of generality that ¥
and # are sturdy (cf. [Mzk4], Remark 1.1.5), and that Pr and p, are of SNN-

out

type. Let us denote by & : H1 Hg x> HJ = I'[// >4 J (cf. the discussion
entitled “Topological groups” in §0) the isomorphism determined by « and f
(cf. assumption (i)).

Now it follows from Lemma 1.14 that to prove the graphicity of «, it
suffices to show that the isomorphism « satisfies condition (ii) in the statement
of Lemma 1.14. Moreover, by replacing 4 by the “%4’” in the statement of
Lemma 1.14, it suffices to show that the isomorphism I7; — IT ;—where we
write % (respectively, #) for the compactification (cf. Deﬁmtlon 1.11) of ¥
(respectively, #)—induced by « is group-theoretically verticial. The rest of the
proof of Corollary 4.2 is devoted to the proof of the fact that the isomorphism
Il; = II; induced by « is group-theoretically verticial.

Write I — Out(/1;) (respectively, J — Out(/1;)) for the outer represen-

tation of pro -2 PSC-type determined by p, (respectively, p,) and

7 def . = def out
I, =115 NI (respectively, II; = II; < J). Let éy € Cusp(¥4 9) (cf. assump-

tion (111)). Then it follows from assumption (iii) that there exists an element
éy € Cusp(#) such that &(D;,) = Ds;,. Moreover, if we denote by iy (re-
spectively, 04) the unique element of ¥"(ey) (respectively, 7 (ex)), then it
follows from Remark 2.7.1 that the image of the composite D;, — I1; — II;
(respectively, Dz, — II; — II;) coincides with I;, (respectively, I;,). There-

fore, it follows from Lemma 3.6, (i), that o(/7;,) = II;,. In particular, we
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may apply Theorem 4.1 to conclude that the isomorphism I7; = I1; is group-
theoretically verticial. This completes the proof of Corollary 4.2. O

RemMARK 4.2.1. One may verify the following assertion by applying
[Mzk4], Corollary 2.7, (iii), as in the proof of [Mzk4|, Corollary 2.8:

In the notation of Corollary 4.2, if the following three conditions are
satisfied, then o is graphic:
(i) The diagram

I —— Out(Ily)

[fl JVOut(y.)

J —— Out(Ily)

—where the right-hand vertical arrow is the homomorphism induced
by «; the upper and lower horizontal arrows are the homomorphisms
determined by p; and p;, respectively—commutes.
(ii) p;, p; are of IPSC-type.
(i) The isomorphism o is group-theoretically cuspidal.
That is to say, one may think of Corollary 4.2 as a partial (cf. the condition
“Cusp(9) # & of Corollary 4.2, (iii)) generalization of the above assertion—
whose proof is independent of the methods of [Mzk4].

5. Injectivity via nodally nondegenerate degenerations

In this section, we apply Corollary 4.2, together with a similar argument to
the argument used in the proof of [Mzk7], Corollary 2.3, to prove a certain
injectivity result concerning FC-admissible outomorphisms (cf. the discussion
entitled “Topological groups” in §0) of pro-2 fundamental groups of configura-
tion spaces (cf. Corollary 5.3).

DerFINITION 5.1. Let X2 be a set of prime numbers which is either of
cardinality one or equal to the set of all prime numbers, (g,r) a pair of natural
numbers such that 2g —2 47 > 0, n a natural number, S'°¢ an fs log scheme
whose underlying scheme is the spectrum of an algebraically closed field of
characteristic ¢ X, and X'°2 an r-pointed stable log curve of genus g over S'°¢,
i.e., the log scheme obtained by pulling back the universal r-pointed stable
log curve of genus g over ,/%_qlorg (cf. the discussion entitled ““Curves” in §0) via a
(1-)morphism S'¢ — ./Z1°¢.

(i) We shall denote by X°¢ the n-th log configuration space of X'°2

(cf. the discussion entitled “Curves” in §0).
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We shall denote by 77, the maximal pro-X quotient of the kernel of
the surjection 7;(X°8) — 7;(S"0¢8).
For i =1,2, we shall denote by

pri® : )% — X[°F = X1
the projection to the factor labeled i, and by

pDi: 11 2 —» 11 1
the surjection induced by pri®.
We shall denote by I7,,; the kernel of the surjection py : [T — II;.
We shall denote by ¥ the connected semi-graph of anabelioids of
pro-2 PSC-type arising from the pointed stable curve determined
by the stable log curve X'°¢ over S'°¢ (cf. [Mzk4], Example 2.5),
and by I14 the fundamental group of ¥. Note that by the various
definitions involved, there exists a natural isomorphism 7 ~ I1y4.
In the following, we shall assume that

(Vert(%4)”,Node(%)”) = (2,1)
(cf. Remark 5.1.1 below) and write
Vert(9) = {v1, 02 }; Node(¥%9) = {e}

(cf. Figure 1). Also, we observe that (it follows immediately from
the various definitions involved that) we have Cusp(%)” = r.

