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Introduction

Recently various infinite loop space machines have been studied ([1], [3],
[7]1, [11]). Among the interesting applications are the iterated deloopings of the
classifying spaces of symmetric monoidal categories. Thus we can associate
functorially an Q-spectrum to any symmetric monoidal category.

However, as we start from a category, it seems natural and helpful to have a
categorical construction corresponding to the space level delooping.

The main purpose of this paper is to show that there is such a ‘‘categorical
delooping”. Precisely, to each symmetric monoidal category C we shall associ-
ate functorially a new symmetric monoidal category BC such that its realization
|BC| becomes the delooping of |C| in the sense of Segal [11].

Since BC is again a symmetric monoidal category, we can repeat this process
so as to get a sequence of symmetric monoidal categories

C, BC, B*C,..., B"C,....

Then the classifying spaces |B"C| form a connective spectrum E(C), and hence
we get a functor C— E(C) from symmetric monoidal categories to spectra.

One advantage of our construction is that it gives a rather simple description
of the multiplicative structure of the spectrum E(C) associated with a symmetric
bimonoidal category C. That is to say, starting from a pairing (cf. Definition 3.1)

Ox:CxC—C,
we can canonically construct a coherent system of pairings
P, .: B"C x B"C — Bm™"C
which induces a system of maps
fmn® IB"C| A |BC| — |B™nC|

making E(C) a ring spectrum.
The paper is organized as follows. The categories B"C are defined in § 1 and



628 Nobuo SHIMADA and Kazuhisa SHIMAKAWA

§2. We construct the pairings P, ,: B"C x B"C—B™*"C for any symmetric
bimonoidal category C in §3. §4 shows that BC becomes an exact category if
so is C and that QBC is isomorphic to BQC for the Quillen construction Q [10].
Finally § 5 shows that almost all the above constructions and propositions can be
extended to the equivariant cases. In particular we shall associate a G-spectrum
to any symmetric monoidal G-category when G is a finite group.

§1. I'-spaces and I'-categories

In this paper all the spaces that we consider are compactly generated weak
Hausdorff spaces [14] and % will denote the category of such spaces™®).

Let I' be the category whose objects are finite sets n={1,2,...,n} and mor-
phisms from m to n are the maps 0: 2=—2= which preserve unions and set dif-
ferences. We use ‘‘I'-space” to mean any contravariant functor from I’ to %,
and an original I'-space of Segal [11] will be called a “‘special I'-space”. Thus
a special I'-space is a I'-space A such that

(i) A(0) is contractible, and

(ii)) for any n the map P,: A(n)— A(1) X --- x A(1) (n-times) induced by the
maps i,: 1-n in I, where i,(1)={k} cn, is a homotopy equivalence.

If A and B are I'-spaces, then I'-maps from A to B are natural transformations
F: A—,B.

For a (nondegenerately) based space X, define a covariant functor X: I'-»%
as follows. For any integer n we put X(n)=X" and for any map 0: m—n in I
we put 0y(xy,..., X,,) =(x1,..., x,,) where x’;=x; for j e 0(i) and x}; = otherwise.
Let A be a I'-space.

DerFiniTION 1.1. For any based space X, X ® A denotes the quotient
[lnz0 X" x A(m)/~ in % where the equivalence relation ~ is generated by
(Ox(x15.0s Xpp), @)~ (X 150005 Xy 0%a) for all x;€ X, ac A(n) and 0: m—n. If F: 4
—>B is a I'-map, the induced map from X ® 4 to X ® B is also denoted by
X ®F.

REMARK. By Proposition 3.2 of [11], S!® A is homeomorphic to the
geometric realization of A viewed as a simplicial space A°P—I°P_4,q,
Hence S* ® A is homotopy equivalent to BA(1) if A is a ‘‘good”’special I'-space.
(See [11], § 1 and Appendix A.)

Now let C be a small category and let OC (resp. MC) denote the object set
(resp. morphism set) of C. Then C'is called a topological category if

*) Xew iff X is a compactly generated space and the image of X under the diagonal map is
closed in k(X x X) (cf. [14]).
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(i) both OC and MC are compactly generated weak Hausdorff spaces,

(ii) all the structure maps of C are continuous, and

(iii) the identity map OC—MC is a cofibration.

