HirosHIMA MATH. J.
41 (2011), 179-209

On a generalized Stokes system with
slip boundary conditions in the half-space

Yves RAUDIN

(Received July 21, 2009)
(Revised July 4, 2010)

ABSTRACT. We are interested in a system of Stokes type, where the divergence-free
constraint is modified by adding a term proportional to the pressure. The domain is the
half-space with nonhomogeneous Navier’s boundary conditions. The weighted Sobolev
spaces yield a natural functional framework to envisage a wide class of behavior at
infinity for data and solutions. So, we can give a range of solutions from strong to
very weak depending on the regularity of the data. All along this study, we take the
bridge between this system and the linear elasticity system.

1. Introduction and preliminaries
In this paper we investigate the system of Stokes type

—vAu — vV divu+Vn = f in R/,

An+divu=h in RY, ()
Uy = gn on I,
o' =g’ on I,

where the constants v, u and A satisfy the assumptions v >0, A >0 and
u+v>0. This system was recently studied by Beirdo da Veiga in bounded
domains and also in R; see references [10, 11, 12]. First, we notice that
the elasticity term —uV div #, added in the first equation, may be eliminated
by using the second equation. However, the calculations made under the
assumption u # 0 seem to be useful in studying some problems related to
compressible fluids.

The additional term Az, which relax the divergence-free constraint in the
second equation relatively to the classic Stokes system, is the central point.
The introduction of this term, for sufficiently small values of A, appears for
instance in numerical approximation with the penalization method.

The aim of this work is to establish some existence and uniqueness results
for different type of data in weighted Sobolev spaces. Indeed, these spaces
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provide a natural framework in unbounded domains in order to express the
regularity and the behavior at infinity of data and solutions.

For positive values of A, the generalized Stokes system is equivalent to the
linear elasticity system; see e.g., Kobel’kov [21]. We will make precise this
point in Subsection 2.5, and we will exploit it all along this paper with the
assumption 4 > 0. The case A = 0, that is the classic Stokes system, was treated
in [9] with similar tools, without appealing to the linear elasticity system.

So, at this stage two remarks are essential. On the one hand the results
obtained in [9] and here are complementary and then the case 1 =0 can be
included in all the statements on the Stokes system in the present paper; this is
why we call it “generalized” Stokes system. On the other hand we may regard
the classic system as the limit case A = 0—in a sense that will be made clear in
Remark 3.12—of this generalized Stokes system.

About the choice of the slip boundary conditions, let us recall that it takes
its source in the recent developments of micro- and nanofluidic techniques.
So, the slip assumption is validated by numerous experiments and simulations
as well as theoretical studies; see e.g., Einzel, Panzer and Liu [13], Jiger and
Mikeli¢ [20], Lauga, Brenner and Stone [22], Priezjev, Darhuber and Troian
[23], Priezjev and Troian [24], Qian, Wang and Sheng [25], and Zhu and
Granick [27].

Another contribution of this work concerns the existence of a class of
very weak solutions corresponding to singular boundary conditions. Several
authors have considered this type of solutions for the Stokes and Navier-Stokes
systems in bounded domains; see e.g., Giga [18], Amann [2], Galdi, Simader
and Sohr [17], Farwig, Galdi and Sohr [15, 16], and Schumacher [26].

This paper is organized as follows. The remaining part of this section is
devoted to the notations and functional setting.

In Section 2, we investigate the problem in the whole space, in order to
use the reflection principle for the half-space. After the characterization of
the kernel in Lemma 2.1, we establish the existence of generalized solutions
in Theorem 2.3. Next, we give a regularity result in Theorem 2.4. Last, we
translate these results for the linear elasticity system in Theorems 2.5 and 2.6.

In Section 3, we explore various aspects of the problem in the half-space.
Lemma 3.1, Proposition 3.2 and Proposition 3.3 characterize the kernel in this
geometry; then Theorem 3.4, Corollary 3.6 and Theorem 3.7 show the existence
of strong solutions for the two linked problems. Last, Propositions 3.8 and 3.9
show the existence of generalized solutions in the homogeneous case and allow
to establish Theorems 3.10 and 3.11 for the nonhomogeneous case.

To finish this study, in Section 4, we are interested in the case where very
low regularity of the boundary data yields very weak solutions. By means of
two technical lemmas—Lemmas 4.1 and 4.2—, we obtain Theorem 4.3.
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For any real number p > 1, p’ always stands for the Holder conjugate of
p, that is £+ =1.

For any integer n > 2, writing a typical point x e R" as x = (x’, x,,), we
denote by R the upper half-space of R" and I" = R"! its boundary. We will
use the two basic weights o = (1 + |x|*)"/* and Ig o = In(2 + |x|?), where |x| is
the Euclidean norm of x.

For any integer ¢q, #, stands for the space of polynomials of degree
smaller than or equal to ¢; 9’;’ (resp. @;’2) is the subspace of harmonic (resp.
biharmonic) polynomials in Z; tsz/q" (resp. e/Vq") is the subspace of polynomials
in ?}q", odd (resp. even) with respect to x,, or equivalently, which satisfy
the condition ¢(x’,0) =0 (resp. d,¢(x’,0) = 0); with the convention that these
spaces are reduced to {0} if ¢ < 0. For any real number s, we denote by [s]
the largest integer less than or equal to s.

Given a Banach space B, with dual space B’ and a closed subspace X of
B, we denote by B’ 1 X the subspace of B’ orthogonal to X. For any ke Z,
we will denote by {1,...,k} the set of the first k& positive integers, with the
convention that this set is empty if k is nonpositive.

Throughout this paper, bold characters are used for the vector fields;
depending on the context, f e X stands for f=(fi,...,f,) e X =X" and
g’ € X stands for ¢’ = (g1,...,9,-1) € X = X""!.  We denote by C a generic
positive real constant, and the symbol — is reserved for isomorphisms between
two spaces.

For weighted Sobolev spaces, we refer the reader to Hanouzet’s classic
article [19] and more especially to [3] for logarithmic weights. Let Q be an
open set of R”. Forany meN, pe]l, x|, (o,f) € R?, we define the following
space:

Wl (Q) = {ue 2'(Q);0 < |A| <k, o " (ig o)/ 0'u e L7(Q);

k+ 1< <m, 0" V(g o)f d'ue L7(Q)}, (2)
where k =m —n/p—o if n/p+ae{l,...,m}, and k = —1 otherwise. In the

case f = 0, we simply denote the space by W,;"?(2). Note that W,;"(Q) is a
reflexive Banach space equipped with its natural norm:

p
Lr(Q)

Hu||W;’[«f<g) = ( > (g o)/ o"u|

0<|A<k

1/p
o— p
+ Z ”Qd m-H)vI(lg Q>ﬂalu||u)(g)> )

k+1<|i<m
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We also define the semi-norm:

1/p

o B
|u|W1’f’/}”(Q) = Z HQ (Ig Q)laA”HIL?p(Q)

|2]=m
The weights in definition (2) are chosen so that Z(R”) is dense in W,/ (R")
and so that the following Poincaré-type inequality holds in Wf/}p (R') (see
[5]): Let ¢g* =inf(g,m — 1), where ¢ is the highest degree of the polynomials
contained in W /(RY). If n/p+o¢{l,...,m} or (f—1)p#—1, then
Vue W' RL),  lullyrrge/z,. < Clulyrmg:),
and

o -
Vue W7 (RY) = Z(RY) =0 H“HW;’/;"(RQ = C|”|W:’/'j”(Rj:)'

