HirosHIMA MATH. J.
3 (1973), 251-265

On the K-Ring of S**+3/H,

Kensé Fuin
(Received March 28, 1973)

§ 1. Introduction

The purpose of this note is to study the K-ring K(N"(m)) of complex vector
bundles over the (4n + 3)-dimensional quotient manifold

N7"(m)=S4"*3|H,, (m=2).

Here, H,, is the generalized quaternion group generated by the two elements
x and y with the two relations

x2"'=p2 and xyx=y,

that is, H,, is the subgroup of the unit sphere S3 in the quaternion field H generated
by the two elements

x=exp(ni/2® ') and y=j,

and the action of H,, on the unit sphere S*"*3 in the quaternion (n+ 1)-space
H"*1 is given by the diagonal action.

Recently, the problem of immersing or embedding this manifold N"(m)
in euclidean spaces is studied in [8].

Let o’ and p’ be the complex line bundles over N*(m) whose first Chern classes
are the generators of H2(N*(m); Z)=Z,®Z,, and & =n'A be the complex plane
bundle over N*(m) induced from the canonical complex plane bundle A over the
quaternion projective space HP" by the natural projection

n: N*(m)— HP".

Then we have the foilowing

THEOREM 1.1. The reduced K-ring RK(N"(m)) (m=2) is generated
multiplicatively by the three elements

a=a'—1, f=p'—1 and 6=0-2.

This theorem shows that the natural ring homomorphism

&: R(H,,)— R(N"(m))
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is an epimorphism, where R(H,) is the reduced (unitary) representation ring.
For the case m=2, H,={4+1, +i, +j, +k} is the quaternion group and
we have

THEOREM 1.2. As an abelian group,
R(N"2)=Z1n s \@®Zyn+ \DZy2n+ DZyn-s
for n=1 and the direct summands are generated by the elements
o, B, and 62+46+2"16,

respectively. Also R(N°(2))=Z,@Z, is generated by the two elements « and p.
The multiplicative structure of K(N"(2)) (n=0) is given by

a?=—-2a, B?=-2B, af=-—20—2B+46+42,

ad=—2a, Ppé=-28, o"*1=0.

This note is constructed as follows. In §2, a CW-decomposition of N"(m)
is given to have the cohomology groups of this manifold. Moreover, the order
of K(N"(m)) is determined by using the Atiyah-Hirzebruch spectral sequence.
In §3, the unitary representation rings R(H,,), R(Z,~) and R(S3) of the groups
H,, Z,» and S3 are considered. Considering the inclusions p: Z,.— H,,,
p': Z,— H,, defined by p(z) =x, p’(z) =y for the generator z of the cyclic groups,
and the natural projections

p: L2n+l(2m)__,Nn(m), p;: L2n+l(4)____,Nn(m),

where L2"+1(k)=S4"*3/Z, is the standard lens space mod k, we determine the
images of o, B and é by the induced ring homomorphisms p' and p’' in §4.
Then, Theorem 1.1 is proved in § 5 by the induction on the skeletons of N*(m).
Finally, Theorem 1.2 is proved in § 6 by using the above results.

The author wishes to express his gratitude to Professors M. Sugawara and
T. Kobayashi for their encouragement and valuable discussions.

§2. A CW-decomposition and the cohomology groups of N"(m)

The generalized quaternion group H,, (m=2) is the subgroup of the unit
sphere S3 in the quaternion field H, generated by the two elements

x=exp(ni/2™®~1) and y=j.

In this note, we consider the diagonal action of H,, on the unit sphere S4n+3
in the quaternion (n+ 1)-space H"+!, given by
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4(q1>--s In+1)=(qq 15> 9qn+1)

for g H,, and (q,,..., 4u+ 1) ES*"*3. Regarding H as the complex 2-space C2,
by the replacement g =z+jz’, this H,-action is given by
_lz seees XZop4qs x_122n+2)9

X(Zl, 225405 Zon+15 22n+2)=(x21, X

s —Zan+2s Zon+1)

_V(Zl, 225005 Z2n+15 22"+2)=(—22, Zys-

for (Zl’ 225005 Z2n+15 22n+2)ES4"+3.
In this section, we give an H,-equivariant CW-decomposition of S*7+3
which induces a CW-decomposition of the manifold N*(m)=S*"*3/H,, and we

determine the cohomology groups of N™(m).
We consider the following cells in S4*+3, for 0<k<n, 0<j<2™ and ¢=0, 1

