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ABSTRACT. We consider quasilinear elliptic equations with lower order term and
general measure data. We define renormalized solutions of Dirichlet problems and
show the existence of such solutions. We also give uniqueness in some special cases.

Introduction

In this paper, we consider Dirichlet problems for quasilinear elliptic
equations with measure data:

(E,) —div o/ (x,Vu) + B(x,u) =v

on a bounded domain G in the N-space R (N > 2), where ./ and # satisfy
weighted structure conditions with p > 1 as in [8, 9, 10] and v is a finite signed
Radon measure on G.

Existence and uniqueness of solutions with vanishing boundary values for
such equations (with structure conditions without weight) have been discussed
by many people; [1], [2], [7], [3], [4] and others. These works except [4] treat
the case where v is absolutely continuous with respect to the p-capacity and
give uniqueness results by considering “entropy solutions”. In [4], the case v is
general (i.e., the case v is not necessarily absolutely continuous with respect to
the p-capacity) is treated and so-called “renormalized” solutions are discussed.

The purpose of this paper is to extend most of the results in [4] in the
following three directions:

+ We consider equations with the lower order term %(x,u), while in [4]

only the case # =0 is discussed;

+ We consider a weight w, which is p-admissible in the sense of [6], in the

structure conditions for ./ and %;

+ We consider non-vanishing boundary conditions.
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There are five kinds of formulation for the definition of renormalized
solutions in [4], which are shown to be equivalent to each other. We adopt
one of these formulations with slight modification. With our definition, it
becomes clear that renormalized solutions are entropy solutions, so that the
uniqueness of entropy solution would immediately imply the uniqueness of
renormalized solution.

Because we consider a weight w, our discussions are forced to be based on
the weighted Sobolev spaces H'”(G; 1) and Hol’p (G; 1), where du = w dx, while
the theory in [4] is based on the ordinary Sobolev spaces W!?(G) and Wol’p (G).

Boundary conditions will be given by a function 0 € H"“?(G; ). We regard
that 0; and 60, determine the same boundary condition if 0; — 6, € Hol’” (G; ).

We shall prove the existence of a renormalized solution of (E,) with
boundary data 6 for a general finite signed measure v. The uniqueness can be
shown only in the case v is absolutely continuous with respect to the (p, u)-
capacity and in the linear case for general finite signed measure.

1. Preliminaries

Throughout this paper, let G be a bounded open set in RY (N >2) and
we consider a quasi-linear elliptic differential operator

Lu = —div o/ (x,Vu) + B(x,u)

on G. Here, o/:GxRY - R" and #:G xR — R satisfy the following
conditions for a fixed 1 < p < oo and a weight w which is p-admissible in the
sense of [6]:

(A.1) x— .o/(x,&) is measurable on G for every £ e RY and ¢ — .o/(x,¢&)
is continuous for a.e. x € G;

(A2) A(x,&)-&=mw(x)E|” for all ¢eR”Y and ae. xeG with a
constant o > 0;

(A3) |(x,&)| <oaw(x)[E]?™" for all ¢eRY and ae. xeG with a
constant oy > 0;

(A4) (A (x,&) —A(x,5)) - (&) — &) >0 whenever &,& e RN, &) # &,
for a.e. x € G;

(B.1) x> %(x,t) is measurable on G for every e R and ¢t — %(x,1) is
continuous for a.e. x € G;

(B2) |#(x,1)| <azw(x)(Jt)”" +1) for all teR and ae. xe G with a
constant oz > 0;

(B.3) t+ %(x,t) is nondecreasing on R for a.e. x e G.

For the nonnegative measure u : du(x) = w(x)dx, we consider the weighted
Sobolev spaces H'"7(G;u), Hy”(G; u) and HL?(G; ) (see [6] for details). For

loc
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the notion of (p,u)-capacity cap, , and the notion of (p, u)-quasicontinuity of
functions, we refer to [6, Chap. 2 and Chap. 4] (also see [12]). Note that every
element in H]LC”(G7 u) has a (p, u)-quasicontinuous represenltative ([6, Theorem
4.4]), and so we shall always assume that functions in H'(G;u) are (p,p)-
quasicontinuous.

We shall use the following cut-off functions 7} : R — R for k > 0:
Ty (¢) = max(min(¢, k), —k).

We denote by Y”(G;u) the set of measurable functions # on G such that
lu(x)] < oo for (p,u)-qe. xe G and Ty(u) € HIL"C”(G; u) for all £ >0. Since
VTi(u) =VTi(u) ae. on {|ul <k} whenever k' >k, Du=limg_, VTi(u)
is well defined a.e. and measurable in G for we Y?(G;u). Obviously,
HIL'C‘”(G; u) < YP(G;pu) and Du=Vu ae. for ueHIL’C”(G; w). YP(G;u) is not
a linear space, but if u, v, u+ v are all in Y?(G;y), then D(u+ v) = Du+ Dv
a.e.

Let Y?(G;u) = Y?(G;p) + HIL"CP(G;/J). For u=v+0¢eY?(G;u) with
ve Y?(G;u) and Qe HLP(G;p), we define Du= Dv+V0. Then Du is
defined a.e. independent of the expression u=v+ 0, since if v +0; =
vy + 0, with v;e Y?(G;u) and 0; € HIL’CP(G; ), then Dvy = D(va+ 0, —0,) =

Dv, + V(ez — 91) = (DUQ + V@z) —-Vo, ae.

Lemma 1.1.  If'v is a measurable function on G such that Ty (v) € Hol’p(G; n)
for all k>0 and

lim —J VT (v)|Pdu = 0,
« G

then |v| < oo (p,u)-g.e. and v is (p,u)-quasicontinuous in G.

Proor. Let E; ={xeG||v(x)| =k} for k>0. Then, since |Ti(v)|le
Hy"(G; ) and |T(v)| = k on Ey,

1
| P = cap, (B0 )

kr
(cf. [6, Corollary 4.13]; see also [12, p. 11]). Hence, by hypothesis,
cap, ,(Ex; G) — 0 (k— o0), so that cap, ,((),.oEx; G) =0. This means
that |v] < oo (p,u)-q.e. in G.
Since Ty (v) is (p,u)-quasicontinuous in G and Ty (v) =v on G\E, v is
(p, )-quasicontinuous in G.

Given a signed Radon measure v on G, a function ue Y?(G;u)N

L2 '(G;p) is called a solution of the equation

(E,) Lu = —div o/ (x,Vu) + B(x,u) = v
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in G if |Dul e L?_'(G; ) and

loc

JG&/(x,Du)-V(p dx—i—J Qz’(x,u)(pdx:JG(pdv (L.1)

G
for all p e C;(G). Note that o/ (x,Du) € L} (G;dx) by (A.3) and %(x,u) €
L} .(G;dx) by (B.2), so that the left hand side of (1.1) is well defined.

Recall ([8], etc.) that, for an open set U < G, u e HIL’CP(G;,u) is said to be
(o/,%)-harmonic in U if it is a continuous solution of Lu=0 in U. By [8§,
Theorem 1.1], if u is a solution of Lu = v in G and if its restriction to G\(spt|v|)
belongs to HIL‘C” (G\(spt|v]); ), then u is equal to an (.o/, #)-harmonic function
a.e. in G\(spt|v|). (Here, spt|v] means the support of |v|.)

A nonnegative measure 4 on G is said to be absolutely continuous with
respect to the (p,u)-capacity, if A(E) =0 for every Borel set E =« G whose
(p, n)-capacity is zero. We shall denote this fact by 1 «cap, ,. Note that if
Je(Hy?(Gyp)*, then 2« cap, , (cf. [12, Lemma 2.4]).

A nonnegative measure A on G can be decomposed as A = 4, + A;, where
Ja < cap, , and As = yp 2 with a Borel set E; = G such that cap, ,(E;) = 0 (see
[5, Lemma 2.1]). We shall call 4, the absolutely continuous part of A and A
the singular part of 4 (with respect to the (p,u)-capacity).

LemMma 1.2, Let v be a finite signed measure on G and let ue H"?(G; u) be
a solution of the equation Lu=v. If |v| € (HOI”’(G; w)”*, then (1.1) holds for all
pe Hol’p(G;,u). If |v| < cap, ,, then (1.1) holds for all ¢ € Hy?(G; ) N L™ (G).

Proor. If ¢, € C°(G) and ¢, — ¢ in H"?(G;p) then, by (A.3) and (B.2),

J o (x,Vu) - Vo, dx + J B(x,u)p, dx — J o (x,Vu) - Vo dx + J B(x,u)p dx.
G G G G

If |v| e (Hy?(G;u))*, then Joo,dv=y(p,) = v(p) = [spdv (cf. [12, Lemma
2.5]). Hence (1.1) holds.

In case [v] «cap,,, we take (peHol’p(G; W) NL*(G). Then we can
choose {¢,} to be uniformly bounded. We may also assume that ¢, — ¢
(p, n)-quasieverywhere. Thus by Lebesgue’s convergence theorem, [; ¢, dv —
Jgwdv, since 9, — ¢ |v]-a.e. in G. Thus, (1.1) holds for (oeH()l”’(G;ﬂ)ﬂ
L*(G).

2. The case ve (H(l)’p(G;,u))*

By modifying the proof of [12, Corollary 2.7], we obtain

THEOREM 2.1, Let 0 € H'P(G; ) and ve (Hy?(G; ). Then there exists
a unique ue H"?(G;u) such that Lu=v in G and u — HeHol’p(G;/;).
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ProOF. The uniqueness follows from (A.4) and (B.3). Note that if u
and u, are two solutions, then u; —u, € HOI”’(G; o).

In order to show the existence, let X = HO1 P(Gyu) and  consider
0:X — X* defined by

A (x,V(u+0))-Vodx+ J B(x,u+ 0)v dx.
G

(Qu.0) = |

G
Since

(Qu,v)| < J V(w4 0)7 Voldu + 063J (14 u+ 017 ")|oldp
G G

<] o+ 9)|pdﬂ>l/pl (I Vvlpdﬂ>l/p
cof (o))

(p'=p/(p—1)), we see that Q defines a bounded operator X — X*.
Next, let uj € X tend to u in X. As in the proof of [12, Corollary 2.7]
(also cf. [13, Lemma 3.3]), we see that

J o (x,V(u; + 0)) - Vv dx — J o (x,V(u+0))-Vodx
G G

and

J B(x,u; + O)v dx—>J B(x,u+ O)v dx
G G

as j— oo for any ve X. Thus, Q: X — X* is demicontinuous.
Finally, to show that Q is a coercive mapping, let v € X. Then, noting
that Z(x,v+ 0)v > B(x,0)v by (B.3), we have

o (x,V(v+0))-Vo dx+J B(x,v+ O)v dx
G

(01.0)= |

G
> J A (x,V(v+0))-V(v+ 0)dx
G
- J A,V (0 +0)) - V0 dx + J B(x, 0)v dx
G G

> ouj V(0 + 0)|dp
G

- j V(0 + )" V0l — j (141017 ol
G G
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chj |Vv|pd,u—C2J VO dy
G G

~af[ 0+ |0|P>du)l/p/ (. |v|f’du)l/p,

where ¢, ¢; and ¢3 are positive constants depending only on p, oy, o and o3;
we used Young’s and Holder’s inequalities to derive the last inequality. Using
this inequality and the Poincaré¢ inequality, we can see that (Qu,v)/||v|ly — oo
as ||v]|y — oo, namely, Q is coercive.