We denote by W_" f’ﬁ, (R”) the dual space of Vf/;”ﬁp (R’) and we notice that it is
a space of distributions. If n/p+o¢{1,...,m}, we have the imbeddings

W RE) = W (RD) o e W (R,

If n/p+o=je{l,...,m}, then we have

m,p . m—j+1,p m—j,p . 0,p
Wopg = 2 Woeipy W= = Wlnp

In order to define the traces of functions of W)?(R’) (here we do not
consider the case S # 0), for any ¢ €]0,1[, we introduce the space

woP(R") = {u e 2'R");w* °ue L?(R"),

o _ P
[l —eOuo) dxdym}
S Ix — |

where w=p if n/p+a#0c and w=o(lg 0)"/ ™ if n/p+a=0. For any
seRT, we set

WP (R") = {ue 7'(R");0 < 4] <k, 0* (g o) '6’ue L’ (R");
k+1<|2 <[s]—1,0* " Ho*u e LP(R"); Mu e woP(R™)Y,

where k =s—n/p—aif n/p+aec{o,...,o+[s]}, with e =s5—[s] and k = —1
otherwise. In the same way, we also define, for any real number f, the
space W, 5 (R") = {ve 2'(R"); (Ig 0)fve WHP(R")}. These spaces are reflex-
ive Banach spaces equipped with their natural norms.
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If n/p+oaé¢i{o,...,o+[s]— 1}, we have the imbeddings

S, n A‘*l, n a, n
Wuﬁ(R ) — Wq—l,ﬁ(R ) o= Wa_ﬁ]’ﬂ(R )7

W;;;(Rn) [N Wg[i’[[:]i‘ﬁ(Rn) [N SN WO?;?/;<Rn).
If n/p+a=je{o,...,0+[s] — 1}, then we have

Ws’p [ W37j+1’p [N stj,p [N — Wa’p

o, o—j+1,5 o—j,f—1 o—[s],p—1°
) [sl,p [s]=j+1,p [s]=/.p 0,
Wi,f? - Wﬁ[x]ﬂv,/} == W Ly o W g Wocf[;,/)’fl’

If u is a function on R}, we denote its trace of order j on the hyperplane I" by

VjeN, yu:x'e R = dJu(x’',0).
Let us recall the following trace lemma due to Hanouzet (see [19]) and
extended by Amrouche and NecCasova (see [5]) to the critical values with
logarithmic weights.

Lemma 1.1 (The Trace Lemma). For any integer m > 1 and real number «,
we have the linear continuous mapping

m—1

7= (0710 Tm) : WPPRY) = [ W/ er R,
j=0

Moreover y is surjective and Ker y = V?/;”I’(Ri)

ReEMARK 1.2. As we saw in [8] and [9], it is possible to give a sense to
traces in such spaces W ?(R") with s < 0 for particular classes of functions or
distributions.  For instance, if u e W>?(R’)—that is a weighted L” space—
with Au =0, then we have youe W, "7(R").

2. The generalized Stokes system in R”

As usual, our method for the half-space requires the extension of problems
to the whole space. Then a necessary step is to consider the corresponding
Stokes system in R”:

{vAu/tV divu+Vr=f inR", 3)

m+divue=h in R”.

In this section, we essentially adapt to this problem, with minor modifications,
the arguments used by Alliot and Amrouche for the classic Stokes system in the
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whole space (see [1]). However, in the last subsection, we shed new light on
this generalized system when A # 0, regarding it now as the system of linear
elasticity, with the pressure being a function of the velocity field. Let us
denote by T, the corresponding operator:

T;: (u,m) — (—vdu — pV div u + Vr, —in — div u).

2.1. Existence and uniqueness results. We consider (3) with (f,h) = (0,0)
through the operator 7, defined on the space of tempered distributions
F'(R") x #'(R"). Using the second equation in order to substitute —Arn for
div # in the first equation, we get

—vAu+ (1+ )V =0 in R". 4)

Applying the divergence operator to this equation, we obtain 47 =0 in R".
Finally, applying the Laplacian to the same equation, we find 4%z = 0 in R”.
So, © and u are respectively tempered harmonic and biharmonic distributions,
thus polynomials. Consequently, the kernel of 7 is quite similar to the kernel
of the classic Stokes operator. For any k € Z, let us introduce the space

2
SE={n.q) € P* x 2L Ti(x.q) = 0}.

According to the maximum degree of polynomials in weighted Sobolev spaces
(see [3]), we have the following uniqueness result:

LemMmA 2.1. Let £ € Z, m € N and assume that n/p ¢ {1,...,—¢ — m}, then
the kernel of T; defined on W'T}"(R") x WI"L(R") is the space S t-nlp)-

Now, we are interested in the question of existence of solutions. Let
(u,m) e #'(R") x #'(R") be a solution pair to problem (3). The second equa-
tion of (3) allows us to substitute 7 — Az for div # in the first equation. Then,
we obtain

vdu = (1 + 4p)Vn — f — puVh. (5)

Next, taking the divergence of (5) and replacing angain divu by h — An, we
obtain

(I1+A(v+p)dn = div f + (v + w)4h. (6)

Thus, similarly to the classic Stokes system—i.e., the case 4 =0—in R”", it
suffices to solve these two Poisson’s equations. Indeed, if (v,7) verifies (5) and
(6), then we get

—vav—uV(h—Jt)+Vr=f in &' (R"),
Adive=A(h—Jr) in &'(R"),



A generalized Stokes system 185

and thus, dive — h 4+ At = ¢, where ¢ is a harmonic polynomial. So we can
use the following lemma proved in [1]:

LEMMA 2.2. For any keN, 2¢ = div(24,).

Therefore, if ¢ € 22, with k > 1, there exists y € 2 such that ¢ = div g
and the pair (v — y,7) satisfies the initial problem (3).

2.2. Generalized solutions. We now give the main result for (3).

THEOREM 2.3. Let £/ €Z and assume that

n/p'¢{l,..../} and n/p¢{l,....~(}. (7)

For any (f,h) e (W;l‘p(R”) X W;)’p(R”)) 1 ,911# wp)» Problem (3) admits a
solution (u, @) € W,P(R") x W)P(R"), unique up to an element of y] ——n/p)
with the estimate
(ng)e H})[f]‘ /](H” +l||W}'”(R") + ||z + q”w/ov/’(R")) = C(”f”w;“’(R") + Hh”W/‘]-F(R"))-
/—n/p|

ProOF. We proceed in three steps. First we solve the case / =0, then
we consider the negative weights to avoid troubles with the compatibility
conditions and last, we obtain the solutions for positive weights by a duality
argument.

(i) The Stokes operator T satisfies

T, : (Wy"(R") x LP(R") /S — (Wo " (R") x LP(R")) L S, 0.

