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§ I. Introduction

The purpose of this note is to study the X-ring K(Nn(m)) of complex vector
bundles over the {An + 3)-dimensional quotient manifold

Here, Hm is the generalized quaternion group generated by the two elements
x and y with the two relations

x2m~ί=y2 and xyx=y,

that is, Hm is the subgroup of the unit sphere S3 in the quaternion field H generated
by the two elements

x=exp(πi/2w"1) and y=j,

and the action of Hm on the unit sphere S 4 n + 3 in the quaternion (nH-l)-space
Hn+ ί is given by the diagonal action.

Recently, the problem of immersing or embedding this manifold Nn(m)
in euclidean spaces is studied in [8].

Let a! and β' be the complex line bundles over Nn(m) whose first Chern classes
are the generators of H2(Nn(m)\ Z)=Z2®Z2, and δ' =πιλ be the complex plane
bundle over Nn(m) induced from the canonical complex plane bundle λ over the
quaternion projective space HPn by the natural projection

π: Nn(m) >HPn.

Then we have the following

THEOREM 1.1. The reduced K-rίng K(Nn(m)) (m^2) is generated
multίplίcatίvely by the three elements

α = α ' - l , β=β'-l and δ=δ'-2.

This theorem shows that the natural ring homomorphism

—>£(JV»(m))
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is an epimorphism, where R(Hm) is the reduced (unitary) representation ring.

For the case m=2, H2={±1, ±U ±j, ±k} is the quaternion group and

we have

THEOREM 1.2. As an abelian group,

for n ^ l and the direct summands are generated by the elements

α, β, δ and δ2+4δ + 2n+ίδ,

respectively. Also K(N°(2))=Z2(BZ2 is generated by the two elements α andβ.

The multiplicative structure of K(Nn(2)) (n^O) is given by

α 2 = - 2 α , β2 = -2β, ocβ=-2(x-2β + 4δ + δ2,

α<5 = - 2 α , βδ = -2β, δn+i=0.

This note is constructed as follows. In §2, a C^-decomposition of Nn(m)

is given to have the cohomology groups of this manifold. Moreover, the order

of K(Nn(m)) is determined by using the Atiyah-Hirzebruch spectral sequence.

In § 3, the unitary representation rings R(Hm), R(Z2m) and R(S3) of the groups

Hm, Z2m and S3 are considered. Considering the inclusions p : Z2m >Hm,

pr: Z 4 >Hm defined by p(z) =x, p'(z)=y for the generator z of the cyclic groups,

and the natural projections

p: L2n+ί(2m) >Nn(m), p'\ L 2 " + 1 (4) >ΛΓw(m),

where L2n+1(k)=S4n+3/Zk is the standard lens space mod k, we determine the

images of α, β and δ by the induced ring homomorphisms p ! and p " in §4.

Then, Theorem 1.1 is proved in §5 by the induction on the skeletons of Nn(m).

Finally, Theorem 1.2 is proved in §6 by using the above results.

The author wishes to express his gratitude to Professors M. Sugawara and

T. Kobayashi for their encouragement and valuable discussions.

§ 2. A ClF-decomposition and the cohomology groups of Nn(m)

The generalized quaternion group Hm (mJΞ>2) is the subgroup of the unit

sphere S 3 in the quaternion field H, generated by the two elements

x=exp(πi/2 m " 1 ) and y=j.

In this note, we consider the diagonal action of Hm on the unit sphere S 4 n + 3

in the quaternion (n + l)-space Hn+ί, given by
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for q^Hm and (<h, ••, ^ + 1 ) G S 4 " + 3 . Regarding H as the complex 2-space C 2 ,

by the replacement q=z+jz', this JF/m-action is given by

* ( z l > Z2>' "> z2n+\ > z2n + 2)—(xzl> x~ Z2> > x z 2 n + l > X ~ l z 2 r t + 2)ί

y ί 2 ! ? Z2> » z 2 « + l 5 Z 2 « + 2 ) = ( ~ Z 2 J Z 1 > » ~ z 2 n + 2> Z 2 n + l )

for (z 1 ? z2,..., z 2 n + 1 , Z 2 B + 2 ) G S 4 B + 3 .