Hence, by a general result on nonlinear operators (see [12, Theorem 2.6]),
we conclude that there exists # € X such that Qu=v. Then, u=u+ 0 is the
required solution.

Tueorem 2.2. Let 01,0, € H'"?(G;u) and vi,vs € (HOI”’(G;,u))*. Let uj,
Jj = 1,2 be the solutions (in H"?(G;u)) of Lu = v; with u; — 0; € Hol'p(G;,u). If
max(0; — 6,,0) € HOI"p(G; 1) and vy < vy, then uy < uy (p, p)-quasieverywhere in
G.

Proor. Let v =max(u; —u»,0). Since u; —0; € Hol’P(G;ﬂ), j=1,2 and
max(6; — 60,,0) € HOI""(G; u), ve Hol'p(G;,u). Obviously, v > 0. Thus, noting
that u; € H'7(G; 1), we have

J o (x,Vu;) - Vv dx + J B(x,u;)v dx = v;(v), j=12
G G
and v;(v) < v (v). Hence
J (ot (x, Vi) — o/ (x, Vi) - Vo dx + J (B, 1) — Blx, ) dx < 0
G G

or

J{ }(lsz/(x, Vuy) — o/ (x,Vua)) - (Vuy — Vup)dx

+ J (B(x,u1) — B(x,u2)) (1) — up)dx < 0.
{u1>u2}

By (A.4) and (B.3), it follows that Vu; = Vu, a.e. in G, so that Vo =0 a.e. in
G. Since ve HOI"’(G; 1), this implies that v =0 a.e. in G, i.e., u; <u a.e. in
G. Then u; <up (p,u)-quasieverywhere in G by [6, Theorem 4.12].

ProposITION 2.1. Let v be a finite signed measure on G such that
\v|e(H01’p(G;y))* and 0e H"?(G;u). If ue H'"(G;p) is the solution of
Lu=v in G such that M—HEHOI’p(G;ﬂ), then for 0 <a<b< w
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o]

J VulPdu+ (b - a) J \B(x, 1) — B(x, 0)|dx
D J{a<|u—0|<b}

{|lu—0]>b}

P
< <@> ﬂj VO du
o] P J{a<|u-0|<b}

+(b—a){J )| +J |@(x,a)|dx}.
{lu—0|=a} {lu—0|=a}

ProoF. Given 0 <a < b < oo, let I(t) = Tp_o(t — T,(¢)). Then, [(u—0)
€ Hy?(Gyp). Since ue H'7(G;u), (1.1) holds with ¢ = I(u— 6) by Lemma
1.2. Thus we have

of (x,Vu) - V(u— 0)dx + J B(x,u)l(u — 0)dx

J{a<|u—6)|<b} {lu—0>a}

:J H(u— 0)dv.
{lu—0>a}

Since (#(x,u) — B(x,0))l(u—0) =0 and |/| < b —a, it follows that

oy J \Vul’du+ (b — a) J |B(x,u) — B(x,0)|dx
{a<|u—0|<b} {lu—0|=b}

< oc2J Vul” |V Oldu
{a<|u—0|<b}

+(b—a){J |93(x,0)|dx+J d|v|}.
{u-0]2a) {0120}

By Young’s inequality,
% J \Vu|”'\VO|du
{a<|u—0|<b}

p—1
< a—l,J Vul’dp+ 22 (%) J VOl du.
P Jia<|u—0/<b} P \% {a<|u—0|<b}

From these inequalities we obtain the inequality in the proposition.

COROLLARY 2.1.  Under the same assumptions as in Proposition 2.1,

P
J VulPdu < (@> J VH|pd,u+p—k{|v|(G) +J |B(x, 9)|dx}
{lu—0|<k} %1 G % G

for any k > 0.
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Let p* =xp(p—1)/[x(p — 1) + 1], where x > 1| is the constant appearing
in the weighted Sobolev inequality ([6, §1.1]). Note that p —1 < p* < p.

PROPOSITION 2.2. Under the same assumptions as in Proposition 2.1, let
H= J Vo|’du  and M = |v|(G) —&—J |%(x,0)|dx.
G G

Then

=01 1) < s (R4 ) 1)

and

u{|Vu—0)=k}) < kCTZ [(kP"PH + M) + (k" "H + M)"] (2.2)

for k >0, where Cy and C, are positive constants depending only on p, oy, o,
diam G, u(G) and constants appearing in the conditions for the weight w
(including ).

ProoF. In this proof, ¢; denote positive constants depending only on those
given for C; and G, in the proposition. Since Ty (u — 0) € Hol"p (Gyp) and G is
bounded, the Sobolev inequality implies

(JG | T (s — 9)|Kf’dﬂ>l/w < (JG VT — H)|"du)l/p.

Hence,
1 K,
il =012 1) < 1 | (Tt 0))d
G
<2 (J |V T (u — 9)|1’d,u>K — J Vu—-Vo|’du
k' \Jg K\ J{u—0<ky

3

S o (J Vul du + J |\70|Pdﬂ>
k {Ju—0<k} {Ju—0|<k}

¢4 K
< o (H 4 kM),

where we used Corollary 2.1 to derive the last inequality. This implies (2.1).
To prove (2.2), let

(1, m) = u({lu— 0 = LIV (u— 0)|" > m})

for />0 and m > 0. Since @(/,m) is nonincreasing both in / and m,
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@(0,m) < lJm{é(o,s) — @(l,5)}ds + @(1,0).
mJo
Since @(0,s5) — &(I,s) = u({lu—0| < L,|V(u— 0)|" = s}),

Jm{gp(oa 5) —D(,s)}ds < J V(1 — 0)|Pdu
0 {lu-0l<1}

<2t J \Vul”du +J Vo du ).
{lu—0<1} {Ju—0|<I}

Hence, noting that &(/,0) = u({|ju — 0| = [}), we have
u({[V(u—0)] = k}) = @(0,k”)

or-l
<= (Ll LT H) +ul{lu— 01> 1)
u—u|<

for k > 0. Thus, by Corollary 2.1 and (2.1),

I I )
Now, choose / > 0 so that //k? = 1/1(P=1). Then [ = k?~?" and [*(P~1) = 7",
Hence we obtain (2.2).

COROLLARY 2.2. Under the same assumptions as in Proposition 2.1,
JG = 0%du < 1(G) + C,(H + M)* (2.3)
for 0 <g<wx(p—1) and
JG|V(u—0)|‘fdys;t(G)+C;{(H+M)+(H+M)"} (2.4)

for 0 < q < p*, where H and M are as in Proposition 2.2 and C,, C(; are positive
constants depending only on q and those on which Cy and C, in Proposition 2.2
depend.

Proor. Let 0 < g <k(p—1). By using (2.1), we have

J lu—0|"du < J d,u—i—J w({|u— 6|7 > t})dt
G {ju-0]<1} 1

<u(G)+ C\(H + M)”J =N/ gy,
1

which shows (2.3). Similarly, we obtain (2.4) from (2.2).
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3. Convergence results
In this section, we first prove the following theorem:

TueoREM 3.1. Let 0 e H'7(G;u) be fixed. Let {v,} be a sequence of
Sfinite signed measures on G such that |v,,|e(H01’p(G;u))* for each n and
sup,|val|(G) < 0. Let u, be the solution of Lu=v, such that u,—0¢€
HOI"‘" (G;u) for each n. Then there exist a subsequence {u,} and a function
ue YP(G;u) such that

(1) uy, — u ae as well as in the measure u as j— o,

(2) Vuy, — Du ae. as well as in the measure p as j— oo,
(3) Ti(u—0)e Hy"(G;p) for all k>0,

(4) uelLl(G;u) for g >0 satisfying ¢ <x(p—1) and q < p,
(5) |DuleL"(G;pu) for 0 <r< p*.

Before proving this theorem, we prepare two lemmas.

LemMa 3.1 ([12, Theorem 2.14]). Let {u,} be a sequence of functions in
Hol"’ (G;u) such that { | |Vu,|"du} is bounded. Then there are a subsequence
{un,} and ue Hy"(G;u) such that Uy, — u in LP(G; ).

LemMa 3.2. Let {v,} be a sequence of signed Radon measures in G such
that |v,| e (Hol’p(G;/z))* and sup,|v,|(G) < co. Let u, € H"(G;u) be the so-
lution of Lu = v, such that u, — 0 € HOI"’(G;,u) for each n. If {u,} converges in
w, Le, p({|up —um| > 21}) — 0 as nym — oo for all A >0, then {Vu,} also
converges in p.

Proor. Let /\(¢,n) = (o (x,&) — /(x,n)) - (E—n). First, we show
J L (Vidy, Vi, )dx < 2aM (3.1)
{lun_”m‘ga}

for a > 0, where M, = sup,|v,|(G).
Since T,(uy — t,) eHol’p(G;,u)ﬂLoo(G) and u; is a solution of Lu = v,

J oA (x,Vu;) - VI(uy — thy)dx + J B(x,u;) Ty (tty — tpy)dx = J Ta(tty — th)dv;.
G G G
Subtracting the above equalities for j =n and m, we have

L (Vidy, Vi, )dx + J (B(x,un) — B(x,up)) Ty(thy — ty,)dx

J{un—l¢,n<a} G

= J Tty — tpy)dvy, — J To(tty — up)dvy,.
G G

Since [ (B(x,u) — B(x,up)) To(ty — tn)dx > 0, it follows that
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J Ay (Vity, Vi )dx < a(|vp|(G) + v (G)) < 2aMy,
{lun—tt| <a}

which shows (3.1).
Given ¢ > 0, Proposition 2.2 implies that there exists k > 0 such that

u{lV(u—0)| = k}) <e for all ;. (3.2)
For this £ and a given 1 > 0, we consider the function
Jiea(x) = inf{(&m); [€ = VO(X)| <k, |n = VOX)| <k, |E—n| = A},

This is a measurable function in G. Since [VO(x)| < oo, (&, n) >0 if £ #7p
and (&%) — /(& n) is continuous for a.e. x € G, we see that f; ;(x) > 0 for
a.e. xe G. Hence, if we set E(gllz) = {fx,, < ow}, then there exists 0 <J <¢

such that
1
HEY ;) < (33)

s Ry A

Next, let
Ey (tta, thn) = {|ttn — th] < 0%, A(Vity, Vityy) = Ow}.
Then by (3.1),
E? = d
H(ES™ (thn, tm)) . w dx
E (t, 1)

1
< 5 L (Vy, Vg )dx <20My < 2eMy.  (3.4)

J{urz_lllrzl S(SZ}

Now, if [V(uy— 0)(x)| <k, [Viiw— O)(x)] <k [Vita(x) — Vat(x)] > 2,
n(x) = ()] < 6% and x ¢ B (s, ), then fi(x) < fe(Vitn(x), Vit (x)) <
ow(x), and hence er(gyl,)Q ;- This means that

{IVity = Vit > 2} < {|Vity = V0| = k} U{Vuy — VO] > k} UES () UE])
U {un — t| > 52},
and hence, in view of (3.2), (3.3) and (3.4)
w({|Vtty — V| > 23) < (3 +2Mo)e + u({[un — th| > 0}).

