. Scr. HirosuimAa Univ. SEr. A-1
29 (1965), 75-85

On Decompositions of Riemannian Manifolds.

Kumao MivasaiTA
(Received March 10, 1965)

Introduction. In a homogeneous space G/H, each of its points is a
coset of a closed subgroup H of a Lie group G, that is, G/H is based on the
decomposition of G into the leaves (maximal integral manifolds) of the Lie
algebra of H. Generalizing, from this point of view, the notion of a
homogeneous space, we have that of a foliation M/t in the sense of R.
Palais [4], which consists of leaves of an involutive distribution It on a
differentiable manifold M, together with the topology induced from M (see p.
82). Foliations in more general spaces have been treated by C. Ehresmann
[2], G. Reeb [5] and A. Haefliger [3].

In the present paper we shall investigate the decomposition of a Rieman-
nian manifold M into the leaves of an involutive distribution 9t which has
the involutive orthogonal complement M*. At first it will be tried to
represent the foliation M/Mt with a leaf V* of 9IM*. This requires that the
leaf should meet all the leaves of 9. We shall find a sufficient condition of
that in terms of certain quantities related to a family of geodesic curvatures
(Theorem 2). Under this condition, for any simply connected leaf V'* of Mt*,
we have the relation:

M/IMM=V*/G(V*)

(Theorem 3), where G(V*) denotes the group of diffeomorphisms of V* which
make the intersection of V* and each leaf of I invariant. Let H, be the
subgroup of G(V*) consisting of elements which make a point p invariant.
Then, if H, and H, are conjugate subgroups, it will be shown that the leaves
of M through p and ¢ are diffeomorphic. And, if one of the leaves of M is
simply connected, if the leaves of 9t through p and ¢ are homeomorphic, then
H, and H, are isomorphic (Theorem 4). Finally we shall show that, when
G(V'*) is abelian, its elements can be extended to diffeomorphisms of M
which make the decomposition of M invariant (Theorem 5).

1. Let M be an n-dimensional differentiable? manifold with countable base.
Let us be given an m-dimensional involutive distribution 9 on M. Since, as
is well known, M can be given a Riemannian structure, we have, at any point

1) By “differentiable” we always mean “of class C>”.
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p of M, the orthogonal complement M} of M, with respect to the metric.
Assigning M} to p, we have a differentiable distribution 90t* on M. We shall
assume that 9* is involutive. It is the case when 9 is of dimension n—1.
In the first place, we shall show the existence of a certain class of
coordinate systems on M which will be called flat coordinate systems.

Prorosition 1. At any point p of M, there exist a coordinate system
(2}, -, ") and a cubic neighborhood W with respect to the system which satisfy
the following conditions: (i) x'(p)=0 (1<Ti<n); (ii) if &' (1<i<n) are numbers
smaller in absolute value than the breadth of W, then the slice of W defined by
the equations x* =& (m+1 <A <n) 1s an integral manifold of M, while the slice
defined by x*=£&° (1 <a<m) s an integral manifold of Wt

Proor. There exists a coordinate system (y',..., ¥") with the following

properties: y'(p)=0; the system of m vector fields X":?)’?/T (1 <a<m) forms

a local base for M around p. Let {szﬁ Yi(y)%,-—: m+ lglgn} be a local
{ i=1 ’

base for MM* around p. Since M* is involutive, the system of differentiable -
equations

€h) Yx=0 (mn+1<i1<n),

has m independent solutions «,..., x” with x*(0)=0. Since 2, and N} are
orthogonal, the vectors (X,),, (¥,), are linearly independent and the deter-
minant |Y}(0)| does not vanish. This and the equations (1) infer that the
functional determinant 9(«',---, 8™)/3(y",---, ™) does not vanish at y=0.
Putting x*=y" (mn +1<{2<n), we have a coordinate system («',..., 2") at p
with x'(p)=0. In the coordinates, I has the system of vector fields
{—620—: 1 _gagm} as its local base around p, while 9t* has {5%: m+1<2 gn}
X

as its local base. Thus the coordinates x!,...,x" are proved to have the
required properties.

