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Abstract. We are interested in a system of Stokes type, where the divergence-free

constraint is modified by adding a term proportional to the pressure. The domain is the

half-space with nonhomogeneous Navier’s boundary conditions. The weighted Sobolev

spaces yield a natural functional framework to envisage a wide class of behavior at

infinity for data and solutions. So, we can give a range of solutions from strong to

very weak depending on the regularity of the data. All along this study, we take the

bridge between this system and the linear elasticity system.

1. Introduction and preliminaries

In this paper we investigate the system of Stokes type

�nDu� m‘ div uþ ‘p ¼ f in Rn
þ;

lpþ div u ¼ h in Rn
þ;

un ¼ gn on G ;

qnu
0 ¼ g 0 on G ;

8>><
>>: ð1Þ

where the constants n, m and l satisfy the assumptions n > 0, lb 0 and

mþ n > 0. This system was recently studied by Beirão da Veiga in bounded

domains and also in Rn
þ; see references [10, 11, 12]. First, we notice that

the elasticity term �m‘ div u, added in the first equation, may be eliminated

by using the second equation. However, the calculations made under the

assumption m0 0 seem to be useful in studying some problems related to

compressible fluids.

The additional term lp, which relax the divergence-free constraint in the

second equation relatively to the classic Stokes system, is the central point.

The introduction of this term, for su‰ciently small values of l, appears for

instance in numerical approximation with the penalization method.

The aim of this work is to establish some existence and uniqueness results

for di¤erent type of data in weighted Sobolev spaces. Indeed, these spaces
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provide a natural framework in unbounded domains in order to express the

regularity and the behavior at infinity of data and solutions.

For positive values of l, the generalized Stokes system is equivalent to the

linear elasticity system; see e.g., Kobel’kov [21]. We will make precise this

point in Subsection 2.5, and we will exploit it all along this paper with the

assumption l > 0. The case l ¼ 0, that is the classic Stokes system, was treated

in [9] with similar tools, without appealing to the linear elasticity system.

So, at this stage two remarks are essential. On the one hand the results

obtained in [9] and here are complementary and then the case l ¼ 0 can be

included in all the statements on the Stokes system in the present paper; this is

why we call it ‘‘generalized’’ Stokes system. On the other hand we may regard

the classic system as the limit case l ¼ 0—in a sense that will be made clear in

Remark 3.12—of this generalized Stokes system.

About the choice of the slip boundary conditions, let us recall that it takes

its source in the recent developments of micro- and nanofluidic techniques.

So, the slip assumption is validated by numerous experiments and simulations

as well as theoretical studies; see e.g., Einzel, Panzer and Liu [13], Jäger and

Mikelić [20], Lauga, Brenner and Stone [22], Priezjev, Darhuber and Troian

[23], Priezjev and Troian [24], Qian, Wang and Sheng [25], and Zhu and

Granick [27].

Another contribution of this work concerns the existence of a class of

very weak solutions corresponding to singular boundary conditions. Several

authors have considered this type of solutions for the Stokes and Navier-Stokes

systems in bounded domains; see e.g., Giga [18], Amann [2], Galdi, Simader

and Sohr [17], Farwig, Galdi and Sohr [15, 16], and Schumacher [26].

This paper is organized as follows. The remaining part of this section is

devoted to the notations and functional setting.

In Section 2, we investigate the problem in the whole space, in order to

use the reflection principle for the half-space. After the characterization of

the kernel in Lemma 2.1, we establish the existence of generalized solutions

in Theorem 2.3. Next, we give a regularity result in Theorem 2.4. Last, we

translate these results for the linear elasticity system in Theorems 2.5 and 2.6.

In Section 3, we explore various aspects of the problem in the half-space.

Lemma 3.1, Proposition 3.2 and Proposition 3.3 characterize the kernel in this

geometry; then Theorem 3.4, Corollary 3.6 and Theorem 3.7 show the existence

of strong solutions for the two linked problems. Last, Propositions 3.8 and 3.9

show the existence of generalized solutions in the homogeneous case and allow

to establish Theorems 3.10 and 3.11 for the nonhomogeneous case.

To finish this study, in Section 4, we are interested in the case where very

low regularity of the boundary data yields very weak solutions. By means of

two technical lemmas—Lemmas 4.1 and 4.2—, we obtain Theorem 4.3.
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For any real number p > 1, p 0 always stands for the Hölder conjugate of

p, that is 1
p
þ 1

p 0 ¼ 1.

For any integer nb 2, writing a typical point x A Rn as x ¼ ðx 0; xnÞ, we

denote by Rn
þ the upper half-space of Rn and G 1Rn�1 its boundary. We will

use the two basic weights % ¼ ð1þ jxj2Þ1=2 and lg % ¼ lnð2þ jxj2Þ, where jxj is
the Euclidean norm of x.

For any integer q, Pq stands for the space of polynomials of degree

smaller than or equal to q; PD
q (resp. PD2

q ) is the subspace of harmonic (resp.

biharmonic) polynomials in Pq; A
D
q (resp. ND

q ) is the subspace of polynomials

in PD
q , odd (resp. even) with respect to xn, or equivalently, which satisfy

the condition jðx 0; 0Þ ¼ 0 (resp. qnjðx 0; 0Þ ¼ 0); with the convention that these

spaces are reduced to f0g if q < 0. For any real number s, we denote by ½s�
the largest integer less than or equal to s.

Given a Banach space B, with dual space B 0 and a closed subspace X of

B, we denote by B 0 ? X the subspace of B 0 orthogonal to X . For any k A Z,

we will denote by f1; . . . ; kg the set of the first k positive integers, with the

convention that this set is empty if k is nonpositive.

Throughout this paper, bold characters are used for the vector fields;

depending on the context, f A X stands for f ¼ ð f1; . . . ; fnÞ A X ¼ X n and

g 0 A X stands for g 0 ¼ ðg1; . . . ; gn�1Þ A X ¼ X n�1. We denote by C a generic

positive real constant, and the symbol !F is reserved for isomorphisms between

two spaces.

For weighted Sobolev spaces, we refer the reader to Hanouzet’s classic

article [19] and more especially to [3] for logarithmic weights. Let W be an

open set of Rn. For any m A N, p A �1;y½, ða; bÞ A R2, we define the following

space:

W
m;p
a;b ðWÞ ¼ fu A D 0ðWÞ; 0a jlja k; %a�mþjljðlg %Þb�1qlu A LpðWÞ;

k þ 1a jljam; %a�mþjljðlg %Þbqlu A LpðWÞg; ð2Þ

where k ¼ m� n=p� a if n=pþ a A f1; . . . ;mg, and k ¼ �1 otherwise. In the

case b ¼ 0, we simply denote the space by Wm;p
a ðWÞ. Note that Wm;p

a;b ðWÞ is a

reflexive Banach space equipped with its natural norm:

kukW m; p
a; b

ðWÞ ¼
 X

0ajljak

k%a�mþjljðlg %Þb�1qlukp

LpðWÞ

þ
X

kþ1ajljam

k%a�mþjljðlg %Þbqlukp

LpðWÞ

!1=p
:
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We also define the semi-norm:

jujW m; p
a; b

ðWÞ ¼
X
jlj¼m

k%aðlg %Þbqlukp

LpðWÞ

0
@

1
A
1=p

:

The weights in definition (2) are chosen so that DðRn
þÞ is dense in W

m;p
a;b ðRn

þÞ
and so that the following Poincaré-type inequality holds in W

m;p
a;b ðRn

þÞ (see

[5]): Let q� ¼ infðq;m� 1Þ, where q is the highest degree of the polynomials

contained in W
m;p
a;b ðRn

þÞ. If n=pþ a B f1; . . . ;mg or ðb � 1Þp0�1, then

Eu A W
m;p
a;b ðRn

þÞ; kukW m; p

a; b
ðR n

þÞ=Pq�
aCjujW m; p

a; b
ðRn

þÞ;

and

Eu A W
� m;p
a;b ðR

n
þÞ ¼ DðRn

þÞ
k�k

W
m; p

a; b
ðR n

þÞ
; kukW m; p

a; b
ðR n

þÞ aCjujW m; p

a; b
ðR n

þÞ:

We denote by W
�m;p 0

�a;�b ðR
n
þÞ the dual space of W

� m;p
a;b ðR

n
þÞ and we notice that it is

a space of distributions. If n=pþ a B f1; . . . ;mg, we have the imbeddings

W
m;p
a;b ðRn

þÞ ,! W
m�1;p
a�1;b ðRn

þÞ ,! � � � ,! W
0;p
a�m;bðR

n
þÞ:

If n=pþ a ¼ j A f1; . . . ;mg, then we have

W
m;p
a;b ,! � � � ,! W

m�jþ1;p
a�jþ1;b ,! W

m�j;p
a�j;b�1 ,! � � � ,! W

0;p
a�m;b�1:

In order to define the traces of functions of Wm;p
a ðRn

þÞ (here we do not

consider the case b0 0), for any s A �0; 1½, we introduce the space

W s;p
a ðRnÞ ¼

�
u A D 0ðRnÞ;wa�su A LpðRnÞ;

ð
R n�R n

j%aðxÞuðxÞ � %aðyÞuðyÞjp

jx� yjnþsp dxdy < y

�
;

where w ¼ % if n=pþ a0 s and w ¼ %ðlg %Þ1=ðs�aÞ if n=pþ a ¼ s. For any

s A Rþ, we set

W s;p
a ðRnÞ ¼ fu A D 0ðRnÞ; 0a jlja k; %a�sþjljðlg %Þ�1qlu A LpðRnÞ;

k þ 1a jlja ½s� � 1; %a�sþjljqlu A LpðRnÞ; q½s�u A W s;p
a ðRnÞg;

where k ¼ s� n=p� a if n=pþ a A fs; . . . ; sþ ½s�g, with s ¼ s� ½s� and k ¼ �1

otherwise. In the same way, we also define, for any real number b, the

space W
s;p
a;b ðR

nÞ ¼ fv A D 0ðRnÞ; ðlg %Þbv A W s;p
a ðRnÞg. These spaces are reflex-

ive Banach spaces equipped with their natural norms.
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If n=pþ a B fs; . . . ; sþ ½s� � 1g, we have the imbeddings

W
s;p
a;b ðR

nÞ ,! W
s�1;p
a�1;b ðR

nÞ ,! � � � ,! W
s;p
a�½s�;bðR

nÞ;

W
s;p
a;b ðR

nÞ ,! W
½s�;p
aþ½s��s;bðR

nÞ ,! � � � ,! W
0;p
a�s;bðR

nÞ:

If n=pþ a ¼ j A fs; . . . ; sþ ½s� � 1g, then we have

W
s;p
a;b ,! � � � ,! W

s�jþ1;p
a�jþ1;b ,! W

s�j;p
a�j;b�1 ,! � � � ,! W

s;p
a�½s�;b�1;

W
s;p
a;b ,! W

½s�;p
aþ½s��s;b ,! � � � ,! W

½s��jþ1;p
a�s�jþ1;b ,! W

½s��j;p
a�s�j;b�1 ,! � � � ,! W

0;p
a�s;b�1:

If u is a function on Rn
þ, we denote its trace of order j on the hyperplane G by

Ej A N; gju : x 0 A Rn�1 7! q j
nuðx 0; 0Þ:

Let us recall the following trace lemma due to Hanouzet (see [19]) and

extended by Amrouche and Nečasová (see [5]) to the critical values with

logarithmic weights.