The operator T is clearly continuous, moreover it is injective by Lemma 2.1,
then by the Banach Theorem, it remains to show that it is surjective. For that
we naturally use the splitting of this problem in (5) and (6). Let us con-
sider a pair (f,h) e (W, ""(R") L Pli—njp)) ¥ LP(R"), then div f € Wy P (R").
Moreover, for any ¢ € #p_,/,1, we have

<d1V f7 (ﬂ> *21) (R") ><W2p (R") <f V(ﬂ> 117 (R") ><W] ' (R") - Oa

ie., div fe W_2 P(R") L P5_yp1. The same arguments hold for / and yield
Ahe Wy™ ”(R”) L Pp_yp). According to the results on the Laplacian in R”
(see [3]), we know that

A:LP(R") = WP (R") L Py

and thus, there exists = € LP(R") solution to (6). On the other hand, for any
YeW,? (R") and 1 <i<n, we have

<5 T, lﬁ) 1,; (R") xW‘ ' ®R" —<7fa ai‘p>Lﬂ(R”)><LF’(R”)'
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That implies 7 LR if n/p' <1—indeed, R =2, < W, " (R") if
n/p’ <1—, and the same argument holds for ;4. Thanks to the fact (see
[3]) that

4: WOIJJ(RH)/?[I*”!/P] i Woilﬁp(Rn) 1 e@[1711/11’]7

there exists a solution u e Wé'p (R") of (5). In addition, as we have seen
above, div u — /1 + An is a harmonic polynomial. Since it belongs to L”(R"), it
is actually zero. So (u,7) verifies T;(u, %) = (f,—h), which proves the surjec-
tivity of 7).

(ii) For any ¢ <0, assuming that n/p ¢ {l,...,—/}, we have

T, (W) (R") x WPP(R™) /S, — W TR x WIPRY).(8)

It is the same reasoning to solve the two Poisson’s equations (6) and (5), but
using this time successively the isomorphisms

0, T = 72’ 7
A WSPRY P, = WP (RY) L Py
and
1, > =~ -1, n
A WPPRY P, = W PR,

valid under these assumptions (see [3, 4]). Finally, modifying this solution
with a polynomial constructed by means of Lemma 2.2, we get a solution to

(3).

(iii) For any /> 0, the adjoint operator T, of T satisfies,
* s n B ny = -1, n N Y ;
T; : WP(R™) x WPPR™) S (W, (R x WPPRY) LSy (9)

We get it by duality, replacing —/ by / and p’ by p. In addition, by a density
argument, we show that

T (v,3) = (—vdv— yV div v + V3, =13 — div v),

ie., T, is selfadjoint and the proof is complete. O
2.3. The classic problem as limit case. In order to answer to the question of
the limit as A goes to zero, it is interesting to yield an estimate in Theorem 2.3

where the constant C does not depend on the parameter 4. We start with the
central case of weight zero. On the one hand, problem (6) yields the estimate

17l Lorey < CCUL My r gy + O+ 1Al Lo ger)),

where C = C(n, p); and on the other hand, (5) yields

”u”W(;'[’(Rr')/?[mz/,y] < CHI + lﬂ' ||7T| LP(R"™) + ”f”W(;LP(Rn) + |ﬂ| ||h| LI’(R”)]a
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where C = C(v,n, p). Hence, we obtain the global estimate for problem (3)

||u||W(;.])<R”>/9[l—rl/p] + ”nHL”(R")

< Cl2 A+ 1+ 2D My oy + (U4 1+ 20+ ) + (DAl Lo ey
where C = C(v,n, p) is a constant depending only on v, n and p. Next, it is
clear that this estimate also holds for a weight / > 0, because the kernel is then

reduced to zero; that is

|| (u7 77:) || l,[//‘-l’(]{n)>< W/O'P(R")

< ClQ+ [+ 2D oy + (1 1+ 204 10) + L) Vil 0 e -
where C = C(v,n, p). Since our goal here is to observe the behavior of this
estimate as A tends to 0, we can assume that 0 < A < 1. Then, we can write

H(”an)”w/“F(R")Xw/Ov"(R”) = C(Hf“w;‘-f’(R") + ||h||W/”'l’(R"))7

where C = C(v,u,n, p). Concerning the isomorphisme 7/, we know that the
best constant for this estimate is in fact ||(7 ;f)_l||. In addition, since T} is
selfadjoint, we have [|(77)'| = [T,

Thus, in the case / < 0, we can deduce by duality that we also have

||, 7Z)||(W/1,,J(Rn)><W/o,p(kn))/:/)[}. : < C|(f, h)”W;l.p(Rn)XW/U,p(Rn), (10)

1=/ —n/p)

where C = C(v,u,n, p) for any 0 <1 < 1. So, this estimate, where the con-
stant C does not depend on A€ [0,1], holds for any / € Z.

Now, let us consider fixed data f and & and a sequence of parameters
/; € [0, 1] which tends to zero (v and u are also prescribed), such that the family
of generalized problems admits solutions (u;,7;) and the classic system—that
is for A = 0—a solution (#,7). We naturally expect that (u;,7;) converges to
(u,7) as A; goes to zero.

So, for any ie N, we have

—vAu; — iV div u; + Vr; = f in R”,
Aimi +divu; =h in R,
and
—vAu—pV divu+Vn=f in R"
dive=h in R".



188 Yves RAUDIN

By difference, we see that the pair (u —u;,m — 7;) verifies the problem
—vAv—pVdivo+Vr=0 in R”,
Ait+diveo= Az in R"
and the estimate (10) is written here as

< Cl

(v, 7) ||<W}~P(R")x WP RS, | WlP(R")

where C = C(v,u,n, p) is a constant which does not depend on 4;.
So, by passing to the limit as 1; — 0, we deduce that (u;,n;) — (u,7) in
, 0, J

(WP RY) X W R[Sy

2.4. Regularity of solutions. In this subsection, we establish a global regu-
larity result.

THEOREM 2.4. Let £ €Z and m > 1 be two integers and assume that

n/p'¢{l,..../+1}  and  n/p¢{l,...,—¢ —m}. (11)

For any (f,h) e (W JP(R") x Wh(R") L y[f+/7n/p,], problem (3) admits a

solution (u,7t) € WP (R™) x W™P2(R"), unique up to an element of %7 , .,
’ m+/ m+/ q p . [1—-/—n/p]

with the estimate

inf u+ mn ||+ Y
e, et 2wzt i+ dllwz )

< CULS oy + 19l )

Proor. For the negative weights, the proof follows the same reasoning as
for the generalized solutions, except that the regularity results for the Laplacian
(see [3, 4]) are employed. Namely, we use

AWy R P, = W PR £ < =2 and (1),

m+/ m+/

or in the case / = —1,

A WE RN Py = WIERY) L Py i nfp’ #1 0or m=1, (12)

m—1

to solve (6); and use

4: Wm+1vp(Rn)/‘g)[Ll‘—/—n/p] i Wm*l’p(Rn%

m+/ m+/

to solve (5). However, the case n = p’ for / = —1 and m > 2 is critical for the
isomorphism (12), and the use of a critical result on the Laplace operator is
required to solve (6). According to [4], we have

A WP (R") /Py — X P(R") LR if n=p' and m>1, (13)
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where the family of spaces X is defined as follows. For any meZ, /€N,

X/OPR) = {ue WyP(R");¥AeN" 0 < |1 </,

xue WP (R ue WP (RY)),
and its dual space is denoted by X /""" (R").
So, replacing m by m— 1 in (13), we get
A WP R Py — XP PR LR if n=p' and m =2,
which precisely fills the gap in the isomorphism (12) for this critical case.
In addition, we can show that X" >”(R") = W >"(R")N W, "*(R").

m—1

Since fe W 7(R"), we have divfe W' > (R"), and thanks to the

m—1

imbedding W~ "’(R") < L?(R"), we also have div fe W, "”(R"), hence

m—1

div f € X" P’(R"). In the same way, we have Ahe X" P’(R"), and thus
we are able to solve (6). The rest of the proof is quite similar.

