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1. Introduction

Given a differential equation

1D y' = f(x, y),

where f(x, y) is assumed to be a sufficiently smooth function.

In numerous papers [ 1—16]Y, various methods are obtained for bounding
or approximating the errors in numerical integration of (1.1) by one-step
methods with the aids of the functions that bound or approximate the
function f,(x, ), the truncation error and so on.

To avoid the use of such functions for practical purposes, in this paper, »
steps of integration with a fixed step-size are considered as one step and a
simple method is obtained for approximating the errors without computing
explicitly any function other than f(x, y). The method is illustrated by two
numerical examples.

Since usually the step-size is not changed so often and the estimate of
the error is not always necessary for each step of integration, it will not be
a serious restriction to fix the step-size for the n steps of integration, and
this method may be used as an integration method with a check on the
accuracy of the numerical solution.

2. Preliminaries
In this paragraph and the next, we state five lemmas and one theorem
without proof, but they are proved in paragraph 6.
In the sequel, for simplicity, we assume that f(x, y) is defined, continuous
and bounded in the strip
S :xo=x= 1+ nhy, |y| <oo,

and that the partial derivatives of f(x,y) up to the necessary order, say s,

1) Numbers in square brackets refer to the references listed at the end of this paper.



98 Hisayoshi SHINTANI

exist and are continuous and bounded in S, where » is a positive integer and
ho is a positive number.?

For any » and » such that x <uw=<xo+®m—1)h and |v]| <oo, let y(x; u, v)
be the solution of (1.1) such that y(u; u, v)=v, and @(u, v; 2) be the increment
function of any one-step method of order p (p==1) for approximating
y(@w+h; u,v) (0<h=<ho) [6]. Then y(u+4;u,v) can be written as follows:

2.1 y(@w+h;u,v)=v+h0w,v; h)— T (u,v; h)
=v+ hA(y, v; k),

where T(u, v; h) is a truncation error,

(2.2) T(u, v; B) = O(h* )%,

and A(u, v; &) is the exact relative increment function [6].
We are concerned with the solution

2.3) y () =y (%; %0, 30)

and consider the case where the equation (1.1) is integrated numerically from
%9 to xo+nh with step-size 4 (0<A<h,). Hence we put

(2.4) xj1 =% + (j+ 1)k,

(2.5) piv1 = 0(xj, y55 h),

(2.6) yis1=yi+hpjn  (j=0,1...,n—1),
2.7 di=y; —y (),

and

(2.8) fi=f(=i, ¥1) @=0,1,.-.,n).

To take into consideration the propagation of error, along with y(x) we
consider a neighboring solution

2.9 y (w5 e) =y (x5 20, yo —€),
and put
(2.10) c(x) =y(x) —y(x;e).

2) The assumptions stated here are too severe for practical purposes but they are relaxed at the end
of paragraph 3.
3) Here it is assumed that s=p.
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Then it is seen that, if ¢ is an approximate value of the error of y,, then c(x))
++d; provides an approximation to the error of y; and that d; is the local error
of y;. For these reasons we try to obtain the approximate values of ¢(x;)+d;
and d; (0<i<n).

We note that c(x) is the solution of the differential equation

(2.11) ¢ =F(x, y(x), c)
satisfying the initial condition
(2.12) c(xo) =e

and that it can be written as

(2.13) c(x) =e0(1),
where
(2'14) F(xa ¥ u’) =f(x, _'}’) _f(x, y— u')-

Let r be a positive integer not greater than n, and let

(2.15) m=2%—r+1,
(2.16) T(x, y; h) =W’ ,%_':l o;(x, 3) + O™ 1YY,
(2.17) A (x, 3 h) = il KA (x, 3) + O(R™),
and

(218) dj= hpej (] = Oa 1,. ] n)

Then we have the following

Lemma 1. e; and F(x;, y;, d;) can be written as follows:

(2.19) o= }"Ll WP, (j) + O™,
and
(2.20) Fs, 75 d) = W0 3HQU) + 0@ D] (i=0,1,..,m)

4) Here it is assumed that s=p+m.



100 Hisayoshi SHINTANI

where P;(x) and Q;(x) are polynomsials in x of degree at most i,

(2.21) P;(0)=0
and

Lemma 2. There exist constants a,; and by; (k, j=0, 1,..., n) that satisfy
the conditions

(2.23) 13 g+ b=k (=1,2.,m)
=r) izo
and
(2.24) Sby=0  (@=0,1,.,1).
7=0

Lemma 3. For y(x) it is valid that

(2.25) () — y (o) = h z ary () + z by () + O™ )

and

(2.26) Siby @) =0 (h=0,1,..,n),
i=0

where ay; and by; (k, j=0, 1, 2,..., n) are constants satisfying (2.23) and (2.24).