We shall denote by %, the connected semi-graph of anabelioids of
pro-2 PSC-type arising from the pointed stable curve determined by
the fiber of pr; : X, — X'°¢ at the unique node e of X'°¢ (cf.
Figure 1), and by 174, the fundamental group of %,. Note that by
the various definitions involved, we have

(Vert(g/e)#a Cusp(g/e)#7 NOde(g/e)#) = (37 r+1, 2)7

moreover, there exists a natural isomorphism /7, ~ Ilg,.

For i=1,2, there exists a wunique vertex of %, such that the
image via the surjection g, ~ 11y — I, ~ 1y induced by p;
of a verticial subgroup of /14, associated to the vertex is a verticial
subgroup of ITy4 associated to v; € Vert(4). We shall denote this
vertex by v} € Vert(%9,,). On the other hand, there exists a unique
vertex of %, such that the image via the surjection Il ~ II;; —
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uHsubn

Q

(viii)

2/1 l

(= the fiber of the second
log configuration
space at e)

Flg' L {4’ (ge: and “”25%)”

Il ~ Ily induced by p, of a verticial subgroup of I14, associated
to the vertex is an edge-like subgroup of I14 associated to the
unique node e enode(¥). We shall denote this vertex by uf e
Vert(%),). Thus, in summary, we have

Vert(9,,) = {v}, 05,13}

For i = 1,2, there exists a unique node of %, such that the subset of
vertices of %), to which the node abuts is {v},v5}. We shall denote
this node by e; € Node(9),), ie., ¥ (ef) = {vf,v5}. On the other
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hand, there exists a wunique cusp which abuts to vj. We shall
denote this cusp by ej € Cusp(%,.). Thus, in summary, we have

Node(%.) = {ef, ea}; 77(e)) ={vj,vp}s 77(ep) = {vp}-

Let Y < X be the irreducible component of the underlying scheme
X of X' corresponding to v;, Uy < Y the open subscheme of Y
obtained as the complement of the nodes and cusps which abut to
v1, and Y'°2 the smooth log curve (whose underlying scheme is Y)
over S'°¢ determined by the hyperbolic curve Uy. (Thus, Uy € Y
is the open subscheme of points at which the log structure of Y'°2
coincides with the pull-back of the log structure of $'°¢.) Write gy
for the genus of Uy and ry for the number of cusps of Uy. Let
Y2 be the n-th log configuration space of Y'°¢ (cf. the discussion
entitled “Curves” in §0). Note that the natural closed immersion
Y — X induces a commutative diagram

Y — X»

|

Yy — X

—where the left-hand vertical arrow is the morphism induced by
pr; (cf. the discussion of [Mzk7]|, Definition 2.1, (iii)).

We shall denote by I75"® the maximal pro-X quotient of the kernel
of the surjection 7;(Y,°®) — 7;(S'°¢), and by I15}} the kernel of the
surjection 73" — IT{"° induced by the first projection ¥, — y'°g,
Note that if we denote by Uy, < Y, the open subscheme of points
at which the log structure of Y, °¢ coincides with the pull-back of
the log structure of S'°¢ then recall that by the log purity theorem
(cf. [Mzk7], the discussion of §0), the inclusion Uy, — Y, induces
a natural isomorphism m(Uy")(Z) S M. Thus, by restricting
coverings of an"g to Uy, for n=1,2, we obtain a commutative
diagram (cf. the discussion of [Mzk7], Definition 2.1, (vi))

|l —  my @ —m® — I —1

| | |

] — Hz/](ﬁ H@ﬂ) —_— Hz —_— Hl(: H(g) — 1
D1

—where the right-hand upper horizontal arrow is the surjection

induced by p;, the vertical arrows are injective outer homomor-

phisms, the horizontal sequences are exact, and the image of the
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right-hand vertical arrow is a verticial subgroup of 74 associated to
vy (cf. Figure 1).

REMARK 5.1.1. One verifies easily that if 29 —2+r>1 (ie, (g,r) #
(0,3),(1,1)), then there exists a stable log curve X'°¢ as in Definition 5.1 (cf.,
especially, the assumption in Definition 5.1, (v)).

LemMa 5.2 (Basic properties of verticial subgroups). In the notation of
Definition 5.1:  For i=1,2, let us fix an edge-like subgroup Il.. < Ilg, asso-
ciated to e € Node(%),) (Definition 5.1, (viii)). Then the following hold:

(1) There exists a unique verticial subgroup Il (respectively, 1) of
Ilg, associated to v; € Vert(9),) (respectively, vje Vert(9,)) [cf.
Definition 5.1, (vii)/ that contains 1.