Lemma 1.1 (The Trace Lemma). For any integer mb 1 and real number a,

we have the linear continuous mapping

g ¼ ðg0; g1; . . . ; gm�1Þ : Wm;p
a ðRn

þÞ !
Ym�1

j¼0

Wm�j�1=p;p
a ðRn�1Þ:

Moreover g is surjective and Ker g ¼ W
�

m;p
a ðRn

þÞ.

Remark 1.2. As we saw in [8] and [9], it is possible to give a sense to

traces in such spaces W s;p
a ðRnÞ with s < 0 for particular classes of functions or

distributions. For instance, if u A W 0;p
a ðRn

þÞ—that is a weighted Lp space—

with Du ¼ 0, then we have g0u A W
�1=p;p
a ðRn�1Þ.

2. The generalized Stokes system in Rn

As usual, our method for the half-space requires the extension of problems

to the whole space. Then a necessary step is to consider the corresponding

Stokes system in Rn:

�nDu� m‘ div uþ ‘p ¼ f in Rn;

lpþ div u ¼ h in Rn:

�
ð3Þ

In this section, we essentially adapt to this problem, with minor modifications,

the arguments used by Alliot and Amrouche for the classic Stokes system in the
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whole space (see [1]). However, in the last subsection, we shed new light on

this generalized system when l0 0, regarding it now as the system of linear

elasticity, with the pressure being a function of the velocity field. Let us

denote by Tl the corresponding operator:

Tl : ðu; pÞ 7! ð�nDu� m‘ div uþ ‘p;�lp� div uÞ:

2.1. Existence and uniqueness results. We consider (3) with ð f ; hÞ ¼ ð0; 0Þ
through the operator Tl defined on the space of tempered distributions

S 0ðRnÞ �S 0ðRnÞ. Using the second equation in order to substitute �lp for

div u in the first equation, we get

�nDuþ ð1þ lmÞ‘p ¼ 0 in Rn: ð4Þ

Applying the divergence operator to this equation, we obtain Dp ¼ 0 in Rn.

Finally, applying the Laplacian to the same equation, we find D2u ¼ 0 in Rn.

So, p and u are respectively tempered harmonic and biharmonic distributions,

thus polynomials. Consequently, the kernel of Tl is quite similar to the kernel

of the classic Stokes operator. For any k A Z, let us introduce the space

Sl
k ¼ fðw; qÞ A PD2

k �PD
k�1;Tlðw; qÞ ¼ 0g:

According to the maximum degree of polynomials in weighted Sobolev spaces

(see [3]), we have the following uniqueness result:

Lemma 2.1. Let l A Z, m A N and assume that n=p B f1; . . . ;�l�mg, then
the kernel of Tl defined on W mþ1;p

mþl ðRnÞ �W
m;p
mþlðRnÞ is the space Sl

½1�l�n=p�.

Now, we are interested in the question of existence of solutions. Let

ðu; pÞ A S 0ðRnÞ �S 0ðRnÞ be a solution pair to problem (3). The second equa-

tion of (3) allows us to substitute h� lp for div u in the first equation. Then,

we obtain

nDu ¼ ð1þ lmÞ‘p� f � m‘h: ð5Þ

Next, taking the divergence of (5) and replacing angain div u by h� lp, we

obtain

ð1þ lðnþ mÞÞDp ¼ div f þ ðnþ mÞDh: ð6Þ

Thus, similarly to the classic Stokes system—i.e., the case l ¼ 0—in Rn, it

su‰ces to solve these two Poisson’s equations. Indeed, if ðv; tÞ verifies (5) and

(6), then we get

�nDv� m‘ðh� ltÞ þ ‘t ¼ f in S 0ðRnÞ;

D div v ¼ Dðh� ltÞ in S 0ðRnÞ;
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and thus, div v� hþ lt ¼ j, where j is a harmonic polynomial. So we can

use the following lemma proved in [1]:

Lemma 2.2. For any k A N, PD
k ¼ divðPD

kþ1Þ.

Therefore, if j A PD
k�1 with kb 1, there exists w A PD

k such that j ¼ div w

and the pair ðv� w; tÞ satisfies the initial problem (3).

2.2. Generalized solutions. We now give the main result for (3).

Theorem 2.3. Let l A Z and assume that

n=p 0 B f1; . . . ; lg and n=p B f1; . . . ;�lg: ð7Þ

For any ð f ; hÞ A ðW�1;p
l ðRnÞ �W

0;p
l ðRnÞÞ ? Sl

½1þl�n=p 0 �, problem (3) admits a

solution ðu; pÞ A W 1;p
l ðRnÞ �W

0;p
l ðRnÞ, unique up to an element of Sl

½1�l�n=p�,

with the estimate

inf
ðw;qÞ AS l

½1�l�n=p�

ðkuþ wk
W 1; p

l
ðR nÞ þ kpþ qk

W
0; p
l

ðRnÞÞaCðk f k
W �1; p

l
ðRnÞ þ khk

W
0; p
l

ðR nÞÞ:

Proof. We proceed in three steps. First we solve the case l ¼ 0, then

we consider the negative weights to avoid troubles with the compatibility

conditions and last, we obtain the solutions for positive weights by a duality

argument.

(i) The Stokes operator Tl satisfies

Tl : ðW 1;p
0 ðRnÞ � LpðRnÞÞ=Sl

½1�n=p� !
F ðW�1;p

0 ðRnÞ � LpðRnÞÞ ? Sl
½1�n=p 0�:

The operator Tl is clearly continuous, moreover it is injective by Lemma 2.1,

then by the Banach Theorem, it remains to show that it is surjective. For that

we naturally use the splitting of this problem in (5) and (6). Let us con-

sider a pair ð f ; hÞ A ðW�1;p
0 ðRnÞ ? P½1�n=p 0 �Þ � LpðRnÞ, then div f A W

�2;p
0 ðRnÞ.

Moreover, for any j A P½2�n=p 0 �, we have

hdiv f ; ji
W

�2; p
0

ðRnÞ�W
2; p 0
0

ðR nÞ ¼ h f ;‘ji
W

�1; p
0

ðRnÞ�W
1; p 0
0

ðR nÞ ¼ 0;

i.e., div f A W
�2;p
0 ðRnÞ ? P½2�n=p 0 �. The same arguments hold for h and yield

Dh A W
�2;p
0 ðRnÞ ? P½2�n=p 0�. According to the results on the Laplacian in Rn

(see [3]), we know that

D : LpðRnÞ !F W
�2;p
0 ðRnÞ ? P½2�n=p 0 �

and thus, there exists p A LpðRnÞ solution to (6). On the other hand, for any

c A W
1;p 0

0 ðRnÞ and 1a ia n, we have

hqip;ciW �1; p
0

ðR nÞ�W
1; p 0
0

ðR nÞ ¼ �hp; qiciLpðR nÞ�Lp 0 ðRnÞ:
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That implies qip ? R if n=p 0 a 1—indeed, R ¼ P½1�n=p 0 � HW
1;p 0

0 ðRnÞ if

n=p 0 a 1—, and the same argument holds for qih. Thanks to the fact (see

[3]) that

D : W 1;p
0 ðRnÞ=P½1�n=p� !

F
W

�1;p
0 ðRnÞ ? P½1�n=p 0 �;

there exists a solution u A W 1;p
0 ðRnÞ of (5). In addition, as we have seen

above, div u� hþ lp is a harmonic polynomial. Since it belongs to LpðRnÞ, it
is actually zero. So ðu; pÞ verifies Tlðu; pÞ ¼ ð f ;�hÞ, which proves the surjec-

tivity of Tl.

(ii) For any l < 0, assuming that n=p B f1; . . . ;�lg, we have

Tl : ðW 1;p
l ðRnÞ �W

0;p
l ðRnÞÞ=Sl

½1�l�n=p� !
F

W
�1;p
l ðRnÞ �W

0;p
l ðRnÞ: ð8Þ

It is the same reasoning to solve the two Poisson’s equations (6) and (5), but

using this time successively the isomorphisms

D : W 0;p
l ðRnÞ=PD

½�l�n=p� !
F

W
�2;p
l ðRnÞ ? P½2þl�n=p 0 �;

and

D : W 1;p
l ðRnÞ=PD

½1�l�n=p� !
F

W
�1;p
l ðRnÞ;

valid under these assumptions (see [3, 4]). Finally, modifying this solution

with a polynomial constructed by means of Lemma 2.2, we get a solution to

(3).

