On the K-Ring of $\mathbf{S}^{\mathbf{4 n + 3}} / \mathrm{H}_{m}$

Kensô Fujis

(Received March 28, 1973)

§ 1. Introduction

The purpose of this note is to study the $K-r i n g ~ K\left(N^{n}(m)\right)$ of complex vector bundles over the $(4 n+3)$-dimensional quotient manifold

$$
N^{n}(m)=S^{4 n+3} / H_{m}, \quad(m \geqq 2) .
$$

Here, H_{m} is the generalized quaternion group generated by the two elements x and y with the two relations

$$
x^{2 m-1}=y^{2} \quad \text { and } \quad x y x=y,
$$

that is, H_{m} is the subgroup of the unit sphere S^{3} in the quaternion field \boldsymbol{H} generated by the two elements

$$
x=\exp \left(\pi i / 2^{m-1}\right) \quad \text { and } \quad y=j,
$$

and the action of H_{m} on the unit sphere $S^{4 n+3}$ in the quaternion ($n+1$)-space \boldsymbol{H}^{n+1} is given by the diagonal action.

Recently, the problem of immersing or embedding this manifold $N^{n}(m)$ in euclidean spaces is studied in [8].

Let α^{\prime} and β^{\prime} be the complex line bundles over $N^{n}(m)$ whose first Chern classes are the generators of $H^{2}\left(N^{n}(m) ; Z\right)=Z_{2} \oplus Z_{2}$, and $\delta^{\prime}=\pi^{\prime} \lambda$ be the complex plane bundle over $N^{n}(m)$ induced from the canonical complex plane bundle λ over the quaternion projective space $H P^{n}$ by the natural projection

$$
\pi: N^{n}(m) \longrightarrow H P^{n}
$$

Then we have the following
Theorem 1.1. The reduced K-ring $\tilde{K}\left(N^{n}(m)\right)(m \geqq 2)$ is generated multiplicatively by the three elements

$$
\alpha=\alpha^{\prime}-1, \quad \beta=\beta^{\prime}-1 \quad \text { and } \quad \delta=\delta^{\prime}-2 .
$$

This theorem shows that the natural ring homomorphism

$$
\xi: \widetilde{R}\left(H_{m}\right) \longrightarrow \tilde{K}\left(N^{n}(m)\right)
$$

is an epimorphism, where $\widetilde{R}\left(H_{m}\right)$ is the reduced (unitary) representation ring.
For the case $m=2, H_{2}=\{ \pm 1, \pm i, \pm j, \pm k\}$ is the quaternion group and we have

Theorem 1.2. As an abelian group,

$$
\tilde{K}\left(N^{n}(2)\right)=Z_{2^{n+1}} \oplus Z_{2^{n+1}} \oplus Z_{2^{2 n+1}} \oplus Z_{2^{n-1}}
$$

for $n \geqq 1$ and the direct summands are generated by the elements

$$
\alpha, \beta, \delta \quad \text { and } \quad \delta^{2}+4 \delta+2^{n+1} \delta,
$$

respectively. Also $\tilde{K}\left(N^{0}(2)\right)=Z_{2} \oplus Z_{2}$ is generated by the two elements α and β. The multiplicative structure of $\widetilde{K}\left(N^{n}(2)\right)(n \geqq 0)$ is given by

$$
\begin{aligned}
& \alpha^{2}=-2 \alpha, \quad \beta^{2}=-2 \beta, \quad \alpha \beta=-2 \alpha-2 \beta+4 \delta+\delta^{2}, \\
& \alpha \delta=-2 \alpha, \quad \beta \delta=-2 \beta, \quad \delta^{n+1}=0 .
\end{aligned}
$$

This note is constructed as follows. In $\S 2$, a $C W$-decomposition of $N^{n}(m)$ is given to have the cohomology groups of this manifold. Moreover, the order of $\tilde{K}\left(N^{n}(m)\right)$ is determined by using the Atiyah-Hirzebruch spectral sequence. In $\S 3$, the unitary representation rings $R\left(H_{m}\right), R\left(Z_{2^{m}}\right)$ and $R\left(S^{3}\right)$ of the groups $H_{m}, Z_{2^{m}}$ and S^{3} are considered. Considering the inclusions $\rho: Z_{2^{m}} \longrightarrow H_{m}$, $\rho^{\prime}: Z_{4} \longrightarrow H_{m}$ defined by $\rho(z)=x, \rho^{\prime}(z)=y$ for the generator z of the cyclic groups, and the natural projections

$$
\rho: L^{2 n+1}\left(2^{m}\right) \longrightarrow N^{n}(m), \quad \rho^{\prime}: L^{2 n+1}(4) \longrightarrow N^{n}(m),
$$

where $L^{2 n+1}(k)=S^{4 n+3} / Z_{k}$ is the standard lens space $\bmod k$, we determine the images of α, β and δ by the induced ring homomorphisms ρ^{\prime} and $\rho^{\prime \prime}$ in §4. Then, Theorem 1.1 is proved in $\S 5$ by the induction on the skeletons of $N^{n}(m)$. Finally, Theorem 1.2 is proved in $\S 6$ by using the above results.

The author wishes to express his gratitude to Professors M. Sugawara and T. Kobayashi for their encouragement and valuable discussions.

§ 2. A $\boldsymbol{C W}$-decomposition and the cohomology groups of $N^{\boldsymbol{n}}(m)$

The generalized quaternion group $H_{m}(m \geqq 2)$ is the subgroup of the unit sphere S^{3} in the quaternion field \boldsymbol{H}, generated by the two elements

$$
x=\exp \left(\pi i / 2^{m-1}\right) \text { and } y=j .
$$

In this note, we consider the diagonal action of H_{m} on the unit sphere $S^{4 n+3}$ in the quaternion $(n+1)$-space \boldsymbol{H}^{n+1}, given by

$$
q\left(q_{1}, \ldots, q_{n+1}\right)=\left(q q_{1}, \ldots, q q_{n+1}\right)
$$

for $q \in H_{m}$ and $\left(q_{1}, \ldots, q_{n+1}\right) \in S^{4 n+3}$. Regarding \boldsymbol{H} as the complex 2-space \boldsymbol{C}^{2}, by the replacement $q=z+j z^{\prime}$, this H_{m}-action is given by

$$
\begin{aligned}
& x\left(z_{1}, z_{2}, \ldots, z_{2 n+1}, z_{2 n+2}\right)=\left(x z_{1}, x^{-1} z_{2}, \ldots, x z_{2 n+1}, x^{-1} z_{2 n+2}\right), \\
& y\left(z_{1}, z_{2}, \ldots, z_{2 n+1}, z_{2 n+2}\right)=\left(-z_{2}, z_{1}, \ldots,-z_{2 n+2}, z_{2 n+1}\right)
\end{aligned}
$$

for $\left(z_{1}, z_{2}, \ldots, z_{2 n+1}, z_{2 n+2}\right) \in S^{4 n+3}$.
In this section, we give an H_{m}-equivariant $C W$-decomposition of $S^{4 n+3}$, which induces a $C W$-decomposition of the manifold $N^{n}(m)=S^{4 n+3} / H_{m}$, and we determine the cohomology groups of $N^{n}(m)$.