This shows the assertion of the lemma.

Proor ofF THEOREM 3.1. For each k € N, since

J \VTi(uy — 0)|"du = J \Vu, — V0P du,
G {‘u»1*0‘<k}
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Corollary 2.1 implies that {[;|VTi(u, — 0)|"du}, is bounded. Hence by
Lemma 3.1, there exist a subsequence {uﬁzk)} of {u,} and vkeHol””(G;,u)
such that Tk(uﬁ,m —0) - v in LP(G;u). We may also assume that
Tk(ug,k) —0) — v ae. in G and {uﬁ,kﬂ)} is a subsequnce of {uﬁzk)} for each
keN. We denote the diagonal sequence {uf,")} again by {u,}. Then
Ti(uy — 0) — v in LP(G;u) as well as ae. in G.

We show that {u,} is convergent in the measure u. By Proposition 2.2,
given ¢ > 0 there exists k > 0 such that u({|u, — 0] = k}) < e for all n. Let

A>0. Since {Ti(u, —0)} is convergent in L?(G;p) and

HITi 0 = 0) = Tulu = O) > 23) < 35| 1Tiluta = 0) = Telun 0"

there is ny such that
1| T (un = 0) = Tie(um — 0)| > 2}) <&
for n,m > ny. Hence
#{{un — wm| > 23) < u({|un — 6| = k}) + u({|um — 0| > k})
+ 1| Tt — 0) = Ticlum — 0)] > 23) < 3¢

for n,m > ny, that is {u,} is Cauchy in .

Thus there exists a measurable function u such that u, — u in u. By
taking a subsequence, we may also assume that u, —u a.c. in G. By
Corollary 2.2, {[;|u, — 0|?du} is bounded for ¢ >0 with ¢ <x(p—1), so
that u — 0 e LY(G;u) for such ¢g. Thus ue LY(G;y) if in addition ¢ < p.

Since Ti(u—0)=uvr ae., Tj(v)=T;(Te(u—-0)=T;(u—-0)=v, ae.
if j<k. Since Tj(vx) and v; are (p,u)-quasicontinuous, it follows that
Tj(v) = v (p,p)-q.e. if j <k (cf. [6, Theorem 4.14]). Hence we may assume
that Ty (u —0) = vx (p,1)-q.e., and so Tr(u—0) e Hol"”(G; 4.

By Lemma 3.2, {Vu,} is also convergent in g, and hence, by taking further
subsequence if necessary, we may assume that {Vu,} is convergent a.e. in G.
Let g =lim,_, Vu,. By Corollary 2.2, we see that |g — V0| e L"(G;u) and
hence |g| € L"(G;u) for 0 <r < p*.

We shall show that g = Du=V0 +limy_, VT (u—0) ae. in G. First we
remark that VT (u, — 0) — VT (u—0) weakly in L?(G;u) by [6, Theorem
1.32] and VTi(u—0) =Du—VO ae. on {lu—0 <k} Let Gy be the set
of points x € G for which |u(x)| < o0, |0(x)] < o0, |g(x)| < 00, |VO(x)| < o0,
uy(x) = u(x), Vu,(x) — g(x), VTi(u, — 0)(x) = Vu, — VO(x) whenever k € N,
k > |uy(x) — 0(x)| for all neN and VTi(u — 0)(x) = Du(x) — VO(x) whenever
keN, k> |u(x) —0(x)|. Then, u(G\Gyp) =0. For o> 0, set

Es = {x e Gy :|g(x) — Du(x)| > o}.
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We claim that u(Es) = 0 for any 6 > 0. Supposing the contrary, let u(Es,) > 0
for some dy > 0. For k,meN, set
g(x) — Du(x)
Ti(u, — 0 —VTi(u—10 o S e
b Aoy s VT = 0 VT = 0)(x) |
>0dy/2 for all n >m

Let x € Ej;, and take k€N such that |u(x) —0(x)| < k. Then there exists
my € N such that |u,(x) — 0(x)| < k and |g(x) — Vu,(x)| < /2 for all n > my.
Thus for n > m,

(VTi(un = 0)(x) = VTi(u — 0)(x)) - (9(x) — Du(x))
= ((Vun(x) = VO(x)) — (Du(x) = VO(x))) - (9(x) — Du(x))
= (Vi — Du) - (g(x) — Du(x))

= 1g() ~ DUl ~ lg(x) ~ Vi ()] lg(x) — Dut)
> (00 -%) ) = Dued] = la(w) - Dut).

namely, x € Fy ,,,. Therefore, E5, = (), \J_, Fx,n. By our assumption that

u(Es,) >0, there are k,m e N such that p(Fy ) > 0. Then

— Du o
. dp > Eoﬂ(Fk,m) >0

|g — Dul

L (V Tty — 0) — VTi(u— 0)

for all n > m, which contradicts the weak convergence of {VTj(u, —0)} in
L?(G;p). Thus, u(Es) =0 for all § > 0, which means that g = Du a.e., ie.,
Vu, — Du a.e.

The inequality in Corollary 2.1 with # and v replaced by u, and v,,
respectively, yields the same inequality with Vu replaced by Du, by Fatou’s
lemma. Hence, |u| < © (p,u)-q.e. by Lemma 1.1, and hence u e Y”(G;p).

The next two lemmas will be used in the proof of Theorem 4.1.

Lemma 3.3. (i) If {g,} is a sequence of R"-valued measurable functions
on G such that {|g,|'du} is bounded for some q > p—1 and g, — g in the
measure p, then </(x,g,) — </(x,g) in L'(G;dx).

(i) If {fu} is a sequence of measurable functions on G such that
{Jgfl%du} is bounded for some q>p—1 and f, — f in the measure p,
then B(x, f,) — B(x, f) in L'(G;dx).

Proor. We prove only (i). The proof of (ii) is quite similar.
Let ¢ > 0 be arbitrarily given. For j=1,2,..., set
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E.;={xeG;|(x,&) — A (x,9(x))| <ew(x) whenever |£—g(x)| <1/j}.

Then {E,;}; is nondecreasing and by the continuity of /(x,¢) in ¢,
#(G\\J, E;;) =0. Choose jo such that wu(G\E,j,)<e and let F,=
{x e G;|g,(x) —g(x)| > 1/jo}. Since u(F,) — 0 (n — o) by assumption, there
is ny such that u(F,) <e¢ for n>ny. Let

Dn,a = {X € G; |JP/(X, gn(x)) - <5?/()(:7g(x))| = EW(X)}'
Then

JG\D |7 (x, 6,(x)) — o (x, g(x))dx < eu(G) (3.5)

for all n. Since D, , < (G\E,,) UF,,
WD) < p(G\E,.j,) + p(Fy) <e+e=2e

for n>mny. Let [;l|g,|’du< M for all n. Then [, |g|%du < M. Hence, by
(A.3) and Hoélder’s inequality, we have

jD |2 (%, 4, (x)) — o (x, g (x) | dx
< szj (Ig,7~" + 9" )

< CM(pfl)/qﬂ(Dn’H)1*(17*1)/!1 < CM(pfl)/q(zg)lf(p*U/q (3.6)

for n > nyp with a constant ¢ = ¢(p, ) > 0. Since ¢ is arbitrary, (3.5) and (3.6)
show that

n—aoo

fim [ 12/(5,9,(0)) = #(x.(3) s = 0.

LemMA 3.4, Let v be a finite signed measure such that |v| < cap, . Let
EfcGand E; =« G (n=1,2,...) be Borel sets in G such that {E/}, {E, } are
non-decreasing, v*(G\|J,ES) =0, v (G\J,E,) =0, ypv'e (Hy" (G; )"
and yp-v~ € (Hy"(G;p))* for each n.  Set v, =xeV = ae v U {fu} is a
bounded sequence in HOI’P(G;,u) such that {|| full ..} is also bounded and f, — f
a.e. in G, then

lim JG £ dvy = JG fdv.

n—oo

Proor. Let ||fy]l,, < M for all n (M >0). Given ¢ > 0, there is ny such
that v*(G\E,|) <¢/(3M). Then for n > ng
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U e W
G G

+

ny

<|| (= hxg dv* +U Sy = 2 )dv™
G G

J S =y )dv*
G

IA

(o = Mgz, dv* | +2MVT(G\E,)
G 0

& (3.7)

[SSI \S]

<|| o= Prgy av*| +
G

Since {f,} is a bounded sequence in HOI‘I’(G;,u) and f, — f ae. in G by
assumption, f, — f weakly in H()l'p(G;u). Since X, vte (HOI’P(G;,u))*, there
is ny > no such that

|, (5= oz, vt
G

<&
3
for n > n;. Thus, in view of (3.7), we have

|, ey e =] a0

Similarly, we have

| fe 4 =] a0

and hence the assertion of the lemma follows.

4. Existence of renormalized solutions

Let % be the family of all Lipschitz continuous functions / on R such that
[(t) = I(o0) (const.) for t > M and /(¢) = /(—o0) (const.) for t < —M with some
M= M(l) > 0.

Denote by A(G) the family of all bounded locally Lipschitz continuous
functions ¢ in G such that V¢ is also bounded. We know that A(G) <
H'7(G;u) (see [6, Lemma 1.11]). Let A7(G) = {pe A(G);p > 0}.

We also denote by Y[ (G;u) the set of ve Y?(G;u) such that Ti(v)e
Hy"(G; ) for every k > 0.

Levmma 4.1, Let le %, pe A(G), ve Y(Giu) and e Hy"(G;p) N
L™(G). If either 1(0)=0 or (peHol'p(G;/x), then l(v+lﬁ)(peH01’p(G;u)ﬂ
L*(G; p).
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Proor. Let /() = const. on (—oco,—M] as well as on [M, ), and let
M’ =|y|l,. Then, v+ V) =1Tysim(v)+¥). Since Tryin(v)+y e

H(}"”(G;,u), it follows that /(v+y)e H'"(G;u)NL*(G) and I(v+y)e
Hol”"(G; )N L*(G) if [(0) =0. Thus we obtain the assertion of the lemma.

We denote by %(0) the set of all ue Y?(G;u)NL’~'(G;u) such that
u—0e Y[ (Gyu) and |Du| e LP"'(G;p). Note that if 6;,0, e H""(G;u) and
0, — 0, € Hy” (G; ), then %(61) = U(6,).

LemMa 4.2. Let ue#(0), le %, e H'P(G;u) N L™ (G) and ¢ e A(G).
Then </ (x,Du) -V (I(u— 0+ )p) e L'(G;dx).

