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Introduction. This note is intended to parallel some work of Kenmochi,
Mizuta, the author, and others, who have studied potential theoretic properties
for nonlinear monotone operators. It is related to work of Hunt, Yosida,
Yamada, and Sato, who have dealt with linear accretive operators.

Given an accretive operator in a Banach lattice, we establish relationships
between the modulus contraction, the domination principle, the majoration
principle, the principle of the lower envelope, T-accretivity, and order-preserving
resolvents. The results of this paper are presented as a series of definitions and
propositions. Together these imply Theorem 1, which shows that all the con-
ditions are equivalent under strong enough hypotheses.

It is hoped in future work to solve problems concerning the relationship
between the accretive and monotone cases, operators acting in several spaces,
the relation between reductions and variational inequalities, contractions onto
the interval [0, k], capacities, the principle of the convex envelope, the condenser
principle, the balayage principle, and cones of potentials.

The author is very grateful to Professor Maeda for his helpful comments.

Potential Theoretic Properties. We recall [23] that a Banach lattice is a
Banach space X over the real numbers R, which is a lattice under the ordering
<, satisfying the following. For x, y, z in X and a>0 in R, (1) x>y implies
x+z<y+z, (2) x<y implies ax<ay, and (3) |x|<|y| implies ||x||<|yll. We
write V and A for supremum and infimum. We put xt=xVv0 and x =
—(xA0). Weset|x|]=xt+x". By xly wemean |x|A]|y|=0.

We let P(X) denote the power set of X ; the subsets of X. Given 4: X— P(X),
we let D(A) be the set of u in X for which Au is nonempty, and R(A) is the union
of the Au for u in X [11]. Given A: X—-P(X), B: X— P(X), one defines A+ B:
X->P(X) by (A+B)x={a+b:aeAx,beBx}. For AeR, AA: X->P(X) is
defined by Adx={la:aeAx}. And A"': X->P(X) is defined by xe A (a)
if and only if a e Ax.

Nonlinear accretive operators were introduced in [3, Definition 1]. Let
X* be the dual of X. We denote the pairing between X and X* by parentheses.



364 Bruce CALVERT

Let J: X— P(X*) be the duality map defined by fe Jx when (x,f)=|x||>=f]>.
Let <, > XxX->R be defined by <f,g>,=limd '(|g+df]|*—|gl?).
d—-0+

Given 4: X — P(X), the following are equivalent [2], [11]:

(1) IfA1>0, x, € Ax, y; € Ay, then |(x+Ax)—(y+AyDI=x—yl.

(2) Ifx;eAx, y,eAy,then <x,—y,, x—y>,>0.

(3) If x, € Ax, y, € Ay, then there is fe J(x—y) with (x,—y,,f)>0.

If any and so all of these hold then A is called accretive.

Nonlinear T-accretive operators (where T stands for truncation) appeared
in [2,4,5,6,7,9,13,14,15,17,20]. Let Jgx: X—>P(X*) be defined by feJgx
when >0, (x,f)=|x*|2=|fl2. By [6, Remark], or [17,1.1.4], Jx(x)=J (x*),
and so Jg(x)={feJ(x*):f=0, (x~,f)=0}. By [18] or [4,Prop 1.1] for
xeX, n{Jx(y): y*=x*} is nonempty.

We let ¢o( , ): XxX —>R be defined by ¢, g)=dE%1+d“1(II(g+df)+||2
—1lg*?). Given A: X— P(X), the following are equivalent [6], [17]:

(1) If A>0, x,eAx, yreAy, then [((x+2x)—(y+Ay))*ll = [(x—y)*].

(2) If x, e Ax, y, € Ay, then @yo(x;,—y,, x—y)>0.

(3) If x,e€eAx, y,eAy, then there is feJy(x—y) with (x;—y,,f)=0.
If any and so all of these hold then A4 is called T-accretive.

Given A: X—>P(X), for >0 we write J,=(I+14)"! and A,=1"'(I-J,)
[11].

We say A: X— P(X) is m-accretive (m-T-accretive) when it is accretive (T-
accretive) and R(I + A)=X (giving D(J,)=X for all 21>0). We use - to denote
norm and — to denote weak convergence.

Definition. We say the modulus contraction operates with respect to
A: X->P(X)ifu, € Au, w, € A(u+v*) implies that for fe Jy(—v), (W, —u,, f) <O0.

