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1, Introduction

In this paper we are concerned with positive solutions of differential in-
equalities of the form

(I) x(n)(0 + p(t)f(x(g(t))) ^ 0,

where n ̂  2 and the following conditions are always assumed to hold:

(a) p(f) is continuous, p(i)^0 for t^a and not eventually identically zero;

(b) g(t) is continuously differentiate for t ̂  a and

0 < lim inf g'(i) ^ lim sup g'(t) < oo
f—» 00 f-KX>

(c) /(x) is continuous and/(x)>0 for x>0.

In the oscillation theory of nonlinear differential equations one of the
important problems is to find necessary and sufficient conditions for the equations

under consideration to be oscillatory. With regard to the equation

(E) x(/1)(ί) + p(t)f(x(g(t)J) — 0,

necessary and sufficient conditions in order that every solution of (E) be

oscillatory have been established by restricting the nonlinearity f ( x ) to various

classes of functions. When f(χ) = χv (y is a ratio of two positive odd integers

and γ +1), a characterization of oscillation of (E) was obtained in terms of an
V

integral condition by Kiguradze [3] and Licko and Svec [5]. See also Onose

[8] and the references in [8] concerning further developments on this nonlinearity.

When f ( x ) is eventually nonincreasing, a characterization of oscillation of (E)

was obtained by Koplatadze [4]. We refer to Mahfoud [6] for the related
nonlinearity. On the other hand, when / is an arbitrary continuous function,

under appropriate conditions on p(t) necessary and sufficient conditions for

oscillation were given by Burton and Grimmer [1, Theorem 9] and Mahfoud

[7, Theorem 3]. It seems to us that little is known about the case/is arbitrary.

In this paper we investigate (I) in the latter direction to present some new

results. Our main purpose is to characterize the existence of positive solutions

of (I) without any restriction on f(x). More precisely, when / is a general non-

linear function satisfying only (c), we give necessary and sufficient conditions for
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(I) to have positive solutions with special asymptotic behavior as ί-»oo (Section 2)

and provide necessary and sufficient conditions for (I) to have positive solutions

x(0 such that lim inf x(f)>0 (Section 3).
ί-»oo

Since parallel discussions are valid for negative solutions of the converse

inequality

χ(»)(0 + X0/«0(0)) ̂  0,

necessary and sufficient conditions for (E) to be oscillatory are almost automati-

cally derived from our results. Thus the results obtained here include [1] and

are independent of [7].

Note that, from the assumption (b), there exist positive constants γl9 y2» 0ι»
g2 and #3 such that

(1) 7ι ^ 9'(t) ^ y2

(2) 0ι* ^ 0(0 £ g2t

(3) 0*(ί) ΞΞ min {0(0, t} ^ g3t

for all large ί. These inequalities will be frequently used throughout the paper.

2. Asymptotic Behavior of Positive Solutions

In this section we study the asymptotic behavior for *->oo of positive solutions

of (I). We begin by stating two lemmas that supply useful information on the

behavior of positive solutions.

LEMMA 1. (Kiguradze [3]) // x(ί) is an eventually positive solution of

(I), then there is an integer I, 0^/^n — 1, which is odd if n is even and even if
n is odd, such that

= 0, I,...,/)
(4)

(fe = / + !,..., n)

for all large t.

LEMMA 2. // x(f) is an eventually positive solution of (I) satisfying

lim inf x(ί)>0, then there are positive numbers b± and b2 such that
ί-*oo

(5) b, ^ x(t) £ b2t»-ι

for all large t.

The proof is easy. Notice that, when n is even, the statement "x(f) is an
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eventually positive solution of (I) satisfying lim infx(f)>0" is equivalent to "x(0
f-KJO

is an eventually positive solution of (I)". This is readily checked by using the
nondecreasing character of x(t) (see Lemma 1). From the above Lemma 2,
roughly speaking, among all positive solutions of (I), those which are asymptotic

to bt"'1 (b>0) as f-»oo can be regarded as the maximal solutions and those
which are asymptotic to nonzero constants as ί-»oo can be regarded as the mini-
mal solutions. The purpose of this section is to present necessary and sufficient
conditions for (I) to have positive solutions of these two special types.