We consider the following cells in $S^{4 n+3}$, for $0 \leqq k \leqq n, 0 \leqq j<2^{m}$ and $\varepsilon=0,1$:

$$
\begin{aligned}
& e_{j, \varepsilon}^{4 k}=\left\{\left(z_{1}, \ldots, z_{2 k+2}, 0, \ldots, 0\right) ; z_{2 k+1+\varepsilon} \neq 0, z_{2 k+2-\varepsilon}=0,\right. \\
&\left.\arg z_{2 k+1+\varepsilon}=(-1)^{\varepsilon} j \pi / 2^{m-1}\right\}, \\
& e_{j, \varepsilon}^{4 k+1}=\left\{\left(z_{1}, \ldots, z_{2 k+2}, 0, \ldots, 0\right) ; z_{2 k+1+\varepsilon} \neq 0, z_{2 k+2-\varepsilon}=0,\right. \\
&\left.(-1)^{\varepsilon} j \pi / 2^{m-1}<\arg z_{2 k+1+\varepsilon}<\left(1+(-1)^{\varepsilon} j\right) \pi / 2^{m-1}\right\}, \\
& e_{j, \varepsilon}^{\prime 4 k+1}=\left\{\left(z_{1}, \ldots, z_{2 k+2}, 0, \ldots, 0\right) ; z_{2 k+1} \neq 0, z_{2 k+2} \neq 0,\right. \\
&\left.\arg z_{2 k+1}-\varepsilon \pi=-\arg z_{2 k+2}=j \pi / 2^{m-1}\right\}, \\
& e_{j, \varepsilon}^{4 k+2}=\left\{\left(z_{1}, \ldots, z_{2 k+2}, 0, \ldots, 0\right) ; z_{2 k+1} \neq 0, z_{2 k+2} \neq 0,\right. \\
& \arg z_{2 k+2-\varepsilon}=\varepsilon \pi+(-1)^{\varepsilon+1} j \pi / 2^{m-1}, \\
&\left.(-1)^{\varepsilon} j \pi / 2^{m-1}<\arg z_{2 k+1+\varepsilon}<\pi+(-1)^{\varepsilon} j \pi / 2^{m-1}\right\}, \\
& e_{j, \varepsilon}^{\prime 4 k+2}=\left\{\left(z_{1}, \ldots, z_{2 k+2}, 0, \ldots, 0\right) ; z_{2 k+1} \neq 0, z_{2 k+2} \neq 0,\right. \\
&\left.(j-\varepsilon) \pi / 2^{m-1}<\arg z_{2 k+1}-\varepsilon \pi=-\arg z_{2 k+2}<(j+1-\varepsilon) \pi / 2^{m-1}\right\}, \\
& e_{j, \varepsilon}^{4 k+3}=\left\{\left(z_{1}, \ldots, z_{2 k+2}, 0, \ldots, 0\right) ; z_{2 k+1} \neq 0, z_{2 k+2} \neq 0,\right. \\
&(j-\varepsilon) \pi / 2^{m-1}<\arg z_{2 k+1}-\varepsilon \pi+(\varepsilon-1) \theta= \\
&\left.\varepsilon \theta-\arg z_{2 k+2}<(j+1-\varepsilon) \pi / 2^{m-1}, 0<\theta<\pi\right\} .
\end{aligned}
$$

Set $e^{4 k+s}=e_{0,0}^{4 k+s}$ and $e^{\prime 4 k+t}=e_{0,0}^{\prime 4 k+t}$. Then, it is easy to show that

$$
e_{j, \varepsilon}^{4 k+s}=x^{j} y^{\varepsilon} e^{4 k+s}, \quad e_{j, \varepsilon}^{\prime 4 k+t}=x^{j} y^{\varepsilon} e^{\prime 4 k+t}
$$

and $\left\{e_{j, \varepsilon}^{4 k+s}, e_{j, \varepsilon}^{\prime 4 k+t} ; 0 \leqq k \leqq n, 0 \leqq j<2^{m}, 0 \leqq s \leqq 3, t=1,2, \varepsilon=0,1\right\}$ gives an $H_{m^{-}}$
equivariant $C W$-decomposition of $S^{4 n+3}$, with the boundary formulas

$$
\begin{aligned}
& \partial e^{4 k}=\Sigma_{q \in H_{m}} q e^{4 k-1}, \\
& \partial e^{4 k+1}=(x-1) e^{4 k}, \quad \partial e^{\prime 4 k+1}=(y-1) e^{4 k}, \\
& \partial e^{4 k+2}=\left(1+x+x^{2}+\cdots+x^{2 m-1-1}\right) e^{4 k+1}-(y+1) e^{\prime 4 k+1}, \\
& \partial e^{\prime 4 k+2}=(x y+1) e^{4 k+1}+(x-1) e^{\prime 4 k+1}, \\
& \partial e^{4 k+3}=(x-1) e^{4 k+2}-(x y-1) e^{\prime 4 k+2} .
\end{aligned}
$$

Let $\xi: S^{4 n+3} \rightarrow S^{4 n+3} / H_{m}=N^{n}(m)$ be the natural projection, and set

$$
\begin{array}{ll}
e^{4 k+s}=\xi\left(e^{4 k+s}\right) & \text { for } s=0,3, \\
e_{1}^{4 k+t}=\xi\left(e^{4 k+t}\right), \quad e_{2}^{4 k+t}=\xi\left(e^{\prime 4 k+t}\right) & \text { for } t=1,2 .
\end{array}
$$