(iii) For any l > 0, the adjoint operator T �
l of Tl satisfies,

T �
l : W 1;p

l ðRnÞ �W
0;p
l ðRnÞ !F ðW�1;p

l ðRnÞ �W
0;p
l ðRnÞÞ ? Sl

½1þl�n=p 0 �: ð9Þ

We get it by duality, replacing �l by l and p 0 by p. In addition, by a density

argument, we show that

T �
l ðv; QÞ ¼ ð�nDv� m‘ div vþ ‘Q;�lQ� div vÞ;

i.e., Tl is selfadjoint and the proof is complete. r

2.3. The classic problem as limit case. In order to answer to the question of

the limit as l goes to zero, it is interesting to yield an estimate in Theorem 2.3

where the constant C does not depend on the parameter l. We start with the

central case of weight zero. On the one hand, problem (6) yields the estimate

kpkLpðR nÞ aCðk f k
W

�1; p
0

ðR nÞ þ ðnþ mÞkhkLpðRnÞÞ;

where C ¼ Cðn; pÞ; and on the other hand, (5) yields

kuk
W

1; p
0

ðR nÞ=P½1�n=p�
aC½j1þ lmj kpkLpðR nÞ þ k f k

W
�1; p
0

ðR nÞ þ jmj khkLpðR nÞ�;
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where C ¼ Cðn; n; pÞ. Hence, we obtain the global estimate for problem (3)

kuk
W

1; p
0

ðR nÞ=P½1�n=p�
þ kpkLpðR nÞ

aC½ð2þ j1þ lmjÞk f k
W �1; p

0
ðR nÞ þ ðð1þ j1þ lmjÞðnþ mÞ þ jmjÞkhkLpðR nÞ�;

where C ¼ Cðn; n; pÞ is a constant depending only on n, n and p. Next, it is

clear that this estimate also holds for a weight l > 0, because the kernel is then

reduced to zero; that is

kðu; pÞk
W

1; p
l

ðR nÞ�W
0; p
l

ðRnÞ

aC½ð2þ j1þ lmjÞk f k
W �1; p

l
ðR nÞ þ ðð1þ j1þ lmjÞðnþ mÞ þ jmjÞkhk

W
0; p
l

ðR nÞ�;

where C ¼ Cðn; n; pÞ. Since our goal here is to observe the behavior of this

estimate as l tends to 0, we can assume that 0a la 1. Then, we can write

kðu; pÞk
W

1; p
l

ðR nÞ�W
0; p
l

ðR nÞ aCðk f k
W

�1; p
l

ðR nÞ þ khk
W

0; p
l

ðR nÞÞ;

where C ¼ Cðn; m; n; pÞ. Concerning the isomorphisme T �
l , we know that the

best constant for this estimate is in fact kðT �
l Þ

�1k. In addition, since Tl is

selfadjoint, we have kðT �
l Þ

�1k ¼ kT�1
l k.

Thus, in the case l < 0, we can deduce by duality that we also have

kðu; pÞkðW 1; p
l

ðR nÞ�W
0; p
l

ðRnÞÞ=S l
½1�l�n=p�

aCkð f ; hÞk
W

�1; p
l

ðR nÞ�W
0; p
l

ðRnÞ; ð10Þ

where C ¼ Cðn; m; n; pÞ for any 0a la 1. So, this estimate, where the con-

stant C does not depend on l A ½0; 1�, holds for any l A Z.

Now, let us consider fixed data f and h and a sequence of parameters

li A ½0; 1� which tends to zero (n and m are also prescribed), such that the family

of generalized problems admits solutions ðui; piÞ and the classic system—that

is for l ¼ 0—a solution ðu; pÞ. We naturally expect that ðui; piÞ converges to

ðu; pÞ as li goes to zero.

So, for any i A N, we have

�nDui � m‘ div ui þ ‘pi ¼ f in Rn;

lipi þ div ui ¼ h in Rn;

and

�nDu� m‘ div uþ ‘p ¼ f in Rn;

div u ¼ h in Rn:
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By di¤erence, we see that the pair ðu� ui; p� piÞ verifies the problem

�nDv� m‘ div vþ ‘t ¼ 0 in Rn;

litþ div v ¼ lip in Rn;

and the estimate (10) is written here as

kðv; tÞkðW 1; p
l

ðR nÞ�W
0; p
l

ðR nÞÞ=Sl
½1�l�n=p�

aClikpkW 0; p
l

ðR nÞ;

where C ¼ Cðn; m; n; pÞ is a constant which does not depend on li.

So, by passing to the limit as li ! 0, we deduce that ðui; piÞ ! ðu; pÞ in

ðW 1;p
l ðRnÞ �W

0;p
l ðRnÞÞ=Sl

½1�l�n=p�.

2.4. Regularity of solutions. In this subsection, we establish a global regu-

larity result.

Theorem 2.4. Let l A Z and mb 1 be two integers and assume that

n=p 0 B f1; . . . ; lþ 1g and n=p B f1; . . . ;�l�mg: ð11Þ

For any ð f ; hÞ A ðW m�1;p
mþl ðRnÞ �W

m;p
mþlðRnÞÞ ? Sl

½1þl�n=p 0 �, problem (3) admits a

solution ðu; pÞ A W mþ1;p
mþl ðRnÞ �W

m;p
mþlðRnÞ, unique up to an element of Sl

½1�l�n=p�,

with the estimate

inf
ðw;qÞ AS l

½1�l�n=p�

ðkuþ wk
W

mþ1; p
mþl

ðR nÞ þ kpþ qkW m; p
mþl

ðR nÞÞ

aCðk f k
W

m�1; p
mþl

ðR nÞ þ kgkW m; p
mþl

ðRnÞÞ:

Proof. For the negative weights, the proof follows the same reasoning as

for the generalized solutions, except that the regularity results for the Laplacian

(see [3, 4]) are employed. Namely, we use

D : Wm;p
mþlðRnÞ=PD

½�l�n=p� !
F

W
m�2;p
mþl ðRnÞ if la�2 and ð11Þ;

or in the case l ¼ �1,

D : Wm;p
m�1ðR

nÞ=P½1�n=p� !
F

W
m�2;p
m�1 ðRnÞ ? P½1�n=p 0 � if n=p 0 0 1 or m ¼ 1; ð12Þ

to solve (6); and use

D : Wmþ1;p
mþl ðRnÞ=PD

½1�l�n=p� !
F

W
m�1;p
mþl ðRnÞ;

to solve (5). However, the case n ¼ p 0 for l ¼ �1 and mb 2 is critical for the

isomorphism (12), and the use of a critical result on the Laplace operator is

required to solve (6). According to [4], we have

D : W 1þm;p
m ðRnÞ=P½1�n=p� !

F
X m�1;p

m ðRnÞ ? R if n ¼ p 0 and mb 1; ð13Þ
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where the family of spaces X is defined as follows. For any m A Z, l A N,

X
mþl;p
l ðRnÞ ¼ fu A W

m;p
0 ðRnÞ; El A Nn; 0a jlja l;

xlu A W
mþjlj;p
0 ðRnÞ; u A W

mþl;p
loc ðRnÞg;

and its dual space is denoted by X
�m�l;p 0

�l ðRnÞ.
So, replacing m by m� 1 in (13), we get

D : Wm;p
m�1ðR

nÞ=P½1�n=p� !
F

X
m�2;p
m�1 ðRnÞ ? R if n ¼ p 0 and mb 2;

which precisely fills the gap in the isomorphism (12) for this critical case.

In addition, we can show that X
m�2;p
m�1 ðRnÞ ¼ W

m�2;p
m�1 ðRnÞVW

�1;p
0 ðRnÞ.

Since f A W m�1;p
m�1 ðRnÞ, we have div f A W

m�2;p
m�1 ðRnÞ, and thanks to the

imbedding W
m�1;p
m�1 ðRnÞ ,! LpðRnÞ, we also have div f A W

�1;p
0 ðRnÞ, hence

div f A X
m�2;p
m�1 ðRnÞ. In the same way, we have Dh A X

m�2;p
m�1 ðRnÞ, and thus

we are able to solve (6). The rest of the proof is quite similar.

For lb 0, contrary to the generalized solutions, the duality reasoning fails,

however we can use a regularity argument similar to the one employed for the

classic Stokes system (see [8, Corollary 5.5]). r

2.5. A change of point of view. As we remarked in the introduction, if l ¼ 0,

we find the classic Stokes system. Now, if l0 0, we can completely decouple

the velocity field from the pressure in the main equation. Indeed, the system

(3) in the whole space is clearly equivalent to

�nDu� mþ 1
l

� �
‘ div u ¼ f � 1

l
‘h in Rn;

p ¼ 1
l
ðh� div uÞ in Rn:

(
ð14Þ

So we recognize the equation of linear elasticity as main equation, which can be

rewritten by means of Lamé operator L ¼ �nD� mþ 1
l

� �
‘ div, as

Lu ¼ F in Rn; ð15Þ

where F ¼ f � 1
l
‘h. Let us still notice that if lm ¼ �1, the operator L is

nothing else but the Laplacian. Then solving (3) is equivalent to solving

(15)—indeed, knowing the velocity field, we immediately get the pressure p;

moreover, the kernel of L is the velocity field’s part, decoupled from the

pressure, in the kernel of Tl, that is the polynomial space

L½1�l�n=p� ¼ fw A PD2

½1�l�n=p�;Lw ¼ 0g;
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if L is defined on W mþ1;p
mþl ðRnÞ, for any l A Z and m A N. So, we can express

the results on system (3) in terms adapted to equation (15). For instance,

Theorem 2.3 becomes:

Theorem 2.5. Let l A Z and assume (7). For any F A W
�1;p
l ðRnÞ ?

L½1þl�n=p 0 �, problem (15) admits a solution u A W 1;p
l ðRnÞ, unique up to an

element of L½1�l�n=p�, with the estimate

inf
w AL½1�l�n=p�

kuþ wk
W 1; p

l
ðR nÞ aCkFk

W �1; p
l

ðR nÞ:

Of course, we also have an equivalent to Theorem 2.4 for the regularity:

Theorem 2.6. Let l A Z and mb 1 be two integers and assume (11).

For any F A W m�1;p
mþl ðRnÞ ? L½1þl�n=p 0�, problem (15) admits a solution u A

W mþ1;p
mþl ðRnÞ, unique up to an element of L½1�l�n=p�, with the corresponding

estimate.

3. The generalized Stokes system in Rn
þ

After the question of the kernel and the one of the compatibility condition

for the data, we deal with strong and then generalized solutions to (1).