THEOREM 1. Suppose that p(i) is decomposable in such a way that p(t)
= c(t)q(i), c(t) is continuous on [α, oo), 0<lim inf c(ί)^lim supc(0<oo, and

ί->00 f-»00

tσq(f) is continuous and nondecreasing on [α, co)for some real number σ.
Then, a necessary and sufficient condition for (I) to have a solution x(t)

such that

lim [x(f)ltn~ί~] exists and is positive, and
f-+00

lim [x'(ί)/ίn~2] exists and is positive
f-*00

is that

Γ°°
(6) \ p(s)f(csn~ί)ds < oo for some c > 0.

PROOF. In view of the condition on c(ί), we see that there are positive
constants c1 and c2 such that

(7) Ci g c(f) ^ c2

for all large t.

(Necessity) Let x(ί) be a solution of (I) with lim [xCO/ί""1] =b>0 and

lim[x'(0/ίn~2] = ί>'>0. We easily find

(fcV2)[^(0]n-2^x/(^(0)^2fo/[^(0]w~2 for all large t. By the help of (1) and
(2) we obtain

(8)

(9) y^r2Viiw'2 ^

for all large t. It follows from (8) that

"'0 and A2[x(flf(0)]1/(""1) ^
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for f ^ T , where 1^ =(^Γ1/2)~1/("~1), h2 = (2bg2~
1)~1/(n~ί) are positive

constants and T>a is chosen so large that the inequalities (4), (7)-(9) and
h2[(b/2)g'Γ1tn~l']1/(n-1^a hold for t ̂  T. Using the above inequalities

and the condition on p(i) = c(i)q(i), we compute as follows: If σg O, then

p(t) ^ Cjr^

1'̂ ^

for ί^ Γ, and if σ<0, then

xo ^lίAiMrtO)]1''"-1^^

for ί^ T. In either case, we get

(10) p(t) ̂

for ί^T, where d = c1fc7d rΛ5 if σ^Oand ί/=cx if σ<0.
Now, integrating (I) from T to t, we obtain

r

for ί ̂  T. Since x^'1 >(ί) ̂  0 for ί ̂  T by (4), we see that

oo,

which together with (10) implies

< 00.

By virtue of (8) and (9), we observe that there are positive constants C^ and C2

such that

for ί^ T. Hence it follows that

Letting y = /z2W^f(5))]1/(/l~1)5 we arrive at
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q(υ)f(hϊH+ίυn-1)dυ < oo,
r*

where Γ* = /z2Wδf(Ό)]1/(n~1) The desired inequality (6) is readily derived
from (7) and p(i) = c(t)q(t).

(Sufficiency) Assume that (6) holds. We suppose that (1), (2) and (7) are

satisfied for t ̂  T. Put b = cgϊn+1

9 Λ I = (bgΓΎl'(n~l\ h2 = (2^Γ1)"1/(Π~1),
d = c2h2*hl if σ^O, d = c2 if σ < 0 and M = ft1(2^Γ1)(~fl+2)/(II~1)^Γ27ι
Choose a number T>T' so large that T0 = inf {min (g(t\ t } : t^

(11)

and /ι2[ft^ΓlίM~1]1/(M~1)^Λ for ί^Tl Let F denote the Frechet space of all
continuously differentiate functions on [T0, oo) with the family of seminorms
{ML: m = l, 2,...} defined by

We have the convergence xk-+x (fc-»oo) in the topology of F if and only if xk(t)
->x(ί) (fc->oo) and x'k(t)-*x'(t) (fc-»oo) uniformly on every compact subinterval
of [Γ0, oo). Let X be the subset of F such that

X = {xeF: btn~l ^ x(t) ^ 2btn~1,

b(n - l)ί"-2 ^ jc'(ί) g 2fc(n - l)tn~2 for f ^ Γ0) ,

which is a convex and closed subset of F. Define the operator Φ acting on X by
the formula

for
(12) -

2ft/11-1 for Γ n < / < Γ .