Corresponding to (2.25), we put

n n j
(227) Sk zyk_yo_h%akjfj_h'l‘{bijipq,
J= 7= q=
(2.28) gr=dr—S  (k=0,1,..,n),

and define §, by the formula

1, if S1j71by; =0,
(2.29) 0r = i=0
0, otherwise.

Then we have the following

Lemma 4. g, can be written as follows:
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(2.30) g =WLEH Ra®+ 3 Hal+00™) =01, ),
where
(2.31) Ri(w)= SuQi(t)dt =12, m),

0

cii'S are constants,

(2.32) coi =0,
and
(2.33) Chri1=0 when 0, =1.

3. Approximate error formulas

From lemma 4 it is readily seen that, if

3.1) mz=p+1,
then
3.2) gr =07

Hence we have
Tueorem 1. Under the condition (3.1), the local error of y, satisfies
3.3) i — y () = Sp + O(R?*2) k=1,2,..,n).

To obtain better approximation to the error, in the sequel, we consider
the case where the condition

(3.4) m=p+r+1,

namely the condition

(35) 2—n=p=1
is satisfied.

Let
(3.6) X = x, = % + uh 0=u<n)

and, corresponding to (2.19) and (2.30), we define the functions e(x) and g(x)
by the formulas
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3.7 e(x) = ﬁ; W P,(w) + B a(w)
and
(3.8) g@=RLDH Ren@+ 3 Ke@]+r b,

where a(u), ¢;(u) and b(u) are interpolation polynomials of degree at most n
such that

3.9 e(xe)=er, ck)=cu, glaw=ge (*=0,1,...,n).

Making use of these functions and y(x), we define the functions d(x), v(x)
and S(x) as follows:

(3.10) d(x) = he(x),

(3.11) v(x) =y(x) + d (),

and

(3.12) S(x) =d(x) — g ().

Then evidently

(3.13) d (%) = dp, v (%) = Y, S(x) = Sy,

and we have the following
LemMA 5. Let w(x;e) be the solution of the differential equation

(3.14) w' =F(x, v(x), S(x) + w)

satisfying the initial condition

(3.15) w(xo; €) =e.

Then, under the condition (3.5), it is valid that

(3.16) e —y(2e; €) = S + w(we; €) + OB +2%k+1) (k=0,1,..., n).
Since S, (k=0, 1,--., ») are computable, this lemma shows that, for the

estimation of the error of y,, we have only to obtain the approximate value

of w(x;e). For this purpose we use some one-step method. It is desired,
however, to use such a one-step method as requires only the values of the
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derivative for equidistant abscissas, because the values of S(x) and »(x) are
known only for x=x, (=0, 1,...,2). Among such methods are Euler, improved
Euler, modified Euler, Kutta, Heun, and Runge-Kutta methods and so on.

Let ¢, w; ) be the increment function of such a one-step method of
order ¢ (1<<¢=p-+r+1) for approximating w(x; e) that does not require the

evaluations of the derivative for x other than x =i+ %— jh(j=0,1,..,k),

where k is a positive integer not greater than n. Let ! be an integral multiple
of k& not greater than n, : be the greatest integer not exceeding /! and put
y=il.

We consider the case where the equation (8.14) is integrated numerically
from x, to x, with step-size I%, and put

(3.17) gr1(©) = ¥ (), w;(0); 1),

(3.18) w;y.i(e) = e+ lhzj,(e) (j=021..,¢—Di),
where

(3.19) 27100 = 2,(0) + ¢;(@),

(3.20) wo(e) =e,

and

3.21) z(e)=0.

Then we have the following
TaEOREM 2. Under the conditions (3.5) and
(8.22) p=n—r—1, 1=¢=p+r+1,

1t 18 valid that

(3.23) yi—v(x; ) =Ti(e) + e 0GR + ORIy (j=1, 2L, d),
where

(3.24) Ti(e)=S;+ w;(e),

and

(3.25) l;=min (g, r + 0;).

Ti(e) is the desired approximate error formula for y;, where e is an
approximate value of the error of y,.
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Remark 1. In the case where n=v, y(x,) can be written as follows:

(3.26) 5 (o + 1) =y (x0) + nh O (wo, 303 k) + O 1Y),
where

]_ n n j
(3.27) 6o, y0; =" [Xaufi + 31bus 5_1 P — Lz (0)].