Then, we have obtained the following
Lemma 2.1. The set $\left\{e^{4 k+s}, e_{1}^{4 k+t}, e_{2}^{4 k+t} ; 0 \leqq k \leqq n, s=0,3, t=1,2\right\}$ is a $C W$-decomposition of the manifold $N^{n}(m)$, with the boundary formulas:

$$
\begin{aligned}
& \partial e^{4 k}=2^{m+1} e_{1}^{4 k-1}, \quad \partial e_{1}^{4 k+1}=\partial e_{2}^{4 k+1}=0, \\
& \partial e_{1}^{4 k+2}=2^{m-1} e_{1}^{4 k+1}-2 e_{2}^{4 k+1}, \quad \partial e_{2}^{4 k+2}=2 e_{1}^{4 k+1}, \quad \partial e^{4 k+3}=0 .
\end{aligned}
$$

This implies
Proposition 2.2. [3, Ch.XII, §7] The integral cohomology groups of $N^{n}(m)$ are given by

$$
H^{k}\left(N^{n}(m) ; Z\right)= \begin{cases}Z & \text { for } k=0,4 n+3, \\ Z_{2^{m+1}} & \text { for } k \equiv 0(4), 0<k<4 n+3, \\ Z_{2} \oplus Z_{2} & \text { for } k \equiv 2(4), 0<k<4 n+3, \\ 0 & \text { otherwise. }\end{cases}
$$

Now, let $K(X)$ be the K-ring of complex vector bundles over a topological space X, and $\widetilde{K}(X)$ be its reduced K-ring. Let $\left\{E_{r}^{p, q}\right\}$ be the Atiyah-Hirzebruch spectral sequence for $\tilde{K}\left(N^{n}(m)\right)$ (cf. [2, §2]). Then, by the above proposition, we have

$$
\begin{aligned}
E_{2}^{p, q} & =H^{p}\left(N^{n}(m) ; K^{-q}(P)\right) \\
& = \begin{cases}Z & \text { for } q \text { even, } p=0,4 n+3, \\
Z_{2^{m+1}} & \text { for } q \text { even, } p \equiv 0(4), 0<p<4 n+3,\end{cases}
\end{aligned}
$$

$$
\left(\begin{array}{ll}
Z_{2} \oplus Z_{2} & \text { for } q \text { even, } p \equiv 2(4), 0<p<4 n+3, \\
0 & \text { otherwise },
\end{array}\right.
$$

where P is a single point. Therefore, the differentials of this spectral sequence are trivial, and we have easily

Proposition 2.3. $\tilde{K}\left(N^{n}(m)\right)$ consists of $2^{n(m+3)+2}$ elements, and $\tilde{K}^{1}\left(N^{n}(m)\right)$ $=Z$.

Since $H^{2}\left(N^{n}(m) ; Z\right)=Z_{2} \oplus Z_{2}$, there are two complex line bundles α^{\prime} and β^{\prime} over $N^{n}(m)$, whose first Chern classes generate $H^{2}\left(N^{n}(m) ; Z\right)$. Then, by using the above spectral sequence and the Chern classes, we have easily the following

Lemma 2.4. For the 3 -manifold $N^{0}(m)$,

$$
\tilde{K}\left(N^{0}(m)\right)=Z_{2} \oplus Z_{2},
$$

generated by $\alpha=\alpha^{\prime}-1$ and $\beta=\beta^{\prime}-1$, and $\alpha^{2}=\beta^{2}=\alpha \beta=0$.

§ 3. The representation ring $R\left(H_{m}\right)$

In this section, we consider the (unitary) representation ring $R\left(H_{m}\right)$ of H_{m} ($m \geqq 2$) (cf. [4, §47.15, Example 2]).

The conjugate classes of H_{m} are given by

$$
\begin{aligned}
& C_{0}=\left\{x^{2 i} y ; i=0,1, \ldots, 2^{m-1}-1\right\}, \\
& C_{1}=\left\{x^{2 i+1} y ; i=0,1, \ldots, 2^{m-1}-1\right\}, \\
& C_{j+2}=\left\{x^{j}, x^{-j}\right\} \quad \text { for } j=0,1, \ldots, 2^{m-1} .
\end{aligned}
$$

Also, H_{m} has four representations of degree 1:
$F_{0}=$ the unit representation,

$$
\left\{\begin{array} { l }
{ F _ { 1 } (x) = 1 } \\
{ F _ { 1 } (y) = - 1 , }
\end{array} \quad \left\{\begin{array} { l }
{ F _ { 2 } (x) = - 1 } \\
{ F _ { 2 } (y) = 1 , }
\end{array} \quad \left\{\begin{array}{l}
F_{3}(x)=-1 \\
F_{3}(y)=-1
\end{array}\right.\right.\right.
$$

and $2^{m-1}-1$ representations of degree 2 :

$$
F_{i+3}(x)=\left(\begin{array}{cc}
x^{i} & 0 \\
0 & x^{-i}
\end{array}\right), \quad F_{i+3}(y)=\left(\begin{array}{c}
0(-1)^{i} \\
1
\end{array} 00\right)
$$

for $i=1,2, \ldots, 2^{m-1}-1$.
Then, we see that these are all of the irreducible representations of H_{m}, by the following character table, where χ_{j} is the character of F_{j} for $j=0,1, \ldots, 2^{m-1}+2$.

	C_{0}	C_{1}	$C_{j+2}\left(j=0, \ldots, 2^{m-1}\right)$
$\chi_{0}=1$	1	1	1
χ_{1}	-1	-1	1
χ_{2}	1	-1	$(-1)^{j}$
χ_{3}	-1	1	$(-1)^{j}$
$\chi_{i+3}\left(i=1, \ldots, 2^{m-1}-1\right)$	0	0	$x^{i j}+x^{-i j}$

Furthermore, the multiplicative structure of $R\left(H_{m}\right)$, which is given by the tensor product of characters, can be determined by the routine calculations using the above table, and we have the following