We shall consider mappings @ of the product space J; xJ, of two intervals
J1, J2 in the real line into M which have the following property (D): whenever
pairs (u;, v;) (i, j=1, 2) are in J;xJ, the points @ (u;, v;) are contained in the
same leaf of M, while @ (u;, v;) are in the same leaf of I*.

Lemma 1. Let @ be a continuous mapping of JixJ, into M with the
property (D). Let W be a cubic meighborhood of M with respect to a
flat coordinate system. If the points O(u,vo) (u € [uo, 1) CJ1) and O(ug, v)
(v € [vo, v1) CJ2) are contained in W, so s the point @(u, v) for every pair (u, v)
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’i’n [Uro, 1111) X [1)0, 1)1).

Proor. We denote the coordinates by x',..., ™. Let v, be any number
in (vg, v;) and u, the least upper bound of » such that @/, ») is in W for any
pair (@', v) € [uo, u) X [vo, v2 ). Since @ is continuous, u. is different from u,.
Since M has a countable base, there exist at most countably many slices of W
which are contained in a leaf of M [1]. Hence @(u, v), for any v € [vy, v2 ]
and a fixed u € [0, uz), are contained in the same slice of W, that is, x* (0 (z, v))
=x"(0(u, v9)) (n+1<A<ln). In the same way we have x*(®(u, v))=x(0 (x0, v))
(1<a<<m), for (u,v) € [uo, uz) X [vo, v2]. From this it follows directly that u, is
equal to u;, and our lemma is proved.

The next lemma follows immediately from Lemma 1.

LemMma 2. If @, and @, are two continuous mappings of JxXJ, into M
which have the property (D) and if they coincide on subsets {uo} xXJ, and J, x
{vo}, them they coincide on the whole J, X Js.

For convenience, we denote by V, (resp. V) the leaf of 9 (resp. W*)
through a point p of M, and by I the closed interval [0, 1].

Lemma 3. Let p be a point of M. Let ¢ be a way in Vi with starting
point p (i.e., ¢ is continuous mapping of I into Vi with ¢(0)=p), and  a
way in V, with starting point p. Then there exist a positive number v, and a
continuous mapping @ of [0, uy)xI into M with the property (D) such that
I(u, 0)=0@w) and 00, v)=v(@). If ¥ 1is a way from p to v(1) and homotopic
i V, to v, we have

0,(u, )=0(u, 1) (0 <u < min. (u, ul))

where @, 1s a mapping of [0, u) X I which has the similar property to those of
d.

Proor. There exists a family of flat coordinate systems (x},..., x7)
(1<k<N) and increasing sequence of numbers 0=uv,, v;,---, vy_1, vy=1 such
that cubic neighborhoods W, with respect to these systems cover the way
and that (v), for v € [v,_y, v, |, is contained in W,.

Since ¢ is continuous, there exists a positive number u; such that ¢(u),
for ue€[0,u), is contained in W,. For any pair (u,v) in [0, u,)x[0, v, ] we
obtain the point @(u, v) uniquely determined by the equations

¢ (0 (u, v)) = ¢ (¥ (v)) 1<a<m),
%y (0 (u, v)) =) ((ﬂ () (m+1<<i<n).
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Since v (v,) is contained in W,, there exists a number u, in (0, u; ] such that
O (u, v1), for ve[0,u,), isin W,. Hence a point O(x, v), for any pair (u, v) €
[0, uz) X [v1, v2 ], is uniquely determined by equations

(0, v) =2 () A<a<m),
%3 (0 (u, v)) = 23 (D (1, v1)) m+1<<1<m).

After finite steps like this, we obtain the positive number uw,=uy and
the points @y, for all (s, v) in [0, u,)x I, which belong to the intersection
VoayN\Viwy. The mapping @ of [0, uo) x I into M defined by (u, v)—>0(u, v) is
clearly continuous and has the required properties. We know from Lemma 2
that @ is the unique mapping of [0, u,) x I into M which has these properties.

Let v be a way from p to (1) lying on ¥, such that, for each %, any
point v'(v) (v € [vs_1, v, ]) belongs to W,. Let @ be the mapping constructed
from ¢ and v/, in the same way as @ is done from ¢ and +. Then we have
O (w,1)=0(@w, 1) for any uw€[0,u). From this and our assumption that the
way vr; is homotopic in V', to v, we have 0,(u, 1)=0(u, 1).