(ii) There exists a unique I, -conjugate of the image of H;‘/‘? via the
left-hand wvertical arrow in the diagram of Definition 5.1, (x), that
contains and is topologically generated by the verticial subgroups I1;,
I, < Ilg, obtained in (i) in the case where i=1. By abuse of
notation, we shall denote this particular IT,; -conjugate of the image of
H;‘}? by means of the notation H;‘/‘tf

(i) Suppose that Il.; was chosen so that (in the notation of (ii)) we have
I, < H;‘/JE’. Then (in the notation of (i) and (ii)) Il is topolog-
ically generated by I1,; and I13}).

Proor. These assertions follow from similar arguments to the arguments
used in the proofs of [Mzk7|, Proposition 2.2, (ii), (iii). O

The following result is the main result of the present section.

COROLLARY 5.3 (Injectivity for not necessarily affine hyperbolic curves). In
the notation of Definition 5.1, the natural homomorphism

out™(17,) — out™ (1))

—where we write “Out™C(=)" for the subgroup of the group “Out(=)" of
outomorphisms (cf. the discussion entitled ““Topological groups” in §0) of “(—)”
defined in [MzK7], Definition 1.1, (ii)—induced by p; is injective.

Proor. If 29 —2+r =1, then Corollary 5.3 follows from [Mzk7], Cor-
ollary 2.3, (ii); thus, to verify Corollary 5.3, we may assume without loss of
generality that 2g —2+r > 1. Note that since 2g — 2+ r > 1, there exists a
stable log curve X'°¢ as in Definition 5.1 (cf. Remark 5.1.1). Thus, in the
following, we assume that we are in the situation described in Definition 5.1.

To complete the proof of Corollary 5.3, it suffices, by [Mzk7], Proposition
1.2, (iii), to verify the assertion that if an automorphism o of II, is IFC-
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admissible (cf. [Mzk7], Definition 1.1, (ii)), i.e., o satisfies the following
three conditions (i), (ii), and (iii), then the automorphism o is a Z-inner
automorphism—where we write =» défKer(pl)ﬂKer(pz) € I, (cf. Definition
5.1, (iii)):
(i) o preserves Ker(p1) (= II,;) and Ker(py).
(ii) The automorphism of /74, (=~ II5/;) obtained as the restriction o] 1Ty,
of a (cf. (1)) is group-theoretically cuspidal.
(i) The automorphism of the quotient (pi, p2) : I, — Iy x II; of IT,
induced by a (cf. (i) is the identity automorphism of Il x II;.
The rest of the proof of Corollary 5.3 is devoted to verifying this assertion.
It follows immediately from (i) and (iii) that we have a commutative
diagram

11, -, Out(HQ/l)

H Jom(xnz/])

i — Out(Hz/l)
p
—where the right-hand vertical arrow is the homomorphism induced by
o Ty and we write p for the outer representation determined by the exact
sequence

1—>H2/1—>Hzﬂ>171—>1.

Let [1, = II|, be an edge-like subgroup of 17, (~ Il4) associated to the
unique node e of 4. Then it follows immediately from the various definitions
involved that the composite /7, — IT; 2> Out(11,),) factors through Aut(%,,) =
Out(/1,/,); moreover, in light of the well-known local structure of X log in a
neighborhood of the node corresponding to e, it follows immediately from
Proposition 2.14 that the resulting outer representation of pro-X PSC-type
II, — Aut(%),) is of SNN-type. In particular, it follows immediately from (ii),
together with the fact that %), has at least one cusp (cf. Definition 5.1, (vi)), that
we may apply Corollary 4.2 to conclude that the restriction «f ) is graphic.

Next, let us fix an edge-like subgroup 1. < Il associated to ef e
Node(%),) (cf. Definition 5.1, (viii)). Then we claim that there exists an
element ye =, such that a(/l;) =y Il -y~!. Indeed, it follows from the
graphicity of «f Ty together with (iii), that o] I induces the identity auto-
morphism of the underlying semi-graph of %, (cf. Definition 5.1, (vii), (viii)),
hence that there exists an element " € IT5;; such that ot(chf) =y I, -y in
particular, again by (iii), we obtain that p>(/1.:) = p2(y') - p2(fle) - P2y h).
On the other hand, it follows immediately from the various definitions involved
that py(fl;) = 11, is an edge-like subgroup of II, associated to e € Node(%).
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Thus, it follows from the commensurably terminality of pz(ﬂe?) in I1; (cf.
[Mzk4], Proposition 1.2, (ii)) that py()') € p2({le;). In particular, by multi-
plying y* by an appropriate element of I7.:, we obtain an element 7, as
desired. This completes the proof of the above claim.

