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1. Introduction

In this paper we obtain error bounds for asymptotic expansions of the

distributions of test statistics in a multivariate two-stage procedure. These

statistics can be expressed as a scale mixture of a chi-square variable χ2

p with

p degrees of freedom, i.e.

(1.1) X = σχ

where σ is a positive-valued random variable and is independent of χ2

p. The

scale factor σ is defined by σ = - t r ίS" 1 ) for the case of a multivariate popula-
P

tion, where nS is distributed as a Wishart distribution Wp(Jp, ri). For the

case of two multivariate populations, σ = -{σx + σ2), where σf = - t r ^ " 1 ) , i =
2 P

1, 2, and n ^ are independently distributed as Wpf/^nJ. Hyakutake and

Siotani [6] obtained asymptotic expansions of the distribution of X in the

two cases. Our purpose of this paper is to obtain explicit bounds for the

approximations based on these asymptotic expansions. The method used is

based on a general result (see, e.g., Fujikoshi and Shimizu [5]) for scale

mixtures of the gamma distribution.

In the use of the result it is necessary that we evaluate the exact moments

of σ*1. But it is generally difficult to obtain the exact ones in these cases. In

this paper we derive appropriate approximations for their moments with error

bounds. Using these results, we will obtain error bounds for asymptotic ex-

pansions of the distribution of X.

2. Scale mixture of a chi-square distribution

Here, we consider a scale mixture of a chi-square variable with p degrees

of freedom, i.e.

(2.1) X = σχ2

p.
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Let G(x; p) and g(x\ p) be the distribution and the probability density function

of χp1, respectively. Then the distribution function F(x) of X can be expressed

as

F(x) = Eσ[G(x/(τ;p)].

The following two types of approximations have been proposed (cf. Fujikoshi

and Shimizu [5]): For δ = — 1, 1,

(2-2) Gδk(x; p) = Eσ[G ί f k(x,σ;p)]

where

k-i i

G ί fk(x,σ;p) = G(x;p) + £ -^bδJ(x;p)g(x;p)(σδ - l)j.

Here the coefficients bδJ(x; p) are defined by

τ(xs d;p) g(x;p)
\«V s=l/

or equivalently

b1J(x;P)=-xLγl2

1\x/2),

where Lf\x) is the Laguerre polynomial defined by

Lf\χ) = (-l)jQxχ-λ(d/dx)j(xλ+jQ-χ).

When the exact moments of σδ are not available, we cannot use the

approximation Gδk{x\ p). Therefore, we consider to approximate (σδ — l)j by

a simple variable, m£7 (σ), whose exact moments are available. Namely, sup-

pose that for j = 1, . . ., k — 1,

(z.Jj (σ — Yy = mδ j(σ) + K^ j(σ)

and E σ [ m | J (σ)] can be evaluated. Then, we have the following result:

THEOREM 2.1. Let X — σχ% be a scale mixture of a chi-square variable.

Suppose that for a given positive integer fe, E[σ k ] < oo, E [ σ " k ] < oo and

E σ |>£;(σ)] < oo, = 1, . . ., k - 1. Then, letting

(2.4) G,*fc(x; p) = G(x; p) + * f j } bδJ(x; p)g(x;

it holds that
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sup \F(x) - GUx; p)\ < ^ » E f f [ ( σ v σ"1 - 1)*]

Σ

j=lj

where bδ j(p) = sup 1^,/x; p)g(x; p)\, j = 1, ..., k.
x>0

PROOF. It is known (cf. Fujikoshi and Shimizu [5]) that

(2.5) sup \F(x) - Gό,k(x; p)\ < ^fc w (p)E β [(σ v σ" 1 - 1)*] .

Therefore, the result follows from that

Gδ,k{x\ p) = Glk(x; p) + X -bδJ(x; p)g{x; p ) E σ [ K , » ] .

We note that if the first k — 1 moments of σδ in Theorem 2.1 can be

obtained, we can take Rδ} = 0 for j = 1, ..., k — 1.