Proor. Let v =u—0 and let M and M’ be as in the proof of Lemma
4.1. Then we have

of (x,Du) -V(I(u— 0+ y)p)
= [ (xX,VTrsm(0) +VO) - VI(v+)]p + [ (x, Du) - V|l (v + ).

Since Tyryn(v) +0€ HYP(G;u) and [(v+ ) e HY?(G;p) as in the proof of
Lemma 4.1, the first term in the right hand side belongs to L'(G;dx) by (A.3).
The last term also belongs to L!(G;dx) by (A.3) since |Du| e LP~'(G;u) and
Vo, I(v+y) are bounded.

Given 0 e H"?(G;u) and a finite signed measure v on G, u is called a
renormalized solution of Lu =v with boundary data 0 if ue %(0) and

J (%, Du) - V({1 — 0+ )p)dx + J B, u)l(u — 0+ ) dx
G G

:J l(u—0+lﬁ)(pdva+l(oo)J ¢dvj—l(—oo)J pdv,  (4.1)
G G G

whenever /e ¥, Y€ Hol"p(G; WNL*(G), pe A(G) and either /(0) =0 or
9 € Hy'' (G u), where v, = v} — v,

The first term of the left hand side of (4.1) is well defined by Lemma 4.2.
As to the second term, we note that #(x,u) € L'(G;dx) for ue LP~'(G;u) by
(B.2). Since v, is finite, |v,| « cap, , and the integrand is bounded, we see that
the first term of the right hand side of (4.1) is also well defined. The last two
terms are well defined since v; and v, are finite measures and ¢ is bounded
continuous.

By Lemma 4.1 and Lemma 1.2, the solution ue H'7(G;u) given in
Theorem 2.1 is a renormalized solution in case v e (Hol’p (G;p)".

REMARK. The renormalized solution u is an “‘entropy solution” in the
following sense (cf. [1], [2], [7], [12]): u satisfies
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J &/(x,Du)~VTk(u—0+lp)dx+J B(x,u)Tr(u— 0+ )dx
G G

_ JG Tl — 0+ Y)dvy + k(v +7)(G)

for any k>0 and e HOI"’(G;,u) NL*(G).
In fact, we obtain the above equality by taking / = T} and ¢ =1 in (4.1).

In order to prove the existence of renormalized solutions, we prepare some
lemmas.

LemMa 4.3. For any ¢,neRY,

1

F(x%.€) - & = elnl"w(x) < o (x,€) - (E4m) <2 (x,€) - ] + cln|"wlx)

for a.e. xe€Q with a constant ¢ = ¢(p,a,a2) > 0.

ProoF. By (A.3), Young’s inequality and (A.2),

1
[/(6,8) -1l < sl (x) < 3ol w(x) + el w()

St (3,8) &+ el ()

IA

a.e. with ¢ = ¢(p, o1, 2) > 0. From this, the required inequalities immediately
follow.

LemmA 4.4 ([12, Lemma 2.12]). Let A be a finite nonnegative measure on
G. Then there exists a sequence {1,} of nonnegative measures on G such that

In(G) < M(G) and J, € (Hy" (G; )" for every n, and

J q;dzn_)J o di
G G

for all bounded continuous ¢.

Lemma 4.5 ([12, Proof of Theorem 6.1 and Remark 6.3 (ii)]). Let 1 be
a finite nonnegative measure such that ). <«<cap, , Then there exists an
increasing sequence {E,} of Borel sets in G such that A(G\|), E,) =0 and
x5, € (Hy?(Gyp)™ for each n.

Now we prove our main theorem: the existence of renormalized solutions.

TueoreM 4.1.  Given 0 € H'"?(G;u) and a finite signed measure v, there
exists a renormalized solution of Lu = v with boundary data 0. Further, we can
take u to be (o, B)-harmonic in G\(spt|v|).
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ProoF. We have decompositions vt =vi + v and v- =v, + v, with
+ - + + -
Vv, <cap, ,, v, <cap,,, vy =xsv' and vy

; o = xs-v~ with Borel sets ST < G,
§” <G such that cap,,(S*)=cap,,(S7)=0 and S*NS™ =g. Let
ve=vl —v, and vy =v —v.

Applying Lemma 4.5 to v/ and v,, we choose Borel sets Ef < G
and E, = G such that {E'}, {E,} are nondecreasing, vi(G\|J, E) =0,
v, (G\U, E;) =0, yzpvie(Hy"(Giw)" and AE-Vy € (Hy"(G; )" for each
n. Set (va), = xg:Vy — XEVa -

Applying Lemma 4.4 to v{ and v;, we choose nonnegative measures (v;"),
and (v;), in (Hy”(G;p))" such that (v}),(G) <vH(G), (v7),(G) < v; (G) and

s

n

| oaon = vavi. | pdw) =] pan )
G G G G

for all bounded continuous ¢. Set (v5), = (v), — (v;),-

For each n, v, = (v,),+ (v5), is a finite signed measure on G and
va| € (Hy"(G;p))*. Hence, by Theorem 2.1, there is a unique solution
u, € H'?(Gyp) of Lu=v, such that u, —0¢€ Hol’p(G; u) for each n. Then
by Theorem 3.1, there is a subsequence, which we denote by {u,} again, such
that u, — u a.e. in G with u € %(0), u, — u in the measure u, Vu, — Du a.e. in
G and Vu, — Du in the measure u. We shall show that this u is the required
function. We divide the proof into several steps.

We set v, = u, — 0 and v = u — 0 for simplicity. Note that v, € Hol’p(G; n)
and Ty(v) € Hy"(G;p) for all k > 0.

Ist step. If p € A7(G), then

. . 1
lim sup lim sup —

kj [« (x,Vu,) - Vu,|p dx < 2J pdvi, (4.2)
k—o0 n—oo {k<v,<2k} G

lim sup lim supj pd(vy), < J pdvi, (4.3)
(o0 =2k} G

k— o0 n— o0

. . 1
lim sup lim sup —

J [ (x,Vu,) - Vuylp dx < ZJ pdv,, (44)
k— o n—w K {—2k<v,<—k} G

lim sup lim supJ pd(v)), < J pdv;. (4.5)
k— o0 n—o  J{v, <-2k} G
Proof of (4.2) and (4.3): Let [(f) = max(Ty(t—k)/k,0) for k>0.
Then I (v,) € Hol""(G; w) and Vi(vn) = (1/k)Voa) ey, <ny a-€. Since li(vy)p €
Lp
HO (G’ lu)a

J oA (x, V) - V(I (vn)p)dx + J B(x, up) i (vn)p dx = J I (v,) @ dvy,
G G

G
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so that
1

j [ (5, Vi) - Vol dx + j (oo d(v)), + J (o) d(v0),
k {k<v,<2k} G G

= —J [ (x,Vu,) - Volli(v,)dx — J B(x, un) ik (vy) @ dx
G G

4] oo dtg), + [ wwode),
G G
By Lemma 4.3,

oA (x,Vu,) - Vv, > %[&/(x, Vuy,) - Vuy] — c|VO|Pw
a.e. in G with a constant ¢ = ¢(p, oy, a2) > 0. Also, by (B.3), B(x,u,)li(vn) =
B(x,0)(v,) a.e. in G. Hence, from the above equality we obtain

1

—J [ (x,Vu,) - Vu,|p dx + J ® d(v;)rz
2k J kv, <21y

{v, =2k}

< %JG Vo) du + “G[&/(x, Vu,) - Volli(v,)dx

+ J B(x,0)lx(vy)p dx
G

+j L (0n) d<v:>n+j K(v)g d(v?),.  (4.6)
G G

By Corollary 2.2 and Lemma 3.3, we see that .o/(x,Vu,) — ./(x,Du) in
L'(G;dx) as n— oo. Since L(v,) — lk(v) ae. in G and {|Vo|l(v,)}, is
uniformly bounded,

lim J 2 (x, Vity) - Vel (5,)dx = J [/ (x, Du) - Vgl (v)dx.
G

n— oo G

Noting that /;(v) — 0 a.e. in G, by Lebesgue’s convergence theorem we have

lim Tim J (2 (x, Vitn) - Vol (0n)dx = 0. (4.7)
G

k—oo n—oo

Since #(x,0) € L'(G;dx),

klim lim J B(x, )l (vy)p dx = klim J B(x, ) (v)p dx = 0. (4.8)
— 00 N—00 G — 00 G

Next, {lx(vs)p}, is bounded in Hol’p (G; 1) by Proposition 2.1. Since it is also
uniformly bounded in G and /(v,)p — Ik(v)p a.e. in G as n — oo, Lemma 3.4
implies
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n— o0

lim J I(va)p dv)), = J I(v)p dv}.

G G
We know that v< oo (p,u)-qe, so that v<oo vi-ae. in G. Hence
Ik(v) = 0 (k — o) vi-ae. in G, so that

k—o00 n—0

lim lim J I(va)p d(v)), = 0. (4.9)
G

Finally,
0< J Ik(va)p dv)), < J pd(vi), — J pdvi  (n— o). (4.10)
G G G

From (4.6), (4.7), (4.8), (4.9) and (4.10), we obtain (4.2) and (4.3).
(4.4) and (4.5) can be similarly proved.
2nd step. If (pe/ﬁ(G)ﬂHol’”(G;y) and 0 < k < m, then

n—oo

lim sup{lJ{A Rk}[&/(x, Vu,) - Vuylp dx + J (k — Ti(vn))e d(vj)n}

{—m<uv,<k}

4k
< cJ VO’ ¢ du +— limsup
G m

J [ (x,Vuy) - Vuy]o dx
n—oo {-2m<v,<—m}

+2k{J |-« (x, Du) -Vq)|dx+J | B(x,u)|p dx
{|vl <2m} {lvl <2m}
+J (pd(v;+v;)} (4.11)
G

and

. 1

hmsup{J [ (x,Vuy,) - Vuy)g dx+J (k + Ti(va))p d(vs)n}

n— o0 {lva| <k} {—k<v,<m}

4
< L’J VO o du +—k lim sup
G m

J [ (x,Vu,) - Vu,|p dx
n—oo  J{m<v,<2m}

+2k{J |7 (x, Du) -Vgo|dx+J |B(x,u)|p dx
{Iv| <2m} {lo]<2m}

+[ oavg 4] (412)

with a constant ¢ = ¢(p, a1, 02) > 0.

Proof of (4.11): Let hy,(1) =
(k = Ty(vn))im(va)p with ¢ € A+( )N
that

L —|T\((t—Tu(1))/m)| and f, =
o"(Gsp). Then, f,eHy?(G;p), so
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J o (x,Vuy) - Vfy dx +J B(x,up) fn dx = J o dvy. (4.13)
G G

G
Now
Vin = =V Ti(vn)hm(va)p + (k — Tk(vn))hyln(vn)vvnq) + (k = Ty (v2)) A (v2)V .