For / > 0, contrary to the generalized solutions, the duality reasoning fails,
however we can use a regularity argument similar to the one employed for the

classic Stokes system (see [8, Corollary 5.5]). O

2.5. A change of point of view. As we remarked in the introduction, if A =0,
we find the classic Stokes system. Now, if A # 0, we can completely decouple
the velocity field from the pressure in the main equation. Indeed, the system
(3) in the whole space is clearly equivalent to
—vdu—(p+HVdivu=f—-1Vh inR", »
n=1(h—divu) in R". (14)

So we recognize the equation of linear elasticity as main equation, which can be
rewritten by means of Lamé operator L = —v4 — (/1 +%)V div, as

Lu=F in R (15)

where F = f —%Vh. Let us still notice that if Au= —1, the operator L is
nothing else but the Laplacian. Then solving (3) is equivalent to solving
(15)—indeed, knowing the velocity field, we immediately get the pressure x;
moreover, the kernel of L is the velocity field’s part, decoupled from the
pressure, in the kernel of 77, that is the polynomial space

2
cg/[l—/—n/p] = {l € ‘@[it/fn/p]; Ly = 0}7
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if L is defined on W/'7}”(R"), for any /€ Z and me N. So, we can express
the results on system (3) in terms adapted to equation (15). For instance,

Theorem 2.3 becomes:

THEOREM 2.5. Let /€Z and assume (7). For any F € W;l’p(R")J_
Ll1sr—njpn> problem (15) admits a solution u e W}‘p(R”), unique up to an
element of Ly1_s_,p), with the estimate

lezl)[llﬂl—f/"—n/p] o +XHW/W(R") = C”F”WILP(R")'

Of course, we also have an equivalent to Theorem 2.4 for the regularity:

THEOREM 2.6. Let / €Z and m =1 be two integers and assume (11).
For any Fe W,’,:’J:/l’p(R”)LE[H(,n/I,/], problem (15) admits a solution ue

W,’ﬂ;” (R"), unique up to an element of L_s ), with the corresponding

estimate.

3. The generalized Stokes system in R’

After the question of the kernel and the one of the compatibility condition
for the data, we deal with strong and then generalized solutions to (1).

3.1. The kernel. Examining the reflection principle (see R. Farwig [14])
for the classic Stokes system with slip condition, we immediately see that
it is unchanged for the generalized system. Namely, if /€ Z and (u,7) e
W}’p (RY) x Wf"’ (R) is an element of the kernel of the generalized Stokes
operator 7T with slip boundary conditions, then the unique extension (&,7) of
(u,7) to the whole space, satisfying

—vda—uV diva+Va=0 and iz+diva=0 in R”,
is given by the following continuation formulae: for all x = (x’,x,) e R",

a(x)=u'(x*), #,(x)=—u,(x*), 7(x)=n(x"), where x* = (x', —x,).

Moreover, such 7 and & are respectively harmonic and biharmonic tempered
distributions in R”, thus polynomials. For all k € Z, let us denote

SE={(1q) € P x P —vAy — ¥ div y + Vg =10 and
Aq+divy=0in R",0,y' =0 and y, =0 on I'}.

As in the whole space, we can show that this kernel does not depend on the
regularity according to the Sobolev imbeddings and that it is characterized as
follows.
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LemMA 3.1. Let / € Z, m € N and assume that n/p ¢ {1,...,—¢ — m}, then
the kernel of the Stokes operator T; defined on W'\ )"(R") x W,:” YO(RY) with

the homogeneous Navier boundary conditions is the space +3f T—t—n/p]"

We also can express it in terms of the polynomial spaces ;z/k" and ,/VkA
which respectively define the kernels of the Laplacian with Dirichlet and
Neumann boundary conditions in the half-space. With this aim, we will use
the operator I7y—introduced in [7] for the biharmonic problem—defined as
follows.

e
Vse N, I ys(x', x,) = 2% J s(x',0)dt,
0

satisfies Allys=s in R} and IIys = 0,/Iys=0 on I

PROPOSITION 3.2. Let /€ Z. The pair (x,q) € Jﬂ?ﬁ_/_n Jp) if and only if
there exists ¢ € ,/V[ft#” Ip] X &/[‘1'7/7”/1,] such that

x =10 — VIl div g and q = —div ¢, (16)

1+u

1
where 1 == and i — 1)

v

Proor. Given (y,q) € %1 /—njp» We have 4g =0 in R}. Now, taking
the restriction to I" of the n component of the main equation in *%{ with the
boundary conditions and applying the operator 0, to the second equation in
Ji%f, we obtain 0,4 =0 on I'. Hence we deduce that ¢ € Jt/[i' —n/p]" So, by
use of (4), we can write

Ay — (L + )V ng) = vAy — (1 + 2)Vq =0,

which implies the existence of (pe?}[‘l'flfn /p) such that
o =vy— (1 +ip)VIIyg. (17)

In fact, we can see that g€ Jlf[f'_ onjp) X ,9/[‘1'_/_” /p) by considerations on the
parity of x', x, and VIIyq. In addition, applying the operator div to (17), we
get

dive=vdivy—(1+u0)g=—-14+Ap+v))gq,

which yieds ¢ = div ¢ and, by substitution in (17),

1+)(ﬂ+‘

1 1+ Au .
= — Vi .
x v<¢ 1+ A(u+v )V Nle(p)

Hence, integrating the constant m in ¢, we get the equations (16).
Conversely, we can verify that such a pair (y,¢) belongs to i?ﬁf/fn yue
O
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Another look at the kernel. As in the whole space, we can readily see that if
A #0, (1) in the half-space is equivalent to the equation of linear elasticity (15)
combined with the Navier boundary conditions, i.c.,

Lu=F in R:’_,
Un = Gn on I’ (18)
o' =g onl.

So, the kernel of the operator associated to this problem is the polynomial
space

2 1 n
YLy = € @ﬁt/fn/p];Ll =0in R?,0,7' =0 and y, =0 on I'}.
Likewise, we have the following characterization:

PROPOSITION 3.3.  Let / € Z.  The polynomial y € *}_s_, ) if and only if
there exists ¢ € ,/V[f'fffn/p] X &i[‘ff/fn/p] such that y =9 —\VIIy div ¢.

3.2. The compatibility condition. We notice that for / > 0 the kernel reduces
to {0} and in turn there appears a compatibility condition among the data f,
h, gn, g'. Let (u,7) be a solution to (1), then by means of Green’s formula, we
get after simplification:

V(2.9) € " Sisr gy

R!

J (=vAu — @V divu+Vn) - y dx — J (A + div u)q dx
Rﬂ

= —VJF unan)(n dx’ + V<5 u' 4 > 1/,7 ’( )XWSI/”/'W(I‘)

- ,uj u, div y dx’ —|—J u,q dx’.
r r
Hence we obtain a first formulation of the compatibility condition:

V(l7 )G '%H—/ —n/p']

J f-xdx—J hq dx
R’ R’

+

= L n( =0ty = p div 2+ )AX"+LG" L Dy gty (19)

Now, in order to use Proposition 3.2, we can observe that

| Wity div p)dx = Cdiv £ T3 @ 03, e i

+
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and
J hdivqux:—J Vh-epdx.
RY “

On the other hand, for the trace terms we have
x =0 and VOux, + 1 div x — g = vicad,0, on I.