3.1. The kernel. Examining the reflection principle (see R. Farwig [14])

for the classic Stokes system with slip condition, we immediately see that

it is unchanged for the generalized system. Namely, if l A Z and ðu; pÞ A
W 1;p

l ðRn
þÞ �W

0;p
l ðRn

þÞ is an element of the kernel of the generalized Stokes

operator Tl with slip boundary conditions, then the unique extension ð~uu; ~ppÞ of

ðu; pÞ to the whole space, satisfying

�nD~uu� m‘ div ~uuþ ‘~pp ¼ 0 and l~ppþ div ~uu ¼ 0 in Rn;

is given by the following continuation formulae: for all x ¼ ðx 0; xnÞ A Rn
�,

~uu 0ðxÞ ¼ u 0ðx�Þ; ~uunðxÞ ¼ �unðx�Þ; ~ppðxÞ ¼ pðx�Þ; where x� ¼ ðx 0;�xnÞ:

Moreover, such ~pp and ~uu are respectively harmonic and biharmonic tempered

distributions in Rn, thus polynomials. For all k A Z, let us denote

þSl
k ¼ fðw; qÞ A PD2

k �PD
k�1;�nDw � m‘ div w þ ‘q ¼ 0 and

lqþ div w ¼ 0 in Rn
þ; qnw

0 ¼ 0 and wn ¼ 0 on Gg:

As in the whole space, we can show that this kernel does not depend on the

regularity according to the Sobolev imbeddings and that it is characterized as

follows.
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Lemma 3.1. Let l A Z, m A N and assume that n=p B f1; . . . ;�l�mg, then
the kernel of the Stokes operator Tl defined on W mþ1;p

mþl ðRn
þÞ �W

m;p
mþlðRn

þÞ with

the homogeneous Navier boundary conditions is the space þSl
½1�l�n=p�.

We also can express it in terms of the polynomial spaces AD
k and ND

k

which respectively define the kernels of the Laplacian with Dirichlet and

Neumann boundary conditions in the half-space. With this aim, we will use

the operator PN—introduced in [7] for the biharmonic problem—defined as

follows.

Es A ND
k ; PNsðx 0; xnÞ ¼

1

2
xn

ð xn
0

sðx 0; tÞdt;

satisfies DPNs ¼ s in Rn
þ and PNs ¼ qnPNs ¼ 0 on G .

Proposition 3.2. Let l A Z. The pair ðw; qÞ A þSl
½1�l�n=p� if and only if

there exists j A N D
½1�l�n=p� �AD

½1�l�n=p� such that

w ¼ k2j� k1‘PN div j and q ¼ �div j; ð16Þ

where k1 ¼ 1þlm

n
and k2 ¼ 1þlðmþnÞ

n
.

Proof. Given ðw; qÞ A þSl
½1�l�n=p�, we have Dq ¼ 0 in Rn

þ. Now, taking

the restriction to G of the nth component of the main equation in þSl
k with the

boundary conditions and applying the operator qn to the second equation in
þSl

k , we obtain qnq ¼ 0 on G. Hence we deduce that q A ND
½�l�n=p�. So, by

use of (4), we can write

Dðnw � ð1þ lmÞ‘PNqÞ ¼ nDw � ð1þ lmÞ‘q ¼ 0;

which implies the existence of j A PD
½1�l�n=p� such that

j ¼ nw � ð1þ lmÞ‘PNq: ð17Þ

In fact, we can see that j A N D
½1�l�n=p� �AD

½1�l�n=p� by considerations on the

parity of w 0, wn and ‘PNq. In addition, applying the operator div to (17), we

get

div j ¼ n div w � ð1þ lmÞq ¼ �ð1þ lðmþ nÞÞq;

which yieds q ¼ � 1
1þlðmþnÞ div j and, by substitution in (17),

w ¼ 1

n
j� 1þ lm

1þ lðmþ nÞ‘PN div j

� �
:

Hence, integrating the constant 1
1þlðmþnÞ in j, we get the equations (16).

Conversely, we can verify that such a pair ðw; qÞ belongs to þSl
½1�l�n=p�.

r
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Another look at the kernel. As in the whole space, we can readily see that if

l0 0, (1) in the half-space is equivalent to the equation of linear elasticity (15)

combined with the Navier boundary conditions, i.e.,

Lu ¼ F in Rn
þ;

un ¼ gn on G ;

qnu
0 ¼ g 0 on G :

8<
: ð18Þ

So, the kernel of the operator associated to this problem is the polynomial

space

þL½1�l�n=p� ¼ fw A PD2

½1�l�n=p�;Lw ¼ 0 in Rn
þ; qnw

0 ¼ 0 and wn ¼ 0 on Gg:

Likewise, we have the following characterization:

Proposition 3.3. Let l A Z. The polynomial w A þL½1�l�n=p� if and only if

there exists j A N D
½1�l�n=p� �AD

½1�l�n=p� such that w ¼ k2j� k1‘PN div j.

3.2. The compatibility condition. We notice that for l > 0 the kernel reduces

to f0g and in turn there appears a compatibility condition among the data f ,

h, gn, g
0. Let ðu; pÞ be a solution to (1), then by means of Green’s formula, we

get after simplification:

Eðw; qÞ A þSl
½1þl�n=p 0�;ð

R n
þ

ð�nDu� m‘ div uþ ‘pÞ � w dx�
ð
R n

þ

ðlpþ div uÞq dx

¼ �n

ð
G

unqnwn dx
0 þ nhqnu

0; w 0i
W

�1=p; p

l
ðGÞ�W

1�1=p 0 ; p 0
�l

ðGÞ

� m

ð
G

un div w dx 0 þ
ð
G

unq dx 0:

Hence we obtain a first formulation of the compatibility condition:

Eðw; qÞ A þSl
½1þl�n=p 0 �;ð

Rn
þ

f � w dx�
ð
R n

þ

hq dx

¼
ð
G

gnð�nqnwn � m div w þ qÞdx 0 þ hg 0; nw 0i
W

�1=p; p
l

ðGÞ�W
1�1=p 0 ; p 0
�l

ðGÞ: ð19Þ

Now, in order to use Proposition 3.2, we can observe thatð
R n

þ

f � ð‘PN div jÞdx ¼ h�div f ;PN div ji
W

�1; p
lþ1

ðR n
þÞ�W

� 1; p 0
�l�1

ðR n
þÞ
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and ð
R n

þ

h div j dx ¼ �
ð
R n

þ

‘h � j dx:

On the other hand, for the trace terms we have

w 0 ¼ k2j
0 and nqnwn þ m div w � q ¼ nk2qnjn on G :

This yields the second formulation for the compatibility condition:

Ej A N D
½1þl�n=p 0� �AD

½1þl�n=p 0 �;ð
R n

þ

f � 1

k2
‘h

� �
� j dxþ k1

k2
hdiv f ;PN div ji

W
�1; p
lþ1

ðRn
þÞ�W

� 1; p 0
�l�1

ðR n
þÞ

þ n

ð
G

gnqnjn dx
0 � nhg 0; j 0i

W
�1=p; p

l
ðGÞ�W

1�1=p 0 ; p 0
�l

ðGÞ ¼ 0: ð20Þ

The linear elasticity system. For problem (18), the conditions (19) and (20) are

respectively equivalent to

Ew A þL½1þl�n=p 0�;

ð
R n

þ

F � w dx ¼
ð
G

gn �nqnwn � mþ 1

l

� �
div w

� �
dx 0

þ hg 0; nw 0i
W

�1=p; p
l

ðGÞ�W
1�1=p 0 ; p 0
�l

ðGÞ ð21Þ

and

Ej A N D
½1þl�n=p 0 � �AD

½1þl�n=p 0�;ð
R n

þ

F � j dxþ k1

k2
hdiv F ;PN div ji

W
�1; p
lþ1

ðRn
þÞ�W

� 1; p 0
�l�1

ðR n
þÞ

þ n

ð
G

gnqnjn dx
0 � nhg 0; j 0i

W
�1=p; p

l
ðGÞ�W

1�1=p 0 ; p 0
�l

ðGÞ ¼ 0: ð22Þ

3.3. Strong solutions. In this case it is convenient to solve the linear elasticity

system in order to get the solutions of the generalized Stokes system. We start

with homogeneous boundary conditions.

Theorem 3.4. Let l A Z and assume that

n=p 0 B f1; . . . ; lþ 1g and n=p B f1; . . . ;�l� 1g: ð23Þ

For any F A W 0;p
lþ1ðR

n
þÞ ? þL½1þl�n=p 0 �, the linear elasticity system (18), with

ðg 0; gnÞ ¼ 0, has a solution u A W 2;p
lþ1ðR

n
þÞ, unique up to an element of þL½1�l�n=p�,

with the corresponding estimate.
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Proof. First, we extend F to the whole space by ~FF A W 0;p
lþ1ðR

nÞ as

follows.

Ej A DðRnÞ;
ð
R n

~FF � j dx ¼
ð
R n

þ

F � ðj 0 þ j 0�; jn � j�
n Þdx; ð24Þ

where j�
i ðxÞ ¼ jiðx�Þ for any x ¼ ðx 0; xnÞ A Rn with x� ¼ ðx 0;�xnÞ. That is to

say, the functional expression of this extension is given by

~FFðx 0; xnÞ ¼
Fðx 0; xnÞ if xn > 0;

ðF 0;�FnÞðx 0;�xnÞ if xn < 0:

�

Next, by Theorem 2.6, with m ¼ 1 and hypothesis (23), we know that there

exists a solution w A W 2;p
lþ1ðR

nÞ to the problem Lw ¼ ~FF in Rn, provided the

condition ~FF ? L½1þl�n=p 0� is fulfilled. According to (24), we can write this last

condition as

Ew A L½1þl�n=p 0�;

ð
R n

þ

F � ðw 0 þ w 0�; wn � w�
n Þdx ¼ 0:

Now, thanks to ðw 0 þ w 0�; wn � w�
n Þ A þL½1þl�n=p 0�, we see that the last condition

is a simple consequence of the condition on F in our statement. Then, the

function u defined in Rn
þ by

u ¼ 1

2
ðw 0 þ w 0�;wn � w�

n Þ

belongs to W 2;p
lþ1ðR

n
þÞ and we can see by a straightforward calculation that it is

solution to our problem. r

Remark 3.5. In the same way, we can directly demonstrate the coun-

terpart of Theorem 3.4 for Problem (1) with ðg 0; gnÞ ¼ 0. In this case, the

extension of f is identical to the one for F in the linear elasticity system; and it

is even with respect to xn for h. That is,

Ec A DðRnÞ;
ð
R n

~hhc dx ¼
ð
R n

þ

hðcþ c�Þdx:

Then a solution to (1) is given by the pair of functions ðu; pÞ defined in Rn
þ by

ðu; pÞ ¼ 1

2
ðw 0 þ w 0�;wn � w�

n ; Qþ Q�Þ;

where ðw; QÞ is the solution to the extended problem in Rn.
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Corollary 3.6. Let l A Z and assume (23). For any F A W 0;p
lþ1ðR

n
þÞ,

gn A W
2�1=p;p
lþ1 ðGÞ and g 0 A W

1�1=p;p
lþ1 ðGÞ, satisfying the compatibility condition

(22), the linear elasticity system (18) has a solution u A W 2;p
lþ1ðR

n
þÞ, unique up to

an element of þL½1�l�n=p�, with the corresponding estimate.