The category whose objects are topological categories and whose morphisms
are continuous functors is denoted by ¥ &/ 7.

Recall that a (special) I'-category [11] is a contravariant functor C: T
—%o/J such that

(i) C(0) is equivalent to the category with a single morphism, and

(ii) for each n the functor []f_, i¥: C(n)—>C(1) x --- x C(1) (n-times) is an
equivalence of categories.

A T'-category C induces two I'-spaces OC and MC such that OC(n) (resp.
MC(n)) is the space of objects (resp. morphisms) of C(n). Moreover there are
I'-maps

source
MC ocC,
target

(*) MC X gc MC composition MC,

0 Cidentity MC
given by the structure maps of each C(n).

DErFINITION 1.2. For any based space X, X® C denotes the topological
category whose object space and morphism space are X ® -OC and X ® r MC
respectively, and whose structure maps are induced by the I'-maps in (x).

X®r Cis a coend (cf. [6]) of the functor

I'xIl°? — AT
U] w
(m, n) — X™x C(n)

in which X is considered as a category with identity morphisms.
If C and D are I'-categories and F: C—D is a natural transformation, then
for any X we get a functor

Fa=X® F: X® C—> X ®;D.

Let C and C’' be I'-categories, and let Cx C’ denote the product n—C(n)
x C'(m).

PropoOSITION 1.3. X®(CxC’) is naturally isomorphic to (X ®C)
x (X ®rC).
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ProoF. Let P: CxC'—»C and Q: CxC'—C’ be the projections. Then we
have a functor
P xQ04u: X®r(CxC)— (X ®rC) x (X®rC).

We will construct the inverse R of Py x Q, as follows. Let u=[x,,...,X,,a] and
u'=[x4,...,x,,a’] be objects of X ®  C and X ® C' respectively, where a € C(m)
and a’ € C'(n). Then we define

R(u,u") = [Xq5eees Xy X15--05 Xy (0%a, y*a’)]
where §: m+n-m and ¥: m+n—n are maps in I" defined by
{i} for i<m @ for i<m
0(i) = Y(@i) =

g for i>m, {i—m} for i>m

so that (0*a,y*a’)e C(m+n)x C'(m+n). For morphisms f and f’ of X® C
and X®r C’, R(f,f") is defined by the same formula. Then we have (P, x Q,)R
=1Id, because

P R(u,u’) = [Xg,..0, Xy X15..., X1, 0%a]
= [04(X15mnes Xpus X1sev05 X1p), A
= [X1ee0, Xy @] = U,
0w R, u") = [Yse(X1seers Xy XTseeer X3), @]
= [x},..,xp,a'] =u'.
Similarly we can show that R(P, x Q,)=Id and this completes the proof.

Now let C be a I'-category and let |C|' denote the I'-space n—|C(n)| where
|C(m)| is the geometric realization of the nerve of C(n) (i.e., the classifying space
of C(n)). Obviously |C|’ becomes a special I'-space.

ProPOSITION 1.4. For any based space X, |X® C| is naturally homeo-
morphic to X®|C|'. In particular |S'®r C| coincides with the geometric
realization of the simplicial space [n]—|C(n)|.

Proor. We will use the notations of MacLane [6], e.g., X® C is denoted
by S" X" x C(n). Consider the functor S: 4 x 4°°? x I' x [°?—-% given by
S([pl, [q),m,m) = 4, x X" x N,C(n)

where 4, is the standard p-simplex and N,C(n) = MC(n) X oc(m)** X ocmyM C(m)
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(g-times). Since the geometric realization of the simplicial space [g]—N,C(n) is
the classifying space |C(n)|, X ® - |C|’ is identified with the iterated coend

71§ 51, pd mom |

On the other hand, | X ®  C| coincides with the iterated coend
D m T
(11" s o1 mm |,

because SmX mx N,C(m) is the p-th nerve of the category X ® r C. Since these

two iterated coends are naturally isomorphic (cf. [6]) we have the proposition.