3. Test statistics in a multivariate two-stage procedure

Some multivariate two-stage procedures have been proposed (see, e.g.,

Chattergee [1], Dudewicz and Bishop [2]) for the purpose of overcoming the

complexity which arises in statistical analysis of a normal population or several

normal populations with different covariance matrices. For a summary, see

Siotani, Hayakawa and Fujikoshi [7, Sections 5.6.3 and 6.4.3]. Here we con-

sider test procedures for hypotheses

(i) Ho:μ = 0 in

and

(ii) H0:μ1 = μ2 in N^ΣJ and Np(μ2,Σ2\

under a two-stage sampling scheme. For the test of (i), Chatterjee [1] pro-

posed a statistic whose null distribution can be expressed as

(3.1) X = σχ>
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where σ — - t r(5 - 1 ), nS ~ Wp(/p, n) and S is independent of χp. The two-stage

procedure for the test of (ii) is based on a statistic whose null distribution

can be expressed as

(3.2) X = σχ2

p9

where σ = -(σ1 + σ2), <τf = - tr (S^1), i = 1, 2, and Sf's are independent of χp.

Here n ^ and n2S2 are independently distributed as Wishart distributions

Wp(/P, π j and Wp(/P, n2), respectively, with nx = n2 = n.

The exact distributions of X and X are known only when p = 1, 2 and

/? = 1, respectively (see, e.g., Hyakutake and Siotani [6]). On the other hand,

Hyakutake and Siotani [6] obtained asymptotic expansions of the distributions

of X and X with respect to n" 1 . Our purpose is to obtain error bounds

for their asymptotic expansions. For the distribution of X, we shall treat

the case where nx and n2 may be different.

3.1. The distribution of X

It is known (see, e.g., Watamori [8]) that the first four moments of

(3.3) σ = - tr ( S " 1 ) , where nS - Wp(/P, n)

are given as follows:

LEMMA 3.1. Suppose that nS ~ Wp(/P, n). Then the k-th moment of σ =

- tr (S" 1) exists for q = n — p > 2k, and

E(σ3) = d^n3{p2(q2 - 5q + 2) + 6p(q - 3) + 16} ,

E(σ4) = d^n4{p3(q4 - llq3 + 28q2 + Sq - 32) + 12p2(q3 - 9q2 + 18q - 4)

+ 4/7(1 V - IΠ9 + 152) + 4S(5q - 11)} ,

where

d 1 = q - l , d2 = pq(q - l)(q - 3) ,

d3 = P2q(q + l ) te - 1)(<Z - 3)(ς - 5)

and
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<*4 = P3i(q + D(ί + 2)(β - l)fa - 2)(q - 3)(q - S)(q - 7).

Let

(3.4) mόJ = E σ[(σ a - 1)>]

for <5 = 1, — 1. Then, from Lemma 3.1 we obtain that

»»i.i = dΓ'ίP + 1), m l i 2 = d j-^V + p{(p2 + 2p + 7) 9 - 2p(p - 1)}] ,

m l i 3 = dςιl2{3p2 + 3p + S)q3 + p{(p4 + 3p3 + 21p2 + p + 78)q2

-p(5p 3 - 3p2 + 45p - I23)9 + 2p2(p - l)(p - 23)}] ,

(3.5) m1A = ί/4J [12pg6 + 4(3p4 + 6p3 + 37p2 - 5p + 60)g5 + (p7 + 4p6

+ 42p5 - 32p4 + 385p3 - 588p2 + 1824p - 528)q4

- p{(l lp 6 + 8p5 + 306p4 - 504p3 + 2679p2 - 5552p

+ 3904)q3 - 4p(7p5 - 53p4 + 153p3 - 1083p2 + 2375p

- 2556)g2 - 4p2(2p4 + 170p3 - 507p2 + 2388p - 2817)q

+ 16p3(p - l)(2p2 + 19p - 250)}] .