Hence @(x, y; h) can be considered as the increment function of a one-step
method of order p+I,. In this way we can generate one-step methods of
higher orders from those of lower orders.

Remark 2. The assumptions stated at the beginning of paragraph 2 can
be replaced by the assumption that there exists a positive number M that
satisfies the following conditions:

1°. f(», y) is defined and continuous in the domain
G : xp = x = + nho, lyléM

and the partial derivatives of f(x, y) up to the order s exist and are continuous
in G, where s=max (p+m, ¢+1);

2°. y(x) and y(x;e) exist over the interval [, x,];

3° O(wi, yi; ) (=0, 1,..., n—1) are defined;

4°. w(x) and w(x;e) exist over [, %, ];

5°.  ¢(x;, wi(e); r) (j=0,1, 2L,..., ¢—1)I) are defined.

4. Round-off errors

In this paragraph, we take into consideration round-off errors and denote
by a the computed value of a.

The computed values #;, @;(e) and T;(e) can be written as follows:

4.1 Pi=Fia+hp;—r1} @=12,...,n),
4.2 wi@=e+12;(e)—s;  (j=1, 2L, ., 1),
and

43) Ti@=3$;+ ;) — 1,

where r}, s; and ¢; are round-off errors,

(4.4) Fo =90, Wy =e.



Approximate Computation of Errors in Numerical Integration 105

From these we have

(4.5) Pi—yi=Fia— i+ h(pi —pi) —ri
and
(4.6) w;(e) —w;(e) =lh[2;(e) — zj(e)] — s;.
Let
4.7) u=max (| p: — pil, 12;@© —z; @I, | fx—fal)

(L:]-, 2".‘, n;j:l, 2[,,.., t,l, k:O, 1,--.’ n).

Then S, @;(¢) and T;(e) can be written as follows:

(4.8) Se=P—n+ S+ 00 —r  (k=1,2,..,n),
4.9 wi(e) =w;(e) + O(ht) — s; (G=12, 1)
and

(4.10) Ti(e)=9;i—y;i+ Ti(e) + OGhtt) —r; —5;— 1),

where r;’s are round-off errors.
From these we obtain the following

TaeoreMm 3. Under the condition (3.1), the local error of 4, satisfies
(4.11) =y =Si + O +00t)+r  (k=1,2,...,m)
and, under the conditions (3.5) and (3.22), it is valid that
(4.12)  §;—y(x; &) = T;(e) + OGS + OB+ + Ot + rj + 55+ 1;

G=12,..,1),

where !t is defined by (4.7) and r;, s; and t; are round-off errors in computing
Sy, wi(e) and S;+1;(e) respectively.

From this result it is seen that round-off errors other than r;, s; and ¢;
appear in (4.11) and (4.12) in the form multiplied by A so that S, w;(e) and
S;+w;(e) should be computed minutely.

To compare S, with round-off errors, we rewrite S, as

(4.13) Ri=yr—y0o—h _i:)akjfj - _z;ubkj}’ja
i= i=



106 Hisayoshi SHINTANI
so that theoretically
(4.149) v, =Ry — S; =0.

Then R, and #, can be written as follows:

A n A~ n J
(4.15) sz_'}/}k—yo"h}%akjfj_ Zlbkj }L;(hﬁq'ré)‘t/:s
i= i= 7=
and
7 j
(416) f)kz _}:{bkj E:IT;‘Jf‘Tk—t,/z—tZ,
i= q=

where z; and ¢; are round-off errors. Clearly #, is an aggregate of round-off
errors.

- From these we may conclude that, if the local error of y, dominates
round-off errors, then 9, must be significantly smaller in magnitude than $,.

5. Numerical examples

In the following examples, n=]=4 and the Runge-Kutta method is used
for approximating y(x) and w(x;e), so that p=¢=4. S;, S, and R, are
computed by the following formulas:

(51) Sz=yz—yo—’}lp+ %ﬁh(P4—P2 +p3—P1),
(5.2) Sy =1ys— yo — 2hP,
and

1 4 1 )
(5.3) Ry= ﬁ‘[g’(ﬂ —50) +32(ys —y1)]— 2h<2f2+ A fi+ 35 A fo's
where

4 1 ., 8

(5.4) P=2fz+—7“A f1+§5—L\ fot ﬁ(P4"—P3+p1—P2),
(5.5) m=8, r=1, 0s=1,

and A is the forward difference operator.