In light of the above claim, we may assume without loss of generality—by
composing o with an appropriate Z;-inner automorphism—that oc(He(;) =1l.
Let 11y, Iz = IT); be the unique verticial subgroups associated, respectively,
to vy, v € Vert(%/é) that contain the fixed edge-like subgroup I7.: (cf. Lemma
5.2, (1) H;‘ﬁ € II,); the unique IT,/;-conjugate of the image of the left-hand
vertical arrow in the diagram in Definition 5.1, (x), that contains and is
topologically generated by these verticial subgroups 17, 11y (cf. Lemma 5.2,
(if)). Then in light of the graphicity of o, it follows from the fact that a(/1.:) =
I, together with Lemma 5.2, (i), (i), that a(/l,2) = I1,e, a({1;) = 11,3, and

(1757'1’) 1557

Next, let us observe that H;‘/‘l is commensurably terminal in IT5;;. (In-
deed, this follows by applying [Mzk4]|, Proposition 1.2, (ii)—where we think of
the fiber of Y210g — Y'°2 over e [by, for instance, deforming the unique node of
this fiber| as a single irreducible component of the fiber of X,°¢ — X'°£) Note
that in light of this commensurable terminality, the compatibility of «,,; with
the outer action of /7| on II,;; (relative to the identity automorphism of I7;—
cf. condition (iii)) implies the compatibility of «/, e with the outer action of
" on IT 25711’ (relative to the identity automorphism of 17 $u0). Thus, it follows
from the commutative diagram 1n Deﬁnltlon 5.1, (x) (i.e., by applying the
natural isomorphism 75" ~ H;‘/‘ll’ ) IT{*® [cf. the dlscussmn entitled “Topo-
logical groups” in §0]), that the automorphlsm 1] s arises from an
automorphism o*® of IT 5“". Moreover, it follows 1mriled1ately from the
construction of «*'® (cf. also [Mzk4], Proposition 1.5, (i)) that o is IFC-
admissible (cf. [Mzk7], Definition 1.1, (ii)), i.e., that «®® satisfies the analogue
for IT5"® of the above three conditions (i), (ii), and (iii). Therefore, since the
stable log curve Y!°¢ [unlike the stable log curve X'°2!] necessarily has at least
one cusp, we may apply [Mzk7], Corollary 1.12, (i), and [Mzk7], Corollary 2.3,
(i) (cf. also Remark 5.3.1 below), to conclude that o is a HS“b—mner
automorphism—where we write Z5'° &f E,NII5™ for the analogue of “Z,”
for ngb‘ In particular, it follows that o, | s 1S a Ey-inner automorphism.

Now from the point of view of verifying the assertion that o is a =5-
inner automorphism, we may assume without loss of generality—by composing
with an appropriate Zp-inner automorphism—that o stabilizes and restricts to
the identity automorphism of IY;‘/‘}’; in particular, since [1,; < H;‘/“f, it follows
that o stabilizes and restricts to the identity automorphism of ITy.

Let Il = I15;; be an edge-like subgroup associated to e5 € Node(%.)
which is contained in I, and I1,; < Il the unique (cf. Lemma 5.2, (i)
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verticial subgroup associated to v5 € Vert(%),) that contains /7,;. Now since
o stabilizes and restricts to the identity automorphism of Il, it follows that
oc(IYg;) = Il,;. Thus, in light of the graphicity of o, we may apply Lemma 5.2,
(i), to conclude that a(il,5) = I1,;. Next, let us observe that the surjection
Iy — pz(ﬂvg) determined by p, is an isomorphism. Thus, it follows imme-
diately from condition (iii) that of, is the identity automorphism.

Since 11, is topologically genezrated by H;'/“f and I1;; (cf. Lemma 5.2,
(iii)), the fact (cf. the above discussion) that «| 3 and «|;;  are equal to the
respective identity automorphisms on H;?ll’ and 11, implies2 that o] 1), is the
identity automorphism. But this implies that o is the identity automorphism
(cf. the discussion entitled “Topological groups” in §0). This completes the
proof of Corollary 5.3. O

REmARK 5.3.1.

(i) An alternative approach to the portion in the latter half of the
proof of Corollary 5.3 where one applies [Mzk7], Corollary 2.3, (i),
may be given, at least when (g,r) # (2,0), as follows. One verifies
easily that 3gy —3+ry <39 —3+r, and, moreover that, at least
when (g,r) # (2,0), one may always choose X'°¢ (in the situation of
Definition 5.1, so (g,r) # (0,3), (1,1)—cf. Remark 5.1.1) so that
(gy,ry) # (1,1). Thus, by applying induction on 3g—3+r, one
may reduce this portion of the proof of Corollary 5.3 to the case
where 39 —3+r=20, ie., the case of a tripod. That is to say,
instead of applying [Mzk7], Corollary 2.3, (i), it suffices to apply
[Mzk7], Corollary 1.12, (i). In particular, this alternative approach
yields a new proof—at least in the case of (g,r) # (1,1)—of [Mzk7],
Corollary 2.3, (i) (i.e., via Corollary 4.2, as opposed to [Mzk4],
Corollary 2.7, (iii)—cf. Remark 4.2.1).