PROPOSITION 1. Let X be a Banach lattice. Given A: X— P(X), suppose
that for u, € Au and w, € Aw and feJ(u—w), (u;—w,,f)=>0. Suppose D(A)
is a sublattice of X. Suppose the modulus contraction operates with respect
to A. Then A is T-accretive.

Proor. Let u;e€Au, w,eAw. Let feJg(u—w). Then feJ(u—uAw).
Since D(A) is a sublattice we may take z; € A(u A w), giving (u; —z,f)=>0. Since
the modulus contraction operates, and w=(uAw)+(w—u)t*, (z,—w,, f)=0.
Adding the two inequalities gives (u; —w,, f)>0. q.e.d.

Definition. We say A: X — P(X) satisfies the principle of the lower
envelope if u, € Au, v, € Av and u Ave D(A) implies there is a; € A(u Av) with
a;>u; Avy.

LemMA 1. If X is a Banach lattice, and A: X—X is hemicontinuous,
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i.e. continuous from strong to weak topologies, and T-accretive, then (Ax— Ay,
=0 for feJxg(x—y). (Cf. [16, Remark 4])

Proor. For 1>0,
(Ax = Ay, f) = 27N x =y, /)= A" U x =T, f)
> AN x=p, ) =AM ax=J )% )
2 A x =y, )= A Hax =T
2 M x=y, )= A" HI(x—y)*II?
>0.

Since A is accretive in the equivalent norm |x|g=|x* ||+ x~|, |J:x—x |k
<|AAx|g. Thus J,x—>x as A—-0, and since A is hemicontinuous, A,x— Ax.
It follows that (Ax— Ay, f)>0. q.e.d.

PrROPOSITION 2. Let X be a Banach lattice. Let A: X—P(X) be m-T-
accretive. Suppose X* is uniformly convex or A: X—X is continuous. Then
A satisfies the principle of the lower envelope.

Proor. We recall from [9, Lemma 2] the following result. Let X be
a Banach lattice with uniformly convex dual. Let A4 be m-T-accretive. Let
ze D(A). Define B,,: X— P(X) by

{f<0:fL(x—2)} for x>z
Bsz =
@ otherwise.

Then A+ B, is m-T-accretive.

Now suppose A: X—X is continuous and X is a general Banach lattice.
By [9, Lemma 1] B., is m-T-accretive. Since Bs, and A are T-accretive they
are accretive in the norm |x|g=|x*||+|x~||. We recall from [1] that the sum
of an m-accretive operator B and a continuous accretive operator 4: X—»X
is m-accretive. Consequently, whether X* is uniformly convex or 4: X—X
is continuous we have R(el+A+B.,x,)=X for ¢>0. Let ex+a+f=(u,+eu)
A(v,+ev) with aeAx and feBs,a,x. Take g in n{Jg(h): ht=(x—u)*}.
Then (x—u)*Lf gives (f, g)=0, i.e.

(1) (ex+a—(u,+eu) A (v, +ev),g) =0.
From (u, +¢eu) A (v, +ev)<u,+eu we have

2) ((u,+eu) A (v, +ev)—(u,+eu),g) <0.
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If X* is uniformly convex, Jy is single valued and so
3 (uy—a,g)<0.

If A is continuous then (3) holds by Lemma 1. Adding (1) (2) and (3) gives
gll(x—u)*||2<0and so x<u. Similarly x<v. Consequently x=u Av. Taking
a,=agives e(u Av)+a,>(u,+eu) A(v,+ev). Letting e—>0 we obtain a, >u, Av,.

q.e.d.

Definition. We say A: X—>P(X) satisfies the domination principle if
u,€Au, v, € Av, u; Av,> f and (u; —f)L(u—v)* implies u <v.

We say that A is strictly accretive if for u, € Au, v, € Av, u#v, for all
feJ(u—v) we have (u; —v,, f)>0.

PropOSITION 3. Let X be a Banach lattice. Let A: X—P(X) be strictly
accretive. Let D(A) be a sublattice of X. Suppose A satisfies the principle
of the lower envelope. Then A satisfies the domination principle.