We seek a fixed point of the operator Φ in X with the aid of the following fixed
point theorem which is a special case of Tychonoff 's theorem.

FIXED POINT THEOREM. Let F be a Frechet space and X be a convex and

closed subset of F. If Φ is a continuous mapping of X into itself and the closure
ΦX is a compact subset of X9 then there exists at least one fixed point xeX
ofΦ.

We show that Φ defined by (12) satisfies the conditions of the above theorem.
(i) Φ maps X into X. Let xeX. It is obvious that (Φx) (t) is continuously

differentiate on [T0, oo) and (Φx)(ί)^2ftί"-1

9 (Φx)'(f)£2b(n-ΐ)tn-2 for ί^T0.
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To prove that (Φx)(ί)^ btn~\ (Φx)'(ί)έ b(n-\)tn-2 for ί^T0, consider the

integral ί°°p(s)/(x(0(s)))ds. Since we have bgΓ1^'1 ^

b(n-l)gn

1-
2yίt

n-2^x'(g(t))g'(t)^2b(n-l)g$-2y2t
n-2 f°r t^τ> there follows that

t ^ fc
for ί^ Γ. As in the proof of the necessity part of this theorem it can be verified
that

XO ^ dq(h

for f ̂  Γ, where d = c2/i2σ^ΐ if σ^O and d = c2 if σ<0. Moreover, we find

for ί^Γ. From these inequalities and (11) it follows that

Jr

Then we easily see that (Φx)(t)^2btn''i~tn"il(n- 1)! b(n- 1)! = fcί""1, and

(ii) Φ is continuous on X. Let x f c(/c = l, 2,...) and x be functions in X

such that xfc(i)-*x(0» xiίO-^'CO as k-+ao uniformly on every compact subinterval
of [T0, oo). If t e [Γ, A~\ (A > T is a fixed number), then we have

Using the fact that |/(xfc(^(5)))-/(x(^(s)))l-*0 as /c-»oo for s^Γ, we conclude

that (Φxfc)(0-KΦ*)(0> (ΦXk)'(t)-+(Φxy(i) as fe->oo uniformly on [Γ, A]. Thus
(Φxfc)(ί) and (Φxky(t) converge to (Φx)(0 and (Φx)'(O respectively as fc-»oo uni-
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formly on every compact subinterval of [T0, oo). This proves the continuity of
Φ o n X .

(iii) ΦX is compact. It is enough to show that, for any sequence {xk:
fe=l, 2,...} in X, there exist a subsequence {xki: ί = l, 2,...} of {xk: k=!9 2,...}
and a function x in F such that (Φxk)(t)-*x(t)9 (Φxk)'(t)-+x'(t) as i->oo uniformly
on compact subintervals of [T0, oo). Let {xk: fc=l, 2,...} be an arbitrary
sequence in X. Differentiating (Φxfe)(ί) twice, we have

OAλ*. 1 W*» 1Λy/ι —3 1Lo\n — ι)\n — Lμ — / ^

for / ^ Γ

2*0* - l)(/ι - 2)/"-3 for T0 ^ / ^ Γ

in the case n > 2 and

for ί ^ Γ
(Φxfc)"(0 = ,

0 for TO ^ t ^ T

in the case w = 2. It is easy to see that, if t e [Γ, A], then

(n-2)Ά*-* + ll(n-3)l (A-T)n-2PF or |(Φxfc)"(OI ^W% where P = max{Xs):
T^s^A} and F = max {/(u): bgΓίTn-l^u^2bgΓlAn~1} are constants in-
dependent of fe = l, 2,.... Hence {(Φxk)'(i)} is equicontinuous on every finite
subinterval of [T0, oo). Since the boundedness of {(Φxk)'(t)} at every point of
[T0, oo) is evident, applying Ascoli's Theorem (see, e.g. Coppel [2, p. 7]), we can
choose a subsequence {(Φxk)'(t): i = l, 2,...} of {(Φxk)'(t): fe=l, 2,...} which is
uniformly convergent on every compact subinterval of [T0, oo). Let the limit
function of (Φxk|)'(f) be denoted by z(t\ which is clearly continuous on [T0, oo).