Computation is carried out in the floating-point arithmetic with 39 bits
mantissa and rounding is done by chopping. At the start of integration, e
and % are set equal to 0 and 0.05 respectively. One step of integration in our
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extended sense is performed in accordance with the following program:
(1) set parameter ¢=0;
(2) compute y; (=1, 2, 3,4) and S;
(8) when the inequality

(5.6) SEARSN (e=5x10"7)

is not satisfied, halve the step-size, set =1 and go to (2); °
(4) when (5.6) holds, compute v,;
(5) when the inequality

(6.7) o8 =10l  (@=5x10")

is not satisfied, if ¢=0, double the step-size and go to (2); if e=1, stop the
machine (for then computation must be performed in multiple precision.);

(6) when (5.7) holds, compute S, and T,(e);

(7) replace yo, % and e with x4, $4 and T.(e) respectively. ‘

The criterion (5.6) is set up to control the local error and (5.7) is made so
that round-off errors may not dominate the local error. By our experience
the criterion (5.7) improves the accuracy of the numerical solution in some
cases.

ExawmeLE 1.

(5.8) ¥y = 2xy, ¥(0)=1.
The solution is y=expx® and the results are shown in table 1. The actual
errors of the numerical solution computed by the above program with process
(5) omitted are —1.487—06, —1.218—04 and —3.226—02 for x=1.0, 2.0, .and
3.0 respectively. Comparing these results with those in table 1, we can
understand the significance of the criterion (5.7). The only difference in the
computation procedure is that the step-size used in the first and the second
step of integration in our sense is 0.1 and 0.05 for the program with process
(5) but 0.05 and 0.1 for the program without process (5).

ExampLE 2.

(5.9) y =124° — §xy_, y(—1)=1.

The solution is y=x' and the results are given in table 2. For this equation

the origin is a singular point. Since the general solution is y=x'+Cx~%, even
a small error will cause a great trouble. In fact, integrating (5.9) by the
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Runge-Kutta method with a uniform step-size 27%/10 (=1, 2,..., 9), we could
not have even one significant figure for x=—0.1. Without knowing the
actual solution, however, we can readily see from table 2 that even one
significant figure is not obtained for x=—0.3, —0.2 and —0.1.

Table 1 Table 2
€rror| ‘error
computed actual computed actual
X X
1.0 ~8.361-07 | —8.720—07 —0.9 | —2.374-07 | —2.370-07
—0.8 —8.889—-07 —8.877-07
2.0 —9.946—-05 —9.941-05 0.7 —9.925-06 —9.922_06
3.0 —3.057—-02 —3.039—-02 —0.6 —1.007—-05 —1.006—05
4.0 —6.386+01 | —6.343+01 —0.5 | -4.331-05 | —4.328-05
—0.4 —2.581—-04 —2.580—-04
5.0 —9.764+05 —9.687+05 —0.3 —9.575-03 —9.578—03
—0.2 —6.599—02 —6.706—02
—0.1 —1.688+-01 —1.691+01

In both examples errors seem to be approximated fairly well and this
method may be used as an integration method with a check on the accurracy

of the numerical solution.

6. Proof

6.1 Proof of lemma 1

From (2.7), (2.6), (2.4) and (2.1), it follows that

(6.1)

dj1—d; = h[A(x), y(x) + djs k) — Ay, y(x); B)] +

+ T(xj, y(x,) + d,, h)

Since dy=0, from (2.2) it is readily seen that

6.2)
and so

(6.3)

d; =0,

(]:O> 1)""”’_1)'

@=0,1,..,n).

By (2.16), (2.17) and (2.18), (6.1) can be written as follows:

(6.4)

€jiy1 — e = g]{hi(‘?i(xh y(x.l)) +

"Gl

i+I+U—Dp=m
i1z1

___h(l—l)p+i

al
By A, y(x))el +
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L i 00 )6l m+1
+ Mzié T gy ¥i e y @)e) + O™,
Making use of the fact that
m 1
(6.5) y) =50+ 331 ()Y@ (o) + 0G™,
S oq!

and expanding ¢;(x;, y(x)), oy ,A (x5, y(x,)) and oy </), (%;, y(x;)) at xo, we can

write (6.4) as follows:

(6.6) ej+1—e,~=i§’::1h"ai~1<j+1>+ > hb<'>1<]+1>e + 0@

l

II\/ N/\

where a;_1(x) and 5”,(x) are polynomials in x of degree at most i—1.
Since e;=0, summing (2.28) from j=0 to £—1, we have

m .k
(6,7) ek:i‘{htz%ai—l(]')‘l" ; hi }_'b(l)l(l)ej 1+O(hm+1)
i= i= =
NES
(k:]-) 2;"') n)

Substitution of (6.3) into (6.7) yields
(6.8) er = hkay + O(h?),

so that (2.19) and (2.21) are valid for m=1 and i=1 respectively, where
Go-——"do(O).