In this section, we give an i/m-equivariant CW-decomposition of 5 4 f l + 3 ,

which induces a C^-decomposition of the manifold Nn(m) = S4n+3IHm9 and we

determine the cohomology groups of Nn(m).

We consider the following cells in S 4 π + 3 , for 0^/c^n, 0^j<2m andε=O, 1:

ε ^ 0 , z 2 f e + 2 _ ε = 0 ,

2, 0,...,0); z2k+ί+εΦ0, z 2 f c + 2 _ ε = 0 ,

a r g z 2 f c + 1 - ε π = - a r g z 2 f c + 2 = j π / 2 m - 1 } ,

, 0,..., 0);

4 2> 0,..., 0);

(>/-ε)π/2m-1<argz2 f c + 1-επ + (ε-l)θ =

εθ-argz 2 f c + 2 <O +l-ε)π/2 m - 1 , 0<θ<π}.

Set e*k+s = effis and ̂ ' 4 f c + ί = e /

0 ^ + ί . Then, it is easy to show that

e4k+s = χjyεe4k+s9 e,4k+t = χjyεe,4k+t^

and {e^t\ ef^+t; O^k^n, 0^;<2m

? 0^s^3, ί = l, 2, ε=0, 1} gives an Hm-
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equivariant CFf-decomposition of S4n+3, with the boundary formulas

Let ξ: 5 4 w + 3 ^ 5 4 w + 3 / / / m = Nπ(m) be the natural projection, and set

β4k+. = ξ(e4fc+S) f o r s = 0 ) 3,

e j*+<=£( ί ? 4*+<), e*k+t=ξ(e,4k+t) f o r ί = i ? 2 .

Then, we have obtained the following

LEMMA 2.1. 77ie seί {e4fc+s, e\k+t, eik+t; O^k^n, s=0, 3, ί = l, 2} I J Λ

CW-decomposition of the manifold Nn(m)9 with the boundary formulas:

This implies

PROPOSITION 2.2. [3, Ch.XII, §7] The integral cohomology groups of

Nn(m) are given by

Hk(Nn(m);Z)={

IZ for fc=0, 4n + 3,

Z2

m+i for fc = 0(4), 0<A:<4n + 3,

Z2®Z2 for k = 2(4), 0</c<4n + 3,

v 0 otherwise.

Now, let K(X) be the K-ring of complex vector bundles over a topological

space X, and K(X) be its reduced X-ring. Let {£f «} be the Atiyah-Hirzebruch

spectral sequence for K(Nn(m)) (cf. [2, §2]). Then, by the above proposition,

we have

/or g even, p = 0 ,
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Z2 ®Z2 for q even, p = 2(4), 0 < p < An + 3,

0 otherwise,

where P is a single point. Therefore, the differentials of this spectral sequence
are trivial, and we have easily

PROPOSITION 2.3. K(Nn(m)) consists 0/2"(m + 3>+ 2 elements, and K^N^m))
=Z.

Since H2(Nn(m); Z)=Z2(&Z2, there are two complex line bundles α' and
β' over Nn(m), whose first Chern classes generate H2(Nn(m); Z). Then, by using
the above spectral sequence and the Chern classes, we have easily the following

LEMMA 2.4. For the 3-manifold N°(m),

generated by α=α r —1 and β=β' — l, and α2=/?2=α/?=0.

§ 3. The representation ring R(Hm)

In this section, we consider the (unitary) representation ring R(Hm) of Hm

(cf. [4, §47.15, Example 2]).
The conjugate classes of Hm are given by

Cj+2 = {χJ, x-J} for j = 0 , l,...,2m-K

Also, Hm has four representations of degree 1:
F 0 =the unit representation,

J F 1 ( J C ) = 1 JF 2(*) = - 1 JF3(x) = - l

W)0 = -l, [F2(y)= 1, \F3(y) = -h

and 2m~x — 1 representations of degree 2:

(χ% o\ /(K-iyx
F i+3W= F ί + 3 ω =

\0 x-V, \1 0 /
fori = l, 2,...,2"'-1-l.