Putting x(ί) = 2bTg"1 + Γ z(s)ds, ί^T0, we observe that (Φxkty(t)-^z(t) = xf(t)

and (Φxk)(t) = (Φxki)(T0)+ (Φxky(s)ds^2bT^ + z(s)ds = x(t) as i-,oo
JTo JTo _

uniformly on compact subintervals of [T0, oo). This proves that ΦX is compact.
From the preceding considerations we are able to apply the Fixed Point

Theorem to the operator Φ. Let x(ί) e X be a fixed point of Φ. It is imme-
diately verified that x(ί) is a solution of (I) for t ̂  T and has the property that

limlXO/f11'1] and lim [x'(OA"~2] exist in [fc, 2fr] and [6(n - 1), 26(n - 1)],
ί-+oo ί->c»

respectively. Thus the proof of Theorem 1 is complete.

THEOREM 2. A necessary and sufficient condition for (I) to have a solution

x(ί) such that

lim x(ί) exists and is positive
f-»00
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is that

(13) (*p(s)sn-lds < oo.

PROOF. (Necessity) Let x(ί) be a solution of (I) such that limx(0 = b,
f-*oo

0<b<oo. We have

(14) A g x ( ί ) ^ 2 f e , A.^ χ(g(i))£2b

for all large ί. By Lemma 1 we find an integer /, O r g / ^ n — 1, which satisfies (4).
Since x(f) is bounded, this integer / must be equal to 0 or 1. Therefore we obtain

(15) (- l)»+*-1χ(*)(ί) ̂  0 (k = 1, 2,..., n)

for all large ί. Take a number T>α so large that (14) and (15) hold for ί^T.
Multiplying (I) by ί""1 and integrating from T to ί, we get

+ (-l)-+i(n-l)!x(0 + Γs-1^)/^^)))^ ̂  C,
Jr

where C is a constant. In view of (14), (15) and the above inequality we see that

αo.

From this and (14) it follows that

Γoo

m\ sn~ίp(s)ds < oo,
JT

where m = min{/(w): b/2^u^2b}.

(Sufficiency) Assume that (13) holds. Let β be an arbitrary positive

number and choose a number T>a so large that Γ0 = inf {min {g(ί), t}: t^
> a and

T

where M = max {/(u) : β ̂  u ̂  2β} . We consider the operator Φ defined by
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for t^T

b + (

(n^l ^τ(s-T)"-lp(s)f(x(g(s)))ds for Γ0 ^ / ̂  Γ,

where b = 2β if w is even and b = β if n is odd. With the aid of the Fixed Point

Theorem stated in the proof of Theorem 1 we seek a fixed point of Φ. The under-

lying Frechet space F is the set of all continuous functions on [T0, oo) equipped

with the topology of uniform convergence on compact subintervals of [T0, oo).

The convex and closed subset X of F, on which Φ is well-defined, is X = {xeF:

β^x(f)^2β for ί^T0}. It can be shown that (i) the operator Φ maps X into

X, (ii) Φ is continuous on X, and (iii) ΦX is a compact subset of X. Therefore,

Φ has a fixed point xeX by the Fixed Point Theorem. The function x(t) is a

solution of (I) for t^T and satisfies limx(ί) = b>0. This sketches the proof of

the sufficiency part. The details are left to the reader.

COROLLARY 1. Suppose that p(t) is decomposable in such a way that p(ή

= c(i)q(t), c(t) is continuous on [α, oo), 0 < lim inf c(t) ̂  lim sup c(i) < oo and
ί-KJO f-»00

tn+εq(t) is continuous and nonincreasίng on [#, oo) for some positive number ε.