On the other hand, it seems that the exact moments of σ"1 are very compli-
cated. However, we can obtain the following result:

LEMMA 3.2. Under the same notation as in Lemma 3.1, it holds that

E.CIσ'1 - 1|'] < E,[|σ - 1|J] + EUn^xi-^ - 1|']

for j > 1.

PROOF. First for σ > 1, we have

0 ^ 1 - σ"1 = σ - 1 ( σ - 1) ^ σ - 1 ,

which implies

(3.6) \ σ - i - i \ J £ \ σ - i \ J t j = i 2, ....

Next, assume 0 < σ < l and let H = [ Λ 1 ; ..., A p ] be a p x p orthogonal
matrix. Then

Pi=i

- Σ
P i=i
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Here we note that {h'^nS)'1^}'1 (i = l, . . .,p) are identically distributed as

χϊ-p+1 (see, e.g., Siotani, Hayakawa and Fujikoshi [7]), but they are not

necessarily independent. Hence

PJ

1 P

<— y E S [ { | ( Λ ; S " 1 * , . y1 - i\J x ••• x

4. ί

Using (3.6) and (3.7), we obtain the desired result.

Let

(3.8) l2j = E Q n - ^ V i - I)2 ']

Then for j = 1, 2,

_ 2 (p - l)(p - 3)

_ 4 / 3p2 - 20p + 29^ (p - l)(p - 3)(p - 5)(p - 7)
j — —^ I J -J I -|- .

n2\ n J rr

Using the above results, we obtain the following results:

THEOREM 3.1. Let F(x) be the distribution function of X defined by (3.1).

Then for the (non-modified) approximation Glk(x;p) defined by (2.7) and its

error

i.k = fii,*(p) = sup \F(x) - Guk(x; p)\,
x>0

it holds that

ε1>t < μbuk(p){mlιk + {mUk + lk)} (k = 2, 4),
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where bίj(pYs are given in Theorem 2.2, and mXJ and l2j are given by (3.5)

and (3.9), respectively.

PROOF. These inequalities are immediately obtained from Lemma 3.2 and

Theorem 2.2.

Next, we consider the modified approximation Gfk(x; p) with δ = — 1 for

F(x). Since

(3.10) - - 1 = - ( σ - l ) + ( σ ~ 1 } ,
o σ

we can approximate (σ" 1 — 1) by — (σ — 1). Further, its error is bounded by

(3.11) o ^

Using these results, we obtain the following result:

THEOREM 3.2. Let G*i 2(x; p) be the modified approximation defined by

(2.9) with m*ίΛ(σ) = -(σ - 1). Then it holds that

sup \F(x) - G* l i 2(x; p)\ < - {6- l f l(p) + 6-i i2(p)} {w l i 2 + (m l i 2 + J 2 )}.
x>0 *

3.2. The distribution of X

First, we consider the case when p is arbitrary. The following lemma

is useful to obtain error bounds for asymptotic expansions of the distribution

of X:

LEMMA 3.3. Let σ1 and σ2 are positive and mutually independent, and let

(3.12) σ=l-(σi^σ2).

Then for j = 1, 2, ...

(i) E,[(σ - 1)'] = 2"' ί f W l f o - irf]Eff2[(σ2 - 1)'],
i=o V/

(ii) E.CIσ"1 - 1|'] < E ^ d σ f 1 - 1|̂ ] + E^CIα,"1 - 1^].

PROOF, (i) is obvious from (3.12). Next, if 0 < σ < 1,
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0 < σ~ι - 1 < {σ1 A σ2)~1 - 1 = σ[' v σ2~
γ - 1 .

Similarly, if σ > 1,

0 > σ" 1 - 1 > (σx v σ2y
1 - 1 = σ^1

 Λ σ2"
1 - 1 .

Therefore

ίσf1 - 1) v ί^"1 - l)\j, |(σfx - 1) Λ (σ^1 - \)\j}

which implies (ii).

Using the above results, we obtain the following results:

THEOREM 3.3. Let F(x) be the distribution function of X defined by (3.2).