Then, we see that these are all of the irreducible representations of Hm, by the
following character table, where χ, is the character of Fj for j ==0, 1,..., 2"1"1 +2.
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Xi

Xi

X3

ft+3(i = l 2""1-!)

Co

1

j

1

γ

0

1

- 1

- 1

1

0

C7+2O=0,...,2»-1)

1

1

(-1V

(-iy

xU + x" 1 '

Furthermore, the multiplicative structure of R(Hm), which is given by the

tensor product of characters, can be determined by the routine calculations using

the above table, and we have the following

PROPOSITION 3.1. (cf. [8, §1]) The representation ring R(Hm) is a free

Z-module genrerated by Xpj=09 1,..., 21""1 + 2 , with relations:

Xo = 1, XiXj= X i = Xi =

for m=2,

for m^3,

REMARK 3.2. The following equality can be proved by the above relations.

for m ^ 3 , j ^ 5 , where ε(ϊ)=0 if ί is even and = 1 if i is odd.

For the reduced representation ring R(Hm)9 which is the kernel of the aug-

mentation homomorphism

deg: R(HJ—+Z,

we have

PROPOSITION 3.3. The commutative ring R(Hm) is a free Z-module gener-

ated by
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with relations

α 2 = - 2 α , β2 = -2

OLOX = - 2 α , βδ1 = -

ί-^i+y for m=2,

/or m^3,

These show that R(Hm) is generated by α, β and δt as a ring.

Now, let

(3.4) π:Hm—+S3

be the inclusion, and let

(3.5) p:z2-—*Hm p':Zt^Hm

be the inclusions such that p(z)=x, p'(z)=y for the generator z of the cyclic

group Zk. The ring homomorphisms induced by these inclusions are denoted

by the same letters:

π:
(3.6)

p: Λ(HJ—Λ(Z 2 ») , p :

The following lemmas are well known:

LEMMA 3.7. (cf. [5, Ch.13, Th. 3.1]) R(S3) is the polynomial ring Z[ζ],

where ζ is given by the representation

(zι -z2\
Zi+jz2 > ) for zt+jz2<=S3.

\z2 zj

LEMMA 3.8. (cf. [1, §8]) R(Z2m) is the truncated polynomial ring Z[χ]/

<χ2m —1>, where χ is given by z-texptyi/l"1'1) for the generator z of Z2m.

By the definitions, we have easily the following equalities for the homomor-

phisms of (3.6):
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p(xi)=i, P(χ2)=x2m~\

where χ is the conjugation of χ. These show the following

PROPOSITION 3.9. For the induced homomorphisms

π: R(S3) >R(HJ,

p: R(Hm)—>R(Z2m), p':R(Hm)—+R(Z4)

of (3.6), we have the following equalities:

π ( ί -2)=<5 i ;

p(α)=0, p(β)=(σ+l)2m~ι-h p(«51)=σ2/(l + σ);

where σ=χ—1.

§ 4. Some elements of K(Nn(m))

Assume that a topological group G acts on a topological space X without

fixed point. Then, the natural projection

p: X >XjG

defines the ring homomorphisms

p:R(G) >K(X/G), p: R(G) >K(X/G)

as follows (cf. [5, Ch. 12, 5.4]): For an n-dimensional representation ω of G,

p(ώ) is the complex n-plane bundle induced from the principal G-bundle p: X

-*X/G by the group homomorphism ω: G-+GL(n9 C). Furthermore, if H is a

subgroup of G, then the inclusion i: H-+G and the natural projections p'\ X-+

X/H, i: XjH-*XjG induce the following commutative diagram

R(G) -*-> K(XjG)

R{H) -^

Now, considering the projection

we define the elements
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(4.1) α = ξ(α), β = ξ(β), δ=ξ(δί) in K(N»(m)\

which are the images of α, β and δ1 in Proposition 3.3 by the ring homomorphism

ξ: R(Hm)->K(Nn(m)). It is easy by the definitions to show that 0L'=ξ(χί) and

β' =ξ(χ2) are the complex line bundles over Nn(m) whose first Chern classes gener-

rate H2(Nn(m); Z)=Z2(&Z2, where χt and χ2 are the representations in Proposi-

tion 3.1 (cf. [1, Appendix, (3)]). Therefore,

LEMMA 4.2. Lemma 2.4 holds for the elements α and β o/(4.1).