(i) In passing, we recall that [Mzk4], Corollary 2.7, (iii), is applied in
various situations throughout [Mzk7]. In fact, however, (cf. the
discussion of (i)) it is not difficult to verify that the partial gener-
alization of [Mzk4], Corollary 2.7, (iii), constituted by Corollary 4.2
(cf. Remark 4.2.1) is sufficient (i.e., in the sense that the condition
“Cusp(¥9) # & of Corollary 4.2, (iii), is always satisfied) for verify-
ing the various assertions in [Mzk7] (cf. the proof of [Mzk7], Prop-
osition 1.3, (iv)) that are derived from [Mzk4], Corollary 2.7, (iii).

6. Consequences of injectivity

In this section, we discuss various consequences of the injectivity result
proven in §5.
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The following theorem is a generalization of [Mzk7], Theorem A, (i),
(ii).

THEOREM 6.1 (Partial profinite combinatorial cuspidalization). Let X be a
set of prime numbers which is either of cardinality one or equal to the set of all
prime numbers, n a positive integer, X a hyperbolic curve of type (g,r) over an
algebraically closed field of characteristic ¢ X, X,, the n-th configuration space
of X (¢f [MzTa], Definition 2.1, (i)), II, the maximal pro-X quotient of the
fundamental group of X, and Out™C(I1,) = Out(I1,) the subgroup of the group
Out(I1,) consisting of the outomorphisms (cf. the discussion entitled “‘Topolog-
ical groups” in §0) of II, which are FC-admissible (c¢f. [Mzk7], Definition 1.1,
(ii)). Set ng ) if X is affine, ie., r>1; ng &y if X is proper, ie., r=0
(¢f- [Mzk7]|, Theorem A). Then the natural homomorphism

out™(11,,,) — out™(11,)

induced by the projection X,+1 — X, obtained by forgetting the (n+ 1)-st factor
is injective if n > 1 and bijective if n>ny+ 1. Moreover, the image of the
natural inclusion

S, — Out(I1,)

—where we write S, for the symmetric group on n letters—obtained by
permuting the various factors of the configuration space X, is contained in
the centralizer Zolnmn)(OutFC(Hn)).

Proor. First, we consider the surjectivity portion of the bijectivity asser-
tion in the statement of Theorem 6.1. This surjectivity already follows from
[Mzk7], Theorem A, (i), if n > 4. Thus, we may assume that n = 3, which
implies that r > 1. Now by [Mzk7], Lemma 2.4; [Mzk7], Theorem 4.1, (ii),
(a), it suffices (cf. the proof of the surjectivity portion of [Mzk7], Theorem 4.1,
(i)) to verify (in the notation of [Mzk7]) that Out™©(173)"*" = Out™P(11;)*** <
OutF(J73)*" —where the first equality follows from [Mzk7], Theorem A, (ii).
But this follows from a similar argument to the argument applied to prove
[Mzk7], Corollary 3.4, (iii), by taking the section “¢ € X»(X)” of loc. cit. to be
the section determined by the diagonal and applying the symmetry observed in
the proof of [Mzk7], Corollary 3.4, (i).

Next, we observe that the assertion concerning the centralizer follows
immediately from the injectivity assertion, together with [Mzk7]|, Theorem A,
(ii); [Mzk7], Proposition 1.2, (iii). Thus, to complete the proof of Theorem
6.1, it suffices to verify the injectivity assertion. To this end, write H;
(respectively, IT I) for the kernel of the surjection I7,,1 — I1,_; (respectively,
I, — II,_,) induced by the projection obtained by forgetting the n-th and
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(n+ 1)-st factors (respectively, the n-th factor). Here, if n =1, then we set
My =1, % {1}. Then recall (cf. e.g., the proof of [Mzk7], Theorem 4.1, (1))
that we have natural isomorphisms

out

Tout 1
I =11, X I, _y; I, ~ 11| X II,

(cf. the discussion entitled “Topological groups” in §0). Also, we recall (cf.
[MzTa], Proposition 2.4, (i)) that one may interpret the surjection H; — IT I
induced by the surjection I1,,; — II, in question as the surjection “I1, — I1,”
of Definition 5.1 (i.e., the surjection that arises from the projection
pr, : Xo% — X'°%) in the case of an “X'°2” of type (g,r+n—1). Moreover,
one verifies easily that this interpretation is compatible with the definition of
the various “Out(—)’s” involved. Thus, the above natural isomorphisms allow
one to reduce the injectivity in question to the case where n=1 (cf. the
discussion entitled “Topological groups” in §0), which follows immediately
from Corollary 5.3 when 2g —2 +r > 1 (cf. Remark 5.1.1) and from [Mzk7],
Theorem A, (i), when 2g —2+r=1. This completes the proof of Theorem
6.1. ]