94" ={(z15--» Zok+2> 050,005 Zop i1 4. #0, Z3442-,=0,
— ; -1
argzou 414, =(—1)%jn/2m }’
+1 _ . —
e‘!“; _{(zl,-ns 22k+2’ 0’-”’ 0)5 22k+1+e:#03 22k+2—5_07

(= 1)yjm/2m "t <arg zopy 1 4. <+ (= 1%)m/2m 1}

et ={(z4,..., Zoks 2, 0,000, 05 22541 #0, 2344, #0,
argZay — &M= —arg Zyy 4 =jm/2™ 1},
etr2 ={(zy,..., Zok425 0,000, 0)5 23441 #0, 2254, #0,

argzy 42—, =en+(—1)*+1jn/2m"1,

(—1)jn2m t <argzppy g4 <m+(—1)%jm/2m1}

et 2 ={(zy,..., Zak425 0,..., 0)5 Zgp 41 #0, 242 #0,
(J—om/2m !t <argzy,—en=—argzy.,<(j+1—¢n/2m" '}

efkt3 ={(21’---, Zok+25 050005 0); Z2p4 1 #0, Zgp42#0,

(j—en/2m l<argz,, —en+(e—1)0=

e0—argzy ., ,<(j+1—¢en/2m 1, 0<O<n}.

Set e*kts=efkts and e'4***=ey*ht!. Then, it is easy to show that

4k+s — yJjpEpdk+ 14k+t — yjyEpr 4kttt
e S=xlyte® s, el Tt =xJy% .

and {e$krs, erdk+e,

0sk<n, 05j<2m 0=<s<3, t=1, 2, ¢=0, 1} gives an H,-
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equivariant CW-decomposition of S4"*3, with the boundary formulas
ae4k=2qumqe4k_l,
ae4k+1=(x_1)e4k, 6e’4"+1=(y-1)e4",
0 2 =(1+x+x24 - +x2" " )edktl_ (y41)e 4k+1,
ae/4k+2=(xy+ 1)e4k+l+(x_ l)el4k+ 1’
Pet*+3 = (x—1)e**+2 — (xy—1)e'4*+2,
Let &: S4n+384n+3|H = Nn(m) be the natural projection, and set
etkts = E(gdkts) for s=0, 3,
etktt =E(etktt) g4kttt =f(er4kH) for t=1, 2.
Then, we have obtained the following

LEMMA 2.1. The set {e*k*s, ekt e4k+t, 0<k<n, s=0, 3, t=1, 2} is a
CW-decomposition of the manifold N*(m), with the boundary formulas:

Detk=2mt1p4k=1 QJodk+l—godk+l—()
aet}k+2=2m—le‘}k+1_zeék+l, 6e§"+2=2e‘1"‘“, ae4k+3=0.
This implies

ProrosiTION 2.2. [3, Ch.XII, §7] The integral cohomology groups of
N#(m) are given by

Z for k=0, 4n+3,

Z,m+1 for k=0(4), 0<k<4n+3,
HY(N"(m); Z)=

Z,®z, for k=2(4), 0<k<4n+3,

0 otherwise.

Now, let K(X) be the K-ring of complex vector bundles over a topological
space X, and K(X) be its reduced K-ring. Let {E?-9} be the Atiyah-Hirzebruch
spectral sequence for K(N"(m)) (cf. [2, §2]). Then, by the above proposition,
we have

E34= H?(N"(m); K~%(P))
z for q even, p=0, 4n+3,

= § Z,m+t for q even,, p=0(4), 0<p<4n+3,
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Z,PZ,  for q even, p=2(4), 0<p<4n+3,
0 otherwise,

where P is a single point. Therefore, the differentials of this spectral sequence
are trivial, and we have easily

ProPOSITION 2.3. K(N"(m)) consists of 2nm*+3)*2 elements, and K(N"(m))
=Z.

Since H2(N"(m); Z)=Z,®Z,, there are two complex line bundles o’ and
B’ over N"(m), whose first Chern classes generate H2(N"(m); Z). Then, by using
the above spectral sequence and the Chern classes, we have easily the following

LeMMA 2.4. For the 3-manifold N°(m),
R(N(m))=Z,®Z,,

generated by a=o'—1 and B=p'—1, and a?>=p2=af =0.