Proposition 3.1. (cf. [8, §1]) The representation ring $R\left(H_{m}\right)$ is a free Z-module genrerated by $\chi_{j}, j=0,1, \ldots, 2^{m-1}+2$, with relations:

$$
\begin{aligned}
& \chi_{0}=1, \quad \chi_{i} \chi_{j}=\chi_{j} \chi_{i}, \quad \chi_{1}^{2}=\chi_{2}^{2}=1, \\
& \chi_{3}=\chi_{1} \chi_{2}, \quad \chi_{1} \chi_{4}=\chi_{4}, \quad \chi_{2} \chi_{4}=\chi_{2^{m-1}+2}, \\
& \chi_{4}^{2}= \begin{cases}1+\chi_{1}+\chi_{2}+\chi_{3} & \text { for } m=2, \\
1+\chi_{1}+\chi_{5} & \text { for } m \geqq 3,\end{cases} \\
& \chi_{i+1}=\chi_{4} \chi_{i}-\chi_{i-1} \quad \text { for } i \geqq 5 .
\end{aligned}
$$

Remark 3.2. The following equality can be proved by the above relations.

$$
\chi_{i}=\sum^{[(i-4) / 2]}(-1)^{j}\left\{\binom{i-4-j}{j}+\binom{i-4-j}{i-1}\right\} \chi_{4}^{i-2 j-3}+\varepsilon(i)(-1)^{[(i+1) / 2]}\left(\chi_{1}+1\right)
$$

for $m \geqq 3, i \geqq 5$, where $\varepsilon(i)=0$ if i is even and $=1$ if i is odd.
For the reduced representation ring $\widetilde{R}\left(H_{m}\right)$, which is the kernel of the augmentation homomorphism

$$
\operatorname{deg}: R\left(H_{m}\right) \longrightarrow Z,
$$

we have
Proposition 3.3. The commutative ring $\widetilde{R}\left(H_{m}\right)$ is a free Z-module generated by

$$
\alpha=\chi_{1}-1, \quad \beta=\chi_{2}-1, \quad \gamma=\chi_{1}+\chi_{2}+\chi_{3}-3,
$$

$$
\delta_{i}=\chi_{i+3}-2 \quad \text { for } 1 \leqq i<2^{m-1},
$$

with relations

$$
\begin{aligned}
& \alpha^{2}=-2 \alpha, \quad \beta^{2}=-2 \beta, \quad \gamma=\alpha \beta+2 \alpha+2 \beta, \\
& \alpha \delta_{1}=-2 \alpha, \quad \beta \delta_{1}=-2 \beta+\delta_{2^{m-1}-1}-\delta_{1}, \\
& \delta_{1}^{2}= \begin{cases}-4 \delta_{1}+\gamma & \text { for } m=2, \\
-4 \delta_{1}+\delta_{2}+\alpha & \text { for } m \geqq 3,\end{cases} \\
& \delta_{i+1}=\delta_{1} \delta_{i}+2 \delta_{1}+2 \delta_{i}-\delta_{i-1} \quad \text { for } m \geqq 3, i \geqq 2 .
\end{aligned}
$$

These show that $\widetilde{R}\left(H_{m}\right)$ is generated by α, β and δ_{1} as a ring.
Now, let

$$
\begin{equation*}
\pi: H_{m} \longrightarrow S^{3} \tag{3.4}
\end{equation*}
$$

be the inclusion, and let

$$
\begin{equation*}
\rho: Z_{2^{m}} \longrightarrow H_{m}, \quad \rho^{\prime}: Z_{4} \longrightarrow H_{m} \tag{3.5}
\end{equation*}
$$

be the inclusions such that $\rho(z)=x, \rho^{\prime}(z)=y$ for the generator z of the cyclic group Z_{k}. The ring homomorphisms induced by these inclusions are denoted by the same letters:

$$
\begin{align*}
& \pi: R\left(S^{3}\right) \longrightarrow R\left(H_{m}\right), \\
& \rho: R\left(H_{m}\right) \longrightarrow R\left(Z_{2^{m}}\right), \quad \rho^{\prime}: R\left(H_{m}\right) \longrightarrow R\left(Z_{4}\right) . \tag{3.6}
\end{align*}
$$

The following lemmas are well known:
Lemma 3.7. (cf. [5, Ch.13, Th. 3.1]) $R\left(S^{3}\right)$ is the polynomial ring $Z[\zeta]$, where ζ is given by the representation

$$
z_{1}+j z_{2} \longrightarrow\left(\begin{array}{cc}
z_{1} & -\bar{z}_{2} \\
z_{2} & \bar{z}_{1}
\end{array}\right) \quad \text { for } z_{1}+j z_{2} \in S^{3}
$$

Lemma 3.8. (cf. [1, §8]) $R\left(Z_{2^{m}}\right)$ is the truncated polynomial ring $Z[\chi] /$ $\left.<\chi^{2^{m}}-1\right\rangle$, where χ is given by $z \rightarrow \exp \left(\pi i / 2^{m-1}\right)$ for the generator z of $Z_{2^{m}}$.

By the definitions, we have easily the following equalities for the homomorphisms of (3.6):

$$
\pi(\zeta)=\chi_{4}
$$

$$
\begin{aligned}
& \rho\left(\chi_{1}\right)=1, \quad \rho\left(\chi_{2}\right)=\chi^{2 m-1}, \quad \rho\left(\chi_{4}\right)=\chi+\bar{\chi} ; \\
& \rho^{\prime}\left(\chi_{1}\right)=\chi^{2}, \quad \rho^{\prime}\left(\chi_{2}\right)=1, \quad \rho^{\prime}\left(\chi_{4}\right)=\chi+\bar{\chi} ;
\end{aligned}
$$

where $\bar{\chi}$ is the conjugation of χ. These show the following

Proposition 3.9. For the induced homomorphisms

$$
\begin{aligned}
& \pi: \widetilde{R}\left(S^{3}\right) \longrightarrow \widetilde{R}\left(H_{m}\right), \\
& \rho: \widetilde{R}\left(H_{m}\right) \longrightarrow \widetilde{R}\left(Z_{2^{m}}\right), \quad \rho^{\prime}: \widetilde{R}\left(H_{m}\right) \longrightarrow \widetilde{R}\left(Z_{4}\right)
\end{aligned}
$$

of (3.6), we have the following equalities:

$$
\begin{aligned}
& \pi(\zeta-2)=\delta_{1} ; \\
& \rho(\alpha)=0, \quad \rho(\beta)=(\sigma+1)^{2 m-1}-1, \quad \rho\left(\delta_{1}\right)=\sigma^{2} /(1+\sigma) ; \\
& \rho^{\prime}(\alpha)=(\sigma+1)^{2}-1, \quad \rho^{\prime}(\beta)=0, \quad \rho^{\prime}\left(\delta_{1}\right)=\sigma^{2} /(1+\sigma),
\end{aligned}
$$

where $\sigma=\chi-1$.