This yields the second formulation for the compatibility condition:

V¢ € ‘/V[ftr/fn/p’] X ’p{[élu/fn/p’]’

1
J ;(f_K_2Vh> dx+ <d1Vf,HN le(p) R (RY)
+ VJ JnOnp, dx" —v{g", 0 > “Un (P U () 0. (20)

The linear elasticity system. For problem (18), the conditions (19) and (20) are
respectively equivalent to

1 .
VX € "Liisrnsp)s J Foydx= Jf In (—vﬁnxn - (u + Z) div x) dx’

+<g Vl> l/pp )le;l/”/'p/(F) (21)
and

Vpe ‘/‘/‘[ftr/fn/p’] x ‘M[éliJr/fn/p’]?

J F- ¢dx+—<d1vF HNd1v¢> LR (RY)
,, +

+ VJ gnanwn x - V<g @ > 1/[’ 1’ )XW],;I/[,,'[,,(F) =0. (22)

3.3. Strong solutions. In this case it is convenient to solve the linear elasticity
system in order to get the solutions of the generalized Stokes system. We start
with homogeneous boundary conditions.

THEOREM 3.4. Let / €Z and assume that
n/p'¢{1,..../+1} and nfp¢{l,...,— —1}. (23)

For any F € W?fl(R") L P4 iy the linear elasticity system (18), with
(g',90) = 0, has a solution u € W§+1( 1), unique up to an element of *L1_s_n/p)
with the corresponding estimate.
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Proor. First, we extend F to the whole space by Fe W?‘fl (R") as
follows.

Vo € Z(R"), J F-pdx :J F-(p+0" 0,—0dx, (24)

R!

where ¢} (x) = ¢;(x*) for any x = (x/,x,) e R" with x* = (x’, —x,). That is to
say, the functional expression of this extension is given by

_ F(x', xy,) if x, >0
F ! - — K ] b
(¥, %) { (F',—F)(x', —x,) if x, < 0.

Next, by Theorem 2.6, with m =1 and hypothesis (23), we know that there
exists a solution w e W;fl (R") to the problem Lw =F in R", provided the
condition F 1 L,/ is fulfilled. According to (24), we can write this last
condition as

VX € Lisr—npp)s JR” F-(f' +x" 10— 2;)dx = 0.

T

Now, thanks to (x" +x", x, — %) € "Llis—n/py, We see that the last condition
is a simple consequence of the condition on F in our statement. Then, the
function u defined in R’ by

1
u= E(w’ + W w, —wh)
belongs to W?fl (R'!) and we can see by a straightforward calculation that it is
solution to our problem. O

REMARK 3.5. In the same way, we can directly demonstrate the coun-
terpart of Theorem 3.4 for Problem (1) with (g’,g,) =0. In this case, the
extension of f is identical to the one for F in the linear elasticity system; and it
is even with respect to x, for A. That is,

Vi € 2(R"), J i dx = Ln h(W + ¥ dx.

+

Then a solution to (1) is given by the pair of functions (u,n) defined in R’ by

(W' +w™ w, —wh 3+ 9%),

N =

(”7 7[) =

where (w,9) is the solution to the extended problem in R”.
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COROLLARY 3.6. Let /€Z and assume (23). For any F e W?fl(Ri),
gn € Wf;ll/p"p(l") and ¢’ € W;;ll/p’p(l"), satisfying the compatibility condition
(22), the linear elasticity system (18) has a solution u € W?fl (R'), unique up to

an element of “L_s_,)p,, with the corresponding estimate.

Proor. It is a consequence of Theorem 3.4 and Lemma 1.1. Indeed,
according to Lemma 1.1, there exists a lifting function wuy; = (uy,u,, )€
Wffl (RY) of g=(g',gu) such that d,uy =g' and u,, =g, on I'. Then, if
we put § =F —Luy and v =u — u,, system (18) is equivalent to

Lo =% in RY, (00" 0,) =0 in I

and we can easily verify that condition (22)—more precisely its alternative
form (21)—is equivalent to § L *%j;,/s_,/. Finally, this problem is solved
by Theorem 3.4. O

Hence the corresponding result for the generalized Stokes system is given
as follows.

THEOREM 3.7. Let /€Z and assume (23). For any fe€ W(/)fl(Rf_),

he W/lﬁ (RY), gne W;;ll/p’p(F) and g’ € W};ll/p’P(F), satisfying the compati-
bility condition (20), problem (1) has a solution (u,7) € W, (R") x W} h(R™),

/+1
unique up to an element of +y”[f;/7n/p], with the estimate

inf u+ ey T+ RN
(l’q)eﬁ(/[;;/i”/p](” Z||W,2+’1(R+) | (1||W/1+;17(R+))

< C(”f”WBJ](Rﬁ) + ||h||W/1+,]j(RZ> + ||gnHW/2+—ll/11,h(F> + ||g/||W/1;ll/p.ll(r)).

3.4. Generalized solutions. We start with the homogeneous problem. Un-
fortunately, Lemma 1.1 does not yield any lifting function for such boundary
conditions—we will see how to bypass this difficulty for very weak solutions in
the last section. Here, we intend to directly show the existence of generalized
solutions to the homogeneous Stokes system in the half-space. The method
is directly adapted from the one introduced for the classic Stokes system in

9]

PROPOSITION 3.8. Let /€ Z and assume (7). For any g, W) "/PP(I)
and g’ € W;l/p’p(l"), satisfying the compatibility condition

V(p € JV'[T'+/7,1/17/] X ‘Q/[éluffn/p’]?

JI" gnangon dx/ - <g/a ¢/>W;1/”'”(1")><Wl;l/”/'”/(F) = 07 (25)
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the Stokes problem
—vAu— vV divu+Vr =0 in RY, (26a
An+divu=0 in RY, (
Up=gp  on I, (26¢
o' =g’ on I, (26d

has a solution (u,7)e W, (R") x W)P(R"), unique up to an element of
+5”[f_/_n/p], with the estimate

inf  (Jlu+ gzl g + 17+ gl o)
(x,q)e‘y[f;/in/p] W, (RY) W, ”(RY)

= C(HgnHW/lfl/ﬁ'p(F) + Hglnw;l/ﬂp(r)).

Proor. First, let us notice a particular case, which is naturally included in
this result, but which requires a particular treatment. Indeed, if Au= —1, we
simply get a Dirichlet problem for the Laplacian on the normal component of
the velocity field u, and a Neumann problem on its tangential components
u'. Then, applying the results of [5] and [6]—which are recalled in [7]—,
respectively for u, and u’, we find the orthogonality condition and the kernel of
our statement. Moreover, we directly find the pressure from the velocity field
thanks to the second equation. In the sequel of the proof, we will assume that
Ap# —1.

(i) Reduction of system (26).

As for the question of the uniqueness in the whole space—see the start of
Subsection 2.1—, we deduce from (26a) and (26b) that we have both Az =0
and A%u =0 in R’.

Then, we have 4%u, =0 in R and u, =g, on I

Now, let us extract another boundary condition on Au, from this
system. From (26b), we get

Aoy + 0, div e =0 in R, (27)
that we substitute in the n” component of (26a), to obtain
AvAu, + (1 4+ An)0, divu =0 in RY.

We can deduce that

IvAu, + (1 + 2u)(div' g’ + 0%u,) =0  on T,
vAu, + (14 20)(div’ g' + Au, — A'uy) =0 on T,
(14 A+ v)duy + (1 + ) (div' g’ — 4'g,) =0  on T,
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hence,

1+ Au

—_ My Y, — sl T.
1+i(u+v)( gn = div_g’) on

Up

About the pressure, looking again at the n component of (26a), with (27), we
have

: n
Ont = vAu, — Aud,n in R},

hence (since Au # —1),

Finally, from (26b), we also get
Wra+V dive=0 in R,
that we substitute in the tangential components of (26a), to obtain

1+ Au
v

Au' =

I : n
Vin in R.