By Lemma 4.3, we have

[ (X, Vn) - Vi1 1,1 <y < [ (3, Vi) - VTi(vy)] 4 c|VO[Pw  (4.14)

N =

a.e. with ¢=c(p,o1,00) > 0. Since (k — Ti(vn))hy,(va) = (2k/m) 3 _smcv,<—m)
for m > k >0, by Lemma 4.3 again, we have
[ (%, V) - Vou](k — Tie(vn))hy, (vn)
4k »
< AL (Vi) - Vi) + VO WY o<y (4.15)

a.e. Thus, using (4.14), (4.13) and (4.15), we have

1
0< —J [&/(x, Vun) . Vun](o dx + J (k — Tk(Un))(ﬂ d(vj‘)n
2 {lva| <k} {—m<uv,<k}

1

_ ,J Lt (5, Vity) - Vit i (52)p dx + J £ d0h),
2 ) (ol <ky G

< [ 17w VT (o) dit | 1o d07), 4| oo du
G G G

=—| A(x,Vu,) Vf, dx—&-J Jod(vh), + cJ VO|” o du
G G G

+ | [ (x,Vuy) - Vou|(k — Ti(vn))h,, (vn)p dx
G

+ G[d(x, Vu,) - Vol(k — Ti(vn)) i (v,)dx

< | A dxs | oo, + 00 v | wore du
G G G

4k
+_

J [ (x,Vuy,) - Vulp dx
m ) om<v,<—m}

+ JG[.Q/(x, Vuy) - Vol(k — Ti(vy))hm(vn)dx. (4.16)

Since .o (x,Vu,) — .o/ (x,Du) in L'(G;dx),
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(k = Tyc(vn)) 1 (vn) — (k = T(0)) i (v)

a.e. and {(k — Ti(vy))hn(vy,)}, 1s uniformly bounded,

n—oo

lim JG[%(X, Vu,) - Vol(k — Ti(vy)) i (v,)dx
= JG[QM(X, Du) - Vol(k — Ty (v))hy(v)dx
< ZkJ |-/ (x, Du) - Voldx.

{lv| <2m}

Similarly, since #(x,u,) — #(x,u) in L'(G;dx) by Corollary 2.2 and Lemma
3.3, we have

lim J B(X,up) f dx
G

n—oo

= J B(x,u)(k — Ti(v)hy(v)p dx < ij | B(x,u)|p dx.
G {lv| <2m}

Finally

0< j Jodl),+ (05),]

<2k L¢ A7), + (7)) — 2ij pdv; +v;) (11— ).

Hence we obtain (4.11) from (4.16).

Inequality (4.12) is similarly proved.

3rd step. Let p e 47(G) and k > 0. If {¢;} is a nonincreasing sequence
of functions in Cj°(G) such that 0 < ¢; <1 for each j, §; — 0 (p,u)-q.e. in G
and [;|V;|"du— 0 as j— co, then

lim sup lim supJ o (x, V) - Vun]od; dx
{|on |<k}

J— o n— 00
g20km1n{ pdvi, godv} (4.17)
lim sup limsupj .o (x, V) - VTi(vn)|0g; dx
J— 0 n—oo G
§4Okm1n{J (pdvj, godv } (4.18)
G
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lim sup lim sup lim sup J
m— oo J—0 n— oo {—m<v,,<k}

(k= Tilo)yp d(57), < 10K | p vy (419)

lim sup lim sup lim sup J
m— oo j—o0 n— o0 {—k<v,<m}

(k + Te(on)dyp d(v; ), < 10k JG pdvi. (4.20)

Proof of (4.17), (4.19) and (4.20): Obviously, p¢; € A(G) N Hy” (G; ).
Thus (4.11) with ¢¢; in place of ¢ holds for each j. By Lebesgue’s
convergence theorem, lim; ... [ V0 p¢; du=0, lim;_., [;|B(x,u)|pd; dx =0
and lim;_.., [;¢4; d|vs| = 0. Using (4.4), we have

. . . 1
lim sup lim sup lim sup — [ (x, V) - Vup)pg; dx

m—oo  joo n—oo M J{—2m<v,,<—m}

. . 1
< lim sup lim sup —
m— o0 n—oo M {-2m<v,<—m}

[ (x,Vu,) - Vuylp dx < 2J @ dv;.
G

Since

‘2{<x7 DM)X{MSZm} = JZ/(X, VTZM(U) + VH)X{MSZm}

a.e.in G, o/ (x, Du)y | <omw "7 € L?'(G;dx). By assumption, V(pg;)w'/? — 0
in L?(G;dx). Hence,

J— o

lim J |7 (x, Du) - V(p4;)|dx = 0.
{lv]<2m}

Thus, (4.11) with ¢¢; in place of ¢ yields

m— o0 Jj—0 n—oo

1
lim sup lim sup lim sup { —J [ (x, Vi) - Viy|pg; dx
{lon] <k}

+ J (k = Tic(va)) 04 d(V?)n} < 10kJ pdvy.
{—m<v,<k} G

Similarly, we obtain

m— oo J—0 n— o0

. . . 1
lim sup lim sup lim sup { —J [ (x, V) - Vuy|pg; dx
{lva] <k} .

+ J (k + Ti(vn))pd; d(vs)n} < IOkJ pdv}.
{—k<v,<m} G

These two inequalities imply (4.17), (4.19) and (4.20).
Proof of (4.18): Since
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| (x,Vity) -V Ti(00)] < 22 (X, Vidy) - V|21, <y + cIVO w0

a.e. by Lemma 4.3, (4.17) implies (4.18).
4th step. For k>0,

lim J div),=0  and lim J d(vy), =0. (4.21)
{v,<k} {v,>—k}

n— o0 n—o0

Proof: Given ¢ > 0, choose compact sets K = ST and K~ = S~ such that
vi(ST\K") <& and v;(ST\K~) <& Choose ¢ € C(G) such that p =1 on
K*',p=0on K and 0<¢p<1in G. Since cap, ,(K") =0, we can choose a
nonincreasing sequence ¢; in Cy°(G) such that ¢, =1 on K*, 0<¢; <1in G
and [;|V¢;|"du— 0 (j — o0). Since 1 —pgp; e 47(G),

0 < lim sup j{‘ (L= o)), < im | a=oapacn),

n— oo n—0
= J (1 —pg;)dvy <Vi(ST\KT) <e (4.22)
G
for every j. On the other hand, since k+ 1 — Ty 1(v,) =1 on {v, <k},

o< | eh a0,
{v, <k}

< (e 1= Teaw))ody dOD,+ | oy d0),  (423)

{va<—m}

J{—m<v”<k+l}
it m>k+1. By (4.19)

lim sup lim sup lim sup J
m— o0 Jj—0 n—oo {—m<v,<k+1}

(k+1-— Tk+1(vn))(/’¢j doy),

< 10(k + I)J pdv; < 10(k+ 1)v; (ST\K™) < 10(k + 1)e. (4.24)
G
By (4.5)

0 < limsup lim sup lim supJ pd; d(vy),
{va<—m}

m— o0 Jj—o n— oo

< limsup lim supJ pd(vi), < J pdv, <v. (ST\K7) <e (425)
{vy<—m} G

s/n —
m— o0 n—oo

From (4.22), (4.23), (4.24) and (4.25), we obtain
n— oo Jj— n— oo

0 < lim supj d(v}), < limsup lim supJ o d(v]), +e
{vn<k} {v,<k}

< (10k 4 12)e.
Since ¢ > 0 is arbitrary, this shows the first equality in (4.21).
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The second equality can be similarly shown.
Sth step. If p € A7(G) and k > 0, then

J [/ (x, Du) - Dvlp dx + J [Z (x, Du) - V| Ty (v)dx
{lv]<k} G

+j B, ) Te(0)p dx—j Ti(0)p dv,
G G

< SkJ pd(vi+v,). (426)
G

Proof: For m >0 let h,(t) be as in Step 2. Then Ty(v)ph,(v,) €
H,"(G; ) and

V(Tk(v)phm(vn)) = (DU)X{MSI(} @l (vn) + (Vo) T () (vn)

1
+ E (an){){{72m<vn<fm} - X{m<vn<2m}}Tk(U)(p

a.e. in G. Hence

j{ 14105, Vit) - el i)+ J [ (5, Vi) - V) Te(0) o (00l
v <k

G
1
+— J - J [ (x,Vuy,) - Vo, | T (v)p dx
m {-2m<v,<—m} {m<v,<2m}
+ J B(x, uy) Tie (v)phy (v,)dx = J Ty (0) phyy (v, d vy (4.27)
G G
Since

|-/ (x, Vu,,)|hm(vn)w_l/” = OCZ‘VL‘nVFIWl/p/)({lvnl<2m}

a.e., {4 (x,Vu)hy,(v,)w~'/7}, is bounded in L?' (G;dx) by Corollary 2.1. Fur-
ther o7 (x,Vu,)h,(v,) — o (x, Du)h,(v) a.e. in G. Hence
A (%, Vi) by (v, )W VP — o (x, Dut) by (0) w7

weakly in L”(G;dx). Since (DU)X{‘U‘Sk}(pWI/P =VTi(v)pw!'/? € L?(G; dx), it
follows that

lim J [/ (x,Vuy,) - Dvlphy,(v,)dx = J [/ (x, Du) - Dv|phy,(v)dx. (4.28)
n=% )10 <ky (ol <k}

Since .o/ (x,Vu,) — /(x,Du) in L'(G;dx), hy(vy) — hn(v) ae. in G and
{Tk(0)hm(va)Vp|}, is uniformly bounded,

lim JG[&/()@ Vu,) - Vo Ti(0) hy(vy)dx = J [/ (x, Du) - V| Ti(v)h (v)dx.  (4.29)

n—oo G
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Similarly, since %(x,u,) — %(x,u) in L'(G;dx), h,(v,) — hy(v) a.e. in G and
{Tk(v)hy(vn)p}, is uniformly bounded,

limJ A(x, u,,)Tk(thm(un)dx:J B, u) Te()phm(v)dx.  (4.30)
G

n— o0 G

Also, using Corollary 2.1 again, we see that {7 (v)ph,(v,)}, is bounded in

n

Hol"”(G; u). Since it is uniformly bounded and tends to Ty (v)ph,,(v) a.e. in G,
Lemma 3.4 implies that

n— oo

im | T30 (0)d000), = | TL0)pha (01, (431)
G G
Note that 0 < #h,(v) <1 and h,(v) — 1 ae. as well as |v]-a.e. in G as

m — oo. Thus, combining (4.28), (4.29), (4.30) and (4.31), and letting
m — oo, we have

m— o0 n— o0

lim lim {J [ (x,Vuy,) - Dvlph,,(v,)dx
{lvl <k}
+ J [ (x,Vuy) - Vo] Ty (0) iy (vy)dx
G