Remark. @ is differentiable if ¢ and v are differentiable.

LemmA 4. Let @ be a continuous mapping of [0, 1)xI into M with the
property (D). If @(u,v) converges, for each v in I, when v converges to 1,
then @ can be extended uniquely to a continuous mapping Ix I into M with the

property (D).

Proor. Let ¢, denot the limiting point. Let v, be any number in J,
(#',.--, ") be a flat coordinate system at ¢,, and W be a cubic neighborhood
with respect to this system. Then there exsists a number u, in I and a
sufficiently small positive number ¢ such that the point @(z, v), for any pair
(&, v) In [u, 1)x (wo—¢, vo+e¢), is contained in W (Lemma 1). Moreover, we
have x%(0(u, v))=x*(O(zo, v)) (1<a<m) and ¥*((u, v))=x"(0(u, vo)) (m+1<A<n).
Hence the limiting point ¢, lies on W for v in (vo—¢, vo+¢), satisfying the
equations x“(¢,) =x“(0(uo, v)) and x*(¢,)=x"(g,,). This shows that the extension
obtained by assigning ¢, to (1, v) has the required properties. The uniqueness
follows from Lemma 2.

Let («',--, 2*) be a flat coordinate system at a point p of M and W be a

cubic neighborhood with respect to the system. Let X =§X" (!, ..., &™) ai“
. a=1

and Y=§”]Y*(x'”“,..., x”)a—ir be differentiable vector fields in # which belong

A=m+1
to M and IN*, respectively, and are nowhere zero. Let ¢ denote the integral
curve of Y with ¢(0)=p, v that of X with v(0)=p and 7(u, v) that of ¥ with
7(0, v) =+ (v). Then 7 has the property (D). The surface defined by
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x'=x'(7(u, v)) is a two dimensional differentiable surface on which the curves
u=const. and v=const. form an orthogonal net. From this we have

— x| gv log [ Y],
Ky=—| erl—g;log X,

where £, and «, denote the geodesic curvatures, on this surface, of the curves

v=const. and u=const., respectively, and where || | denotes the length of
a vector.
The geodesic curvatures «,, &, and their derivatives || X] - /cu, I Y”“1 0

are independent of the choices of the coordinate system and of the parametrl-
zations of ¢ and v». We put

Kp1= g. 1. b [k, ],
o p%M,X,Y[ Jr

Ky, = & l b UJYH e v]

Then they may be infinite. We define Ky ; and Kg«,» in the same way.

Dermvirion. We call Ky, and Ky (resp. Kgys,; and K. o) the first and
the second curvature of M (resp. IM™*), respectively.

Lemma 5. Suppose M is complete and either the first curvature of IM* is
non negative or the second curvature of IN* is positive. Let @ be a differentiable
mapping of [0, 1)xI into M with the property (D). ILf the mapping Oo:
u—>0(, 0) (ue[0,1)) can be extended to a differentiable mapping of I into
Viso.0» then @ itself can be extented to a differentiable mapping of IX1I into M
which has the property (D).

Proor. We define vector fields X, Y on the image set of & by X, .=

ia)(u,, v) respectively. Our assumption says that either

0 _
W@(u, '17) and Y(u,v)— ou
8

k, vanishes at any point @(u, ») or || X||~* lCu is not smaller than Ky« 2(>0).

In the first case, we have for any u in [0, 1) and any v in [
@ [ ¥enlias =1 ¥eollds.

In the latter case, we have



80 Kumao MIYASHITA
log (1Y, I/ Y 0y D) < S: 1 X {L —Koyix,2 S: [ Xmll d’-’} do,

where L= — g.1.b. (k.(u, 0))<<co. We shall show the right side of the inequ-
0=u<1

ality is less than L?*/Ky... We have to consider the following three possible
cases:

(i) when L<0, it is negative and hence less than L?/Kgy- .,
(ii) when L is positive and SZHX(,,,,)HdG is less than L/Kg. > then it is

less than L?/Kgy. ,
(iii) when L is positive and there exists a number »; in [0, v) such that

S:l | X@,olldo = L/Kg+,2, we have

S: | X, )] {L — Ky g [ Xyl dr} do

0
<L gol 1 X w0yl do + Sv (1 X el {L —Km*,zgo 1 Xl df} do
<LSZI [ Xl do = L?/Kas .