§2. Symmetric Monoidal Categories

Let C be a topological category. C is called a symmetric monoidal category
if there exists a functor

O:CxC—C
together with an object e € C and coherent natural isomorphisms
Uyt x000O2)— x0Oy 0Oz,
Cy xOy—y0Ox,
I, edy—y,
r, :x[de— x.

Generalizing the method of Segal [11], we construct a I'-category C (which
is also denoted by C*) as follows.

DerINITION 2.1. (i) For each n the objects of C(n) are the systems
{as;os, 1)

where ag is an object of C for each S<n, and ag 1: agyr—as(lar is an isomor-
phism for each pair of disjoint subsets S, T'cn, such that (a) ao=e and (b) the
diagrams

o~

a

ag, s as,0
eDas as asD e,
r
N
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s ryuu idxar, y
asyriv ——> as0aryy ——= as0(ar0ay)

laSm‘, U la

as, rXid
agyrlay » (as0ar)Oay,

ag
asyr —— asUar

| ;

ar,s
arys —=— arllag

commute for any disjoint subsets S, T and U.
A morphism from {ag;as > to (bg;Bsry in C(n) is a system (fg> of mor-
phisms fg: ag—bg (f,=1d,) such that the diagram

Jas,r lﬁs,r

as[lar &I—j—f& bsbr

commutes for any S, T<n with Sn T=g.
(i) For any 0: m—n, 6*: C(n)—C(m) is given by

0*<as; as,17 = {dou’ %u,or) (U, Vem, UnV=9),
0* fs> = {fo? (U cm).
We consider OC(n) as a subspace of
[Tsca (005 x Is,rensnr=0 (MO r

where (OC)s and (MC)s r are copies of OC and MC respectively. MC(n) is
regarded as a subspace of

0CM) x [Tsca(MC)s x OC(n)
by the assignment f = {fg>— (source(f), (fs), target(f)).

Note that C(0) is the category with a single morphism, and €(1) is isomorphic
to C. In order to see that C is a (special) I'-category, it suffices to prove

LemMA 2.2. The functor P,=T1i_,i¥: C(n)»C(A)"=C" induced by the
maps i,: 1-n, i,(1)={k} =n, is an equivalence of categories.

Proor. Define a functor I,: C"—C(n) as follows. For any object (ay,...,
a,) of C", we take

I(ay,...,a,) = {as; o5 )
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where ag=a; C0(---C(a;,_,Oa;)--+) for each S={i,...,i,_,{,}=n with i; <.
<ip-;<i, and ag r is the uniquely determined isomorphism ag,;=ag[Ja;. For

a morphism (fy,....f,) of C", L(fy,....f)={fs> is given by fs=F O(--0O(f,_,
Of,):-) for S={iy,...,i,_y,i,}. Obviously we have P,[,=Id." On the other
hand, there is a natural isomorphism 4,: Id—I,P, given by the composition

as— agy as_y—
— a;, O (O (auk_z) O a{ik—hik})“.)
— a;,y OC-0O@ag,_,y O@g_yOagy) )

of id OO(---0@d Doy, y,.00) ) for each object {ag;osry of C(m). This
proves that P, is an equivalence.

REMARK 2.3. In fact C is a functor from I' to the category of symmetric
monoidal categories. For objects a=<ag;asry and b=<{bs; sy of C(n) we

take al1b=<asCbs;(idIcid) (s 700Bs.7))-

DEerFINITION 2.4. For any based space X, X®C denotes the category X
®,C.

By definition, there is a commutative diagram

X x C(l)
id X p* exxid
xx C(0) X®C +x C(1)
p*xld . id X e*
*x C(0)

where X is regarded as a category having only identity morphisms, and ¢ (resp.
p) is a unique morphism from 0 (resp. 1) to 1 (resp. 0) in I'.  Since |C(0)| = the
functor X x C(1)-» X ®C induces a continuous map

X A|C|l— |X®C].