Let B,(x) be the Bernoulli polynomial of degree n. Then it is well known
that

(69) S = B+ D= B (=0

The right hand side of (6.9) is a polynomial in % of degree I+1 without the
constant term. From this fact follow readily (2.19) and (2.21) by induction.
Although (2.19) is proved only for j==1, since ¢ =0 and (2.21) holds
(2.19) is valid also for j=0.
By (2.14), (2.17) and (2.18) we have

b

(6.10) F(xj, y5, d;) = f (a5, y () + d;) — f(x, y(%,))

= hi’[ 2 lll RU- 1)ow(x],y(xj))8 + O(hnwl)]

1+U~-Dp=m
Iélp
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I
Substituting (2.19) into (6.10), making use of (6.5) and expanding gy_’ F(a;, y(x7))
at xy, we obtain (2.20) and (2.22). This completes the proof of lemma 1.

6.2 Proof of lemma 2 and lemma 3

Let E, A and D be the shifting, forward difference and differential
operators respectively [7]. Then by the well-known formulas

(6.11) E=1+A
and
(6.12) hD =1log (1 + A),

A and E*—1 can be rewritten as follows:

(6.13) A= (a0 + mA + @A’ +...) kD
and
(6.14) Ef—1=(1+4a)}—1= i(f)A

i=1

= (Tro + Tid + Ti2A” + .. )hD (k=1,2,..),

where

(6.15) T =31(- DM'}}J na(;F) =12,
(6.16) Tio=Fk,

(6.17) a=7Ty (@=0,1,..)

and

(6.18) (’z) =0 for 1>k

Then by (6.13) and (6.14), for any function z(x) which is m+1 times continu-
ously differentiable on [, xo+mh ], it is valid that

(6.19) z(xp) — z(%0) = il,:};:)l TrA'Z (ko) + Oom™h),

and
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m—1 N
(6.20) Alz(w) =~ D) a: A1 (o) + OB (I=1,2,..,m).
i=0

Suppose that n>r-+1 and let 4 be the matrix

gy G3y oo , Qi1
@3, Qgy o , Qii2
(6.21) A=,
.
GBrily Grioy " s @21

where l=n—r. Then, from (6.20), we have a system of linear equations

i/ n+l_s N 1 ‘ \

I hA" z (x0> i A"Z(xo)_hzaiA”_1+1z’(xo) + 0(hm+1) E
I . | . i=0 .

(6.22) 4 ' iz . ,,
! .

!\]lAﬂ+lz'(x0) /} LA“—IZ(xO)- h %a;A’H z/(xo) + O(hm+1) /l

To show that A is non-singular, making use of (6.15) and (6.16), we rewrite
| 4| as follows:

R S ST 1

o, al;"'aall 1+0’ 1+l, i 1+l ;

0, 11 1

(6.23) |4l =| . 4 !:(—1)’ 210> 2410 T > *éq_"l‘;‘
0, | 1 1. 1

I+140 I+1+0 7 14141 |

Then, from the well-known identity due to Cauchy, it follows that

11201
©24 Al =D e o0

Hence (6.22) can be solved and the solution can be written in the following
form:

(6.25) RA" 5 () = :ifa,.m”kz (x0) + b 3 B2 (x0) + O (™)
= k=r

G=L12,..,n—r).

Substituting this into (6.19), we can rewrite (6.19) as follows:
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(6.26) z(a) — z(x0) = h i; Ui N2 (30) + SJ VA z(%0) + O(R™ ).
i= j=r+1

Since
6.27) N=E-1 =50 (])E,
=0 l
if we put
(6.28) (= 1Din, ( l.) = a;
= ¥ ] 7
and
LN s l A
(6.29) PSR f»,,j(].)zbk,- (=0,1,..,n),
then it follows that
(6.30) 2(x) — z(x0) = h zo a2 (%) + >Jo basz(x;) + O™,
7= 7=
(6.31) é Vi Az (a0) = g_%bkfz (),
j=rt+ ji=
and
(6.32) a;=b;=0 (j=0,1,..,n),

because 7,;=0 (=0, 1, 2,..., m—1).
It is readily seen from (6.19) that (6.30), (6.31) and (6.32) are valid also
for the case n=r with vy;;=b;;=0 because m—1=n.