Proof. It is a consequence of Theorem 3.4 and Lemma 1.1. Indeed,

according to Lemma 1.1, there exists a lifting function ug ¼ ðug 0 ; ugnÞ A
W 2;p

lþ1ðR
n
þÞ of g ¼ ðg 0; gnÞ such that qnug 0 ¼ g 0 and ugn ¼ gn on G . Then, if

we put F ¼ F � Lug and v ¼ u� ug, system (18) is equivalent to

Lv ¼ F in Rn
þ; ðqnv 0; vnÞ ¼ 0 in G

and we can easily verify that condition (22)—more precisely its alternative

form (21)—is equivalent to F ? þL½1þl�n=p 0 �. Finally, this problem is solved

by Theorem 3.4. r

Hence the corresponding result for the generalized Stokes system is given

as follows.

Theorem 3.7. Let l A Z and assume (23). For any f A W 0;p
lþ1ðR

n
þÞ,

h A W
1;p
lþ1ðR

n
þÞ, gn A W

2�1=p;p
lþ1 ðGÞ and g 0 A W

1�1=p;p
lþ1 ðGÞ, satisfying the compati-

bility condition (20), problem (1) has a solution ðu; pÞ A W 2;p
lþ1ðR

n
þÞ �W

1;p
lþ1ðR

n
þÞ,

unique up to an element of þSl
½1�l�n=p�, with the estimate

inf
ðw;qÞ A þS l

½1�l�n=p�

ðkuþ wk
W

2; p
lþ1

ðR n
þÞ
þ kpþ qk

W
1; p
lþ1

ðRn
þÞ
Þ

aCðk f k
W

0; p
lþ1

ðR n
þÞ
þ khk

W
1; p
lþ1

ðRn
þÞ
þ kgnkW 2�1=p; p

lþ1
ðGÞ þ kg 0k

W
1�1=p; p

lþ1
ðGÞÞ:

3.4. Generalized solutions. We start with the homogeneous problem. Un-

fortunately, Lemma 1.1 does not yield any lifting function for such boundary

conditions—we will see how to bypass this di‰culty for very weak solutions in

the last section. Here, we intend to directly show the existence of generalized

solutions to the homogeneous Stokes system in the half-space. The method

is directly adapted from the one introduced for the classic Stokes system in

[9].

Proposition 3.8. Let l A Z and assume (7). For any gn A W
1�1=p;p
l ðGÞ

and g 0 A W
�1=p;p
l ðGÞ, satisfying the compatibility condition

Ej A N D
½1þl�n=p 0� �AD

½1þl�n=p 0 �;ð
G

gnqnjn dx
0 � hg 0; j 0i

W
�1=p; p

l
ðGÞ�W

1�1=p 0 ; p 0
�l

ðGÞ ¼ 0; ð25Þ
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the Stokes problem

�nDu� m‘ div uþ ‘p ¼ 0 in Rn
þ; ð26aÞ

lpþ div u ¼ 0 in Rn
þ; ð26bÞ

un ¼ gn on G ; ð26cÞ

qnu
0 ¼ g 0 on G ; ð26dÞ

has a solution ðu; pÞ A W 1;p
l ðRn

þÞ �W
0;p
l ðRn

þÞ, unique up to an element of
þSl

½1�l�n=p�, with the estimate

inf
ðw;qÞ A þS l

½1�l�n=p�

ðkuþ wk
W

1; p
l

ðR n
þÞ
þ kpþ qk

W
0; p
l

ðR n
þÞ
Þ

aCðkgnkW 1�1=p; p

l
ðGÞ þ kg 0k

W
�1=p; p

l
ðGÞÞ:

Proof. First, let us notice a particular case, which is naturally included in

this result, but which requires a particular treatment. Indeed, if lm ¼ �1, we

simply get a Dirichlet problem for the Laplacian on the normal component of

the velocity field un and a Neumann problem on its tangential components

u 0. Then, applying the results of [5] and [6]—which are recalled in [7]—,

respectively for un and u 0, we find the orthogonality condition and the kernel of

our statement. Moreover, we directly find the pressure from the velocity field

thanks to the second equation. In the sequel of the proof, we will assume that

lm0�1.

(i) Reduction of system (26).

As for the question of the uniqueness in the whole space—see the start of

Subsection 2.1—, we deduce from (26a) and (26b) that we have both Dp ¼ 0

and D2u ¼ 0 in Rn
þ.

Then, we have D2un ¼ 0 in Rn
þ and un ¼ gn on G .

Now, let us extract another boundary condition on Dun from this

system. From (26b), we get

lqnpþ qn div u ¼ 0 in Rn
þ; ð27Þ

that we substitute in the nth component of (26a), to obtain

lnDun þ ð1þ lmÞqn div u ¼ 0 in Rn
þ:

We can deduce that

lnDun þ ð1þ lmÞðdiv 0 g 0 þ q2nunÞ ¼ 0 on G ;

lnDun þ ð1þ lmÞðdiv 0 g 0 þ Dun � D 0unÞ ¼ 0 on G ;

ð1þ lðmþ nÞÞDun þ ð1þ lmÞðdiv 0 g 0 � D 0gnÞ ¼ 0 on G ;
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hence,

Dun ¼
1þ lm

1þ lðmþ nÞ ðD
0gn � div 0 g 0Þ on G:

About the pressure, looking again at the nth component of (26a), with (27), we

have

qnp ¼ nDun � lmqnp in Rn
þ;

hence (since lm0�1),

qnp ¼ n

1þ lm
Dun on G :

Finally, from (26b), we also get

l‘ 0pþ ‘ 0 div u ¼ 0 in Rn
þ;

that we substitute in the tangential components of (26a), to obtain

Du 0 ¼ 1þ lm

n
‘ 0p in Rn

þ:

So, thanks to the two constants k1 ¼ 1þlm

n
and k2 ¼ 1þlðmþnÞ

n
introduced above,

this yields the following three problems

D2un ¼ 0 in Rn
þ; un ¼ gn and Dun ¼

k1

k2
ðD 0gn � div 0 g 0Þ on G; ð28Þ

Dp ¼ 0 in Rn
þ; qnp ¼ 1

k1
Dun on G ; ð29Þ

Du 0 ¼ k1‘
0p in Rn

þ; qnu
0 ¼ g 0 on G: ð30Þ

(ii) Solution of these three problems.

Step 1: We deal with problem (28). Denoting zn ¼ Dun, we can split it

in the following two Dirichlet problems:

Dzn ¼ 0 in Rn
þ; zn ¼

k1

k2
ðD 0gn � div 0 g 0Þ on G ; ð31Þ

Dun ¼ zn in Rn
þ; un ¼ gn on G : ð32Þ

Concerning (31), we notice that D 0gn � div 0 g 0 A W
�1�1=p;p
l ðGÞ, then we can

apply the result on the singular boundary conditions for the homogeneous

Dirichlet problem (see [8, Theorem 3.5]), provided the following orthogonality

condition is satisfied:

Ec A AD
½3þl�n=p 0�; hD 0gn � div 0 g 0; qnciW �1�1=p; p

l
ðGÞ�W

2�1=p 0 ; p 0
�l

ðGÞ ¼ 0: ð33Þ
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By means of Green’s formulae, we can rewrite it

Ec A AD
½3þl�n=p 0 �;

ð
G

gnqnD
0c dx 0 þ hg 0; qn‘

0ci
W

�1=p; p

l
ðGÞ�W

1�1=p 0 ; p 0
�l

ðGÞ ¼ 0:

Now, to see that this follows from (25), it su‰ces to remark that

Ec A AD
½3þl�n=p 0�; D 0c A AD

½1þl�n=p 0� and qn‘
0c A N D

½1þl�n=p 0 �:

So, we get a solution zn A W
�1;p
l ðRn

þÞ=AD
½�1�l�n=p� to (31).

For (32), the compatibility condition is

Ec A AD
½1þl�n=p 0 �; hzn;ci

W
�1; p
l

ðR n
þÞ�W

� 1; p 0
�l

ðR n
þÞ

¼
ð
G

gnqnc dx 0: ð34Þ

(see [7, Theorem 2.5]). First, (25) implies
Ð
G
gnqnc dx 0 ¼ 0 for any

c A AD
½1þl�n=p 0�. It remains to show that the left-hand term of (34) is also

zero. For this, we need to express AD
½1þl�n=p 0 � by means of the kernel, denoted

by Bk, of the biharmonic operator—that is the space of polynomials z of

degree less than or equal to k, such that D2z ¼ 0 in Rn
þ and z ¼ qnz ¼ 0 on

G. We showed in [7, Lemma 4.4] that

Ek A Z; Bkþ2 ¼ PDA
D
k lPNN

D
k ; ð35Þ

where PD is defined as follows.

Er A AD
k ; PDrðx 0; xnÞ ¼

1

2

ð xn
0

trðx 0; tÞdt;

satisfies DPDr ¼ r in Rn
þ and PDr ¼ qnPDr ¼ 0 on G .