The iC-ring K(HPn) of the quaternion projective space HPn=S4n+3/S3 is

given by

(4.3) K(HPn)=Z[y2l<vn+1>,

where v=λ — 2 and λ is the canonical complex plane bundle over HPn (cf. [9, Th.

3.12]).

LEMMA 4.4. πι(y)=δ,

where π ! : K(HPn)-+K(Nn(m)) is the induced homomorphism of the natural

projection π: Nn(m)-*HPn.

PROOF . Consider the commutative diagram

_ίU K(HPn)

1- !-
where ξ': S 4 n + 3 -+HPn is the projection. Then we have easily ξ'(ζ — 2) = v by defi-

nitions, where ζ is the representation of Lemma 3.7 (cf. [5, Ch. 13, Th. 3.1]).

Since π(( —2)=<51 by Proposition 3.9, we have the desired result. q.e.d.

Let Nk be the /c-skeleton of the CW-complex Nn(m) of Lemma 2.1 and i: Nk

->Nn(m) be the inclusion. For an element a e K(Nn(m))9 we denote its image

Va by the same letter a.

The following lemma is used in the next section.

LEMMA 4.5. The element α ^ * is zero in KiN2^2^**-1), where α, β and

δ are the elements of (4.1).

PROOF. It is clear that α and β are zero in K(N1)=0. The fact that δ is

zero in R(N3)=K(N°(m)) follows immediately from Lemma 4.4. Therefore, we

have the lemma by the obvious fact that ab is zero in K ί i V ^ " 1 ) if a is zero in

P-1) and b is zero in KiW1) (cf. [2, (5) in p. 20]). q.e.d.
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The AΓ-ring K(L"(k)) of the standard lens space mod k Ln(k) = S2n+ί/Zk is

given by

(4.6) X(L»(fc))=Z[σ]/<σ»+1, ( σ + l ) * - l > ,

where σ = μ — 1 and μ is the canonical complex line bundle over Ln(k) (cf. [7, Lem-

ma 3.3]).

LEMMA 4.7. For the natural projection p: L2n+ ι(2m)-+ Nn(m), induced by

the first inclusion p of (3.5), we have

p'(α)=0, p<φ)=(σ+l)2'"-ι-l, p'(δ)=σ2l(ί+σ).

PROOF. Consider the commutative diagram

R(Hm) -L, K(N"(m))

I- I''
R(Z2m) - ί l * K(L2»+1(2>»)\

where ξ": 5 4 π + 3 -^L 2 / ι + 1 (2 m ) is the projection. Then the equality ξ"(/-I) =

μ — 1 can be proved easily by the definitions, since the first Chern class of μ gene-

rates H 2 ( L 2 w + 1 ( 2 m ) ; Z)=Z2m (cf. [1, §2 and Appendix, (3)]). Hence, we obtain

the desired equalities by (4.1) and Proposition 3.9. q.e.d.

For the second inclusion p'\ Z4-+Hm of (3.5), and the natural projection
p/. £2n+1(4)->iVπ(m), W e have the following lemma similarly to the above lemmas.

LEMMA 4.8. p M ( α ) = ( σ + l ) 2 - l , ρ"(β)=0,

§ 5. Proof of Theorem 1.1

The CJF-decompositions of Nn(m) for n^O of Lemma 2.1 define naturally a

CW-decomρosition of N^im)^ UnN
n(m). Let Nk be the fe-skeleton of the CW-

complex iy°°(m). Then

N*n+3=Nn(m)

and the cell structure of N^im) is given by

411+4
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where ei+1-ίL-+ei means that the attaching map

is the map of degree k.

We denote by %A the number of the elements of a finite set A.