Then, inequality (I) has a solution x(f) such that lim inf x(ί)>0.
t->oo

3. Existence of Positive Solutions

In this section we establish necessary conditions and necessary and sufficient

conditions in order that (I) have a positive solution x(ί) such that lim inf x(ί)>0.

First we give the following lemmas.

LEMMAS. Let y be a positive number and let z(ί)eC1[T, oo),

^° on Ή °°) and p(0 e c[τ> °°)> ^(0^0 on Ή °°) Suppose that there is
a positive continuous function x(t) defined on the interval [inf{#(f): ί^T}, oo)

which satisfies

(16) x(t) ^ z

fort^T. Then

Γ°°(i) in case ofy> 1, \ z(g*(s})P(s)ds < oo;

S
oo

[z(gfJH(s))]yJD(s)cίs < oo,

w/zere ^Hs(0 = min {g(t\ t}.

PROOF. Let I(i) denote the right hand side of (16). Clearly, I(t) is non-
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decreasing on [Γ, oo) and x(ί) ̂  /(ί) for ί ̂  Γ. There is a number Tt > Γ such that

*to(0) ̂  /to(0) ̂  /to*(0) for ί ̂  7\ .
(i) Lety>l. We find

£ (y - 1) [/(t)]-' z'(ί)

for ί ;> T! . Take T2 > Γt so large that g*(t) ̂  Γt for ί ̂  Γ2. Integrating the above
inequality from 7\ to ί (ί^ T2), we see that

δ (y-l)Γ (" [/(s)]-'z'(s)P(u)[/to(«))?dsdtt
JΓi^Γi

δ (y-l)Γ ('*(B)[/(s)]-»z'(s)P(u)[/to»(«))]Msdu
J τ 2 J τ ι

^ (y -
Jτ2

for ί^Γ2. By letting t->oo we obtain

Γ [zto*(«))-z(ΪΊ)]P(«)d« < oo,
Jτ2

which implies the conclusion (i).
(ii) Let 0 < γ < 1 . It follows from (16) that

for ίj^ 7\. Put J(/)= ί°°P(s) [x(g(s)y]vds. Then, we evaluate as follows:

7 = (1 -

for ί^ 7\. An integration of the above readily yields the assertion (ii).

LEMMA 4. Suppose that x(t) is an eventually positive solution of (I) and
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the integer I which is determined by Lemma 1 for x(t) is not zero* Then,

(i) there exists a positive constant k such that

(17) x(ί) ^ k(t- T)"

for t^.T, provided T is sufficiently large;

(ii) f/iere ex/sis α positive constant k1 such that

(18) X(O^M*'(0

PROOF, (i) Integrating (I) from t to τ (f <τ), we have

x(«-D(τ) « x(»-D(ί) + (τp(s)f(x(g(s)))ds ^ 0.

Noting that x<Λ~1)(τ)^0 and letting τ-*oo, we obtain

Repetition of this procedure gives

where /c2 = l/(n - 1 - /)!. Integrating the above / times from T to ί, we get

x(0 ^ fc3 (ί- sγ-ι(u - sY^-lp(u
JT Js

for f§.T, where k3 = k2l(l—l)l. Therefore , we have

fc3
Π' (ί-s)'-'(u-s)"-ι-'Xtt
Jf JT

JΓ

for ί ̂  T, where k4 = fc3/(n - 1). This proves (17).
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(ii) Since the integer / in Lemma 1 is not zero, there follows that

χ('-D(ί) = χ('-D(Γ)

for ί^T. Noting that ^"^(T^O and x(l\s) is nonincreasing, we obtain

t-T) for ί^Γ. Integrating this by parts from T to ί, we have

Γί-x^-^O + x^-^T) for ί^T, which gives
for t^T. Repeated application of the above

procedure then yields x(i)*Ξ>(l/l)x'(t)(t-T) for t^T. From this the conclusion
(18) follows immediately. The proof is complete.