The following corollary is a generalization of [Mts], Theorem 2.2. Note
that [Mts], Theorem 2.2, corresponds to the following corollary in the case
where k is a subfield of the field of complex numbers, and, moreover, X is a
curve of positive genus that has at least one cusp defined over k.

COROLLARY 6.2 (Kernels of outer representations arising from hyperbolic
curves). Let X be a set of prime numbers which is either of cardinality one or
equal to the set of all prime numbers, X a hyperbolic curve over a perfect field k
such that every element of X is invertible in k, k an algebraic closure of k, n a
positive integer, X, the n-th configuration space of X, Gy def Gal(k/k), Ay, the
maximal pro-X quotient of the fundamental group of X, ®; k, and AP;\ (0,1, 0}
the maximal pro-X quotient of the fundamental group of PI%\{O, 1,0}, Then
the following hold:

(1) The kernel of the natural outer representation

pi/k : Gy — Out(4y,)

is independent of n and contained in the kernel of the natural outer
representation

P2 .
PpI\{0,1, 0}k G — Out(APA‘T\{Ova})'

(i) Suppose that X is the set of all prime numbers. (Thus, k is necessarily
of characteristic zero.) Write Q for the algebraic closure of Q deter-
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mined by k and Gq &f Gal(Q/Q). Then the kernel of the homomor-
phism pfn Jk is contained in the kernel of the outer homomorphism

G — Gq
determined by the natural inclusion Q — k.

ProOOF. Assertion (ii) follows immediately from assertion (i), together with
a well-known injectivity result of Belyi (cf., e.g., the discussion surrounding
[Mts], Theorem 2.2). Thus, to complete the proof of Corollary 6.2, it suffices
to verify assertion (i). It follows immediately from Theorem 6.1 that the
kernel of pf,n Ik is independent of n. Moreover, if we denote by k' < k the
minimal Galois extension of k& over which every cusp of X is defined, then
by considering the action of G, on the set of conjugacy classes of edge-like
subgroups of Ay associated to cusps of X—a set which admits a natural
bijection with the set of cusps of X (cf. e.g., [Mzk4], Proposition 1.2, (i))—it
follows immediately from the various definitions involved that for any n, the
kernel of the homomorphism pi Jk is contained in Gy < G, and that the
restriction of pf,n i to Gy factors through the subgroup

Out™(4y )P < Out™(4y,)

defined in [Mzk7], Definition 1.1, (v). Thus, we have continuous homo-
morphisms

(Ker(py, ) <) Gr — Out™(4y,) " — OUtFC(APE\{o,LOC})

—where the first arrow is the homomorphism induced by p)i Jio and the second
arrow is the homomorphism determined by the diagonal in X, (cf. [Mzk7],
Theorem A, (iii)). Moreover, one verifies easily that the composite of these
homomorphisms coincides with plf/,, cf. the construction of the

. \{0, 1,00} /k' (
homomorphism

Out™ (4, )" — OUtFC(APkl\{o,l,oo})

in [Mzk7]). Now assertion (i) follows immediately. O

The injectivity portion of assertion (i) (in the case where n = 1) of the
following corollary is a generalization of [Mts], Theorem 2.1. Note that [Mts],
Theorem 2.1, corresponds to the following corollary in the case where X is

affine.

COROLLARY 6.3 (Injectivity and commensurable terminality for outer rep-
resentations arising from hyperbolic curves). In the situation of Corollary 6.2,
suppose that k is a number field or p-adic local field (c¢f. the discussion entitled
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“Numbers” in §0), and that X is the set of all prime numbers. Write ky def Q

if k is a number field; k &f Q, if k is a p-adic local field; Aut(Xy/ko) for
the group of ko-linear automorphisms of the scheme X oy ik p, &ef pi Ik
Then the following hold:

(1) The outer representation

pu: Gi — Out(4y,)

is injective. Moreover, the outer representations p,., and p, are
compatible, in the evident sense, with the injection Out™“(Ay ) —
Out™(4y,) of Theorem 6.1.

(ii) Every o€ Aut(X;/ko) induces a ko-linear automorphism of (X,); &
X, ®r k. In particular, we have a natural outer representation

Pnjo Aut(X];/k()) — Out(AXH)

which factors through Out™(4y ) < Out(4y,) and is compatible with
p, relative to the natural injection Gy — Aut(X;/ko) determined by
taking the fiber product over Spec(k) with X. Moreover, the outer
representations p,. s, and p,, are compatible, in the evident sense,
with the injection Out™(4y,,,) — Out™(4y,) of Theorem 6.1.