LEMMA 5.1. K1(N4n+2lN^n-2)=09 #K(N4n+2/N4n-2) = 2m

PROOF. In the Puppe exact sequence of the pair (Λ^4lI/Λ^4/l~2, i^4

•£-i(S*«) >K~1(N4nlN4n~2) >K~ί(S4n-1)

we see by (*) that the coboundary δ is the multiplication by 2 m + 1 . Hence, we

have Kΐ(N4nIN4n-2)=0 and K(N*n/N*n-2)=Z2m+i. Furthermore, by the

Puppe sequence of ( N 4 W + 1 / N 4 M - 2 , JV^/JV4"-2)

2 ( 1 ) >K-1(N4n+ίlN4n-2) >0 >0

>K(N4n+1lN4n~2) >Z2m+i >K1(S4n+

we have

Consider the Puppe sequence of (N*n+2/N4n-2, N4n+1lN4n~2)

0 >K-1(N4n+2lN*n~2) >K-1(N4n+1IN4n~2)-^

K(S*n+2VS*n+2) >K(N4n+2lN4n~2) >K(N4n+ί/N4n'2)

Then we see from the attaching maps of (*) that the coboundary <5:

is the multiplication by 2. Hence, we have the lemma. q.e.d.

LEMMA 5.2. £ 1 ( N 4 l l + 2 ) = 0 , ^N4n+2^=2n(m+3)+2t

PROOF. Since Nι =S1 V S1, we have the lemma for n =0, by using the Puppe

sequence of (N2, N1)

0 >K~1(N2) >K-ί(S1VSί)^^K(S2WS2) >K(N2) >0.

The lemma for n ^ 1 can be proved inductively by Lemma 5.1 and the Puppe sequ-

ence

0 >K~ι(N*n+2) >K
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>K(N4n+2) >K(N4n~2) >0. q.e.d.

LEMMA 5.3. The induced homomorphism V: K(N4n+3)^K(N4n+2) is an

isomorphism, where i: N4n+2-+ N4n+3 is the inclusion.

PROOF. This follows immediately from Lemma 5.2 and the Puppe sequence

0 >K(N4n+3)~^K(N4n+2) >Kι(S4n+3). q.e.d.

LEMMA 5.4. K 1 ( ^ 4 π ) = 0 , #K(N4n)=2n(m+3\

PROOF. This follows from Proposition 2.3, Lemma 5.2 and the Puppe sequ-

ence of (N4n, N4n~ι)

O^K-^N^^K-^N^-^^^KiS^^KiN4")^^

q.e.d.

LEMMA 5.5. Kί(N4n+1)=ZφZ and V: K(N4n+ι)-+K(N4n) is an isomor-

phism, where i: N4n->N4n+ί is the inclusion.

PROOF. The lemma follows from Lemma 5.4 and the Puppe sequence

0 >K(N4n+1)-^K(N4n) >Kι(S4n+1 VS4n+1) ^K'iN4^1) >0.

q.e.d.

Now, we are ready to prove Theorem 1.1.

PROOF OF THEOERM 1.1. Consider the natural projection π: Nn(m)-+HPn

of Lemma 4.4 and the commutative diagram of the Puppe sequence

\- I- V
0 >K(HPn/HPn-1) >K(HPn) >K{HPn~1).

For the element v^K(HPn) of (4.3), it is easy to show that the element vΠe

K(HPn) is the image of a generator of K(HPnjHPn-ι)=K(S4n)=Z, by using the

Chern character (cf. [9, Proof of (3.12)]). Also, it is easy to show that the restric-

tion

π: (N4n, N4"-1) >(HPn, HP"-1)

is a relative homomorphism, by the definitions of the cells of Lemma 2.1, and so

π1 in the left is an isomorphism. These show that Keri1 is generated by δn =

π](vn). Therefore, if the ring ^(N4"'1) is generated multiplicatively by α, β and
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δ9 then so is K(N*n).

Now, we prove that the ring K(N4n+2) is generated multiplicatively by α,

β and δ if K(N4n+ί) is so. Then, the theorem is proved by the induction on n,

using Lemmas 4.2, 5.3 and 5.5.