14+A(pu4v)

So, thanks to the two constants x; = HT”‘ and xp = .

this yields the following three problems

introduced above,

A*u, =0 in R, U, = gn and Au,, = g(d’gn —div' g') on I', (28)
2
o 1
An =0 in RY, onmt :K—Aun on I, (29)
1
Au' =1\V'n in RY, o' =g on I. (30)

(i) Solution of these three problems.
Step 1: We deal with problem (28). Denoting z, = 4u,, we can split it
in the following two Dirichlet problems:

Az, =0 in R7, Zn=—(4"g, —div' g') on I, (31)

K1
K2
Au, =z, in R, U, =g, on I. (32)

Concerning (31), we notice that A'g, —div' g’ e W,'"/P7(I'), then we can
apply the result on the singular boundary conditions for the homogenecous
Dirichlet problem (see [8, Theorem 3.5]), provided the following orthogonality
condition is satisfied:

e A gy A= AV G0 vy gy =0 (33)
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By means of Green’s formulae, we can rewrite it
eS| 00V A BT gy gy =0

Now, to see that this follows from (25), it suffices to remark that
YWedEy yp  AWedi,  and  aVYend, , .

So, we get a solution z, € W;l”)(Ri)/csz/[‘ll_/_n/p] to (31).
For (32), the compatibility condition is

le € J2{[41'+/—n/p’]7 <Zn7 l//> lp (R") ><W1 ' (R") = JF gnanlp dX/. (34)

(see [7 Theorem 2.5]). First, (25) implies [g,0,y dx’=0 for any
lpe;zi I+/—n/p)- 1t remains to show that the left-hand term of (34) is also
zero. For this, we need to express ‘Q/[l - by means of the kernel, denoted
by %), of the biharmonic operator—that is the space of polynomials { of
degree less than or equal to k, such that 4°C =0 in R} and {=0,{=0 on
I'. We showed in [7, Lemma 4.4] that

VkeZ, B =Hpdd ® HyN, (35)

where ITp is defined as follows.

1 (™
Vre.f, Hpr(x',x,) = EJ tr(x', r)dt,
0
satisfies AIlpr =r in R and IIpr = 0,/1pr =0 on I
From (35), we get for any \ € &/H/ n/p')s IIpy = { € Bzis_p)p) and thus
we have y = 4{. So, by means of a Green’s formula (see [8§, Lemma 3.7] for
the justification), we can write

Yy e .oAd (L+t—n/p) I € Bp31s—njp such that
<Znalp> lpRn XWIP R" <ZmAC>— <A2mC>—O

So (34) is proved and we get a solution u, € W/ o’ (Ri)/&iﬁ'—/-n/p] to (32).
Step 2: Next we study problem (29). According to [8, Lemma 3.7], we
can check that Au, e W, '""/PP(I') and the compatibility condition is

YWe JV2+/ —n/p'D {Auy, l;D>W7171/N’(1-)><szl/ﬂ’-ﬂ’u-) =0 (36)

(see [8, Theorem 3.3]). For any zpeJV2+, np)> If We put (= Jo" w(x',r)de
this yields y = 0,{ with (e %SM n/p')- Since Au, = A'g, —div’' g’ on I', we
see that (36) is exactly written as the condition (33), which is satisfied.
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So, we get a solution = € W/(,)”’(Ri)//t”[f'/fn/p] to (29).
Step 3: Finally, to treat problem (30), we can split it in

A =V'm in RY, 0,v' =0 on I, (37)
4z =0 in R}, 0,z =g on I} (38)

and in order to solve (37), we introduce the auxiliary problem
Aw = ki in R, épw=0 on I. (39)

For (39), the compatibility condition is

Ve N0 JR” mp dx =0 (40)

(see [6, Theorem 3.1]). According to (35), we also have for any y € JV[f_n e
Iy = (€ Baysnjp) and thus y = AL, So, we have

Y e JV[;&” ) (€ Bpys—njp such that

I

Thus (40) is proved and we get a solution w € sz"’ (Rf_)/JV[f_/_n/p] to (39).
Consequently, v’ =V'we W}’p (RY) /JV[I"_/_” /p) 1s a solution to problem (37).
Finally, for problem (38), the compatibility condition is

nAl dx = {dn,{> = 0.

+

mpdx:J

" R

V¢, € °/V[f'+/7n/p']7 <g/7 ¢,>W;I/”"’(F)><Wl;l/”,’”/(l") =0 (41)

(see [8, Theorem 3.4]). It is clear that (41) is included in (25) and then we get
a solution z’ € W;’p(Ri)/A/'[fL/fn/p] to (38).

Sou=v+7 ¢ W},’p(Ri)/./V[f'f/fn/p] is a solution to (30).

(iii) Conversely, solving (28), (29) and (30) yields a solution (u,7) to the
original problem (26). So, we must show that (u,7) satisfies the n compo-
nent of (26a) and (26b). The idea is based on the nonuniqueness of the
solutions u,, = and u’ constructed in (ii), to select a “good one”.

The first equation of (30) is written

—vAu' + (1+)V'r=0  in R]. (42)
Thanks to the first equations of (28) and (29), we get

A(=vAu, + (1 + Au)d,m) =0 in RY.
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In addition, the boundary condition of (29) can be written
—vAu, + (1 + Aw)dym =0 on I

Since —vAu, + (1 + Ju)d,m e W, "P(R"), according to [8, Theorem 3.5], we
get —vAu, + (1 +/1,u)6,17ze&/[{147n/p]. As 7 is defined up to an element of
Ji/[f /—njp)» Onmt 1s defined up to an element of ,sz/[{ 1—/—n/p) and thus we can
choose 7 such that

—vAu, + (1 + Au)d,m =0 in RY. (43)

The boundary condition of (30) implies 0, div' u’ = div' g’ on I'. Besides, the
boundary conditions of (28) yield

K .
2 Au, — A'gy = —div' ¢’ on I,
K1

02y + %Aun =—div' ¢’ on I
hence, with the boundary condition of (29),
u, + Jo,m=—div' g’  on TI.
We can deduce
0 div u =0, div' u' + d2u, on I,
=div' ¢’ —div' ¢’ — Jd,n on I,
that is
Op(Am+divu) =0 on I
Moreover, from (42) and (43), we obtain div(—vAu) =0 in R’, hence
A(An+divu) =0 in RY.

Since Az + divu e W,Q”’(Rﬁ), by [8, Theorem 3.3], we get Az +divu e g//tf[i'#n/p].
As ' is defined up to an element of Q/V[f'f/fn e div’ u' is defined up to an
element of th[i' /—njp) and thus we can choose #' such that Az +diva =0 in
R, that is the equation (26b). Finally, substituting this last relation in (42)
and (43), we find the first equation (26a) of this system. O

So, by equivalence, we get the version for the linear elasticity system:

PrROPOSITION 3.9. Let /€ Z and assume (7). For any g, € W;fl/‘"’p(l")
and g' € W;l/p’p(F), satisfying the compatibility condition (25), the linear elasti-
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city system (18), with F =0, has a solution ue W;’p(RfL), unique up to an
element of “Ly_s_yp, with the estimate

inf | +XHW/1=P(R1) = C(HQHHW/‘*'/P-P(F) + ”g,”W/*l/l’-l’(r))'

XE JrDy)[l—/—n/p]

Now our task is to combine this result with Theorem 3.4 in order to get
generalized solutions of the non-homogeneous linear elasticity system.