From (35), we get for any c A AD
½1þl�n=p 0�, PDc ¼ z A B½3þl�n=p 0 � and thus

we have c ¼ Dz. So, by means of a Green’s formula (see [8, Lemma 3.7] for

the justification), we can write

Ec A AD
½1þl�n=p 0�; bz A B½3þl�n=p 0 � such that

hzn;ci
W

�1; p
l

ðR n
þÞ�W

� 1; p 0
�l

ðR n
þÞ

¼ hzn;Dzi ¼ hDzn; zi ¼ 0:

So (34) is proved and we get a solution un A W
1;p
l ðRn

þÞ=AD
½1�l�n=p� to (32).

Step 2: Next we study problem (29). According to [8, Lemma 3.7], we

can check that Dun A W
�1�1=p;p
l ðGÞ and the compatibility condition is

Ec A ND
½2þl�n=p 0�; hDun;ciW �1�1=p; p

l
ðGÞ�W

2�1=p 0 ; p 0
�l

ðGÞ ¼ 0 ð36Þ

(see [8, Theorem 3.3]). For any c A ND
½2þl�n=p 0 �, if we put z ¼

Ð xn
0 cðx 0; tÞdt,

this yields c ¼ qnz with z A AD
½3þl�n=p 0�. Since Dun ¼ D 0gn � div 0 g 0 on G , we

see that (36) is exactly written as the condition (33), which is satisfied.
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So, we get a solution p A W
0;p
l ðRn

þÞ=ND
½�l�n=p� to (29).

Step 3: Finally, to treat problem (30), we can split it in

Dv 0 ¼ k1‘
0p in Rn

þ; qnv
0 ¼ 0 on G; ð37Þ

Dz 0 ¼ 0 in Rn
þ; qnz

0 ¼ g 0 on G ; ð38Þ

and in order to solve (37), we introduce the auxiliary problem

Dw ¼ k1p in Rn
þ; qnw ¼ 0 on G: ð39Þ

For (39), the compatibility condition is

Ec A ND
½l�n=p 0 �;

ð
R n

þ

pc dx ¼ 0 ð40Þ

(see [6, Theorem 3.1]). According to (35), we also have for any c A ND
½l�n=p 0 �,

PNc ¼ z A B½2þl�n=p 0� and thus c ¼ Dz. So, we have

Ec A ND
½l�n=p 0 �; bz A B½2þl�n=p 0� such thatð

R n
þ

pc dx ¼
ð
Rn

þ

pDz dx ¼ hDp; zi ¼ 0:

Thus (40) is proved and we get a solution w A W
2;p
l ðRn

þÞ=ND
½2�l�n=p� to (39).

Consequently, v 0 ¼ ‘ 0w A W 1;p
l ðRn

þÞ=N D
½1�l�n=p� is a solution to problem (37).

Finally, for problem (38), the compatibility condition is

Ej 0 A N D
½1þl�n=p 0 �; hg 0; j 0i

W
�1=p; p

l
ðGÞ�W

1�1=p 0 ; p 0
�l

ðGÞ ¼ 0 ð41Þ

(see [8, Theorem 3.4]). It is clear that (41) is included in (25) and then we get

a solution z 0 A W 1;p
l ðRn

þÞ=N D
½1�l�n=p� to (38).

So u 0 ¼ v 0 þ z 0 A W 1;p
l ðRn

þÞ=N D
½1�l�n=p� is a solution to (30).

(iii) Conversely, solving (28), (29) and (30) yields a solution ðu; pÞ to the

original problem (26). So, we must show that ðu; pÞ satisfies the nth compo-

nent of (26a) and (26b). The idea is based on the nonuniqueness of the

solutions un, p and u 0 constructed in (ii), to select a ‘‘good one’’.

The first equation of (30) is written

�nDu 0 þ ð1þ lmÞ‘ 0p ¼ 0 in Rn
þ: ð42Þ

Thanks to the first equations of (28) and (29), we get

Dð�nDun þ ð1þ lmÞqnpÞ ¼ 0 in Rn
þ:
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In addition, the boundary condition of (29) can be written

�nDun þ ð1þ lmÞqnp ¼ 0 on G:

Since �nDun þ ð1þ lmÞqnp A W
�1;p
l ðRn

þÞ, according to [8, Theorem 3.5], we

get �nDun þ ð1þ lmÞqnp A AD
½�1�l�n=p�. As p is defined up to an element of

ND
½�l�n=p�, qnp is defined up to an element of AD

½�1�l�n=p� and thus we can

choose p such that

�nDun þ ð1þ lmÞqnp ¼ 0 in Rn
þ: ð43Þ

The boundary condition of (30) implies qn div
0 u 0 ¼ div 0 g 0 on G . Besides, the

boundary conditions of (28) yield

k2

k1
Dun � D 0gn ¼ �div 0 g 0 on G ;

q2nun þ
l

k1
Dun ¼ �div 0 g 0 on G ;

hence, with the boundary condition of (29),

q2nun þ lqnp ¼ �div 0 g 0 on G :

We can deduce

qn div u ¼ qn div
0 u 0 þ q2nun on G;

¼ div 0 g 0 � div 0 g 0 � lqnp on G ;

that is

qnðlpþ div uÞ ¼ 0 on G:

Moreover, from (42) and (43), we obtain divð�nDuÞ ¼ 0 in Rn
þ, hence

Dðlpþ div uÞ ¼ 0 in Rn
þ:

Since lpþ div u A W
0;p
l ðRn

þÞ, by [8, Theorem 3.3], we get lpþ div u A ND
½�l�n=p�.

As u 0 is defined up to an element of N D
½1�l�n=p�, div 0 u 0 is defined up to an

element of ND
½�l�n=p� and thus we can choose u 0 such that lpþ div u ¼ 0 in

Rn
þ, that is the equation (26b). Finally, substituting this last relation in (42)

and (43), we find the first equation (26a) of this system. r

So, by equivalence, we get the version for the linear elasticity system:

Proposition 3.9. Let l A Z and assume (7). For any gn A W
1�1=p;p
l ðGÞ

and g 0 A W
�1=p;p
l ðGÞ, satisfying the compatibility condition (25), the linear elasti-
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city system (18), with F ¼ 0, has a solution u A W 1;p
l ðRn

þÞ, unique up to an

element of þL½1�l�n=p�, with the estimate

inf
w A þL½1�l�n=p�

kuþ wk
W

1; p
l

ðR n
þÞ
aCðkgnkW 1�1=p; p

l
ðGÞ þ kg 0k

W
�1=p; p
l

ðGÞÞ:

Now our task is to combine this result with Theorem 3.4 in order to get

generalized solutions of the non-homogeneous linear elasticity system.

Theorem 3.10. Let l A Z and assume that

n=p 0 B f1; . . . ; lþ 1g and n=p B f1; . . . ;�lg: ð44Þ

For any F A W 0;p
lþ1ðR

n
þÞ and g ¼ ðg 0; gnÞ A W

�1=p;p
l ðGÞ �W

1�1=p;p
l ðGÞ, satisfying

the compatibility condition (22), problem (18) admits a solution u A W 1;p
l ðRn

þÞ,
unique up to an element of þL½1�l�n=p�, with the estimate

inf
w A þL½1�l�n=p�

kuþ wk
W

1; p
l

ðR n
þÞ
aCðkFk

W
0; p
lþ1

ðR n
þÞ
þ kgnkW 1�1=p; p

l
ðGÞ þ kg 0k

W
�1=p; p
l

ðGÞÞ:

Proof. If n
p 0 > lþ 1, the compatibility condition is trivial and then,

according to Proposition 3.9, there exists v A W 1;p
l ðRn

þÞ satisfying

Lv ¼ 0 in Rn
þ; ðqnv 0; vnÞ ¼ g on G :

In addition, by Theorem 3.4, there exists w A W
2;p
lþ1ðR

n
þÞ satisfying

Lv ¼ F in Rn
þ; ðqnv 0; vnÞ ¼ 0 on G :

The function u ¼ vþ w A W 1;p
l ðRn

þÞ gives the desired solution.

If n
p 0 < lþ 1, we cannot directly construct a solution as above because

the compatibility conditions are now non-trivial. Let N be the dimension of

the subspace þL½1þl�n=p 0� of W 2;p 0

�lþ1ðR
n
þÞ, which is imbedded in W 0;p 0

�l�1ðR
n
þÞ

and fe1; . . . ; eNg a basis of þL½1þl�n=p 0�. According to Hahn-Banach Theorem,

there exists a family fe�1 ; . . . ; e�Ng of elements of W 0;p
lþ1ðR

n
þÞ, which extends

the dual basis of the dual space ðþL½1þl�n=p 0 �Þ 0. First, let us rewrite more

compactly the compatibility condition (21)—which is equivalent to (22)—as:

Ew A þL½1þl�n=p 0 �;

ð
Rn

þ

F � w dx ¼ g; nw 0;�nqnwn � mþ 1

l

� �
div w

� �� �
G

:

We denote the corresponding trace mapping by

t : W 2;p 0

�lþ1ðR
n
þÞ ! W

2�1=p 0;p 0

�lþ1 ðGÞ �W
1�1=p 0;p 0

�lþ1 ðGÞ

w 7! nw 0;�nqnwn � mþ 1

l

� �
div w

� �
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and ei ¼ tðeiÞ. With a suitable numbering, the subfamily fe1; . . . ; edg form

a basis of the subspace tðþL½1þl�n=p 0 �Þ of W
2�1=p 0;p 0

�lþ1 ðGÞ �W
1�1=p 0;p 0

�lþ1 ðGÞ ,!
W

�1=p 0;p 0

�l�1 ðGÞ �W
�1�1=p 0;p 0

�l�1 ðGÞ, and ei ¼ 0 for i A fd þ 1; . . . ;Ng. Here again,

according to Hahn-Banach Theorem, there exists a family fe�1 ; . . . ; e�dg of ele-

ments of W
1�1=p;p
lþ1 ðGÞ �W

2�1=p;p
lþ1 ðGÞ which extends the dual basis of fe1; . . . ; edg.