Thus we have always
log (| Yu,0ll/ 1| Y, 0nID) <L*/Kaps 2.

By integration we obtain
® R R S N

Because @, can be extended to a differentiable curve of I, it follows from
(2) and (3) that in either case the curve: o(€[0,z])—®(c, v) has the length
bounded, for any » and ». Since M is complete, @(u, v) converges when v is
fiexed and u converges to 1. Defining @(1, v) to be the limiting point, we
have an extension which has the property (D) (Lemma 4). It is easily seen
as in the proof of Lemma 4 that this extension is differentiable. Thus our
assertion is proved.

As an immediate consequence of Lemmas 3 and 5 and of dual of them,
we have the following theorem.

Tueorem 1. Suppose that M is complete, and that either one of the first
curvatures of M and V* is non negative or one of the second curvatures of IN
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and M* 1s positive. Let ¢ and v be differentiable ways which start from a
point p of M and lie on Vi and V, respectively. Then there exists unique
differentiable mapping @, ., of IxI into M with property (D) such that
Dy, (u, 0)=9¢ () 0,40, v)=), for any u, vin I

As a corollary of Theorem 1 we have

CoroLrarRY. Let V and V* denote any leaves of MM and IN*, respectively,
which have a common point. Under the same assumptions as of Theorem 1,
every leaf of M through a point of V* meets any leaf of D* which meets V.

Let p be any point of M, and W, denote the union \J{V,: g€ V3}. Then
it is obvious that W, contains an open neighborhood U, of ¥V} such that
Wy=\{V,: q€ Uy}. This shows that W, is open set of M [5]. Corollary to
Theorem 1 says that, for any pair p and ¢ of points of M, the open sets W,
and W, either coincide or have no common point. Since M is connected we
have

TueoreM 2. Under the same assumptions as of Theorem 1, every leaf of
M meets any leaves of W*. In other words, M is represented as the union of
leaves of MWt (resp. W*) which meet a fixed leaf of W* (resp. M).

2. In what follows we assume that the manifold M with distributions
M and NV* has the property stated in the conclusion of Theorem 1.

Let ¢ be a way starting from a point p of M and lying on V', and v be a
way in V, with starting point p. There exists, for any u (resp.v) in I, a
differentiable way ¢, in V} (resp. v, in V,) which is homotopic to the part of
¢ (resp. ¥) from p to ¢(u) (resp. ¥ (v)). In virtue of our assumption, there
exists a mapping @,,,, such that @,,,, (1, 1) is contained in both V., and
Vi This point is independent of ways ¢, and v, (Lemma 3). Assigning
the point to the pair (v, v), we have a mapping @, of IxI into M which is
continuous and has the property (D). The point @, (1, 1) depends only on
the homotopy classes [¢] and [y ] which contain ¢ and v respectively.
Especially when V¥ is simply connected, 0, , (1, 1) is the point determined by
the point ¢=¢(1) and the homotopy class [/ ] which contains vy». In this case
we have a mapping O, of ¥} into V7, defined by @ ,:(9)=0,., (1, 1).

Prorosition 2. Suppose Vi is simply connected. Then @, is a differen-
tiable covering mapping of Vi onto V. Hence if Vi, is also simply
comnected, it s a diffeomorphism.

Proor. Let ¢ be the image of a point ¢ under @,,. Let ¢ be a way in
Vi from p to ¢. We take a finite set of flat coordinate systems such that cubic
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neighborhoods with respect to them cover the way: v— @, ,(1,v) (v€I). By
the coordinate systems we know that @, is a differentiable local homeomor-
phism. Let ¢{ be any point of V3, ¢: be a way in V3, from v(1) to ¢i.
Putting ¢,(w)=0,, ., 1(w, 1) and ¢,(1)=¢; we have 0, ,(1,1)=gi, that is,
Oc41(q1)=qi, which proves that &, is a surjection. Let U be any simply
connected open set in V), and U, be a connected component of the inverse
image O@;}1(U). It can be easily seen that the restriction of @p,; to U, isa
univalent mapping onto U and hence homeomorphism. Thus @, is a cover-
ing mapping.