§3. The representation ring R(H,,)

In this section, we consider the (unitary) representation ring R(H,,) of H,,
(m=2) (cf. [4, §47.15, Example 2]).
The conjugate classes of H,, are given by

Co={x2y;i=0,1,..,2m 1 -1},
C,={x2*1y; =0, 1,...,2m"1 -1},
Ciea={x), x7}  for j=0, 1,..., 2m1.

Also, H,, has four representations of degree 1:
F,=the unit representation,

{F,(x)= 1 {Fz(x)= -1 {F3(x)= -1

Fl(y)=—1’ F2(y)= 1’ F3(y)=_1’

and 2™~ 1 —1 representations of degree 2:

xt 0 0(-1)
Fi+3(x)=< > Fi+3(J’)=< >
0 x7¢/, 10

fori=l1, 2,...,2m" 11,
Then, we see that these are all of the irreducible representations of H,,, by the
following character table, where y; is the character of F; for j=0, 1,..., 2" 1 +2.
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Co C, Cjiz (j=0,..., 27" 1)
Xo=1 1 1 1

X1 -1 -1 1

X2 1 -1 (=1

X3 -1 1 (=1

Ki+s (i=1,...,2m"1-1) 0 0 xi 4 x~i

Furthermore, the multiplicative structure of R(H,), which is given by the
tensor product of characters, can be determined by the routine calculations using
the above table, and we have the following

ProrosiTION 3.1. (cf. [8, §1]) The representation ring R(H,,) is a free
Z-module genrerated by y;, j=0, 1,..., 2™ 1 +2, with relations:

xo=L, xix;=xix» xi=x3=1
X3=X1X2> X1Xa=Xa> X2Xa=X2m '+2,
1+ +x2+2s for m=2,
22 =
14+ x4+ xs for m=3,
Xi+1=XaXi— Xi-1 for i=5.

REMARK 3.2. The following equality can be proved by the above relations.
t= T (=TT (AT b et — e s + 1)

for m=3, i=5, where &(i)=0 if i is even and =1 if i is odd.

For the reduced representation ring R(H,,), which is the kernel of the aug-
mentation homomorphism

deg: R(H,)—>Z,
we have

PROPOSITION 3.3. The commutative ring R(H,) is a free Z-module gener-
ated by

a=x—1, B=x2—1, y=x1+x2+x3—3,
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O;=Xiz3—2  for 1Si<2m 1,
with relations
a2=—2a, B2=-2B, y=af+2u+2B,
b, =—2a, Po,=—2B+0,m1_,—0;,
—45,+y for m=2,
0%=
—45,+6,+a  for m=3,
0;41=0,0;+20,+26;—0,_, for m=3,i=2.
These show that R(H,) is generated by o, B and &, as a ring.
Now, let
3.4) n: H,— S3
be the inclusion, and let
(3.5) p:Z,»—H,, p:Z,—/H,

be the inclusions such that p(z)=x, p’(z)=y for the generator z of the cyclic
group Z,. The ring homomorphisms induced by these inclusions are denoted
by the same letters:

n: R(S3®)— R(H,,),
(3.6)
p: R(H,)—R(Z,~),  p': R(H,)—> R(Z,).

The following lemmas are well known:

LemmMma 3.7. (cf. [5, Ch.13, Th. 3.1]) R(S3) is the polynomial ring Z[(],
where { is given by the representation

2 —Z,

> for z, +jz,€83.
Z3 Zy

zZy+jz,— <
LemMma 3.8. (cf. [1, §8]) R(Z,w) is the truncated polynomial ring Z[x]/
<x?*"—1>, where y is given by z—exp(mi/2™ ') for the generator z of Z,m.

By the definitions, we have easily the following equalities for the homomor-
phisms of (3.6):

() =243
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2m-1

pP)=1 p()=x>"" p(a)=x+1;
Px)=1% p=1 p')=x+1;
where y is the conjugation of y. These show the following
ProrosITION 3.9. For the induced homomorphisms
n: R(S3)— R(H,),
p: R(H,)—R(Z,»), p': R(H,)—R(Z,)
of (3.6), we have the following equalities:
n{—2)=6y;
p@=0, p(B)=(c+1)*"""—1, p(d,)=0%/(1+0);
pP@=@+1)*=1, p'(B)=0, p'(6,)=0*/(1+0),

where c=yx—1.