PrOOF. Suppose u, € Au, v, € Av, u; Av,>f, and (u; —f) L(u—v)*. Take
a,eA(uAv) with a; >u, Av,. Takege n{Jg(h): ht=w—v)*}. Then a,>f
gives (f—a,,9)<0. Since (u,—f)L(u—v)* we have (u,—f,g)=0. Adding,
we obtain (u; —a;,g)<0. By strict accretivity, u=u Av, and u<v. q.e.d.

We say U: X— P(X) is order preserving if x, e Ux, y, e Uy, x<y implies
x;<y;. We say U:D(U)cX—X is T-nonexpansive if x, ye D(U) implies
I(Ux=Up)*lI<l(x=y)*l [4].

PrROPOSITION 4. Let X be a Banach lattice. Let A satisfy the domination
principle. Then (I+1A4)~! is order preserving for A>0.

ProoF. Let 1>0, f<g, u; € Au, v, € Av, u+Au,=f, v+iv,=g. Then
u; A vy > AW (f=(u V).
Also, since u; —A~1(f—=(u V)= (u—-v)",
u— A" (f-uvo)yl(@—-ovrt.
By the domination principle, u <v. q.e.d.

PrROPOSITION 5. Let X be a Banach lattice. Let A be accretive and let
(I+2A4)~' be order preserving for A€(0,g). Then the modulus contraction
operates with respect to A;, 1€(0,¢). If A is m-accretive and X* is uniformly
convex and A is single valued, or A: X—X is continuous, then the modulus
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contraction operates with respect to A.

Proor. Given 21€(0,¢), u,u+vteD(A,), feJg(—v), since (v*,f)=0
and f >0,

(Asu+v")— A, f) = 7 ((u+v") =T+ A4 (w+vH) —u+I+24) u, f)
<0.

If A is continuous, or if A4 is single valued and m-accretive and X* is uniformly
convex, then A,u — Au and A,(u+v*)— A@u+v*) as A-0 for u,u+v* e D(A).
This gives (A(u+v*)—Au, f)<0. g.e.d.

PROPOSITION 6. Let A: X—P(X) be given in the Banach lattice X.
If A, is T-accretive for 0<A<eg, then A is T-accretive.

Proor. Given 6>0, let u;eAu,v,€Av, u+déu,=f, and v+dv,=g.
For A€(0,6)n(0,¢), put u+Au,=x, v+iv;=y,. Then x,+(6—A)A4,x,>5f
and y,+(0—A)A,y,3g. Since A; is T-accretive, | (x,—y)*l < I(F—*I.
Letting A—0, we have ||(u—0)*| <|(f— ). g.e.d.

Definition. We say A: X—-P(X) satisfies the majoration principle if
for feX,u,eAu, f<y, e Ay, >0, e(u;—f)<(y—u)* implies u<y.

REMARK. The next result follows [21], [22], [24]. I have not obtained
the result for R(A) dense as in [21]. Note that one may approximate f in the clo-
sure of R(A) for m-accretive A by (x;);»o Where x;—A((f—x;)/2)30. Note
the condition J(y—u+z+Af)<(y—u+2z) holds if Ausu,>f as in [22], [24]
where f=0, or A is linear as in [21], [22], [24].

PrOPOSITION 7. Let X be a Banach lattice. Given A:X — P(X) we
suppose R(A)=X and (AI+A)~! is order preserving and single valued for
A>0. Suppose that if f<y, €Ay, u,e€Au, (u,—f)*+feAz and A>0, then

I+24)"(y—u+z+ ) <(y—u+2).
Then A satisfies the majoration principle.

Proor. Let feX,u,eAu,f<y eAy, e>0,e(u,—f)<(y—u)t. Define
A X—>P(X) by A(p)=A(p)—f. Note that (AI+A,)~*' is order preserving
and single valued for A>0. Let (u;—f)*+fe Az and write x=y—u+z. Then
(T+edy) Ix=(I+ed) (x+ef)<x. We have (I+ed;) '(z+e(u,—f)")=z<z
+e(u;—f)*. Let v=(z+e(u;—f)*)Ax. Since (I+eA;)"! is order preserving,
(I+eA;)'v<v. This implies (A, v=¢'(v—(I+eA;)"'v)>0. Now z=(I
+ed) N (z+e(u =)= +edp) lv=v—e(A))v, giving &(4;),v>v—2. Hence
gAp)w=(—2)". Now v=(e(u;—f)" A(x—2))+z, giving (v—2z)*=e(u,—f)*
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Ax—=2)r=e(u,—f)* A(y—u)t=¢(u,—f)* by our original supposition. It
follows that &(A),v >e(u,—f)*. Since A,~! preserves order, (I+ed;) 'v>z.
Hence, x>v>(I+¢A;)"'v>z. But x>z means y>u. q.e.d.