+ J B(x, un) Tre(v)phy (0y)dx — J Tk(v)¢hn1(vn)d(va);z}
G

G

_ J o/ (x, Du) - Delp dox + J o/ (x, Du) - Vo] Ty (v)dx
{lv[ <k} G

+J B(x,u) Ty (v)p dx—J T (v)p dv,. (4.32)
G G

By Lemma 4.3,

J — J [ (x,Vuy,) - Vo, | Ti(v)p dx
{-2m<v,<—m} {m<v,<2m}

£2kj

(A (V) Vo dx+ ekl || 1V0Pdye
G

{m<|v,|<2m}

Hence, by (4.2) and (4.4),

{J - J }[&/(x, Vuy) - Vo] Ti(v)g dx
{—2m<v,<—m} {m<v,<2m}

S4kJ pd(vi +v)). (4.33)
G

. . 1
lim sup lim sup —
m— oo n—oo M
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Since |IG Tk(v>(ﬂhm(vn)d(vA‘)n| < ka » d((vj)n + (V;)n) - kfc ® d(v;r + V;)
(n — o), we obtain (4.26) from (4.27), (4.32) and (4.33).
6th step.

lim JG oL (x,Vuy) - VT (vy)dx = J o (x, Du) -V Ty (v)dx (4.34)

n— o0 G

for every k > 0.
Proof: First we show

lim sup
n—oo

J [ (x,Vuy) - VTi(vn)]e dx — J [/ (x, Du) - VT (v)]p dx
G G

< 6kJ pd(vi +v)) (4.35)
G

for any g e A7 (G).
Since Ti(va)p € Hy (G ),

J [ (x,Vuy) - VTi(vn)]e dx + J [ (x,Vuy) - V| Ti(vy)dx
G G

+J B(x,uy) Ti(vy)p dx:J Ti(vn)e dvy. (4.36)
G G

By the same arguments as those showing (4.29), (4.30) and (4.31), we
see

lim J [ (x,Vu,) - Vol Ti(v,)dx = J [/ (x, Du) - Vo| Ty (v)dx,
G

n—oo G

lim J B(x, uy) Ti(vy)p dx = J B(x,u) Ty (v)p dx
G

n— oo G

and

n—oo

lim J T (vn)p d(va),, = J Ti(v)p dv,.
G G
Hence from (4.36) we obtain

lim sup
n—ao0

J [ (x,Vuy) - VTi(vn)]e dx + J [ (x, Du) - Vo] Ty (v)dx
G G

+ J B(x,u)Ti(v)p dx — J Ti(v)p dv,
G G
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IA

lim sup JG Te(w)lp d((VF), + (7))

n—oo

n—oo

< lim kJGq) d((v), + ), = kJGgo divi +v;).

Combining this inequality with (4.26), we have (4.35).

Next, given ¢ > 0, choose compact sets K™ < ST and K~ = S~ such that
Vi (ST\K™) <& and v;(S7\K") <e. Since cap, ,(K*)=cap, ,(K~) =0, we
can choose nonincreasing sequences {qﬁ/(ﬂ} and {¢](_)} in Cy°(G) such that
0<¢ <1in G, ¢” =1 onK*, ¢\ =1 on K", (sptg{”)N(spt4”)) = &,
¢](.i) — 0 (p,p)-q.e. in G and |, |V¢](-i)|pd,u —0 (j— ). Setg = ¢(1+)¢J(-+)+
¢(17)¢;7>. Then, 0 <¢; <1 and ¢;=1 on K"UK~. Hence,

j (1= g)d(vF +v7) < vH(SHK) +75 (ST\K7) < 26,
G
so that by (4.35)

lim sup
n— oo

JG[&{(X, Vu,) -V Ti(v,)](1 — @;)dx

- JG[&%(X, Du) - VT (v)|(1 — ¢;)dx| < 12ke (4.37)

for every j. On the other hand, by (4.18) we have

lim sup lim sup

JG[;z/(x, Vu,) - VTi(vn)]p; dx

Jj—oo n— oo
< 40k{J " dv; + J g\ dvj}
G G
< 40k(v; (ST\K ™) +v! (ST\K™)) < 80ke. (4.38)

Since .o/ (x, Du)-VTy(v) € L'(G;dx) by Lemma 4.2, Lebesgue’s convergence
theorem implies

lim JG[Jzi(x, Du) - VT (v)]p; dx = 0. (4.39)

J= o

Now, by (4.37), (4.38) and (4.39)

lim sup
n—o0

J o (x, Vi) - VTi(vy)dx — J o (x, Du) - VTi(v)dx| < 92ke.
G G

Since ¢ > 0 is arbitrary, this means (4.34).
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7th step.
A (x,VTi(0,) +VOW P — of (x,VTi(v) + VO W /P

in L?'(G;dx) for every k > 0.
Proof: Since

(| (x,V Tic(va) + VO w™P)" < 0 |V Tie(vs) + VO] "w
< o7 ol [ (%, V Tk (va) + V0) - (VTi(v,) + VO)]
a.e., using Lemma 4.3 we have
(12 (x, VT (vy) + VO) w7 < Ci [ (x, Vi) - VT (0,)] + VO w
a.e., where C| = Zaflocg/ and C; = Gy(p,0,0) > 0. Similarly, we have
(| (x, VT (v) + VO) | w™P)P" < Cy[.4 (x, Du) - VT (v)] + Co|VO[Pw
a.e. Hence
.o (x,V Tk (vp) + VOW P — of (x,VTie(v) + VO w /2|’
< Cl{[ (x,Vuy) - VTi(vn)] + [ (x, Du) - VT (v)]} + C5|VO|’w
a.e. with C/ =27'Cy and Cj =27'C,. Now, consider the functions
Jo = CH{[(x,Vuy,) - VTi(v,)] + [ (x, Du) - VT (v)]} + C5|VO|"w
— | (x, VT (vy) + VO P — o (x,VTi(v) + VOw /7|7,

Then f, > 0 a.e. for each n and f, — 2C{[/(x, Du) - VT (v)] + C}|VO[’w a.e. as
n — oo. Hence by Fatou’s lemma

2C1’J </ (x, Du) - VT (v)dx + Cz'J Vo’ du < limian S dx
G G n—oo G

=] { lim J A (x, Vi) ~VTk(vn)dx+J
G

n—oo

o/ (x, Du) - VTk(v)dx}
G

+ CZ/J \VO[Pdu
G

n—oo

— lim supJ | (x,V Tic(vy) + VOW P — of (x,VT(v) + VOW /7| dx.
G

Therefore by (4.34),

n—oo

lim supJ |2 (x,V Ti(vy) + VOW P — of (x, VT (v) + VOW /7|P dx < 0.
G
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8th step. Let /e %, weHOl’p(G;,u)ﬂLOC(G), pe A(G) and either
100)=0 or peHy"(G;u). Let I(t)=1I(c0) for t>M and I(t)=1I(-o0)
for t<-M. Let k=M+|y|,. Then I(v,+)=1I1Ti(v,)+y) and
(v, +Y)p € Hy? (G; ) by Lemma 4.1. Hence

J A%, Vi) - V[I(00 + V)l + J B, )10, + ) d
G G

= JG vy + ) dv,. (4.40)

Since |VI(v, + )| < |']| ., (IVTk(va)| + [V|), Corollary 2.1 implies that the
sequence {[; [VI(vy + ¥)|"du}, is bounded. Also, {/(v,+ )}, is uniformly
bounded and /(v, + ) — (v +) a.e. Hence Vi(v, + ) — VI(v + ) weakly
in L?(G;u) (cf. [6, Theorem 1.32]) and hence

Vi(v, + y)w'? = Vi(o+y)w'/?  weakly in L?(G;dx).

Since ¢ is bounded, from the result in the previous step it follows that

lim J Lt (x, Vi) - Vi(tn + )] dx = J 1/ (x, Du) - Vi(o + Y)lp dx.  (4.41)
G

n—oo G

In the same way as those for the proof of (4.29), (4.30), (4.31), we have

lim JG[M(X, Vu,) - Voll(v, + y)dx = J [ (x, Du) - Voll(v+ )dx;  (4.42)

n—oo G

lim J B(x,uy)l (v, +¥)p dx = J B(x,u)l(v+ ) dx; (4.43)
n— oo G G
lim J Hon+¥)pd(va), = J v+ y)g dv,. (4.44)
n—oo G G

As to the integral with respect to vy, we have

J m%+wmdwnn—xanjwdwnn
G G

gjuw+w—xwmwmnn
G

smmamuj A7), =0 (n— o)
{vn<k}

§ 0

by (4.21). Since [.pd(v)), — [o @ dv], it follows that

lim J wn +¥)pd(v), :l(oo)JG(/)de*. (4.45)

n— o0
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Similarly we have

n— oo

lim JG loa+Y)pd(vy), =1(—0) JG o dv,. (4.46)

Combining (4.40), (4.41), (4.42), (4.43), (4.44), (4.45) and (4.46), we finally
obtain (4.1).

Final step. In order to show that we can take u to be (.7, #)-harmonic in
G\ (spt|v|), we consider the solutions u” (resp. uH) of Lu= (v,) + (v}),
(resp. Lu = —(v,), — (v;),) with boundary data 0. By Theorem 2.2, uy?) <

u, < un+> a.e. in G for all n. By the above arguments, we may assume that
) — u™) and ui”) — u) ae. in G and that u™) (resp. u(7)) is a (renor-
malized) solution of Lu =v' (resp. Lu=v~) with boundary data 0. Then
u) <u<u™) ae in G. We can take u(*) to be (.7, #)-superharmonic in G
(cf. the proof of [14, Theorem 3.2 and Lemma 3.4]). Likewise, we can take
u~) to be (.«/,7)-subharmonic in G.

Now, let U and U’ be open sets such that U € U’ € G\(spt|v|). Set
R =dist (0U’,U)/2. Then, by [14, Theorem 4.1]

1/y
1 J ”
(+h) . () 7 p/(p=1)
u(x)<cel —— max(u'"™,0))"d + R
) <ﬂ<B<x,R>> s T O) ")

for all xe U with y > p—1 and a constant ¢ > 0 which is independent of
x. Here, we used the fact that vi =0 on U’, so that the Wolff potential
WpV_L(x, 2R) =0 for every x € U. We know (see, Theorem 3.1 or [14, Theorem
2.3]) that u*) € L7(U’; y) for y < min(p,x(p —1)). By the doubling property
for u, we see that

1
u(B(x, R))
for all xe U with a constant C independent of x. It follows that u(*) is
bounded from above on U.

Similarly, we can show that u(~) is bounded from below on U. Since
u™) <u < u) ae., we conclude that u is essentially bounded on U. Let &y be
the (.7, #)-harmonic function in G such that iy — 0 € HOI’I’(G;,u). Then u — hy
is also essentially bounded on U. Hence u —hy = Ty(u — hy) a.e. on U for
some k> 0. Since Ti(u—hy)e€ Hol’p(G; w), it follows that ue H“P(U;u).
Thus, (4.1) with / =1 and ¢ € C;°(G) such that (spt ¢) = U implies that u can
be taken to be (.7, #)-harmonic in U.

J (max(u™),0))du < CJ [ du < oo
B(x,R) U

5. Some properties of renormalized solutions

Throughout this section, let 0 € H'7(G;u) and v be a finite signed measure
on G.
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PROPOSITION 5.1.  Let u be a renormalized solution of Lu = v with boundary
data 0. If le ¥ and (o) =1(—o0) =0, then

J o (x,Du) -V(I(u— 0+ y)p)dx + J B(x,u)l(u—0+y)p dx
G G

:J I(u— 0+ y)p dv, (5.1)
G

Jor ¢, € Hol"p(G; W) NL*(G).