(iif) The outer representation p, of (ii) is injective.

(iv) Suppose that the hyperbolic curve X is of quasi-Belyi type /cf. [MzKkS5],
Definition 2.3, (iil)/ (respectively, affine; proper). Set ng &y (re-
spectively, ny def 2, ng k3 ). Then the image of p,, is commensu-
rably terminal in Out™(4y ) (cf. [Mzk7], Definition 1.1, (ii)) for all
n = ny.

Proor. The injectivity portion of assertion (i) follows immediately from
Corollary 6.2, (ii), together with the injectivity of the outer homomorphism
“Gr — Gq” in the statement of Corollary 6.2, (ii), when k is a number field
or p-adic local field. The compatibility portion of assertion (i) follows im-
mediately from the various definitions involved. Assertion (ii) follows imme-
diately from the various definitions involved. Next, we consider assertion (iii).
In light of the compatibility portion of assertion (ii), it suffices to verify
assertion (iii) in the case where n = 1. Write Aut(X;/k) = Aut(X;/ko) for the
subgroup of k-linear automorphisms. Then the injectivity of the restriction
of pyj to Aut(X; -/k) is well-known (cf. e.g., the injectivity portion of [Mzkl1],
Theorem A). On the other hand, one verifies immediately that by restricting
an automorphism o € Aut(X;/kg) to the base field k, one obtains a natural
exact sequence

1 — Aut(X;/k) — Aut(X;/ko) — Gal(k/ko)
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such that the image of the homomorphism Aut(X;/ko) — Gal(k/ko) contains
Gr = Gal(k/k), hence is open. Thus, it follows immediately from the injec-
tivity portion of assertion (i) (cf. also the first compatibility discussed in
assertion (ii)) that the kernel of p,, maps isomorphically to a finite normal
closed subgroup of some open subgroup of the slim profinite group Gal(k/ko)
(cf. e.g., [Mzk2], Theorem 1.1.1, (ii)), hence is trivial, as desired. This com-
pletes the proof of assertion (iii). Finally, we consider assertion (iv). First, let
us observe that it follows immediately from [Mzk4], Corollary 2.7, (i) (cf.
also [Mzk7], Remark 1.1.3), that the commensurator of the image of p,, in
Outf(4y,) is in fact contained in Out™ (Ay ). Thus, it suffices to verify
assertion (iv) with “Outf(=)” replaced by “Out™(—)”. Next, let us observe
that by the injectivity portion of Theorem 6.1, it suffices to verify assertion (iv)
in the case where n = ny. Thus, let us assume that n = ny. Then in light of
assertion (iii), together with the fact that Ay, is slim (cf. the discussion entitled
“Topological Groups” in §0; [MzTa|, Proposition 2.2, (ii)), assertion (iv) follows
immediately—in the case where the hyperbolic curve X is of quasi-Belyi type
(respectively, is affine; proper)—from the “‘Grothendieck Conjecture-type result”
given in [Mzk5], Corollary 2.3 (respectively, [Mzk6], Corollary 1.11, (iii), (iv);
[Mzk6], Corollary 1.11, (iii), (iv)). O

The following corollary is a generalization of [MtTa], Theorem 1.1. Note
that [MtTa], Theorem 1.1, corresponds to the following corollary in the case
where r > 1.

COROLLARY 6.4 (Triviality of simultaneously arithmetic-geometric actions).
Let k be a field of characteristic zero, k an algebraic closure of k, (g,r) a pair of
natural numbers such that 2g — 2 +r > 0, (My,,), the moduli stack of r-pointed
smooth curves of genus g over k whose marked points are equipped with an
ordering, I1 4, the profinite fundamental group of the stack (M), and 4.,

the profinite fundamental group of the stack (My,,), @y k; thus, we have an exact
sequence

I — 4y

v — Iy, — Gal(k/k) — 1.
Moreover, let X be a hyperbolic curve of type (g,r) over k,
Py - Gal(k/k) — Out(n (X ®k))

the outer representation arising from the hyperbolic curve X over k, i.e., the outer
representation arising from the natural exact sequence

1 — m(X ®ck) — m(X) — Gal(k/k) — 1,
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and
Pg.r : Ma,, — Out(mi (X ®;k))

the profinite universal monodromy outer representation over k, i.e., the outer
representation arising from the natural exact sequence

1 — 7'[1(X Ok l;) - H,ﬂq - H{/q, — 1.