Then for the approximation Glk(x;p) defined by (2.7) with σ replaced by σ

and its error

it holds that

[ . Σ
where

(3.13) Λ w = E5[(σ

= sup\F(x)-Guk(x;p)\9
x>0

Σ

Σ M°* + 4°}] (* = 2, 4),

(3.14) /}'> = EKπΓ'χJ-p+x - l ή , i = 1, 2 .

PROOF. These inequalities are immediately obtained from Lemmas 3.2,

3.3, and Theorem 2.2.

Next, we consider the modified approximation Gftk{x; p) with δ = — 1 for

F(x). Using (3.10) and (3.11) with σ replaced by <τ, we obtain the following

result:

THEOREM 3.4. Let G*ίt2(x'9p) be the modified approximation defined by

(2.9) with w? l t l(σ) replaced by — (σ — 1). Then, it holds that
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sup \F(x) - G*ia(x; p)\ < \ {b.iΛ(p) + b_ia(p)} Γm1>2 + £ {m?,>2 + I
x>0 ± L » = 1

Now, in the following we consider the case p = 2. For this special case,

we can easily evaluate the exact moments of both σ = -tr(s" 1 ) and σ"1 as
P

follows:

LEMMA 3.4. Let σ = - t r ^ " 1 ) , where nS ~ Wp(Ip,ή). When p = 2, it

holds that

(i)

(ϋ)

if n-2j-

for

PROOF. When

• 1

P

>o,

E(σ

E ( σ-

= 2,

J) =

-J) =

we

n

π -

n

n +

can

- 1

y -1

- 1

write

nJ

Y\{=1 (n - i)

.Πi=έ(n + 0
L n

nS as

where t\ ~ χl-i+1, i = 1, 2, ί12 ~ N(0, 1) and t n , ί1 2 and ί22 are mutually

independent. This implies

where 7] = ίgΓa"1, i = 1, 2 and Γ3 = if x + ίf2 + ί!2 It is easily seen that (i)

(Tί9 T2, 1 - Γx - T2) - D3(n/2, (n - l)/2, 1/2), a three dimensional Dirichlet dis-

tribution with degrees of freedom n/2, (π — l)/2 and 1/2, and therefore 4 ^ ^ ^

B((n — l)/2, 1), a beta distribution with degrees of freedom (n — l)/2 and 1,

(ii) Γ3 ~ χ 2 π and (iii) (T1? T2) and T3 are mutually independent. Using these

properties, we can easily obtain the desired results.

From Lemma 3.4 we obtain that for p = 2,

3 _ n2 + l l n - 3 0
mM-;ΓΓ3 m i 2-(π-2)(n-3)(,,-5)'
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13n2 + 37π - 210
(3.15) m1>3 =ll3

 (n - 2)(n - 3)(n - 5)(« - 7)'

3(«
4
 + 38n

3
 - 181n

2
 - 514n + 2520)

miΛ
 ~ (n - 2)(n - 4)(n - 3)(n - 5)(n - 7)(n - 9)

:

2 _ n
2
 + 8n - 1

n (n + l)(n + 3)(n + 5)

3n
5
 + 62n

4
 + 426n

3
 + 28n

2
 - 45n - 90

Using (3.15) and (3.16), we can improve Theorems 3.3 and 3.4 (in the

case p = 2) as follows:

THEOREM 3.3'. With the same notations as in Theorem 3.3 it holds that

for the case p = 2,

ε l t l < 0.36788[m}(2 + {m%2 + mL 2^} 1 ' 2] ,

ε1>2 < 0.23058[m l ί2 + mL1^ + w!?^] ,

ε1A < 0.13242[m1)4 + m(Λ>i4 + m ^ ^ ] ,

where m^j are the ones obtained from mδJ by replacing n by nt.

THEOREM 3.4'. With the same notations as in Theorem 3.4 it holds that

sup \F(x) - G?! 2(x; 2)| < 0.319291^! 2 + m{}\ 2 + m^\ 2} .

REMARK. For the numerical values of b_xj(p) and bί j(p% see Fujikoshi

[3] and Fujikoshi and Shimizu [4], respectively.
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