In the Puppe sequence

0 >K-ι(N4n+1)-H+K(S4n+2\ί S4n+2)

we have Ker V =Z2®Z2 by Lemmas 5.2, 5.4 and 5.5. Since ocδn and βδn belong to

Ken 1 by Lemma 4.5, it is sufficient to show that aδnφ0, βδnΦθand otδnΦβδn in

K(N4n+2)=K(N4n+3) =K(Nn(m)).

Considering the induced homomorphism

p 1 : K(Nn(m)) >K(L2n+1(2m)\

we have

by Lemma 4.7 and (4.6). Since σ2n+ί in K(L2n+ί(2m)) is of order 2m (cf. [6, Prop.

2.6]), we have βδnΦθ. Also, p!(α<5π)=0 by Lemma 4.7, and so we have ocδnΦ

βδn in K(Nn(m)). Considering the induced homomorphism

p'1: K(Nn(m)) >K(L2n+\4)\

we have

by Lemma 4.8 and (4.6). Since σ2n+ί in K(L2n+1(4)) is of order 4 (cf. [6, Prop.

2.6]), we have ocδnφθ in K(Nn(m)). q.e.d.

§6. Proof of Theorem 1.2

In this section, we deal with the special case JVπ(2)=S 4 π + 3/// 2, where H2

= {±1, ±ΐ , ±j, ±k} is the quaternion group.

The elements α, β and δ in K(Nn(2)) ( n ^ 1) of (4.1) have the following rela-

tions by Proposition 3.3:

(6.1) α 2 = -2α, β2 = -2β,

(6.2) ocβ = -2oc

(6.3) α(5 = - 2 α

By these relations, we have
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(6.4)

Moreover, Lemma 4.5 shows that

(6.5) δn+1=0.

LEMMA 6.6. (i) 2 w + 1 α = 0 , 2» + 1 β=0.

(ii) 22i+3δn~i=0 for O ^ i ^ n - 1 .

(iii) 22i+2δ»-i = ±22i+*δn-i-ί for O^ϊrgn-2.

PROOF, (i) By (6.3) and (6.5), we have 2w + 1α = -2"αδ = . =(-l)n+ίocδn+1

= 0 a n d 2 n + 1 j ? = 0 .

(ii) The equality (6.4) x^"" 1 and (6.5) show that 8<5Λ=O. The desired

equality is obtained by the induction on i, by using (6.4)x22i<5π~I~1.

(iii) This is obtained inductively by using (6.4)x2 2 / " 1 ^ π ~ ί ~ 1 and (ii).

q.e.d.

LEMMA 6.7. 2n

PROOF. We consider the element δ(l)=δ2 + 4δ. Then δ(l)δ = -2(5(1) and

,5(1)2 = -4(5(1) by (6.4). Therefore,

(6.8) 5(1)5£ = ( - l) ι '2^(l), (5(l) ί+1 = ( - iy22iδ(l).

For the case n = 2 m ^ 2 , we have

-2"-1<5(l)=(-l)m-1<5(l)m(5 by (6.8)

= (- V'W-^il) by (iii) of Lemma 6.6

= ±4(5" by (6.5)

= ± 22nδ by (iii) of Lemma 6.6.

For the case n=2m + l^>3, we have in the same way

For the case n = l, we have (5(1)= ±45 by (6.5) and (ii) of Lemma 6.6. These

show the lemma. q.e.d.

PROOF OF THEOREM 1.2. The theorem for n = 0 has been proved in Lemmas

4,2 and 4,5, Let n ^ l . By Theorem 1,1 and the relations (6.1)-(6.4), we see
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that every element of K(Nn(2)) is a linear combination of α, β9 δ and δ2+4δ +

2n+1δ. The order of these elements are not greater than 2n+1, 2n+\ 22n+ί and

2"" 1, respectively, by the above lemmas. Since 2M + 1 x 2n+ί x22n+ί x2n~ί

= 25n+2

9 we have the theorem by Proposition 2.3. q.e.d.
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