L r+l

Then the subgroup

Px Py (A4,,)) = Gal(k/k)

of Gal(k/k) is contained in the kernel of the outer homomorphism
Gal(k/k) — Gal(Q/Q)

determined by the natural inclusion Q — k.
In particular, if 'k is a number field or p-adic local field, then the intersection
of the image of the outer representation

px i+ Gal(k/k) — Out(m (X ®k))
and the image of the restriction

/)g,rlA,//‘,A,. 2 Ay, — Out(m (X ®; /E))
of py., to Ay, < Iy, is trivial

ProoF. The various assertions of Corollary 6.4 follow from Theorem 6.1
via a similar argument to the argument used in the proof of Corollary 6.2, (i),
(ii). Alternatively, one may derive Corollary 6.4 directly from Corollary 6.2,
(ii)—where we take “k” to be the function field of .4, ,—via a similar argument
to the argument used in the proof of [MtTa], Theorem 1.1, i.e., by considering,
in effect, the semi-direct product decomposition II > Gal(k/k) deter-

g,r

mined by the k-valued point of .#, , corresponding to X. O

~ A4y

g.r

COROLLARY 6.5 (Outer representations arising from moduli stacks of stable
curves). Let k be a number field or p-adic local field, k an algebraic closure of
k, (g,r) a pair of natural numbers such that 29 —2 +r >0, (My,,), the moduli
stack of r-pointed smooth curves of genus g over k whose marked points are
equipped with an ordering, I1 4, the profinite fundamental group of the stack
(My,)> Au,, the profinite fundamental group of the stack (M, ,), @ik, Iy,
the profinite completion of the surface group of type (g,r) (ie., the topological
Sfundamental group of the complement of r distinct points in a compact oriented

topological surface of genus g), and

Pg.r 1Ly, — Out(ll, ;)
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the profinite universal monodromy outer representation over k. Then the con-
gruence subgroup problem for the pair (g,r) may be resolved in the affirmative
(i.e., the restriction of p,, to Ay, = Iy, is injective) if and only if the
homomorphism p, , is injective.

Proor. This follows immediately from Corollary 6.4, by considering a
hyperbolic curve “X” of type (g,r) that is defined over k (as in the statement
of Corollary 6.4). Alternatively, one may deduce Corollary 6.5 directly from
Corollary 6.2, (ii), by applying Corollary 6.2, (ii), to the function field of 4, ,.

]

The following corollary is a generalization of [Mzk7], Corollary 5.1, (ii),
(iv).

COROLLARY 6.6 (Discrete combinatorial cuspidalization). Let (g,r) be a
pair of natural numbers such that 2g—2+r >0, n a positive integer, X
a topological surface of type (g,r) (ie., the complement of r distinct points in a
compact oriented topological surface of genus g), %, the n-th configuration space
of X, I, the topological fundamental group of Z,, and Out™ (II,) = Out(IT,)
the subgroup of the group Out(Il,) of outomorphisms (cf. the discussion entitled
“Topological groups” in §0) of I1, defined in the statement of [Mzk7], Corollary
5.1.  Then the natural homomorphism

out™“(11,,,) — out™(11,)

induced by the projection 2,1 — %, obtained by forgetting the (n+ 1)-st factor
is bijective. Moreover, the image of the natural inclusion

S, — Out(I1,)

—where we write S, for the symmetric group on n letters—obtained by
permuting the various factors of the configuration space %, is contained in
the centralizer Zoln(nn)(OutFC(Hn)).

ProoF. The assertion concerning the centralizer follows immediately from
the bijectivity assertion, together with [Mzk7], Corollary 5.1, (iv), and the
easily verified discrete analogue of [Mzk7], Proposition 1.2, (iii) (which may be
verified, for instance, by applying [Mzk7], Corollary 5.1, (i); [Mzk7]|, Prop-
osition 1.2, (iii)). Thus, to complete the proof of Theorem 6.1, it suffices to
verify the bijectivity assertion. Moreover, it follows from [Mzk7], Corollary
5.1, (ii), that to complete the proof of the bijectivity assertion, it suffices to
verify the injectivity portion of this bijectivity assertion. On the other hand,
this injectivity follows from Theorem 6.1, together with [Mzk7], Theorem 5.1,
(i). That is to say, the injectivity of the homomorphism Out"(17,,,) —
Oout™©(11,) follows from the commutativity of the diagram of natural homo-
morphisms
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OutFC(HnH) — OutFC(ﬁn+1)

l |

out™(mr,) —— out™e(r,)

—where we write “IT (—)” for the profinite completion of “JI_)”—together
with the injectivity of the upper horizontal and right-hand vertical arrows of the
diagram. ]

REMARK 6.6.1. Just as in the case of [Mzk7], Corollary 5.1, there is a
partial overlap between the content of Corollary 6.6 above and Theorems 1, 2
of [IIM].
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