LEMMA 5. Suppose that p(t) is decomposable in such a way that p(t)
= c(f)q(t)9 c(t) is continuous on [a, oo), 0<lim inf c(t)^\im supc(f)<oo, and

r-*oo f-κ»
tn~εq(i) is continuous and nondecreasing on [a, oo) for some nonnegative number
ε. If x(t) is a solution of(ϊ) such thatlim inf x(f)>0, then

f-*oo

(i) limx(ί) = oo and the integer I for x(t) in Lemma 1 is not zero',
ί-*oo

(ϋ) there exist positive constants k2 and h such that

(19) χo ^ ̂ 2r«^[x(^(0)]^->^w-1>X/I[x(^(0)]1/(w-1))

for all large t.

PROOF, (i) Using (7) and the nondecreasing character of tn~εq(i), we find
that x^n\t) + cla"-εq(a)Γn+εf(x(g(f)))^Q for all large t. We may assume the

Γ°°constant c1a
n~εq(ά) is positive. Observe that \ s~n+εsn 1ds = co for e^O. By

virtue of Theorem 2 we see that x(t) does not have a finite limit which is positive
as f-»oo. Since x(t) is monotone by Lemma 1 and lim inf x(f)>0, we conclude

t-κx>

that limx(ί) = oo. Because of the unboundedness of x(i), the integer / for x(t)
ί->00

is not zero.
(ii) From Lemma 2 there is a positive constant b2 such that x(g(f))

]n~1 for all large t. In view of (2) we have

(20) Λ[x(flf(0)]1/(" 1) ̂

for all large ί, where /ί = ^21/(π~1)^21 Let (20) and C7) be satisfied for t^
Then choose a number 7\>Γ so large that /ι[x(^(ί))]1/(/l~1}^^ holds for ί^7\.
This can be done by reason of limx(0(0)=oo. Using the condition on p(t)

= c(t)q(i), (20) and (7), we obtain

p(t) ^ CίΓ^t
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for ί^Γl5 which implies (19). This completes the proof.

THEOREM 3. Suppose that p(f) is decomposable in such a way that p(t)
= c(i)q(t), c(f) is continuous on [α, oo), 0<lim inf c(ί)^h'm supc(ί)<oo and

f—USD ί—*oo

tnq(f) is continuous and nondecreasing on [α, oo).
Then, a necessary condition for (I) to have a solution x(t) with lim inf x(t)

f-»00

>0 is that

(•oo

(21) \ s~λp(s)f(csn~l)ds < oo for some c > 0,

where λ is an arbitrary positive number.

PROOF. Let x(ί) be a solution of (I) such that lim inf x(ί)>0 and let λ be
ί->00

an arbitrary positive number. Applying Lemma 5 to the case ε = 0, we see that
limx(ί) = oo, the integer / in Lemma 1 is not zero, and
ί-»oo

(22) p(t) ^ k2t~
n[^x(g(t))^n^n~l^p(h[^x(g(tj)']ί^n~l))

for all large t. Notice that (l)-(3) hold. In view of Lemma 4 (ii) we find that

(23)

for all large ί, where /c3 is a positive constant such that
^k3g'(i)t for all large ί. Moreover, by Lemma 4 (i), we get

for f^Γ. According to Lemma 3 (i) applied to the case y = l+Λ/(n-l), z(ί)

= k(t-T)«-1 and P(f)=p(t)f(x(g(t)))lx(g(ty)Tl~λ/(n~1), we conclude that

(24) 5°°[sr*(5)]«-1Ks)/W3(s))) IX

By the aid of (22), (23) and (3) we see that

< QO.
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for all large t. Therefore, the inequality (24) shows that the integral

(M~1}^^

is bounded above as f-»oo. Since lim χ(g(t))= oo, we arrive at the desired integral
f-X30

condition (21). The proof of Theorem 3 is complete.

REMARK 1. In Theorem 3, it is impossible to take A=0, as can be seen by
the Euler equation

(25) x"(f) + kΓ2x(t) = 0.

In fact, every nontrivial solution of (25) is oscillatory if k> 1/4 and nonoscillatory
i f fc^ l/4 .