We say A: X — P(X) is strictly T-accretive if for u, € Au, v, € Av, (u—v)*#0,
we have (u, —v,,f)>0 for all feJg(u—v).

PROPOSITION 8. Let X be a Banach lattice. Let A be strictly T-accretive.
Then A satisfies the majoration principle.

Proor. Let feX, u,e€Au, f<y, €Ay, ¢>0, e(u;—f)<(y—u)*. We
want to show u<y, or (u—y)*=0. Take g in N {Jg(h), h* =@w—y)*}.
Since e(u, —f)<(w—y)~, (u;—f)*L(u—y)*. It follows that

W =y1,9) <1, 9)
< (=N 9)
=0.

Since A is strictly T-accretive, (u— y)*=0.

PROPOSITION 9. Let X be a Banach lattice. Suppose A satisfies the
majoration principle. Then (I+¢A)~! is order preserving for ¢>0.

Proor. Let u+eu,<y+ey,, with €>0, u, € Au, and y, e Ay. Put f=y,
in the definition of the majoration principle. We have e(u,—y,)<y—u<
(y—u)*. By the majoration principle, u<y. q.e.d.

ProPosITION 10. Let X be a Banach lattice. Let A be m-accretive.
Suppose ¢>0 and A+¢l is T-accretive. Then A is T-accretive.

ProoF. Let 1€(0,¢7!), x, € Ax, y, € Ay, and suppose x+Aix,=f>g=y
+2y,. Take h in Jg(y—x) with ((y;+ey)—(x,+ex), h)>0. This implies
(1—2e)(y—x, h)<(g—f, h)<0. Since 0<le<1, we have |[(y—x)*||2=0. Thus,
(I+AA)~ ! is order preserving.

By Proposition 5, the modulus contraction operates with respect to A;.
Since A is m-accretive, by [16, Remark 4] (cf. Lemma 1), A, satisfies the con-
ditions of Proposition 1. By Proposition 1, 4, is T-accretive, and by Proposi-
tion 6, A is T-accretive. q.e.d.

THEOREM 1. Let X be a Banach lattice, and let A—el be m-accretive,
e>0. Suppose either A: X—X is continuous or A is single valued and X*
is uniformly convex and D(A) is a sublattice of X. Then the following are
equivalent:
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(1) The modulus contraction operates with respect to A.
(2) A is T-accretive.

(3) A satisfies the principle of the lower envelope.

(4) A satisfies the domination principle.

(5) For A>0,(I+1A)"! is order preserving.

(6) A satisfies the majoration principle.

Proor. We note J and Jg are single valued if X* is uniformly convex.

(1) implies (2) by Proposition 1. Note that if A is continuous then for
feJ(u—w), (Au—Aw, f)>0 [16, Remark 4].

(2) implies (3) by Proposition 2.

(3) implies (4) by Proposition 3. Note that if 4—el is accretive, £¢>0,
then A is strictly accretive; in case X* is uniformly convex since J is single valued
and if A is continuous by ((4—el)u—(A—elw, f)>0 for all fe J(u—w).

(4) implies (5) by Proposition 4.

(5) implies (6) by Proposition 5.

(2) implies (1) by Propositions 8 and 10. In fact, by Proposition 10, A —¢l
is T-accretive. Note that if 4: X— X is continuous and 4 —el is T-accretive then
A is strictly T-accretive, since ((4—elu—(A—eDw, f)>0 for all f in Jg(u—w)
by Lemma 1. If X* is uniformly convex and A—el is T-accretive then A is
strictly T-accretive since J is singlevalued.

(6) implies (5) by Proposition 9. g.e.d.

REMARK. Without assuming A is continuous or X* is uniformly convex
and A is single valued, we have A, satisfies (3) for ¢>0 implies (2). For by The-
orem 1, A, is T-accretive, and by Proposition 6, A is T-accretive.
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