We assume that a leaf V* of J* is simply connected. Let p be a point
of V* and v be a way in V, from p to a common point of ¥* and V. In virtue
of Proposition 2, we have the diffeomorphism @,; of V* onto itself which
sends any point ¢ into the intersection ¥*NV,. The set of these diffeomor-
phisms forms a group. The group is the same for all points p in V*, and is
denoted by G(V™).

Naturally an equivalence relation in V* is introduced by the group
G(V*). We introduce the strongest topology in the factor set V*/G(V*) that
makes the natural mapping I of V* into V*/G(V*) continuous. Then its
open sets are subsets whose inverse images under II are open in V*, If U*
is an open set of V*, then g(U*) is open in V* for any member g of G(V™).
Hence II-'(II (U*)) is open, that is, IT is an open mapping.

We introduce the quotient topology [4] in the set M/ of leaves of M
by the family of open sets

{U: II,*(U) isopenin M}

where IT, means the natural mapping of M onto M/IN. The mapping II, is
an open and continuous mapping [4].

Let V be any leaf of M, and ¢ be any common point of ¥ and V* (Theorem
2). The element II(¢) of V*/G(V*) is independent of the choice of the common
point. Assigning I7(¢) to ¥, we have a mapping a of M/ onto V*/G(V*).

TaeorREM 3. Suppose that a differentiable manifold M and two distribu-
ttons M and. M* have the property stated in the conclusion of Theorem 1. If
a leaf V* of WM* is simply connected, the space M/M of the leaves of M is
homeomorphic to the quotient space V*/G(V*).

Proor. We shall show the mapping « is a homeomorphism. It is obvious
that « is a univalent mapping of M/ onto V*/G(V*).

Let U* be any open set of V'}. Then the union W of leaves of M which
meet U* is an open set of M [5]. We have

I,(W) = a ' (IT (U*)).
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This shows « is continuous, because both IT, and IT are open mappings. On
the other hand, if 7 is an open set of M, we have

where W’ denotes the union of leaves of 9t which meet W. The set W is
open in M and hence V*N\ W is open in V*. It follows from the above equation
that « is an open mapping. Our assertion is thereby proved.

We shall consider the subgroup H, of G(V*) each of whose elements
leaves a point ¢ of V* fixed. The subgroup consists of such elements &,;’s
that v’s are closed way with end points ¢, and is a homomorphic image of the
fundamental group 7:(V,, ¢) of the leaf V,. If ¢, is another point of ¥* which
is also in ¥,, H, and H, are conjugate subgroups of G(V*).

Let L, denote the kernel of the homomorphism: 7,(¥,, 9)—H, Then L,
for any points ¢ of V*, are isomorphic to one another. In fact, if ¢’ is any
other point of V* and ¢ is a way from q¢ to ¢, then we have for any class [ ]
inL,

Oy 1 =0y

where v, denote the way defined by v~ (V)=0,, ,(1, v). The class [y] being in
Ly, @y 5 is the identity mapping of 7*, and hence the class [+, ] is an element
of L,. We assign [y ] to [v] to have an isomorphism of L, onto L,.

If follows immediately from above property of the L/s that, if there
exists at least a simply connected one among the leaves of I, L, for any
point ¢ of V* is the trivial subgroup of 7:(V,, ¢) and H, is isomorphic to
7y (Vg q).  This proves the first half of the following theorem.

TueoreM 4.  Let assumptions be as in Theorem 3. If there exists at least
one leaf of M which is simply connected and if two leaves V, and V, (g, ¢ € V*)
of M are homeomorphic, then the groups H, and H, are isomorphic to each
other. On the other hand, 1f H, and H, are conjugate subgroups of G(V*), the
leaves V, and V, of M are diffeomorphic to each other.

Proor. We have to prove the latter half. Our assumption says that
there exists an element g of G(V*) such that H,=g 'H,g. Since the point
q'=g"'(¢") is contained in ¥, and H,. coincides with g 'H,.g, it is sufficient
to prove this when H, and H,, coincide.