Now let C={C, Oc,ecy and D={D,[p,epy be symmetric monoidal cate-
gories. A monoidal functor from C to D is a functor F: C—D together with an
isomorphism Fe.—e; and coherent natural isomorphisms Y: F(a (¢ b)x~Fa
[Op Fb. It is checked that F induces a natural transformation

F:C—-D

such that F{ag;asy=<{as; a5 ry Where ag, =Fag (for S#¢) and agr=yFogz:
Fag r—F(agOcarp)—FagOdp Far. Consequently we get a functor
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XQF=XQ®F: X®C—X®D
for any based space X. Moreover if A: F—=,F’ is a natural transformation of

monoidal functors (i.e., the diagram

FlaOcb) —2— F'(a0ch)
ls b
FaOlpFb 2024, prampFip

commutes for any a, be OC), we can define a natural transformation 1: X®F
—»X®F' in the following way. For any object u=[x,,...,x,,<{as;os,r>] of X
®C the objects X®F(u) and X ® F'(u) are represented by (xy,..., x,, F {as;as 1))
and (x,,..., x,, F '{ag;og ) respectively.  Since the diagram

Fas_u_T —F—Eﬁi) F(asDCaT) ——i—) FastFaT

lz P ’ lzg,,x

! F,a ! ! "’
F'agyp —=% F'(as0car) —— F'asOpFar

commutes for any disjoint subsets S, T =n, there is a natural isomorphism {Ag):
F(as;as,ﬁ gF’(as;as,ﬁ with Ag=4,.: Fag—F'as, which induces the desired
isomorphism

I XQFuW=XQ® F(u).

In particular, if C={C,,e,a,c,r, [y is a symmetric monoidal category, the
functor [J: CxC—C becomes a monoidal functor. Since the I'-category
(C x C)* is canonically isomorphic to C x C, we get a functor

0:XO)x(X®Ox=X®r(C xC)
=XQ®(C x O
A0, x @ C.

Furthermore the natural isomorphisms a, ¢, r, | induce coherent natural isomor-
phisms

udedOw=@dOvOw,

Ql

rubDovvdu,

ol

rrudexu, lneJovxvo

in which 2e X®C is the class of (e} € C(0). Thus we have
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THEOREM 2.5. XQ@C=<(X®C,[,¢,a,c, 71> is a symmetric monoidal
category.

Note. If u=[x,..., %y, {as;as,r>] and v="_[yy,..., y,, {by; Py y>] are objects
of X®C, then u[Jv is represented by the object

(xl""’ Xms Y1s+++5 Vs <‘10Q [:] b¢Q;’)’Q,R>)

of Xm*tn x C(m+n) where 0: m+n—m and ¢: m+n—n are the maps defined
in the proof of Proposition 1.3 and y4 x is the composition: aggyur)byour)
—(ago[0agr) (b yob,r)—(agp[(1b,0)1(agr[1b,g). Note that if Q={i,,...,i,
Jiemgpem+n, i< <i,sm<j;<---<j, then 0Q={i,...,i,}cm and ¢Q
={j;—m,...,j,—m}cn.

Since X®C is again a symmetric monoidal category, we can construct a new
symmetric monoidal category Y ®(X®C) for a based space Y.

LeMMA 2.6. Y®(X®C) is naturally isomorphic to X®(Y®C).
Proor. Let &: I'x'-»% /7 be a contravariant functor such that
C(m,n) = (C(m))*(n)  (cf. Remark 2.3).

Then Y®(X®C) is canonically isomorphic to the iterated coend

X"Y" x [SMX x C(m, n):l,

for there is an isomorphism of I'-categories

["xm x camym) — x© @),
w U]
[xl’-"’ xm: <as; aS,T)] — <[X1,..., xm9 as] 9 [xli"" xms “S,T])
(ase 0C(m), a5 - € MC(m)) .