THEOREM 3.10. Let £ € Z and assume that

n/p' ¢ {l,..../+1} and n/pé¢{l,....,=(}. (44)

For any Fe WY (R") and g = (g',9,) € WPy x wlTPP (), satisfying
the compatibility condition (22), problem (18) admits a solution u e W;’p (RY),
unique up to an element of *¥_s ), With the estimate

: i
xe*ér[}f,,”/,,] [|u +X”W}"’(R1) =< C(”FHWffl (R™) + ||g”||W/1’1/1’~17<]“) +1lg ||W/—1/1a1z(r))-

Proor. If ﬁ >/ + 1, the compatibility condition is trivial and then,

according to Proposition 3.9, there exists v e W}”’ (R’) satisfying
Lv=0 in R}, (0,v",v,) =¢g on T

In addition, by Theorem 3.4, there exists w e W?‘fl (R) satisfying
Lv=F in R, (0,v",v,) =0 on T

The function u=v+we W/l’p (R') gives the desired solution.

If 2 <l + 1, we cannot directly construct a solution as above because
the compatibility conditions are now non-trivial. Let N be the dimension of
the subspace "%} 11/ of WE‘;;I(R?F), which is imbedded in W?’;’LI(RD
and {ey,...,ey} a basis of *%};,,_,/,1. According to Hahn-Banach Theorem,
there exists a family {e],...,ey} of elements of W?’fl (R’), which extends
the dual basis of the dual space ("%j./ /). First, let us rewrite more
compactly the compatibility condition (21)—which is equivalent to (22)—as:

1 ..
V2 € " Lisrnspr; JR F-ydx= <g, <vx’, —VOnly — (ﬂ + i) div x>> :
] ,

+

We denote the corresponding trace mapping by

T WAL R — WPy s W ()

—/+1 —/+1 —/+1

1
1 (vx’, —VOuly — (ﬂ + Z) div x)
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and ¢ = t(e;). With a suitable numbering, the subfamily {e,...,&;} form

a basis of the subspace 7(T%iy/_n/p) of Wi;jr/l”/’p/(F) X W_l;i/lp/”’/(l") —

W:}ipl/"p/(l“) X W__/l__ll/”/’p/(l“), and & =0 for ie {d+1,...,N}. Here again,
according to Hahn-Banach Theorem, there exists a family {ef,...,¢;} of ele-

ments of W};ll/p’p(l") X Wf;ll/p’p(l") which extends the dual basis of {ei, ..., &}

Now, let us consider the functions defined by
N d
F=D e/Fey and  G=) &g.e).
f i=1

They satisfy
(F ey =<F,exy =Xg, &y for ke{l,...,N},
(Feny =<G, ey =<g, &) for ke {l,...,d},
(G,ery={G,ey=0 for ke{d+1,...,N}.
By Theorem 3.4, there exists v e W?;r"l (R') satisfying
Lv=F—-§ in R}, (0pv',0,) =0 on T
By Proposition 3.9, there exists w e W}‘p (R') satisfying
Lw=0 in R’, (0,w',w,) =g—G on T.

By Corollary 3.6, there exists z € W/Zfl (R'!) satisfying

Lz= in RY, (0nz',24) =G on T.
Finally, the function u=v+w+z€ W;’p (R) gives the desired solution. []

Hence we obtain the corresponding result for the generalized Stokes
system:

THEOREM 3.11. Let / € Z and assume (44). For any f € W?f] (RY), he
W;ﬁ (RY), and g = (g',9,) € W;l/p’p(F) X Wflfl/p’p(lﬁ), satisfying the compat-
ibility condition (20), problem (1) has a solution (u, @) € W, (R") x W' (R"),

unique up to an element of +y”[f;/7n/p], with the estimate

ey W g 4l dllwe)

< C(”fHW?fI(RZ) + ||h||W/‘;ll’(R1) + ||gn||W/1*'/rv1’(r) + ||g,||W;'/l’-ﬁ<r))-

REmARK 3.12. As we mentioned in the introduction, Theorem 3.11 was
established in the case A =0 in [9]. Now, if we consider fixed data f, A, ¢/,
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g and a sequence of parameters 4; € [0, 1] which tends to zero, such that the
family of generalized problems admits solutions (#;,7;) and the classic one a
solution (u,7); then (u;,7;) — (u,7) as 4; — 0.

In fact, the essential part of the proof was given in Subsection 2.3 for the
whole space. For the half-space, we start to lift the boundary data g’ and g,
in these problems. Next, we extend the lifted problems to the whole space,
and to finish, we consider the solutions as defined in Remark 3.5.

4. Very weak solutions

We now intend to explore the case of very singular boundary conditions in
the homogeneous problem. We again adopt the point of view of the linear
elasticity system to retrieve as a consequence the generalized Stokes system.
First, we need to give a sense to traces and next to establish a Green’s formula.

For any 7/ € Z, let us introduce the spaces

U/(RY) = {ve W7 (R} ):Loe W)L (R))},

Uri(RY) = fve W7 (R)); Loe W)/, ((RL)}.

They are reflexive Banach spaces equipped with their natural norms:
”v”U,(RD = HvHW?L’](RD + ”L”HW?fl(RQ)’
Hv”U/‘l(Ri) = H”HW;J;P](RX) + ||LUHWf'+”H(R$)'
LemMmA 4.1. Let /€ Z and assume that

n/p¢{l,..../—1} and nfp¢{l,...,—/+1}. (45)
The space Z(R') is dense in U;(R") and in Uy, (R").

Proor. We give the proof for U, (R'), but it is similar for the space
U/(R"). For every continuous linear form ze (U, (R"))’, there exists a

unique pair (f,g) € WO_’/”J;I(Rﬁ) X WO_’KP/LL_I(Ri), such that

Yoe Uy 1(RY), {z,v) = J

f-vdx—i—J g-Lvdx. (46)
R

" RY
According to the Hahn-Banach theorem, it suffices to show that any z which
vanishes on Z(R") is actually zero on U, (R}). Let us suppose that z =0 on

Z(RT), thus on Z(R"). Then we can deduce from (46) that

f+Lg=0 in R,
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hence Lg e Wg’;’;l(Ri). Let few’ /H(R”) and g € WO_";’_/L_I(R”) be respec-
tively the extensions by 0 of f and g to R”. Thanks to (46), it is clear that
f+Lg=0in R”, and thus Lge w = +1( ). Hence according to Theorem
2.6—for equation (15)—, we can deduce that § € W? - +l(R ), under hypothesis
(45). Since g is an extension by 0, it follows that we have g e w? ,H(Ri).
Then, by density of Z(R) in Wz/pH(R”) there exists a sequence (@), .n <
Z(R") such that ¢, — g in w? /H(R”) Thus we have, for any ve U,,;(R’}),

n

<z,v>:—J Lg'vdx+J g-Lvdx

n

:llim{—J L¢k-vdx+J o, - Lo dx}

= (:)7
i.e., z is identically zero. ]
Thanks to this density lemma, we can prove the following result of traces:

LemMA 4.2. Let £ € Z and assume (45).
(1) If nfp' ¢{¢,0+ 1}, then the mapping

(e, 71) : 2(RY) — Z(R")
v (Ul 0n0'| ),
can be extended to a linear continuous mapping
(0, 71) : Us(RE) = WP < WL V().
In addition, we have the Green's formula

Yve U/(R"), Vo e W2 /+1( ") such that (¢,,0,9") =0 on I,

Loy ety ey~ O LOpon s wey
—v{vy, n(0n> 1/»;)(F>XW71/—+1{pAp< + v{dnv 7(ﬂ> —1- ‘/f”’(r)xwfji/{”-f’/(r)
— ( )<Un7le qo) l/pp )XW,IZ{[}/'P,(F)' (47)

(i) If n/p’ e {l,/ + 1}, the same result holds with U, (R") instead of
U/(R"), where {Lv,p) replaces the first duality pairing in

' wor (RY)xW (R
the Green's formula.