§ 4. Some elements of $\widetilde{K}\left(N^{n}(m)\right)$

Assume that a topological group G acts on a topological space X without fixed point. Then, the natural projection

$$
p: X \longrightarrow X / G
$$

defines the ring homomorphisms

$$
p: R(G) \longrightarrow K(X / G), \quad p: \tilde{R}(G) \longrightarrow \tilde{K}(X / G)
$$

as follows (cf. [5, Ch. 12, 5.4]): For an n-dimensional representation ω of G, $p(\omega)$ is the complex n-plane bundle induced from the principal G-bundle $p: X$ $\rightarrow X / G$ by the group homomorphism $\omega: G \rightarrow G L(n, C)$. Furthermore, if H is a subgroup of G, then the inclusion $i: H \rightarrow G$ and the natural projections $p^{\prime}: X \rightarrow$ $X / H, i: X / H \rightarrow X / G$ induce the following commutative diagram

Now, considering the projection

$$
\xi: S^{4 n+3} \longrightarrow N^{n}(m)=S^{4 n+3} / H_{m}
$$

we define the elements

$$
\begin{equation*}
\alpha=\xi(\alpha), \quad \beta=\xi(\beta), \quad \delta=\xi\left(\delta_{1}\right) \quad \text { in } \tilde{K}\left(N^{n}(m)\right), \tag{4.1}
\end{equation*}
$$

which are the images of α, β and δ_{1} in Proposition 3.3 by the ring homomorphism $\xi: \tilde{R}\left(H_{m}\right) \rightarrow \tilde{K}\left(N^{n}(m)\right)$. It is easy by the definitions to show that $\alpha^{\prime}=\xi\left(\chi_{1}\right)$ and $\beta^{\prime}=\xi\left(\chi_{2}\right)$ are the complex line bundles over $N^{n}(m)$ whose first Chern classes generrate $H^{2}\left(N^{n}(m) ; Z\right)=Z_{2} \oplus Z_{2}$, where χ_{1} and χ_{2} are the representations in Proposition 3.1 (cf. [1, Appendix, (3)]). Therefore,

Lemma 4.2. Lemma 2.4 holds for the elements α and β of (4.1).
The K-ring $K\left(H P^{n}\right)$ of the quaternion projective space $H P^{n}=S^{4 n+3} / S^{3}$ is given by

$$
\begin{equation*}
\left.K\left(H P^{n}\right)=Z[v] /<v^{n+1}\right\rangle, \tag{4.3}
\end{equation*}
$$

where $v=\lambda-2$ and λ is the canonical complex plane bundle over $H P^{n}$ (cf. [9, Th. 3.12]).

Lemma 4.4. $\quad \pi^{\prime}(v)=\delta$,
where $\pi^{\prime}: \widetilde{K}\left(H P^{n}\right) \rightarrow \tilde{K}\left(N^{n}(m)\right)$ is the induced homomorphism of the natural projection $\pi: N^{n}(m) \rightarrow H P^{n}$.

Proof . Consider the commutative diagram

where $\xi^{\prime}: S^{4 n+3} \rightarrow H P^{n}$ is the projection. Then we have easily $\xi^{\prime}(\zeta-2)=v$ by definitions, where ζ is the representation of Lemma 3.7 (cf. [5, Ch. 13, Th. 3.1]). Since $\pi(\zeta-2)=\delta_{1}$ by Proposition 3.9, we have the desired result. q.e.d.

Let N^{k} be the k-skeleton of the $C W$-complex $N^{n}(m)$ of Lemma 2.1 and $i: N^{k}$ $\rightarrow N^{n}(m)$ be the inclusion. For an element $a \in \tilde{K}\left(N^{n}(m)\right)$, we denote its image $i^{\prime} a$ by the same letter a.

The following lemma is used in the next section.
Lemma 4.5. The element $\alpha^{i} \beta^{j} \delta^{k}$ is zero in $\tilde{K}\left(N^{2 i+2 j+4 k-1}\right)$, where α, β and δ are the elements of (4.1).

Proof. It is clear that α and β are zero in $\tilde{K}\left(N^{1}\right)=0$. The fact that δ is zero in $\tilde{K}\left(N^{3}\right)=\tilde{K}\left(N^{0}(m)\right)$ follows immediately from Lemma 4.4. Therefore, we have the lemma by the obvious fact that $a b$ is zero in $\widetilde{K}\left(N^{p+q-1}\right)$ if a is zero in $\tilde{K}\left(N^{p-1}\right)$ and b is zero in $\tilde{K}\left(N^{q-1}\right)$ (cf. [2, (5) in p. 20]). q.e.d.

The K-ring $K\left(L^{n}(k)\right)$ of the standard lens space $\bmod k L^{n}(k)=S^{2 n+1} / Z_{k}$ is given by

$$
\begin{equation*}
K\left(L^{n}(k)\right)=Z[\sigma] /<\sigma^{n+1},(\sigma+1)^{k}-1>, \tag{4.6}
\end{equation*}
$$

where $\sigma=\mu-1$ and μ is the canonical complex line bundle over $L^{n}(k)$ (cf. [7, Lemma 3.3]).

Lemma 4.7. For the natural projection $\rho: L^{2 n+1}\left(2^{m}\right) \rightarrow N^{n}(m)$, induced by the first inclusion ρ of (3.5), we have

$$
\rho^{\prime}(\alpha)=0, \quad \rho^{\prime}(\beta)=(\sigma+1)^{2 m-1}-1, \quad \rho^{\prime}(\delta)=\sigma^{2} /(1+\sigma) .
$$

Proof. Consider the commutative diagram

where $\xi^{\prime \prime}: S^{4 n+3} \rightarrow L^{2 n+1}\left(2^{m}\right)$ is the projection. Then the equality $\xi^{\prime \prime}(\chi-1)=$ $\mu-1$ can be proved easily by the definitions, since the first Chern class of μ generates $\mathrm{H}^{2}\left(L^{2 n+1}\left(2^{m}\right) ; Z\right)=Z_{2^{m}}$ (cf. [1, §2 and Appendix, (3)]). Hence, we obtain the desired equalities by (4.1) and Proposition 3.9.
q.e.d.

For the second inclusion $\rho^{\prime}: Z_{4} \rightarrow H_{m}$ of (3.5), and the natural projection $\rho^{\prime}: L^{2 n+1}(4) \rightarrow N^{n}(m)$, we have the following lemma similarly to the above lemmas.