However, we can establish the following theorem.

THEOREM 4. Suppose that p(t) is decomposable in such a way that p(i)
= φ)g(f), c(ί) is continuous on [α, oo), 0 < lim inf c(ί) ̂  lim sup c(ί) < oo and

f-»00 f-»00

tn~εq(i) is continuous and nondecreasing on [α, oo) for some ε>0.
Then, a necessary and sufficient condition for (I) to have a solution x(t)

with lim inf x(t)>Q is that
f-+00

(*oo

(6) \ p(s)f(cstt~1)ds < oo for some c > 0.

PROOF. The sufficiency part is contained in Theorem 1. It remains to
prove the necessity part. Let x(f) be a solution of (I) which satisfies lim inf x(ί)

' ' . v - ί-*oo

>0. Proceeding as in the proof of Theorem 3, we see that (23) holds for all large
t. By the aid of Lemma 4 (i) we have

x(t) ^ k(t-T)»

for f^T. Without loss of generality, we may suppose that 0<ε<n-l. Ap-
plying Lemma 3 (ii) to the case y = l-ε/(n-l), z(f) = k(t-T)n'Λ and P(0 =

+*l(n-l\ we obtain

(26) ^*(5)](n-1)(1-ε/(-1))χs)/(x (̂s))) [x(flf(s))]-i+-/(»-i>ds < oo.
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From (3), (23) and Lemma 5 (ii) it follows that

(27) |

for all large t. Using (26), (27) and the fact that limx(#(ό) = oo, we arrive at
f-*QO

p(v)f(h-n+ivn^)dv < oo,

which proves (6). The proof of Theorem 4 is complete.

COROLLARY 2. Suppose that there exists a positive number ε such that

> 0.

// inequality (I) has a solution x(t) such that lim inf x(f)>0, then
f-KXD

foo

\ s"ϊl+β/(csll"1)ds < oo /0r some c > 0.

PROOF. There is a positive constant k such that p(t)^.kt~n+ε for all large
ί; hence we have x(n\t) + kt~n+ef(x(g(t)))^Q. Apply the necessity part of
Theorem 4 to this inequality.

REMARK 2. When n — 2 and ε = 2, Corollary 2 was given by Wong [9,
Corollary 3].

COROLLARY 3. Suppose that there exists a positive number ε such that

a, oo), p(i)>Q on [β> °°) and

ds < oo,
I

where (sn~εp(s))L = max { - (sn~εp(s))', 0}.

ι, inequality (I) has a solution x(f) such that lim inf x(ί)>0 if and only

Γ00 (j - p(j))l
j ^w-ε/?ω

'(•»
\ p(s)f(csn~l)ds < oo /or somg c > 0.

PROOF. We have only to apply Theorem 4 to the case
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4 ̂ ---w -̂pG ̂ f 4
where (>"-«/>(>));= max {(sn~εp(s)Y, 0}.

REMARK 3. When n=2 and ε=2, Corollary 3 was proved by Burton and

Grimmer [1, Theorem 9].

REMARK 4. The Euler equation (25) shows that in Theorem 4 and Corol-
laries 2 and 3 the assumption that ε>0 cannot be weakened to ε^O.

EXAMPLE. Consider the equation

(28) x<"(ί) + kt"f(x(gm - 0,

where k is a positive constant and α is a real number. If α< — n, then (28) has
a solution x(f) such that lim inf x(ί)>0 (Theorem 2 or Corollary 1). If α = — n,

f-»oo

then a sufficient condition and a necessary condition for (28) to have a solution

$
00 /*00

s~nf(csn~1)ds<oo and \ s~n~λf(csn"ί)ds
J

<oo (Λ>0) for some c>0 respectively (Theorem 1 and Theorem 3). If α> — n,
then a necessary and sufficient condition for (28) to have a solution x(i) such that

f°°lim inf x(ί)>0 is that \ sa/(csn"1)ds<oo for some c>0 (Theorem 4 or Corollary
r-*oo J

3).
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