/+1,1 —/—1,
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. Proor. (i) Case n/p' ¢{/,/+1}. So, we have WE’/’il(Ri) —
Wﬁ’/’i (RY), hence the following Green’s formula:

Vv e Z(R), Vo e W? /+1( ") such that (¢,,0,¢) =0 on I,

J qo-Lvdx—J v-Lodx
R)’l n

1
- —vJ Un0no, dx’ + vj onv' - @' dx’ — (,u +7> J vy dive dx’.  (48)
r r A)Jr

In particular, if ¢ € W? f+l( ") is such that ¢ = 0 and d,¢’ = 0 on I', we have

J 0 0np, dx’
r

A
= mH””U/(Rj)||¢||WE~/1'+’I(RD~

Let ge Wlli{p ?(I'). By Lemma 1.1, there exists a lifting function
peW? /H(R") such that ¢ =0, 0,¢'=0 and 0,9, =g on I, satisfying
moreover

||¢||Wf'f+ll(Ri) =< CHgHWJ:{P’J”(r)?

where C is a constant independent of ¢ and g. Then we can deduce that

J v,g dx’
r

< CHUHU/(RD||g|‘Wl;+1{”/”)I(F)7

and thus
oully sy < Clollu, e
Hence we can deduce that y, : v~ v,| defined on Q(R”) is continuous for the
norm of U,(RY). Since Z(R”) is dense in U,(R"), the mapping 7., can be
extended by continuity to y, € L(U,(R’}); W__ll/p”(F)).
To define the trace y; on U,(R’), we consider now ¢ € w* o +1(Rj_) such
that ¢, =0, J,¢’' =0 and vo,p, + (u ) dive=0 on I'. Then, we have

—||v||u, R 12l o

J@ o dx'| <
r

Let g' € W>,YP"7'(I').  According to Lemma 1.1, there exists p € W7, (R")
such that ¢’ =g’, ¢, =0, d,¢' =0 and 0,9, = —3* div' ¢’ on I'—see Prop-
osition 3.2 for constants x; and x;—, satisfying moreover

H¢|| Wz/’:ll (RY) = C”gH WE:{[),‘”,(F)’

where C is a constant independent of ¢ and g’. Then we can deduce that

J@v g dx’

< Cllellyy ey 19710
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and thus
191l -5y < Cllelr ey

Hence we can deduce that y{ : v~ 0,0'| defined on Z(R”) is continuous for
the norm of U,(R”). Since Z(R”) is dense in U,(R"), the mapping y| can be
extended by continuity to 7| e L(U,(R"); W, | 1/’”’(F)).

_ To finish, we also can deduce the formula (47) from (48) by density of
Z[R") in U,(R).

(i) Case n/p'e{/,/+1}. The imbedding W Hl(Rf:) — Wf)'/{l(Ri)
fails, but we have szH(Ri) — WE/{177 (R). To avoid these two supple-
mentary critical values with respect to hypothesis (45), we define the space
U,,1(R?) with a logarithmic factor in the weight to replace the first term in (48)
by the suitable duality pairing {Lv, ¢}, 0 RYWO .- Then, the proof is

. A ROxWZT L (RY)
the same as (i). O

Through this lemma, our goal was to establish a suitable Green’s formula
in order to get a variational formulation of the homogeneous linear elasticity
system with very singular boundary conditions, that is more precisely

Lu=0 in RY,

(49)
Uy = gn and ou' =g’ on I,
with g = (¢',g,) € W, ' "P7() < w, PP ().
THEOREM 4.3.  Let / € Z and assume (45). For any g' € W, ' '"7(I') and

gn € Wfill/p”)(F), satisfying the compatibility condition (25), the lmear elasticity
system (49) has a solution u € W?’_"l (R%), unique up to an element of *Lp_s_y/p),
with the estimate
. !
J{E*}/’r[}if,,/,,] (| +Z||ij’] (R™) =< C(||gnHW/—711/n,~(r) + llg HW/:II’I/”']’([‘))'

ProoF. (i) We can observe that problem (49) is equivalent to the fol-
lowing variational formulation: find w € U/(R)—U,1(RY) if J; € {/,/ +1}—
satisfying

Yo e W%,”LI(RQ such that (v,,d,0") =0 on I,

<ll Ll)> o/, R") W /H(R")

= — Vo 1 1 2-1
<g > /I’I’ )XW7/+/1N .0’ (r)

1 .
+ <gn, VOuv, + <,u + 7> div v> . (50)
& Wy w )
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Indeed the direct implication is straightforward. Conversely, if u satisfies (50),
then we have for any ¢ € Z(R"),

L, 0dq wryxarr) = <, Loy g rryxarr) =0,
thus Lu =0 in R}. Moreover, by the Green’s formula (47), we have

2.p'
Yoe W2, |

<g7 <—Vl)/, vanvn + </l + 1) div U)>
A r
/ / I\ ..
= <(6nu S Un), (—vv VO,V + (,u + 7) div v>> .
g r

By Lemma 1.1, for any { = (¢',¢,) € WZ/JIF/{' () x Wl/i{p '(T"), there exists
ve W? }’H(R”) such that on the one hand (0,v’,v,) =0 on I" and on the other
hand (—vv',v,v, + (u+1) dive) =¢ on I'.  Consequently,

(R%) such that (v,,0,0") =0 on I,

6u’u 11; 1 2-1/p’ ., p! 1-1 =0
<( n# n) gaC> /p p ><W /pp(r)vw,/+/1] P (F)XWJJr{" ! () )

that is 0,4’ =¢' and u, =g, on I.

(i) Now, let us solve problem (50). According to Theorem 3.4, we
know that under hypothes1s (45), for all F e ngH(R”) L YLy sy, there
exists a unique v € w? /+1( )/ Ly4s—njp, solution to

Lo=F inR’,
v, =0 and 00" =0 on I,
with the estimate

< C|F|

||v||WE‘/pll(Ri)/Jr”f[IJr/—n/j Ui - WO [) n)

Now, consider the linecar form

E:F— <g, (vv', VO, U, + (,u + 1) div v>> ,
A r

defined on WOfH(Rfr) L Y%y pp. According to (25), that we also can

write
+ / 1 :
VXG $[1+/—iz/p’]v 9, _Vlvvan){n—'_ /’l—’_z lel =0
r
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—see (21)—, we have

|EF| < C”U” Wi‘/]7‘/l(R$)/+~{[[]+/—n/p/] ”g” [,V/:ll—l/p,n(r)>< W/ill/p.p(r)

< CHF” WO—I/IL(RS:)

19l oy ooy

Hence Z is continuous on W?‘fil(Ri) L "% _s_np), and thanks to the Riesz
representation theorem, there exists a unique # in the dual space, that is
ue W(/)’f’l (RY)/ " %1_s—nyp)» such that

0,p' oF —
VFe WLLRY L Ly ZF = FD 0 o) ot s

i.e., u satisfies (50). ]
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