§4. Some elements of K(N"(m))

Assume that a topological group G acts on a topological space X without
fixed point. Then, the natural projection

p: X—X|G
defines the ring homomorphisms
p: R(G)— K(X/G), p: R(G)— R(X|G)

as follows (cf. [S5, Ch. 12, 5.4]): For an n-dimensional representation @ of G,
p(w) is the complex n-plane bundle induced from the principal G-bundle p: X
—X/G by the group homomorphism w: G—»GL(n, C). Furthermore, if H is a
subgroup of G, then the inclusion i: H—»G and the natural projections p': X—
X/H, i: X|H-X/G induce the following commutative diagram

RG) -2 Rx/6)

o
R(H) &5 R(X|H).
Now, considering the projection
é: S4n+3__,Nn(m)=S4n+3/Hm’

we define the elements
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(4.1) a=a), B=E(B), 6=%03,) in R(N"(m)),

which are the images of a, f and ¢, in Proposition 3.3 by the ring homomorphism
¢&: R(H,)-K(Nn(m)). 1t is easy by the definitions to show that o’ =&(y,) and
B’ =&(x,) are the complex line bundles over N"(m) whose first Chern classes gener-
rate H2(N"(m); Z)=Z,®Z,, where x, and y, are the representations in Proposi-
tion 3.1 (cf. [1, Appendix, (3)]). Therefore,

LeEMMA 4.2. Lemma 2.4 holds for the elements « and B of (4.1).

The K-ring K(HP") of the quaternion projective space HP"=S4"+3/S3 is
given by

4.3) K(HP") =Z[v]]/<v**1>,

where v=4—2 and 4 is the canonical complex plane bundle over HP" (cf. [9, Th.
3.12]).

LEMMA 4.4. n'(v) =4,
where n': R(HP")—R(N™(m)) is the induced homomorphism of the natural
projection n: N*(m)— HP".

Proor . Consider the commutative diagram

R(s3) %, R(HP

I X

R(H,) —*> R(N"(m)),

where ¢ : S4n*3— HP" is the projection. Then we have easily &'({—2)=v by defi-
nitions, where ( is the representation of Lemma 3.7 (cf. [5, Ch. 13, Th. 3.1]).
Since m({—2)=0, by Proposition 3.9, we have the desired result. q.ed.

Let N* be the k-skeleton of the CW-complex N*(m) of Lemma 2.1 and i: N*
—N"(m) be the inclusion. For an element ae K(N"(m)), we denote its image
i‘a by the same letter a.

The following lemma is used in the next section.

LEMMA 4.5. The element aifis* is zero in K(N2i+2i+4k=1) wherea, f and
0 are the elements of (4.1).

ProoF. It is clear that « and B are zero in K(N')=0. The fact that J is
zero in R(N3)=RK(N°(m)) follows immediately from Lemma 4.4. Therefore, we
have the lemma by the obvious fact that ab is zero in K(NP*a~1) if a is zero in
R(N?-1) and b is zero in K(N~1) (cf. [2, (5) in p. 20]). q.e.d.
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The K-ring K(L"(k)) of the standard lens space mod k L*(k)=S2"+1/Z, is
given by
(4.6) K(L"(k))=Z[c]/ <o, (6+ 1) —1>,
where 6 =p— 1 and p is the canonical complex line bundle over L*(k) (cf. [7, Lem-

ma 3.3]).

LemMmA 4.7. For the natural projection p: L?"*1(2™)— N"(m), induced by
the first inclusion p of (3.5), we have

p'(@=0, p'B)=(+1)*""'~1, p'(@)=0*/(1+0).
Proor. Consider the commutative diagram

RH,) -4  R(N"(m))
b 3
R(Zyw) =5 R(L2w+1(2m)),
where &7: S4n+3 [ 2n+1(Qm) js the projection. Then the equality &7(y—1)=
11— 1 can be proved easily by the definitions, since the first Chern class of u gene-

rates H2(L2"*1(2™); Z)=Z,= (cf. [1, § 2 and Appendix, (3)]). Hence, we obtain
the desired equalities by (4.1) and Proposition 3.9. q.e.d.

For the second inclusion p’: Z,—~H,, of (3.5), and the natural projection
p': L2"1(4)— N"(m), we have the following lemma similarly to the above lemmas.

LEMMA 4.8. pi()=(c+1)2—-1, p"'(B)=0,
pi(®)=02/(1+0).

§ 5. Proof of Theorem 1.1

The CW-decompositions of N*(m) for n=0 of Lemma 2.1 define naturally a
CW-decomposition of N°(m)= U ,N*(m). Let N* be the k-skeleton of the CW-
complex N®(m). Then

N4nt3 =Nn(m)
and the cell structure of N°(m) is given by

4n+1 2m-¢
etn &8 e%n+2

(%)... en e4nt3 (2mrl  oants
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where ei*! % ¢ means that the attaching map
Si=¢itl— Ni| Ni—gi=gi]éi =S

is the map of degree k.
We denote by #A4 the number of the elements of a finite set A.