Since
» o, 1
(639 )= S3 GO0 + 06,
©630) 2 (@) = ST RO () + O,
= :
6.35) Nz (a0) = 0GP,

and z(x) is any function smooth enough, from (6.30) and (6.31) follow (2.33)
and (2.24). This proves lemma 2.
Lemma 3 follows readily from (6.30), (6.31) and (6.35).

6.3 Proof of lemma 4
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From (2.7), (2.6), (2.18) and (2.19) it follows that

(6.36) 3 (xr) — ¥ (x0) = Y& — Yo — da,
(6.37) ﬁ] briy (1) = 20 bejy; — 2 beidy,

ji=0 j=0 j=0

n ”n n 7
(6.38) Zbkjyj:yozbkj+712]bkj > P>

i=0 7i=0 j=1 g=1
and
(6.39) >_6 besd; = hﬂ[ﬁ'gl B >40 bis Pi(j) + O ()],
7= = J=

By (2.24), further (6.38) and (6.39) can be written as follows:

” n 7
(6.40) Dbk =h 23 bk 2 pg,
i=0 j=1 =1
and
(6.41) Z, =h ﬁ, %J i Pi (]) -+ O(hi’+m+1).

=0 i

From (6.10) and (2.20) it follows that

(6.42) ¥ @) = [ (o, 3 () = f; = B SHQu()) + 0@,

Substituting (6.36), (6.42), (6.37), (6.40) and (6.41) into (2.25), we have

7 n u
(643) yk'—yo"‘dk:hzéakjfj"l'h z{bkj Xipq—
i= j= qa=

'_ hp[_Zithl Z:fh:jQi(j) + }Zn_ilbk]P,(]):l + O(herl).
= J= i=r

Since by (2.23)

(6.44) S tay =W S a=1,2,.
o l I =

from (2.31) it follows that

(6.45) j%akjoi ()= Ris1 (k) — é{‘,)bkfRuJ( 7.
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Further by (2.24) it holds that
(6.46) SibRa(D=0  G=0,1r—0)

Substituting (6.45) and (6.46) into (6.43) and making use of (2.27) and (2.28),
we have (2.30), where

(6.47) cri = 2 bis [P () — Ri(j).

Clearly (2.33) holds and (2.32) follows from (6.32). Thus lemma 4 has been
proved.

6.4 Proof of lemma 5
Since by (2.14) and (3.11)

(6.48) Fle, v(x), S() + g () = F(x, v(), dx)
= f(x y (@) + d®) — f(x, y(«)),

by the same reasoning as for (6.10), it is easily seen that
(6.49) P, v(), S@) + g () = T30 Qiw) + 0™ )]
Differentiating (3.8), we have

(6.50) g (%) = hﬂ[g‘l HQ.w) + g‘,ﬂlf‘lc; W] + 7" ().

Since m=p+r by (3.4), by our assumptions there exists a constant K such
that

(6.51) lg' (%) — F(x, v(x), S + g®))| =Kr""  (0=u=n).
Let L be a constant such that the inequality

(6.52) Ify (o, )| =L

is valid for any point (%, y) belonging to S, then by (2.14) the inequality

, (653> 'F(x> v(x), S(x)+ wl) —F(x7 v(x), S(x) + w2)I§L|w1 - w2|
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holds for any numbers w; and w,.
Since g(x)=0, if we put

(6.54) w(x) = w(x; 0),

from the well-known theorem in the theory of ordinary differential equations,
it follows that

(6.55) g —w@)| < @ 1) O <un),
so that
(6.56) g @) =w(x) + 0@,

Therefore we put

(6.57) w(x) = P SRR 1 (@) + 727 2 () + B 22 (u, B),
i=1

where

(6.58) 2(0) = z(0, k) = 0.

Then we have
(6.59) w (%)= h? STRQ; () + kP 2 () + B 2 (ay ).
=1

On the other hand, since by (3.12), (3.8) and (6.57)
660) S+ wl=d@+ 1w — 6@+ 0w,
it follows that
661 Flx, o), S+ w(@) = £ () +d@) = [ y @) +
£ 3 () — o 7 () + dx) — S() — ()
= 1 S0 Qi)+ 1y Gy 30) () — 6y 1G] + O,
Comparing (6.61) with (6.59), we find that

(662) z(w) =0,
so that
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(6.63) w (%) = h? % R () + O (R4,
i-1
and
(6.64) d(x) = S(x) +w(x) + hl’+f+lcr+l<u) + O(hp+r+2)_

Now, from (2.11) and (3.14), it follows that

(6:65) w'(x) +¢ (x) = F(x, v(x), S@) + w(®)) + Flx, (), (=)
= F(x, v(x), S(x)+w(x)+c(®)) + F(x, y(®), S(x) + w(x)—d ()
— F(x, y(x) — ox), SG) + w(x) — d())
=F(x, v(x), S(x) + w(x) + c(x)) + O ).