Lemma 4.8. $\quad \rho^{\prime \prime}(\alpha)=(\sigma+1)^{2}-1, \quad \rho^{\prime}(\beta)=0$,

$$
\rho^{\prime}(\delta)=\sigma^{2} /(1+\sigma)
$$

§ 5. Proof of Theorem 1.1

The $C W$-decompositions of $N^{n}(m)$ for $n \geqq 0$ of Lemma 2.1 define naturally a $C W$-decomposition of $N^{\infty}(m)=U_{n} N^{n}(m)$. Let N^{k} be the k-skeleton of the $C W$ complex $N^{\infty}(m)$. Then

$$
N^{4 n+3}=N^{n}(m)
$$

and the cell structure of $N^{\infty}(m)$ is given by

where $e^{i+1} \xrightarrow{k} e^{i}$ means that the attaching map

$$
S^{i}=\dot{e}^{i+1} \longrightarrow N^{i} / N^{i}-e^{i}=\bar{e}^{i} / \dot{e}^{i}=S^{i}
$$

is the map of degree k.
We denote by $\# A$ the number of the elements of a finite set A.
Lemma 5.1. $\quad \widetilde{K}^{1}\left(N^{4 n+2} / N^{4 n-2}\right)=0, \quad \# \widetilde{K}\left(N^{4 n+2} / N^{4 n-2}\right)=2^{m+3}$.
Proof. In the Puppe exact sequence of the pair ($\left.N^{4 n} / N^{4 n-2}, N^{4 n-1} / N^{4 n-2}\right)$

$$
\begin{aligned}
& \tilde{K}^{-1}\left(S^{4 n}\right) \longrightarrow \tilde{K}^{-1}\left(N^{4 n} / N^{4 n-2}\right) \longrightarrow \tilde{K}^{-1}\left(S^{4 n-1}\right) \\
& \quad \xrightarrow{\delta} \tilde{K}\left(S^{4 n}\right) \longrightarrow \tilde{K}\left(N^{4} / N^{4 n-2}\right) \longrightarrow \tilde{K}\left(S^{4 n-1}\right),
\end{aligned}
$$

we see by (*) that the coboundary δ is the multiplication by 2^{m+1}. Hence, we have $\tilde{K}^{1}\left(N^{4 n} / N^{4 n-2}\right)=0$ and $\tilde{K}\left(N^{4 n} / N^{4 n-2}\right)=Z_{2^{m+1}}$. Furthermore, by the Puppe sequence of $\left(N^{4 n+1} / N^{4 n-2}, N^{4 n} / N^{4 n-2}\right)$

$$
\begin{aligned}
& Z_{2^{m+1}} \longrightarrow \tilde{K}^{-1}\left(S^{4 n+1} \vee S^{4 n+1}\right) \longrightarrow \tilde{K}^{-1}\left(N^{4 n+1} / N^{4 n-2}\right) \longrightarrow 0 \longrightarrow 0 \\
& \longrightarrow \tilde{K}\left(N^{4 n+1} / N^{4 n-2}\right) \longrightarrow Z_{2^{m+1}} \longrightarrow \tilde{K}^{1}\left(S^{4 n+1} \vee S^{4 n+1}\right),
\end{aligned}
$$

we have

$$
\begin{aligned}
& \widetilde{K}^{1}\left(N^{4 n+1} / N^{4 n-2}\right)=\tilde{K}^{1}\left(S^{4 n+1} \vee S^{4 n+1}\right)=Z \oplus Z, \\
& \widetilde{K}\left(N^{4 n+1} / N^{4 n-2}\right)=Z_{2^{m+1}}
\end{aligned}
$$

Consider the Puppe sequence of $\left(N^{4 n+2} / N^{4 n-2}, N^{4 n+1} / N^{4 n-2}\right)$

$$
\begin{aligned}
& 0 \longrightarrow \tilde{K}^{-1}\left(N^{4 n+2} / N^{4 n-2}\right) \longrightarrow \tilde{K}^{-1}\left(N^{4 n+1} / N^{4 n-2}\right) \xrightarrow{\delta} \\
& \tilde{K}\left(S^{4 n+2} \vee S^{4 n+2}\right) \longrightarrow \tilde{K}\left(N^{4 n+2} / N^{4 n-2}\right) \longrightarrow \tilde{K}\left(N^{4 n+1} / N^{4 n-2}\right) \longrightarrow 0 .
\end{aligned}
$$

Then we see from the attaching maps of (*) that the coboundary $\delta: Z \oplus Z \rightarrow Z \oplus Z$ is the multiplication by 2 . Hence, we have the lemma.
q.e.d.

Lemma 5.2. $\quad \tilde{K}^{1}\left(N^{4 n+2}\right)=0, \quad \# \tilde{K}\left(N^{4 n+2}\right)=2^{n(m+3)+2}$.
Proof. Since $N^{1}=S^{1} \vee S^{1}$, we have the lemma for $n=0$, by using the Puppe sequence of (N^{2}, N^{1})

$$
0 \longrightarrow \tilde{K}^{-1}\left(N^{2}\right) \longrightarrow \tilde{K}^{-1}\left(S^{1} \vee S^{1}\right) \xrightarrow{\times 2} \tilde{K}\left(S^{2} \vee S^{2}\right) \longrightarrow \tilde{K}\left(N^{2}\right) \longrightarrow 0 .
$$

The lemma for $n \geqq 1$ can be proved inductively by Lemma 5.1 and the Puppe sequence

$$
0 \longrightarrow \tilde{K}^{-1}\left(N^{4 n+2}\right) \longrightarrow \tilde{K}^{-1}\left(N^{4 n-2}\right) \longrightarrow \tilde{K}\left(N^{4 n+2} / N^{4 n-2}\right)
$$

$$
\longrightarrow \tilde{K}\left(N^{4 n+2}\right) \longrightarrow \tilde{K}\left(N^{4 n-2}\right) \longrightarrow 0 . \quad \text { q.e.d. }
$$

Lemma 5.3. The induced homomorphism $i^{\prime}: \widetilde{K}\left(N^{4 n+3}\right) \rightarrow \widetilde{K}\left(N^{4 n+2}\right)$ is an isomorphism, where $i: N^{4 n+2} \rightarrow N^{4 n+3}$ is the inclusion.