Now, let us consider the functions defined by

F ¼
XN
i¼1

e�i hF ; eii and G ¼
Xd
i¼1

e�i hg; eii:

They satisfy

hF; eki ¼ hF ; eki ¼ hg; eki for k A f1; . . . ;Ng;

hF; eki ¼ hG ; eki ¼ hg; eki for k A f1; . . . ; dg;

hF; eki ¼ hG ; eki ¼ 0 for k A fd þ 1; . . . ;Ng:

By Theorem 3.4, there exists v A W 2;p
lþ1ðR

n
þÞ satisfying

Lv ¼ F � F in Rn
þ; ðqnv 0; vnÞ ¼ 0 on G :

By Proposition 3.9, there exists w A W 1;p
l ðRn

þÞ satisfying

Lw ¼ 0 in Rn
þ; ðqnw 0;wnÞ ¼ g� G on G :

By Corollary 3.6, there exists z A W 2;p
lþ1ðR

n
þÞ satisfying

Lz ¼ F in Rn
þ; ðqnz 0; znÞ ¼ G on G :

Finally, the function u ¼ vþ wþ z A W 1;p
l ðRn

þÞ gives the desired solution. r

Hence we obtain the corresponding result for the generalized Stokes

system:

Theorem 3.11. Let l A Z and assume (44). For any f A W 0;p
lþ1ðR

n
þÞ, h A

W
1;p
lþ1ðR

n
þÞ, and g ¼ ðg 0; gnÞ A W

�1=p;p
l ðGÞ �W

1�1=p;p
l ðGÞ, satisfying the compat-

ibility condition (20), problem (1) has a solution ðu; pÞ A W
1;p
l ðRn

þÞ �W
0;p
l ðRn

þÞ,
unique up to an element of þSl

½1�l�n=p�, with the estimate

inf
ðw;qÞ A þS l

½1�l�n=p�

ðkuþ wk
W

1; p
l

ðR n
þÞ
þ kpþ qk

W
0; p
l

ðR n
þÞ
Þ

aCðk f k
W

0; p
lþ1

ðR n
þÞ
þ khk

W
1; p
lþ1

ðRn
þÞ
þ kgnkW 1�1=p; p

l
ðGÞ þ kg 0k

W
�1=p; p

l
ðGÞÞ:

Remark 3.12. As we mentioned in the introduction, Theorem 3.11 was

established in the case l ¼ 0 in [9]. Now, if we consider fixed data f , h, g 0,
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gn and a sequence of parameters li A ½0; 1� which tends to zero, such that the

family of generalized problems admits solutions ðui; piÞ and the classic one a

solution ðu; pÞ; then ðui; piÞ ! ðu; pÞ as li ! 0.

In fact, the essential part of the proof was given in Subsection 2.3 for the

whole space. For the half-space, we start to lift the boundary data g 0 and gn
in these problems. Next, we extend the lifted problems to the whole space,

and to finish, we consider the solutions as defined in Remark 3.5.

4. Very weak solutions

We now intend to explore the case of very singular boundary conditions in

the homogeneous problem. We again adopt the point of view of the linear

elasticity system to retrieve as a consequence the generalized Stokes system.

First, we need to give a sense to traces and next to establish a Green’s formula.

For any l A Z, let us introduce the spaces

UlðRn
þÞ ¼ fv A W 0;p

l�1ðR
n
þÞ;Lv A W 0;p

lþ1ðR
n
þÞg;

Ul;1ðRn
þÞ ¼ fv A W 0;p

l�1ðR
n
þÞ;Lv A W 0;p

lþ1;1ðR
n
þÞg:

They are reflexive Banach spaces equipped with their natural norms:

kvkUlðR n
þÞ ¼ kvk

W
0; p
l�1

ðRn
þÞ
þ kLvk

W
0; p
lþ1

ðR n
þÞ
;

kvkUl; 1ðR n
þÞ ¼ kvk

W
0; p
l�1

ðRn
þÞ
þ kLvk

W
0; p
lþ1; 1

ðR n
þÞ
:

Lemma 4.1. Let l A Z and assume that

n=p 0 B f1; . . . ; l� 1g and n=p B f1; . . . ;�lþ 1g: ð45Þ

The space DðRn
þÞ is dense in UlðRn

þÞ and in Ul;1ðRn
þÞ.

Proof. We give the proof for Ul;1ðRn
þÞ, but it is similar for the space

UlðRn
þÞ. For every continuous linear form z A ðUl;1ðRn

þÞÞ
0, there exists a

unique pair ð f ; gÞ A W
0;p 0

�lþ1ðR
n
þÞ �W

0;p 0

�l�1;�1ðR
n
þÞ, such that

Ev A Ul;1ðRn
þÞ; hz; vi ¼

ð
R n

þ

f � v dxþ
ð
R n

þ

g � Lv dx: ð46Þ

According to the Hahn-Banach theorem, it su‰ces to show that any z which

vanishes on DðRn
þÞ is actually zero on Ul;1ðRn

þÞ. Let us suppose that z ¼ 0 on

DðRn
þÞ, thus on DðRn

þÞ. Then we can deduce from (46) that

f þ Lg ¼ 0 in Rn
þ;
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hence Lg A W 0;p 0

�lþ1ðR
n
þÞ. Let ~ff A W 0;p 0

�lþ1ðR
nÞ and ~gg A W 0;p 0

�l�1;�1ðR
nÞ be respec-

tively the extensions by 0 of f and g to Rn. Thanks to (46), it is clear that
~ff þ L~gg ¼ 0 in Rn, and thus L~gg A W 0;p 0

�lþ1ðR
nÞ. Hence, according to Theorem

2.6—for equation (15)—, we can deduce that ~gg A W
2;p 0

�lþ1ðR
nÞ, under hypothesis

(45). Since ~gg is an extension by 0, it follows that we have g A W
� 2;p 0

�lþ1ðR
n
þÞ.

Then, by density of DðRn
þÞ in W

� 2;p 0

�lþ1ðR
n
þÞ, there exists a sequence ðjkÞk AN H

DðRn
þÞ such that jk ! g in W

� 2;p 0

�lþ1ðR
n
þÞ. Thus we have, for any v A Ul;1ðRn

þÞ,

hz; vi ¼ �
ð
Rn

þ

Lg � v dxþ
ð
R n

þ

g � Lv dx

¼ lim
k!y

�
ð
R n

þ

Ljk � v dxþ
ð
Rn

þ

jk � Lv dx
( )

¼ 0;

i.e., z is identically zero. r

Thanks to this density lemma, we can prove the following result of traces:

Lemma 4.2. Let l A Z and assume (45).

(i) If n=p 0 B fl; lþ 1g, then the mapping

ðgen ; g
0
1Þ : DðRn

þÞ ! DðRn�1Þ

v 7! ðvnjG ; qnv 0jGÞ;

can be extended to a linear continuous mapping

ðgen ; g
0
1Þ : UlðRn

þÞ ! W
�1=p;p
l�1 ðGÞ �W

�1�1=p;p
l�1 ðGÞ:

In addition, we have the Green’s formula

Ev A UlðRn
þÞ; Ej A W 2;p 0

�lþ1ðR
n
þÞ such that ðjn; qnj 0Þ ¼ 0 on G ;

hLv; ji
W

0; p
lþ1

ðRn
þÞ�W

0; p 0
�l�1

ðRn
þÞ
� hv;Lji

W
0; p
l�1

ðR n
þÞ�W

0; p 0
�lþ1

ðRn
þÞ

¼ �nhvn; qnjniW �1=p; p

l�1
ðGÞ�W

1�1=p 0 ; p 0
�lþ1

ðGÞ þ nhqnv
0; j 0i

W
�1�1=p; p

l�1
ðGÞ�W

2�1=p 0 ; p 0
�lþ1

ðGÞ

� mþ 1

l

� �
hvn; div ji

W
�1=p; p

l�1
ðGÞ�W

1�1=p 0 ; p 0
�lþ1

ðGÞ: ð47Þ

(ii) If n=p 0 A fl; lþ 1g, the same result holds with Ul;1ðRn
þÞ instead of

UlðRn
þÞ, where hLv; ji

W
0; p
lþ1; 1

ðRn
þÞ�W

0; p 0
�l�1;�1

ðR n
þÞ

replaces the first duality pairing in

the Green’s formula.
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Proof. (i) Case n=p 0 B fl; lþ 1g. So, we have W
2;p 0

�lþ1ðR
n
þÞ ,!

W
0;p 0

�l�1ðR
n
þÞ, hence the following Green’s formula:

Ev A DðRn
þÞ; Ej A W

2;p 0

�lþ1ðR
n
þÞ such that ðjn; qnj 0Þ ¼ 0 on G ;ð

R n
þ

j � Lv dx�
ð
Rn

þ

v � Lj dx

¼ �n

ð
G

vnqnjn dx
0 þ n

ð
G

qnv
0 � j 0 dx 0 � mþ 1

l

� �ð
G

vn div j dx 0: ð48Þ

In particular, if j A W 2;p 0

�lþ1ðR
n
þÞ is such that j ¼ 0 and qnj

0 ¼ 0 on G , we haveð
G

vnqnjn dx
0

				
				a l

1þ lðmþ nÞ kvkUlðR n
þÞkjkW 2; p 0

�lþ1
ðRn

þÞ
:

Let g A W
1�1=p 0;p 0

�lþ1 ðGÞ. By Lemma 1.1, there exists a lifting function

j A W 2;p 0

�lþ1ðR
n
þÞ such that j ¼ 0, qnj

0 ¼ 0 and qnjn ¼ g on G , satisfying

moreover
kjk

W
2; p 0
�lþ1

ðRn
þÞ
aCkgk

W
1�1=p 0 ; p 0
�lþ1

ðGÞ;

where C is a constant independent of j and g. Then we can deduce thatð
G

vng dx 0
				

				aCkvkUlðR n
þÞkgkW 1�1=p 0 ; p 0

�lþ1
ðGÞ;

and thus

kvnkW �1=p; p

l�1
ðGÞ aCkvkUlðR n

þÞ:

Hence we can deduce that gen : v 7! vnjG defined on DðRn
þÞ is continuous for the

norm of UlðRn
þÞ. Since DðRn

þÞ is dense in UlðRn
þÞ, the mapping gen can be

extended by continuity to gen A LðUlðRn
þÞ;W

�1=p;p
l�1 ðGÞÞ.