Since by (2.12), (6.54) and (3.15)

(6.66) w (%) + c(x0) =,

by the same reasoning as for g(x) and w(x), it is seen that

(6.67) w(®) + c(x) = w(x; e) + O +2).
From (6.67), (6.64), (2.10) and (8.11), it follows that

(6.68) v(x) —y(x; e) =S + wlx; ) + 7o (@) + ORT).

Then, by (3.13), (8.16) holds. This completes the proof of lemma 5.
6.5 Proof of theorem 2

From (3.7) and (3.8) we have

k m
(6.69) . jxk e(x) = SV4 P, (@) + B (u)
=1
and
k m .
6.70) A jik g@ =W RE @+ > K@+ ()
i=1 i=r+l

*k=1,2,..).

Since a(u), ¢;(w) and b(u) are polynomials of degree at most n, P;(») and R;(u)
are polynomials of degree at most i and m>n+1 by (8.5) and (2.15), from
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(6.69) and (6.70) it follows that

(6.71) % (Zk e(x) = O(h)
and

, & Om*®, 0<k<r+1 or k=n+1,
€7 " a8 O™, r+1<k=<n,

so that by (3.10) and (3.12) we have

(6.73) Rt j:k d(x) =0®**)
and

(6.74) * j:k S(x) = O(h?*<),
where

(6.75) o, =min (k, r + 1).

Further by (3.11) we have

dk
(6.76) Wv(x) =0()
and
dk
(6.77) *(ka—S(x) =0(Q) *k=0,1,...),

117

because p=1 by (3.5) and p+r+1—n=0 by (3.22). Also by (2.13), (6.60)

and (6.67) it is seen that

(6.78) S&) + w(x; ¢) = e-0(1) + O+

Now, to determine the order of the truncation errors of w;(e) (=1, 2l,

.-, tl), we shall show by induction that

k+1

679 K- w(ee) =0 + 00D (=0, 1,..., pr+1).

dxk+1

By definition w(x;e) satisfies the equation

5) Here it is assumed that s=k+1.
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(6.80) w' (x; ¢) = F(x, v(x), S(x) + w(x; e))
= f(x, v(®)) — f(x, v(x) — S(x) — wlx; ¢)

From this we have by (6.78)
(6.81) h';;c' w(s; ¢) = [S() + w(x; )]-0(1)

=e0(h) + 0w+,

because f,(x, ) is bounded in S. Thus (6.79) is valid for k=0. Hence suppose
that (6.79) holds for £=0,1,...,j—1 (j=<p+r+1). Then we have

k+1
(6.82) : %mw(x; ) =e0L) + Oy =0(1)  (k=0,1,..,j—1),
and so
(6.83) SO+ (x; ) =01)  (=0,1,.., ),

because p+a,—k=0 provided k<p+r+1, where f®(x) denotes TZLT ).

Further, from the assumption, it follows that

(6.84) RSP (x) 4+ wD (x5 €)]
= BRSO () + B (w; e)]
= W L0 ) + e O (B + O (R i1 71Y]
=0+ 0  (=0,1,.,)),

because (6.84) is evidently valid by (6.78) for ;=0, and

ptl+r+1+(G—i) (G=r+1)
(6.85) jtl—itpta=
p+1+j (i<r+1

and

ptl4r+1+4(+1—0) G—1=r+1
(6.86) j+1—i+p+ai,+1=
p+1+4j (—1<r+1)

for i>1.