Proof. This follows immediately from Lemma 5.2 and the Puppe sequence

$$
0 \longrightarrow \tilde{K}\left(N^{4 n+3}\right) \xrightarrow{i^{1}} \tilde{K}\left(N^{4 n+2}\right) \longrightarrow \tilde{K}^{1}\left(S^{4 n+3}\right)
$$

Lemma 5.4.

$$
\tilde{K}^{1}\left(N^{4 n}\right)=0, \quad \# \tilde{K}\left(N^{4 n}\right)=2^{n(m+3)} .
$$

Proof. This follows from Proposition 2.3, Lemma 5.2 and the Puppe sequence of ($N^{4 n}, N^{4 n-1}$)

$$
0 \rightarrow \tilde{K}^{-1}\left(N^{4 n}\right) \rightarrow \tilde{K}^{-1}\left(N^{4 n-1}\right) \xrightarrow{\times 2^{m+1}} \tilde{K}\left(S^{4 n}\right) \rightarrow \tilde{K}\left(N^{4 n}\right) \rightarrow \tilde{K}\left(N^{4 n-1}\right) \rightarrow 0 .
$$

q.e.d.

Lemma 5.5. $\quad \widetilde{K}^{1}\left(N^{4 n+1}\right)=Z \oplus Z$ and $i^{1}: \widetilde{K}\left(N^{4 n+1}\right) \rightarrow \tilde{K}\left(N^{4 n}\right)$ is an isomorphism, where $i: N^{4 n} \rightarrow N^{4 n+1}$ is the inclusion.

Proof. The lemma follows from Lemma 5.4 and the Puppe sequence

$$
0 \longrightarrow \tilde{K}\left(N^{4 n+1}\right) \xrightarrow{i^{i}} \tilde{K}\left(N^{4 n}\right) \longrightarrow \tilde{K}^{1}\left(S^{4 n+1} \vee S^{4 n+1}\right) \longrightarrow \tilde{K}^{1}\left(N^{4 n+1}\right) \longrightarrow 0 .
$$

q.e.d.

Now, we are ready to prove Theorem 1.1.
Proof of Theoerm 1.1. Consider the natural projection $\pi: N^{n}(m) \rightarrow H P^{n}$ of Lemma 4.4 and the commutative diagram of the Puppe sequence

For the element $v \in \widetilde{K}\left(H P^{n}\right)$ of (4.3), it is easy to show that the element $v^{n} \in$ $\tilde{K}\left(H P^{n}\right)$ is the image of a generator of $\tilde{K}\left(H P^{n} / H P^{n-1}\right)=\tilde{K}\left(S^{4 n}\right)=Z$, by using the Chern character (cf. [9, Proof of (3.12)]). Also, it is easy to show that the restriction

$$
\pi:\left(N^{4 n}, N^{4 n-1}\right) \longrightarrow\left(H P^{n}, H P^{n-1}\right)
$$

is a relative homomorphism, by the definitions of the cells of Lemma 2.1, and so π^{1} in the left is an isomorphism. These show that $\operatorname{Ker} i^{1}$ is generated by $\delta^{n}=$ $\pi^{\prime}\left(v^{n}\right)$. Therefore, if the ring $\widetilde{K}\left(N^{4 n-1}\right)$ is generated multiplicatively by α, β and
δ, then so is $\widetilde{K}\left(N^{4 n}\right)$.
Now, we prove that the ring $\tilde{K}\left(N^{4 n+2}\right)$ is generated multiplicatively by α, β and δ if $\widetilde{K}\left(N^{4 n+1}\right)$ is so. Then, the theorem is proved by the induction on n, using Lemmas 4.2, 5.3 and 5.5.

In the Puppe sequence

$$
0 \longrightarrow \tilde{K}^{-1}\left(N^{4 n+1}\right) \xrightarrow{\times 2} \tilde{K}\left(S^{4 n+2} \vee S^{4 n+2}\right) \longrightarrow \tilde{K}\left(N^{4 n+2}\right) \xrightarrow{i^{\prime}} \tilde{K}\left(N^{4 n+1}\right) \longrightarrow 0,
$$

we have $\operatorname{Ker} i^{1}=Z_{2} \oplus Z_{2}$ by Lemmas 5.2, 5.4 and 5.5. Since $\alpha \delta^{n}$ and $\beta \delta^{n}$ belong to $\operatorname{Ker} i^{1}$ by Lemma 4.5, it is sufficient to show that $\alpha \delta^{n} \neq 0, \beta \delta^{n} \neq 0$ and $\alpha \delta^{n} \neq \beta \delta^{n}$ in $\tilde{K}\left(N^{4 n+2}\right)=\tilde{K}\left(N^{4 n+3}\right)=\tilde{K}\left(N^{n}(m)\right)$.

Considering the induced homomorphism

$$
\rho^{\prime}: \widetilde{K}\left(N^{n}(m)\right) \longrightarrow \widetilde{K}\left(L^{2 n+1}\left(2^{m}\right)\right),
$$

we have

$$
\rho^{\prime}\left(\beta \delta^{n}\right)=\left((\sigma+1)^{2 m-1}-1\right)\left(\sigma^{2} /(1+\sigma)\right)^{n}=2^{m-1} \sigma^{2 n+1}
$$

by Lemma 4.7 and (4.6). Since $\sigma^{2 n+1}$ in $\widetilde{K}\left(L^{2 n+1}\left(2^{m}\right)\right)$ is of order 2^{m} (cf. [6, Prop. 2.6]), we have $\beta \delta^{n} \neq 0$. Also, $\rho^{\prime}\left(\alpha \delta^{n}\right)=0$ by Lemma 4.7, and so we have $\alpha \delta^{n} \neq$ $\beta \delta^{n}$ in $\widetilde{K}\left(N^{n}(m)\right)$. Considering the induced homomorphism

$$
\rho^{\prime}: \tilde{K}\left(N^{n}(m)\right) \longrightarrow \tilde{K}\left(L^{2 n+1}(4)\right),
$$

we have

$$
\rho^{\prime}\left(\alpha \delta^{n}\right)=\left((\sigma+1)^{2}-1\right)\left(\sigma^{2} /(1+\sigma)\right)^{n}=2 \sigma^{2 n+1}
$$

by Lemma 4.8 and (4.6). Since $\sigma^{2 n+1}$ in $\tilde{K}\left(L^{2 n+1}(4)\right)$ is of order 4 (cf. [6, Prop. 2.6]), we have $\alpha \delta^{n} \neq 0$ in $\tilde{K}\left(N^{n}(m)\right)$. q.e.d.