LEMMA 5.1.  KU(N4"+2|N4"=2)=0, $R(N*"+2|N4n=2)=2m+3,
Proor. In the Puppe exact sequence of the pair (N*"| N47—2 N4n=1] N4n=2)
AK—l(S4n)____,K—1(N4n/N4n—2)__)K—I(S4n—1)
—> R(8*)— R(N*| N*r=2)— R(§*71),

we see by (*) that the coboundary § is the multiplication by 2m*1. Hence, we
have K!(N4®/N4n-2)=0 and K(N*"/N4"~2)=2Z,,.,. Furthermore, by the
Puppe sequence of (N4#*t1/N4n=2  N4n/N4n-2)

sz“__,ﬁ—l(suﬂ VS4n+1)_,K—1(N4n+1/N4n—2)____,0__,0
_)K'(N4n+1/N4n—2)__,sz+1____)IZI(S4n+1 VS4n+1),
we have
KI(N4n+1/N4n—2)=IZ1(S4n+1 VSt =ZDZ,
R(N4"+1 | N4m=2) = Z iy,
Consider the Puppe sequence of (N*"+2[N4n=2 N4nt+l]pN4n—2)
O__,K—I(N4n+2/N4n—2)__*K—1(N4n+1/N4n -2)_¢,
R(s4rt2y S4n+2)_)K(N4n+2/N4n—2)_,K(N4n+1/N4n—2)_>0.

Then we see from the attaching maps of (+) that the coboundary 6: ZOZ—-ZPDZ
is the multiplication by 2. Hence, we have the lemma. g.e.d.

LEMMA 5.2. R1(N4r+2) =0, #K(N4n+2)=2n(m+3)+2_

Proor. Since N!=S!'V S, we have the lemma for n =0, by using the Puppe
sequence of (N2, N1)
0—> KR~ 1(N?)— K- 1(S1v §1) 25 K(S? v §2)— R(N?)—>0.
The lemma for n=1 can be proved inductively by Lemma 5.1 and the Puppe sequ-
ence

O___)Iz—l(N4n+2)___,K—I(N4n—2)_)K(N4n+2/N4n—2)
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— K (N*"*2)— R(N4"2)—0. q.ed.

LEMMA 5.3. The induced homomorphism i': K(N4"+3)—K(N4"*2) is an
isomorphism, where i: N*"*2— N4n*3 js the inclusion.

Proor. This follows immediately from Lemma 5.2 and the Puppe sequence
0_,K~(N4n+3)__il_,K~(N4n+2)_~__)K~I(S4n+3)_ g.e.d.
LEMMA 5.4. RI(N*") =0, R(N*")=2n0m+3),

Proor. This follows from Proposition 2.3, Lemma 5.2 and the Puppe sequ-
ence of (N4n, N4r—1)

0—K-1(N*")—»> K- 1(N4n=1) X270, R(§4m)—» R(N*")—» R (N*"~1) 0.
g.e.d.

LEMMA 5.5. KY(N4"0)=Z@®Z and i': R(N*"*1)-RK(N*") is an isomor-
phism, where i: N4"— N4n*1 s the inclusion.

Proor. The lemma follows from Lemma 5.4 and the Puppe sequence
O_)K(N4n+l)__il_)IE(N4n)_,k1(S4n+l VS4n+1)__,K"‘1(N4n+1)_,0-
q.e.d.
Now, we are ready to prove Theorem 1.1.

ProoF oF THEOERM 1.1. Consider the natural projection n: N"(m)—HP"
of Lemma 4.4 and the commutative diagram of the Puppe sequence

K(N4n/N4n—1) _,K(N4n)_L,K(N4n—I)

0— K(HP"|HP"')— R(HP")— K (HP"1).

For the element ve K(HP") of (4.3), it is easy to show that the element v"&
R(HP") is the image of a generator of K(HP"/HP"~1)=K(S4")=Z, by using the
Chern character (cf. [9, Proof of (3.12)]). Also, it is easy to show that the restric-
tion

n: (N4r, N4»~1)— (HP", HP"" 1)
is a relative homomorphism, by the definitions of the cells of Lemma 2.1, and so

n' in the left is an isomorphism. These show that Keri' is generated by é"=
n'(v*). Therefore, if the ring K(N4"~1) is generated multiplicatively by «, § and
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d, then so is K(N*m).