To define the trace g 01 on UlðRn
þÞ, we consider now j A W 2;p 0

�lþ1ðR
n
þÞ such

that jn ¼ 0, qnj
0 ¼ 0 and nqnjn þ mþ 1

l

� �
div j ¼ 0 on G . Then, we haveð

G

qnv
0 � j 0 dx 0

				
				a 1

n
kvkUlðRn

þÞkjkW 2; p 0
�lþ1

ðR n
þÞ
:

Let g 0 A W
2�1=p 0;p 0

�lþ1 ðGÞ. According to Lemma 1.1, there exists j A W 2;p 0

�lþ1ðR
n
þÞ

such that j 0 ¼ g 0, jn ¼ 0, qnj
0 ¼ 0 and qnjn ¼ � k1

k2
div 0 g 0 on G—see Prop-

osition 3.2 for constants k1 and k2—, satisfying moreover

kjk
W 2; p 0

�lþ1
ðRn

þÞ
aCkgk

W
2�1=p 0 ; p 0
�lþ1

ðGÞ;

where C is a constant independent of j and g 0. Then we can deduce thatð
G

qnv
0 � g 0 dx 0

				
				aCkvkUlðRn

þÞkg
0k

W
2�1=p 0 ; p 0
�lþ1

ðGÞ;
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and thus

kv 0k
W

1�1=p; p

l�1
ðGÞ aCkvkUlðR n

þÞ:

Hence we can deduce that g 01 : v 7! qnv
0jG defined on DðRn

þÞ is continuous for

the norm of UlðRn
þÞ. Since DðRn

þÞ is dense in UlðRn
þÞ, the mapping g 01 can be

extended by continuity to g 01 A LðUlðRn
þÞ;W

�1�1=p;p
l�1 ðGÞÞ.

To finish, we also can deduce the formula (47) from (48) by density of

DðRn
þÞ in UlðRn

þÞ.
(ii) Case n=p 0 A fl; lþ 1g. The imbedding W

2;p 0

�lþ1ðR
n
þÞ ,! W

0;p 0

�l�1ðR
n
þÞ

fails, but we have W
2;p 0

�lþ1ðR
n
þÞ ,! W

0;p 0

�l�1;�1ðR
n
þÞ. To avoid these two supple-

mentary critical values with respect to hypothesis (45), we define the space

Ul;1ðRn
þÞ with a logarithmic factor in the weight to replace the first term in (48)

by the suitable duality pairing hLv; ji
W

0; p
lþ1; 1

ðR n
þÞ�W

0; p 0
�l�1;�1

ðR n
þÞ
. Then, the proof is

the same as (i). r

Through this lemma, our goal was to establish a suitable Green’s formula

in order to get a variational formulation of the homogeneous linear elasticity

system with very singular boundary conditions, that is more precisely

Lu ¼ 0 in Rn
þ;

un ¼ gn and qnu
0 ¼ g 0 on G;

ð49Þ

with g ¼ ðg 0; gnÞ A W
�1�1=p;p
l�1 ðGÞ �W

�1=p;p
l�1 ðGÞ:

Theorem 4.3. Let l A Z and assume (45). For any g 0 A W
�1�1=p;p
l�1 ðGÞ and

gn A W
�1=p;p
l�1 ðGÞ, satisfying the compatibility condition (25), the linear elasticity

system (49) has a solution u A W 0;p
l�1ðR

n
þÞ, unique up to an element of þL½1�l�n=p�,

with the estimate

inf
w A þL½1�l�n=p�

kuþ wk
W

0; p
l�1

ðR n
þÞ
aCðkgnkW �1=p; p

l�1
ðGÞ þ kg 0k

W
�1�1=p; p

l�1
ðGÞÞ:

Proof. (i) We can observe that problem (49) is equivalent to the fol-

lowing variational formulation: find u A UlðRn
þÞ—Ul;1ðRn

þÞ if n
p 0 A fl; lþ 1g—

satisfying

Ev A W 2;p 0

�lþ1ðR
n
þÞ such that ðvn; qnv 0Þ ¼ 0 on G ;

hu;Lvi
W

0; p
l�1

ðRn
þÞ�W

0; p 0
�lþ1

ðRn
þÞ

¼ �hg 0; nv 0i
W

�1�1=p; p

l�1
ðGÞ�W

2�1=p 0 ; p 0
�lþ1

ðGÞ

þ gn; nqnvn þ mþ 1

l

� �
div v

� �
W

�1=p; p

l�1
ðGÞ�W

1�1=p 0 ; p 0
�lþ1

ðGÞ
: ð50Þ
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Indeed the direct implication is straightforward. Conversely, if u satisfies (50),

then we have for any j A DðRn
þÞ,

hLu; jiD 0ðR n
þÞ�DðR n

þÞ ¼ hu;LjiD 0ðR n
þÞ�DðR n

þÞ ¼ 0;

thus Lu ¼ 0 in Rn
þ. Moreover, by the Green’s formula (47), we have

Ev A W 2;p 0

�lþ1ðR
n
þÞ such that ðvn; qnv 0Þ ¼ 0 on G ;

g; �nv 0; nqnvn þ mþ 1

l

� �
div v

� �� �
G

¼ ðqnu 0; unÞ; �nv 0; nqnvn þ mþ 1

l

� �
div v

� �� �
G

:

By Lemma 1.1, for any z ¼ ðz 0; znÞ A W
2�1=p 0;p 0

�lþ1 ðGÞ �W
1�1=p 0;p 0

�lþ1 ðGÞ, there exists

v A W
2;p 0

�lþ1ðR
n
þÞ such that on the one hand ðqnv 0; vnÞ ¼ 0 on G and on the other

hand
�
�nv 0; nqnvn þ

�
mþ 1

l

�
div v

�
¼ z on G . Consequently,

hðqnu 0; unÞ � g; zi
W

�1�1=p; p

l�1
ðGÞ�W

�1=p; p

l�1
ðGÞ;W 2�1=p 0 ; p 0

�lþ1
ðGÞ�W

1�1=p 0 ; p 0
�lþ1

ðGÞ ¼ 0;

that is qnu
0 ¼ g 0 and un ¼ gn on G .

(ii) Now, let us solve problem (50). According to Theorem 3.4, we

know that under hypothesis (45), for all F A W 0;p 0

�lþ1ðR
n
þÞ ? þL½1�l�n=p�, there

exists a unique v A W 2;p 0

�lþ1ðR
n
þÞ=þL½1þl�n=p 0 �, solution to

Lv ¼ F in Rn
þ;

vn ¼ 0 and qnv
0 ¼ 0 on G;

with the estimate

kvk
W

2; p 0
�lþ1

ðR n
þÞ=þL½1þl�n=p 0 �

aCkFk
W

0; p 0
�lþ1

ðR n
þÞ
:

Now, consider the linear form

X : F 7! g; �nv 0; nqnvn þ mþ 1

l

� �
div v

� �� �
G

;

defined on W 0;p 0

�lþ1ðR
n
þÞ ? þL½1�l�n=p�. According to (25), that we also can

write

Ew A þL½1þl�n=p 0�; g; �nw 0; nqnwn þ mþ 1

l

� �
div w

� �� �
G

¼ 0
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—see (21)—, we have

jXF jaCkvk
W 2; p 0

�lþ1
ðRn

þÞ=þL½1þl�n=p 0 �
kgk

W
�1�1=p; p

l�1
ðGÞ�W

�1=p; p

l�1
ðGÞ

aCkFk
W 0; p 0

�lþ1
ðRn

þÞ
kgk

W
�1�1=p; p

l�1
ðGÞ�W

�1=p; p

l�1
ðGÞ:

Hence X is continuous on W 0;p 0

�lþ1ðR
n
þÞ ? þL½1�l�n=p�, and thanks to the Riesz

representation theorem, there exists a unique u in the dual space, that is

u A W 0;p
l�1ðR

n
þÞ=þL½1�l�n=p�, such that

EF A W
0;p 0

�lþ1ðR
n
þÞ ? þL½1�l�n=p�; XF ¼ hu;Fi

W
0; p
l�1

ðRn
þÞ�W

0; p 0
�lþ1

ðRn
þÞ
;

i.e., u satisfies (50). r
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[ 9 ] C. Amrouche, S. Nečasová and Y. Raudin, From strong to very weak solutions to Stokes

system with Navier boundary conditions in the half-space, SIAM J. Math. Anal., 41 (2009),

1792–1815.

[10] H. Beirão da Veiga, A new approach to the L2-regularity theorems for linear stationary

nonhomogeneous Stokes systems, Portugaliae Mathematica, 54 (1997), 271–286.

[11] H. Beirão da Veiga, Regularity for Stokes and generalized Stokes systems under non-

homogeneous slip-type boundary conditions, Advances Di¤. Eq., 9 (2004), 1079–1114.

[12] H. Beirão da Veiga, Regularity of solutions to a non homogeneous boundary value problem

for general Stokes systems in Rn
þ, Math. Ann., 331 (2005), 203–217.

[13] D. Einzel, P. Panzer and M. Liu, Boundary condition for fluid flow: Curved or rough

surfaces, Phys. Rev. Lett., 64 (1990), 2269–2272.

[14] R. Farwig, A note on the reflection principle for the biharmonic equation and the Stokes

system, Acta appl. Math., 25 (1994), 41–51.

[15] R. Farwig, G. P. Galdi and H. Sohr, A new class of weak solutions of the Navier-Stokes

equations with nonhomogeneous data, J. Math. Fluid Mech., 8 (2006), 423–444.

208 Yves Raudin



[16] R. Farwig, G. P. Galdi and H. Sohr, Very weak solutions and large uniqueness classes

of stationary Navier-Stokes equations in bounded domains of R2, J. Di¤erential Equations,

227 (2006), 564–580.

[17] G. P. Galdi, C. G. Simader and H. Sohr, A class of solutions to stationary Stokes and

Navier-Stokes equations with boundary data in W �1=q; q, Math. Ann., 331 (2005), 41–74.

[18] Y. Giga, Analyticity of the semigroup generated Lr by the Stokes operator in spaces,

Math. Z., 178 (1981), 297–329.

[19] B. Hanouzet, Espaces de Sobolev avec poids. Application au problème de Dirichlet dans un

demi-espace, Rend. Sem. Mat. Univ. Padova, 46 (1971), 227–272.
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