§6. Proof of Theorem 1.2

In this section, we deal with the special case $N^{n}(2)=S^{4 n+3} / H_{2}$, where H_{2} $=\{ \pm 1, \pm i, \pm j, \pm k\}$ is the quaternion group.

The elements α, β and δ in $\widetilde{K}\left(N^{n}(2)\right)(n \geqq 1)$ of (4.1) have the following relations by Proposition 3.3:

$$
\begin{align*}
& \alpha^{2}=-2 \alpha, \quad \beta^{2}=-2 \beta \tag{6.1}\\
& \alpha \beta=-2 \alpha-2 \beta+4 \delta+\delta^{2}, \tag{6.2}\\
& \alpha \delta=-2 \alpha, \quad \beta \delta=-2 \beta . \tag{6.3}
\end{align*}
$$

By these relations, we have

$$
\begin{equation*}
\delta^{3}+6 \delta^{2}+8 \delta=0 \tag{6.4}
\end{equation*}
$$

Moreover, Lemma 4.5 shows that

$$
\begin{equation*}
\delta^{n+1}=0 \tag{6.5}
\end{equation*}
$$

Lemma 6.6. (i) $\quad 2^{n+1} \alpha=0, \quad 2^{n+1} \beta=0$.
(ii)

$$
2^{2 i+3} \delta^{n-i}=0 \quad \text { for } 0 \leqq i \leqq n-1
$$

(iii)

$$
2^{2 i+2} \delta^{n-i}= \pm 2^{2 i+4} \delta^{n-i-1} \quad \text { for } 0 \leqq i \leqq n-2
$$

Proof. (i) By (6.3) and (6.5), we have $2^{n+1} \alpha=-2^{n} \alpha \delta=\cdots=(-1)^{n+1} \alpha \delta^{n+1}$ $=0$ and $2^{n+1} \beta=0$.
(ii) The equality $(6.4) \times \delta^{n-1}$ and (6.5) show that $8 \delta^{n}=0$. The desired equality is obtained by the induction on i, by using $(6.4) \times 2^{2 i} \delta^{n-i-1}$.
(iii) This is obtained inductively by using (6.4) $\times 2^{2 i-1} \delta^{n-i-1}$ and (ii). q.e.d.

Lemma 6.7.

$$
2^{n-1}\left(\delta^{2}+4 \delta+2^{n+1} \delta\right)=0
$$

Proof. We consider the element $\delta(1)=\delta^{2}+4 \delta$. Then $\delta(1) \delta=-2 \delta(1)$ and $\delta(1)^{2}=-4 \delta(1)$ by (6.4). Therefore,

$$
\begin{equation*}
\delta(1) \delta^{i}=(-1)^{i} 2^{i} \delta(1), \quad \delta(1)^{i+1}=(-1)^{i} 2^{2 i} \delta(1) \tag{6.8}
\end{equation*}
$$

For the case $n=2 m \geqq 2$, we have

$$
\begin{aligned}
-2^{n-1} \delta(1) & =(-1)^{m-1} \delta(1)^{m} \delta & & \text { by }(6.8) \\
& =(-1)^{m-1} \sum_{i=0}^{m-1}\binom{m-1}{i} 2^{2 i} \delta^{n-i-1} \delta(1) & & \text { by } \delta(1)=\delta^{2}+4 \delta \\
& =(-1)^{m-1} \delta^{n-1} \delta(1) & & \text { by (iii) of Lemma } 6.6 \\
& = \pm 4 \delta^{n} & & \text { by (6.5) } \\
& = \pm 2^{2 n} \delta & & \text { by (iii) of Lemma } 6.6
\end{aligned}
$$

For the case $n=2 m+1 \geqq 3$, we have in the same way

$$
2^{n-1} \delta(1)=(-1)^{m-1} \delta(1)^{m} \delta^{2}= \pm 2^{2 n} \delta
$$

For the case $n=1$, we have $\delta(1)= \pm 4 \delta$ by (6.5) and (ii) of Lemma 6.6. These show the lemma. q.e.d.

Proof of Theorem 1.2. The theorem for $n=0$ has been proved in Lemmas 4.2 and 4,5 , Let $n \geqq 1$. By Theorem 1.1 and the relations (6.1)-(6.4), we see
that every element of $\widetilde{K}\left(N^{n}(2)\right)$ is a linear combination of α, β, δ and $\delta^{2}+4 \delta+$ $2^{n+1} \delta$. The order of these elements are not greater than $2^{n+1}, 2^{n+1}, 2^{2 n+1}$ and 2^{n-1}, respectively, by the above lemmas. Since $2^{n+1} \times 2^{n+1} \times 2^{2 n+1} \times 2^{n-1}$ $=2^{5 n+2}$, we have the theorem by Proposition 2.3. q.e.d.

References

[1] M. F. Atiyah: Characters and cohomology of finite groups, Publ. Math. Inst. HES, 9 (1964), 23-64.
[2] M. F. Atiyah and F. Hirzebruch: Vector bundles and homogeneous spaces, Proc. Symposia in Pure Math. III, Amer. Math. Soc. (1961), 7-38.
[3] H. Cartan and S. Eilenberg: Homological Algebras, Princeton Math. Series 19, Princeton Univ. Press, 1956.
[4] C. W. Curtis and I. Reiners: Representation theory of finite groups and associative algebras, Pure and Appl. Math. XI, Interscience Publ., 1962.
[5] D. Husemoller: Fibre Bundles, McGraw-Hill Book Co., 1966.
[6] T. Kawaguchi and M. Sugawara: K- and KO-rings of the lens space $L^{n}\left(p^{2}\right)$ for odd prime p, Hiroshima Math. J., 1 (1971), 273-286.
[7] N. Mahammed: A propos de la K-théorie des espaces lenticulaires, C.R. Acad. Sci. Paris, 271 (1970), 639-642.
[8] D. Pitt: Free actions of generalized quaternion groups on spheres, Proc. London Math. Soc. (3), 26 (1973), 1-18.
[9] B. J. Sanderson: Immersions and embeddings of projective spaces, Proc. London Math. Soc. (3), 14 (1964), 137-153.

Department of Mathematics, Faculty of Science, Hiroshima University