Now, we prove that the ring K(N4"*2) is generated multiplicatively by «,
B and & if K(N4*1) is so. Then, the theorem is proved by the induction on n,
using Lemmas 4.2, 5.3 and 5.5.

In the Puppe sequence

0_,K“—1(N4n+1)_xz,K(S4n+zVS4n+2)_,K"‘(N4n+z)_i’__,K(N4n+1)__,0,

we have Keri'=Z,@®Z, by Lemmas 5.2, 5.4 and 5.5. Since a6" and 6" belong to
Keri' by Lemma 4.5, it is sufficient to show that 6" +0, 6" +0 and ad"+ 6" in
K’(N4n+ 2) ___:_.K~(N4n+3) = K(Nn(m)).
Considering the induced homomorphism
p': R(N"(m))—> R(L2"+1(2m),
we have
p(BEN=((0+ 1> ~ D)(e?/(1+ )y =2m g2+

by Lemma 4.7 and (4.6). Since 27+ in K(L2"*+1(2"))is of order 2™ (cf. [6, Prop.
2.6]), we have Bo6"+0. Also, p'(x6")=0 by Lemma 4.7, and so we have ad"+
po" in K(N"(m)). Considering the induced homomorphism

p't: R(N"(m)—s R(L2+1(4)),
we have
p"'(@0") =((c+ 1) —1)(6?/(1 + o))" =202"*1

by Lemma 4.8 and (4.6). Since o2"*! in K(L2"+1(4)) is of order 4 (cf. [6, Prop.
2.6]), we have «d"#0 in K(N™(m)). q.ed.

§6. Proof of Theorem 1.2

In this section, we deal with the special case N"(2)=S*"*3/H,, where H,
={+1, +i, +j, +k} is the quaternion group.

The elements o, § and  in K(N"(2)) (n=1) of (4.1) have the following rela-
tions by Proposition 3.3:

6.1) a?=—20, B2=-28,
6.2) aff=—2a—2+45+52,
(6.3) ad=—20a, Ppo=-20.

By these relations, we have



264 Kensé Fuju

6.4 83 +6062+85=0.

Moreover, Lemma 4.5 shows that

(6.5) ont1=0.
LemMA 6.6. (i) 2mtlg =0, 2"*1B=0.
(ii) 22i435n-i =() for 0i<n-—1.
(iii) 22i%25n—i= 4 22i%4gn=im1  for 0<i<n-—2.
Proor. (i) By (6.3) and (6.5), we have 2"*'a= —2"ad=--- =(—1)"+1ad"*!

=0 and 2"*1f=0.
(i) The equality (6.4)xd"! and (6.5) show that 86"=0. The desired
equality is obtained by the induction on i, by using (6.4) x 22i§n~i-1,
(iii) This is obtained inductively by using (6.4)x22i-14%i=1 and (ii).
q.ed.

LemMA 6.7. 2" 162+ 46 +2716) =0.

Proor. We consider the element 6(1)=6%2+46. Then 6(1)6 =—256(1) and
6(1)2=—45(1) by (6.4). Therefore,

(6.8) (D)ot =(—1)2!5(1), o(1)i+t=(—1)122i5(1).
For the case n=2m=2, we have
=2"=15(1) =(=1)""15(1)"5 by (6.8)

(=11 ;n;g(mi“‘)zﬂén-i-la(l) by 8(1) =52 +45

=(=1)m15m-15(1) by (iii) of Lemma 6.6
= +45" by (6.5)
=+221 by (iii) of Lemma 6.6.

For the case n=2m+1=3, we have in the same way
2n15(1) =(— 1" 1o(1)m62 = £224.

For the case n=1, we have §(1)= +46 by (6.5) and (ii) of Lemma 6.6. These
show the lemma. q.e.d.

Proor oF THEOREM 1.2. The theorem for n =0 has been proved in Lemmas
4.2 and 4,5, Let n=1. By Theorem 1.1 and the relations (6.1)-(6.4), we see
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that every element of K(N"(2)) is a linear combination of «, f, & and 62+46+
2n+15, The order of these elements are not greater than 27+1, 2n+1 22a+1 gnd
2n=1 respectively, by the above lemmas. Since 27+ x2n+1lx 2n+1 x on-1
=25n*+2_ we have the theorem by Proposition 2.3. q.ed.
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