PrOOF. By (4.1), (5.1) holds for ¢ € A(G) N Hy”(G;u) and € Hy"(G; )
NL*(G). Ifpe Hol"p(G; 1) N L*(G), then we can choose a uniformly bounded
sequence {¢;} in Cy°(G) such that g; — ¢ in Hol’p(G; u) as well as (p, n)-q.e. in
G.

Let v=u—0. Since /(x,Du)-VI(v+y)e L'(G;dx) as in the proof of
Lemma 4.2 and %(x,u)l(v+ ) € L'(G;dx), Lebesgue’s convergence theorem
implies

lim J [/ (x, Du) - VI(v +)|g; dx = J [« (x, Du) - VI(v+ )]p dx
G G

J—= 0

and

lim JG B(x,u)l(v+)g; dx = JG B(x,u)l(v+ ¥)p dx.

J— o

Also, since ¢; — ¢ |v,|-a.e.,

lim JG I(v+Y)p; dvy = J v+ y)pdv,.

J—© G
Finally, let /(#) =0 for |t| = M. Then, for k> M + ||{|.,
(v + )L (x,Du) = l(v+ ) (x,VTi(v) + V0).
Since |/ (x,VTi(v) + VO)|w /P € LP'(G;dx) and  Vew'/? — Vew!/? in
L?(G;dx),

lim JG[QQ/(x, Du) -Vo,|l(v+)dx = J [ (x, Du) - Vo|l(v + )dx.

Hence by letting j — oo in (5.1) with ¢;, we obtain (5.1) for this ¢.

Let Cj(G) be the set of all bounded continuous functions on G and C; (G)
be the set of nonnegative functions in Cp(G).

PROPOSITION 5.2. Let ue U(0) be a renormalized solution of Lu=v in G
and set v=u—0. Let j(k)>1 for every k>0. Then
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1

lim —J o/ (x, Du ~Dv(pdx:J pdvi 5.2
k= j(k) {k<v<k+j(k)}[ ( ) ] G ' 5:2)

and
lim LJ
k=0 (k) Ji_k—jy<ve—i}

for ¢ € Cp(G);
(2)

[/ (x, Du) - Dvlp dx = JG @ dv; (5.3)

lim - J [/ (x, Du) - Du)p dx = J pdvi (5.4)
k=0 j(k) ) k<ocrt i)y G

and
1

lim —J
k—oo j(k) {—k—j(k)y<v<—k}
for ¢ € Cp(G).

Proor. First, let ¢@eA(G). For each k>0, let L(r)=
max (0, Ty (¢ — k) /j(k)). Then, [ € £ and [(0) =0, so that by (4.1)

[ (x, Du) - Du]gp dx = J o dvy (5.5)
G

1

j(k) Lk<v<k+j(k)}[&{ (x, Du) - Dvlp dx + J [/ (x, Du) - Vo)l (v)dx

{v>k}

+ J B(x,u)lx (v)p dx = J L(v)p dv, + J pdvi. (5.6)
{v>k} G

{v>k}

Since |/ (x, Du) -Vo| e L'(G;dx), |%(x,u)|lp e L'(G;dx), ¢e L'(G;|v‘|) and
v< oo ae. as well as |v,|-a.e.,

lim J |-/ (x, Du) - Vopldx = lim J | B (x, u)p|dx
k= J o>k k=00 ) {u>k}

= lim J lp|d|va| = 0.

k—o0

Hence, (5.6) implies (5.2) for p € A(G). Similarly, we obtain (5.3) for ¢ € A(G).
Next, we show

1
lim —J o (x,Du) - VO|dx = 0, 5.7
fim < 1o/t p) v (57)

where Ej ={k <|v] <k+j(k)}. By Lemma 4.3 and (A.2), |[Dul’w<
(2/o1)[o/ (x, Du) - Dv] + ¢|VO|’w a.e. with ¢ = ¢(p,o1,02) > 0. Since
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lim J VO dy = 0,
{lv[>k}

k— o0

it follows from (5.2) and (5.3) with ¢ =1 that
lim sup ! J |Du|’du < 2| I(G)
— u < —|v .
k— o0 ](k) Ej “ o] *
By (A.3) and Holder’s inequality

1

mL}( |-/ (x, Du) - VO|dx

1 ) (r=N/r [ ) 1/p
<o (—J Du du) —J Vo du .
J(k) Ek| | J(k) {\v|>k}‘ |

Hence we have (5.7).

By (5.7), we immediately obtain (5.4) and (5.5) from (5.2) and (5.3) when
pe A(G). Now, let pe CJ(G). Let fi = (1/j(k))[ (x, Du) - Dulygpecperr jo)
for simplicity. Note that f; > 0. Then (5.4) for ¥ € C;°(G) implies

J godvj:sup{J lpdv:“
G G

- sup{ lim JG fo dx

lﬂng“(G),()SlﬁSw}

MC?(G%OSMca}

< liminfj fio dx. (5.8)
k— o0 G

If M =|¢|., then applying (5.8) for M — ¢ in place of ¢, we have

J (M — p)dvi < limian Ji(M — g)dx.
G G

k— o0

Since (5.4) holds for ¢ = M, it follows that

k— o0

J @ dv] > limsupJ freo dx.
G G

This, together with (5.8), shows that (5.4) holds for ¢ € C;(G), and hence for
all p e Cp(G). Similarly, we see that (5.5) holds for all ¢ € G,(G).

Finally we deduce from (5.7) that (5.2) and (5.3) also hold for all
(/NS C/,(G).

CoROLLARY 5.1. If ue U(0) is a renormalized solution of Lu=v, then
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1 .
—J ¢ dvi < liminf |Du|’p du
G

%) k—co J{k<u<k+1}

< limsup

1
J |Dul’p du < —J pdv]
k—oo  J{k<v<k+1} % Jg

and

1
—J ¢ dv; < liminf |Du|’p du
G

) k— o0 J{k1<v<k}

< limsup J
k—oo  J{—k—l<v<—k}

for ¢ € Cf (G), where v=u—6.

1
Dufpdus | pav,
o1 Jg

COROLLARY 5.2. If ue(0) is a renormalized solution of Lu =v and if E
is a relatively closed subset of G such that |vs|(E) =0, then

lim

J |Du|?du = 0.
k= J(k<|u—6|<k+1}NE

Proor. Let v=u— 0 and let ST and S~ be as in the proof of Theorem
4.1. We may assume that EN(STUS™) = . Given ¢ > 0, choose a com-
pact set K < (ST US™) such that |vg|((STUS™)\K) < ¢ and choose ¥ € C;°(G)
such that y =1 on K, 0 <y <1in G and y =0 on E. Applying Corollary
5.1 with ¢ =1 — 1/, we have

lim sup |Du|’du < lim sup |Du|” (1 —y)du

P J{/c<|v<k+l}ﬂE k—o0 J{k<v<k+l}

2 2
< —J (1 —y)d|vs| < —e.
o Jg o

This shows the required result.

6. Uniqueness results

In this section, we give two types of uniqueness of renormalized solutions.
Uniqueness in the general case is not known (cf. [4, Section 10]).

6.1. The case |v| «cap, ,

THEOREM 6.1.  Given 0 € H'?(G;p) and a finite signed measure v on G, if
Iv| < cap, ,, then the renormalized solution of Lu =v with boundary data 0 is
unique.

Proor. Let u; and u, be renormalized solutions of Lu = v with the same
boundary data . Let v; =u; — 0, i=1,2. By assumption, v, = v and v, = 0.
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Thus, by taking / = T for k > 0, = —T,,(v;) or —T,,(v;) for m >0 and ¢ = 1

in (4.1,

J A (x, Duy) - VT (v; — Ty (v))dx +J B(x,u;) Tic(v; — Tp(v;))dx
G G

_ J Tewi — To(w))dv  (ij=1,2: # )).
G

Fix k > 0 and for m > k let

Ao(m) = {|lu1 — wa| < k,|v1| < m,|va| < m}.
Then

J o (x,Du;) - VI (v; — Ty (vy))dx = J o/ (x, Du;) - (Du; — Duj)dx.
Ao(m) Ao(m)

Next, let
Ai(m) = {|Ui - Tm(Uj)| < k, |Uj| > Wl}
and
Aj(m) = {|vi — Tu(v))| <k, [v;] = m, [vj] < m}

(i,j=1,2;i # j). Then

J A (x, Duy) - VTi(v) — Tp(v2))dx = J o/ (x, Duy) - Dvy dx
Ay (m) Ay (m)

2—J o/ (x, Duy) - VO dx
A](Wl)
and

J o (x, Duy) - VTi(v) — Tp(v2))dx
A/ (m)

= J o/ (x,Duy) - (Duy — Dup)dx > fJ o/ (x, Duy) - Duy dx.
Aj(m) Aj(m)

(6.1)

(6.2)

(6.4)

Since {|v; — Tpu(v2)| < k} = Ao(m) U 4;(m) U A{(m) (disjoint union), (6.2), (6.3)

and (6.4) imply

J o (x, Duy) - VT (v1 — Ty(v2))dx
G
> J o/ (x,Duy) - (Duy — Duy)dx
Ao(m)

- J o (x, Duy) - VO dx — J o/ (x, Duy) - Duy dx.
Ay (m)

A{(m)

(6.5)
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Similarly, we obtain

JG&/(L Duy) -V Ti(vy — Tp(v1))dx

> J o/ (x, Duy) - (Duy — Duy )dx
Ao(m)

- J o (x, Dup) - VO dx — J o/ (x, Dup) - Duy dx. (6.6)
A (m)

Ay (m)

Now, let A;(m) = {|v1] < m,|v2] <m}. Then

L*( B ) Tilor — Tfen) +J B, 1) T (13 — Ton(01))dlx

Ag (m)

= JA*( )(.%(x, uy) — B(x,u2)) Tie(uy — up)dx >0 (6.7)

and

JA*( )(T/C(Ul - Tm(Uz)) + Tk(l)z — Tm(vl))d\/

= J (Tk(l/ll — uz) + Tk(uz — ul))dv =0. (68)
Ag(m)

0

Combining (6.1), (6.5), (6.6), (6.7) and (6.8), we obtain

L ” {/(x,Duy) — o/ (x, Dup)} - (Duy — Duyp)dx

< J |-« (x, Duy)| |V O|dx + J |-« (x, Dup)| |V O|dx
A[(Wl)

Az (m)

—|—J |-« (x, Duy))| |Du2|dx+J |-« (x, Du)| | Duy|dx
Al (m)

1 5 (m)

+ kj (1B, w)] + |B(x, )|}
{lv1] =m}U{|va| = m}

+ kj d|vl. (6.9)
o1 = m)UJes| =m}

Since A;(m) c{m—k <|v| <m+k} and A!(m) < {m < |v;| <m+k}N
{m —k <|vj| <m}, as in the proof of Proposition 5.2, we see

7
m—oo

im [ (ot Dupl WO =0 (=12
Ai(m)
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and

m— o0

lim J |7 (x, Du;)| | Dujldx = 0 (i, =1,2;i # ).
A](m)

Since %4(x,u;) € L'(G;dx), |v;| < o |v|-a.e. and |v|(G) < oo, the last two
terms in (6.9) also tend to 0 as m — oo. Therefore, letting m — oo in (6.9), we
have

J {o/(x,Duy) — o/ (x,Du)} - (Duy — Dup)dx < 0.
{lur—ua| <k}

Hence, by (A.4), Du; = Duy a.e. in {|u;j —up| < k}. Since this holds for
all k>0, Duy=Du, ae. in G, so that Dvy =Dv, a.e. in G. Thus,
VTi(v1) =VTi(v2) ae. in G for all k>0. Since Ti(v;) eHol’p(G;ﬂ),
i=1,2, it follows that Ty(vi) = Tx(v2) (p,u)-q.e. in G for all k > 0, which
shows vy = vy or uy =uy (p,u)-q.e. in G.