Differentiating (6.80) j times and multiplying it by #’*', we see that
1w+ (x; ) can be expressed as a linear combination of the terms of the
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form as follows:
. Vi aa+/3
(6~87> U(ﬂl, ﬂ%"‘} ﬂ]; Vl) Vayeovy y]'; a: B) :h‘]+1 [”(U(M)(x))ﬁiﬂf(x) v(x)) -
i=1 0:20 ay

— JT 692 — $90) — 2 ) ey o, o) — () — (s )],

where #;,v; (=1,2,..., j), a, and 8 are non-negative integers not greater than
j such that

(6.88) a+p=j, 2 Uiy <.
i=1
Making use of (6.76), 6.83) and (6.84), we can rewrite U as follows:

(6.89) Uy, Haye-oy U V1,025, V5 & B) = B /7(”(”')@")) [axaayﬁf(x’ ”(”)) -

0a+B

axaaylgf(x, v(x) — S(x) —w(x; e))] +k]+1[ :1(1)(”")(90))” —

j a+f3
— z]=]1 (v () — S0 () — w? (a5 e))""] —ag?a}ﬁf(x, v(x) — S(x) —w(x; )
=e'0(hj+1) + O(hp+aj+1)

because the partial derivatives of f(x, y) are bounded by the the assumption.
Hence (6.79) is valid also for k=j.
From (6.79) it follows that

(6.90) w(ni; €) = wi(e) + e0RY) + 0P ™Yy =1, 2., i),

because a one-step method of order ¢ (¢=<p+r+1) is applied for approxi-
mating w(x;e). Substitution of (6.90) into (3.16) yields (8.23). Thus theorem 2
has been proved.

Remark 3. When m=p-+r, replacing c,,1(x) by ¢.1(@)+b@) in (6.60),
(6.61), (6.64) and (6.68), and modifying (3.16) as

(3.16) ye— y(wr; €) = Se + wlwe; )+ O0R ) k=0,1,..., n),
we have the following
Tueorem 2'.  Under the conditions (3.22) and

3.5) 20— +1=p=1,
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it 18 valid that

(3.23) yi— 355 €) = Ti(e) + e-0(h™) + 0P+ (j=1, 2,..., tl),

where T;(e) is defined by (3.24) and

(3.25) a =min (g, r).
References
[1] Bieberbach, L.: On the remainder of the Runge-Kutta formula in the theory of ordinary differential

(2]
(3]

(4]
(5]

[6]
(7]
[8]

[9]
[10]

[11]
[12]
[13]
[14]
[15]

[16]

equations, Z. Angew. Math. Phys., 2 (1951), 233-248.

Carr, J. W., II1:  Error bounds for the Runge-Kutta single-step integration process, J. Assoc. Comput.
Mach., 5 (1958), 39-44.

Ceschino, F.: Critére d’utilisation du procédé de Runge-Kutta, C. R. Acad. Sci. Paris, 238 (1954),
986-988; 1553-1555.

Collatz, L.: The numerical treatment of differential equations, Berlin (1960).

Galler, B. A., and D.P. Rozenberg: A4 generalization of a theorem of Carr on error bounds for Runge-
Kutta procedures, J. Assoc. Comput. Mach., 7 (1960), 57-60.

Henrici, P.:  Discrete variable methods in ordinary differential equations, New York (1962).
Hildebrand, F. B.: Introduction to numerical analysis, New York (1956).

Kurmit, A.: Adaptation of an error estimate for difference methods of numerical integration to Runge-
Kutta’s method, Latvijas PSR Zinatnu Akad. Véstis, 191 (1963), 49-58; 192 (1963), 75-84.
Kurmit, A.:  Error theory of Runge-Kutta method, Vestnik Leningrad. Univ., 19 (1963), 35-41.
Lotkin, M: On the accuracy of Runge-Kutta’s method, Math. Tables Aids Comput., 5 (1951), 128-
133.

Schechter, E.:  Sur Perreur du procédé d’intégration numérique de Runge-Kutta, Acad. R. P. Romine
Fil. Cluj. Stud. Cerc. Mat. Fiz., 8 (1957), 115-124.

Schechter, E.:  De la délimitation des erreurs dans certains procédés d’intégration numérique des équations
différentielles, Acad. R. P. Romine Fil. Cluj. Stud. Cerc. Mat. Fiz., 9 (1958), 343-350.

Schroder, J.:  Fehlerabschdtzungen mit Rechenanlagen bei gewihnlichen Differentialgleichungen erster
Ordnung, Numer. Math., 3 (1961), 39-61.

Schroder, J.: Verbesserung einer Fehlerabschatzung fiir gewihnliche Differentialgleichungen erster
Ordnung, Numer. Math., 3 (1961), 125-130.

Tihonov, A. N. and A. D. Gorbunov: Asymptotic error bounds for the Runge-Kutta method, Zv
Vycisl. Mat. i. Mat. Fiz., 3 (1963), 195-197.

Urabe, M.:  Theory of errors in numerical integration of ordinary differential equations, J. Sci. Hiro-
shima Univ., Ser. A-I, 25 (1961), 3-62.

Department of Mathematics
Faculty of Science
Hiroshima University