Let ¢ be a way in V* from ¢ to ¢/, ¢: be any point of ¥, and v, be a way
in V, from ¢ to ¢.. Then the point @, , (1, 1) is independent of the chice of
the way ¢. We shall show that it is independent also of the way ;. Let v,
be another way. We have, from v, and v;', a closed way v in V,. It follows
from our assumption @, leaves the point ¢ invariant. This shows
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2,., 1, 1)=0, ,.(,1) and proves our assertion. It is easy to show that the
mapping: ¢—0, ,(1, 1) is a diffeomorphism of ¥, onto V..

One of the next examples shows that the conclusion of Theorem 4 is not
true when there exists no simply connected leaf of 9. The other shows that
there occurs the case where subgroups H, and H, are isomorphic but not
conjugate even when leaves ¥, and ¥V, are homeomorphic.

ExamprLe. In the two dimensional Euclidean space R? we introduce the
equivalence relation 0: 0(x, y)=0(x', ¥) if and only if x=x" (mod 1) and 3'=
(—1)"*y. Let M denote the quotient space R?/p. Let U; denote the domain
{0(x1, y1): 0<x, <1} of M and %; the homeomorphism: 0(x1, y1)—>(x1, y1). Let
U, denote the domain {0(xs, y2): % <x» <3} and A, the homeomorphism:
0(x2, ¥2)—>(x2, ¥2). Then (U;, k;) (i=1, 2) are two charts in M related analyti-
cally. Thus M is an analytic manifold. The manifold M has the Riemannian
metric ds’=(dx.)*+(dy)* in (x1, y1) and ds*=(dw:)*+(dy.)* in (%2, y2).

Let M, and 9, be one dimensional distributions with the base vector
fields X; and X, respectively, which are defined as follows:

9 9 9
[ 6wy [ow 5 5y
Xl:;[ 0 T, 9
79—30—27 O + & ayz

where the functions &; (i=1, 2) are given by

| 1 1
fm (Tt —1em<o

The leaves of the distribution 9} (1L 9M,) are the geodecics x; =const. and
x,=1, and every leaf of M, is a closed curve. Let V* be the geodesic defined
by x»=1, ¢;: (=0, 1) be the point with coordinates x.(go)=2(q1)=1, 72(q0)=0,
¥2(q)=1. Then ¥, is homeomorphic to V,. But H, is isomorphic to the
group of order two, and H, is the trivial.

The distribution MF has, in U; (=1, 2), a local base Y;:

0 0
Y, = _Si_a?i +—0y—i

All of the leaves of 91t} are homeomorphic to a line. Let V¥ denote the leaf
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of M through the point py (x:(po)=%, y1(po) =0). If p; is a common point of
V¥ and the leaf of M, through the point (%1, y1)=(3, 1), then the group H,,
and H, are isomorphic to the additive group of integers, but they do not

coincide.

We do not know whether every member of G(V*) can be extended to an
automorphism of M which leaves invariant the decomposition of M by the
leaves of M and IM*. But we have the following theorem.

TureoreMm 5. Let assumptions be as in Theorem 3. If an element of G(V*)
belongs to the center of the group, it can be extended to a diffeomorphism of M
which sends any point of M into the intersection of the leaves of M and M*
which contains the point.

Proor. Let g be an element of the center of G(V*). Let ¢’ be a point
of M and ¢ be a point of V* which lies on V,,. Let + be a way in ¥, from ¢
to ¢' and ¢ a way in V* from ¢ to go(q9). We shall show that the point
2,,,(1,1) is independent of the choices of ¢, ¥ and . In fact, let ¢, be another
point in ¥V, N\V*, yr; be a way in V,, from ¢; to ¢’ and ¢; be a way in V* from
¢1 to go(q1). The ways v» and vr;! define an element g of G(V*). The diffeomor-
phism g, being in the center of G(V*), we have

go(q1) = go(g (@) = g (g0()-

This shows that @, ., (1,1)=0, ,(, 1), which proves our assertion. Hence
we can define a mapping g, of M into M by go(¢)=0,,,(1,1). We know easily
that g, is differentiable and g,(¢") is contained in the intersection V, NV}
Considering the inverse element g;!, we know &, is an diffeomorphism of M
onto M. Our theorem is thereby proved.

In conclusion, I wish to express my hearty thanks to Prof. K. Morinaga
for his kind suggestions and encouragement during the preparation of this

paper.
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