REMARK. The above proof shows the uniqueness of “entropy solutions”
(see the Remark after (4.1)) in case |v| < cap, .

THEOREM 6.2. Let 01,0, e H'"P(G;u) and v; (j=1,2) be finite signed
measures on G such that |v;| < cap, ,. Let u; be the renormalized solutions of
Lu = v; with boundary data 0; (j=1,2). If max(0; —6,,0) e H()l‘p(G; u) and
vi < vy, then uy <up (p,u)-qe in G.

Proor. By Lemma 4.5 we can choose Borel sets E,” < G and E, < G
(n=1,2,...) such that {E;}, {E,} are nondecreasing, v;(G\|J, ES) =0,
v (G\U, E,) =0, zgvi e (Hy"(Gip)" and gz vy € (Hy(Gp)* for all
n. Then v (G\U,E)=0. v (G\U,E) =0, z5vfe(H"(G:)" and
XE-V) € (Hy?(G;p))* for all n.

Let v/ = XEsV] — gy, and let ui” be the solution of Lu=v
that ) — O e HOI"P(G;,u) (j=1,2). Since W < v,(f), ut) < ul? (p,1)-q.e. by
Theorem 2.2. By Theorem 3.1 and the proof of Theorem 4.1, there exist
subsequences {uﬁ,ﬁ}m, j = 1,2, which converge to renormalized solutions u(/) of
Lu=v; with boundary data 0; a.e. in G. By the above theorem, u!/) =y
(p,p)-q.e. for each j=1,2. Obviously, u!) < u® a.e., so that uy <uy (p,u)-
q.e.

(/) such

TueoreM 6.3, Let 01,0, € H'"?(G;u) and v be a finite signed measure on
G such that |v| «<cap, , Let u; be the renormalized solution of Lu = v with
boundary data 0;, j =1,2. Then |uy —u| < ||0y — 02|56 (p,1)-q.e. in G, where

101 — 0|0 = inf{d > 0 : max(|0) — 62| —5,0) € Hy”(G; 1)}
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ProoF. We may assume [|0; — 0a]|,6 < 0. Let 0 > |0 — 61|, and let
uy,s be the renormalized solution of Lu = v with boundary data 0; +6. Since
max(0, — (0, +9),0) € HOI"’(G; u), Theorem 6.2 implies w, <uys (p,u)-q.e.
Next, let vs=v+ (%B(x,u1 +0) — B(x,u1))dx. Then vs; is a finite signed
measure on G such that vs; « cap, , and vs >v. Since u; +0 is a renor-
malized solution of Lu = vs with boundary data 0; + 6, Theorem 6.2 implies
s <uy+0 (p,u)-q.e. Hence, up <u; +0 (p,u)-q.e. Similarly, we see that
up <uy+0 (p,p)-q.e., and hence |u; —up| <3 (p,u)-q.e. in G. Hence the
conclusion of the theorem holds.

6.2. The linear case
In this subsection, we consider the linear case, namely the case
A8 = A and  B(x,1) = b(x)L,

where A(x) is a linear operator RY — R" (i.e., an N x N-matrix) for each
x € G such that x — A(x) is measurable in G and

(AL) AX)E-E>aw(x)|E*  and  [A(x)E] < oow(x)[¢]

for a.e. x € G with positive constants o; and o,; b(x) is a measurable function
on G such that

(BL) 0 < b(x) < pw(x)

for a.e. xe G with a nonnegative constant . Then .o/ satisfies (A.1)—(A.4)
and 4 satisfies (B.1)—(B.3) with p =2. Thus

Lu = —div A(x)Vu + b(x)u.
As in [4], we use the adjoint operator L* of L:
L*u = —div A(x)"Vu + b(x)u,
where A(x)" is the adjoint operater of A(x) for each x e G.

LemMA 6.1. Let y € L*(G). Then the solution of L*u = yw belonging to
Hol"z(G; W) is bounded continuous.

PrOOF. Let o/(x,&) = A(x)"¢ and %(x,t) = b(x)t — y(x)w(x) (xe€ G).
Then they satisfy (A.1), (A.2), (A.3), (A.4), (B.1), (B.3) and (B.2) with D=G
and o3(D) =+ M in [MOI1] with p=2. Since L*u=yw can be written
as

—div o/ (x,Vu) + B(x,u) = 0,
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the existence of the solution u of L*u = yw with ue HOI’Z(G; u) is assured by
Theorem 2.1, and by [8, Theorem 1.1] u is continuous.
To show that u is bounded, let

Ax)'¢, ifxeG

hix¢) = { w(x)é, if xe RM\G

and

Il w(x), if xeG
J =
%10 { 0, if xe RV\G.

Then .o/ satisfies (A.1)-(A.4) on RY x RY and +4, satisfies (B.1)—(B.3) on
RY x R (with p =2). Further note that

|B(x,0)| < %1(x) for xe G. (6.10)

Let LTu= —div /| (x,Vu) — #,(x) and L u = —div o/ (x,Vu) + %(x).

Take a ball B such that GE B. Let u!*) (resp. u(~)) be the continuous
solution of Ltu=0 (resp. L u=0) on B belonging to HOI’Z(B; ). Since
%, = 0, the comparison principle (cf. [8, Proposition 1.1]) implies that u* >0
and u~ <0 in B and hence #(x,u'”)) < #(x,0) < #(x,u?) for xe G. Thus,
by (6.10), L*u™) —yw>Ltu*) =0 and L*'u") —yw <L u~) =0 in G.
Hence, again by the comparison principle, u(~) <u <u*) in G. Since u*)
and u(~) are continuous in B, they are bounded on G. Therefore, u is bounded
on G.

THEOREM 6.4. Let 0 € HY2(G;p), v be a (general) finite signed measure on
G and let hf be the solution of Lu =0 in G such that h} — 0 € HOI’Z(G;,u). If u
is a renormalized solution of Lu=v in G with boundary data 0, then

JGmp dy:JGheLtp d,quJGulZ dv. (6.11)

for any W € L*(G), where u,, denotes the solution of L*u = yw in G belonging to
Hy*(G; ) N Gy(G).

Proor. Let h,(f) = max(min(m +1—1¢,1),0) (m >0). Then h, e &,
hm(0) = hy(—00) =0 and h,(1) =1 as m— oo. Let v=u—0. Since
ul’/jeHOl"z(G; 1) and it is bounded by Lemma 6.1, by Proposition 5.1 we
have

JG A(x) Dt V[l (01l + J ()0} dx = JG (0} v

G

so that
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J [A(x)Du - Vg |hy (v)dx
G

[A(x)Du - Dv]uy, dx + J [A(x)Du - Doluy, dx

{—m—1<v<—m}

B J{m<v<m+1}
+ J b(x)uhy (v)uy, dx = J Do (V)uy, dva. (6.12)
G G

Now, let H,,(¢) Io n(s)ds for m > 0. Then, H, € & and H,(t) — ¢ as
m — oo. Since H,,(0) =0, H,(v )EHl 2(Gyp). Hence

JGA(x)*VuJ; -VH,(v)dx + J b(x)uyHy(v)dx = JG H,(v)y du,

G
so that

JG[A (x)Dv - Vuy |y (v)dx = —J b(x)uy, Hy(v)dx + JG H,(v)yr du

G
— —J b(x)uy,v dx—f—J vy du (m — o0),
G G
where we used the facts that ul/’j is bounded and H,,(v) — v a.e. in G. Also,

J [A(X)VO - Vg by (v)dx — J [A(x)VO - Vuy|dx (m — o),
G G

since [A(x)VO - Vuy] e L'(G;dx) and h,(v) — 1 ae. in G. Hence

m— oo

lim JG [A(x)Du - Vg by (v)dx

= JG[A(x)Vﬁ -V ldx — J b(x)uyv dx + JG vy du.

Thus, letting m — oo in (6.12) and using Proposition 5.2, we have

G

JG[A(X)VH Vuyldx — JG b(x)uyv dx + JG oy du

- ufdvj—l—J u, dvs_—i—J bxuutdx:J uy, dvg,
JG v ¢V G CoJu ¢’
which implies

ulp dy = { x)VO - Vu,ldx + J b(x)0uy, dx — J Oy d,u}
G

+ | udv. (6.13)
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Since Lh} =0, uj € HOI’Z(G; ), L*uj, = yw and hf—0e HOI’Z(G; 0,

J A(x)Vhj - Vu,, dx + J b(x)h(,LuJ/ dx=0
G G

and

JGA(x)*VulZ -V (hE — 0)dx + JG b(x)uf;(h(;" —0)dx = JG(h(;L — 0 du.

These two equalities imply

JG[A(X)VH Vg ldx + J b(x)0u,, dx — JG oy dy=— JG hEy du.

G

Hence (6.13) means (6.11).

THEOREM 6.5. Let 01,0, € H?(G;u) and vy, vy be finite signed measures
on G. Let u;, j=1,2 be the renormalized solutions of Lu = v; with boundary
data 0;. If max(0; — 0,,0) eHol"z(G;,u) and vy < vy, then u; <uy (2,u)-
quasieverywhere in G.

Proor. Let y be an arbitrary nonnegative bounded measurable function
on G and let /j be the solution of Lu =0 such that hj —0; € H,*(G; p) for
each j=1,2. By the comparison principle (cf. [8, Proposition 1.1]), we see
that uj >0 and hj < hj in G. Hence, by Theorem 6.4,

J un//d,u:J hoLlwd;H—J ulZdeJ h(lepd;H—J ul’;d\Q:J uyyr du.
G G G G G G

Since this is true for every nonnegative bounded measurable s, we conclude
that u; <u, ae. in G. Since we have assumed that u;, wup are (2,u)-
quasicontinuous, the assertion of the theorem follows.

COROLLARY 6.1.  Given 0 € H"*(G,u) and a finite signed measure v on G,
the renormalized solution of Lu = v with boundary data 0 is unique.
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