On the other hand, there is a natural isomorphism

7:C(m, n) 2 C(n, m) .
U] U]
{as; as,7) + {by; Bu,v>

given as follows: For ag={c§;7§ > € 0C(m) and a5 7=<{¢$7T: cftT>cSOch>
eMC(m), by={c§;p5T>e0Cm) and Byy=<y},y: ciuy—ciOc)> € MCm).
Thus we have
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Y®(X® C) gSnY" x BMX'" x C(m, n)]

IR

SmX'" x BY x C(m, n)]

n

= S"’Xm X [Sn Y" x C(n, m)}

T
2 XR(Y®C).
DEFINITION 2.7. For any symmetric monoidal category C, we put
BC=S'®C
and inductively
B"*1C = St ® B"C for n=1.

We have already shown that the functor S!xB*C—S'®B*C=B"*1C in-
duces a continuous map

g,: S1 A |B*C| — |B**1(C]|.
Consequently we have a spectrum
E(C) = {|B"Cl|, &,} .

Since |BC|=S' ®,|C|’ (the geometric realization of the good simplical space
|C|") is equivalent to the classifying space B|C|’(1) of Segal [11], the following
proposition is a direct consequence of the main theorem of [11]. (See also [9].)

ProPosITION 2.8. The adjoint &: |C|—Q|BC| of &, is a group completion.

Thus & is a homotopy equivalence if 74(|C|,*) is a group. In particular
|B"C| is homotopically equivalent to the loop space of |B**!1C| for n>1.

§3. Symmetric Bimonoidal Categories and Ring Spectra

Let A=<{A,04,e4), B=<{B,Opepy and C={C,c,ecy be symmetric
monoidal categories.

DerFINITION 3.1. A functor P: Ax B—C is called a pairing if there exist
natural isomorphisms

d:P@@dya’,b)—> P(a,b) 0 P(a’, b),
6': P(a,b g b") — P(a,b) O¢ P(a, b")
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such that (i) for any object b of Bthe functor P(-, b): A—C, given by a—P(a, b)
for ae OA and by f—P(f,id,) for fe M A, is a monoidal functor, and similarly
the functor P(a, -): B—»C becomes a monoidal functor for any a € 04, and (ii)
the diagram

P(aO a', b[Ogd") ———> P(a, bJb")OP(a’, b3gd")

) P’ la'gcaf
P(ad d', b)OcP(ad4a’, b')
j (P(a, b)OcP(a, b'))Oc(P(a’, b)OcP(a’, b))
3008

7

(P(a, b)OcP(a, b'))Oc(P(a, b')OcP(a’, b'))
commutes for any a, a’ € 04 and b, b’ € OB.

ExaMPLE 3.2. Let R be a commutative ring with unit and let 2(R) denote
the category of finitely generated projective R-modules. Then 2(R) has a struc-
ture of symmetric monoidal category which comes from the direct sums, and also
has a pairing

®gr: 2(R) x 2(R) — 2(R)
which assigns to a pair (M, N) € 2(R) x 2(R) the tensor product M ®p N.

In fact 2(R) is an example of symmetric bimonoidal category. A topologi-
cal category C is called a symmetric bimonoidal category if it has two distinct
structures of symmetric monoidal category {C, [1,,0) and {C, []«, 1) and if the
functor [J,: Cx C—C is a pairing with respect to <C, [1,,0).

Now let 4, B and C be symmetric monoidal categories and let P: Ax B—»C
be a pairing. Then we have

PrOPOSITION 3.3. For any based spaces X and Y, there are pairings
Py X®A)xB— XQ®C,
Py:Ax(Y®B) —Y®C
such that the diagram

X®((rec
Py, ®(Y®C)

(X®A4) x(Y®B)

In

(592
Y®(X®C0)
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commutes.
Proor. For each m, define a pairing
P’: A(m) x B—> C(m)

by P, (<as; a5,7p, b)={P(as, b); 5P(as, 1,id,)>. Then for any map 6: k—»m in I’
we have the commutative diagram

. )4

A(m) x B =™, C(m)

lo*xld R 10*

Ak) x B 2% C(k).

Hence we get an induced pairing
Py=X®rP:(X®A) xB—XQ®C.

Similarly we have a natural transformation (of I'-categories)

P 4x Bm) ———— C(n)
w w
(a, <bu,ﬂu,v>) > {P(a, by), &’ P(id,, ﬂv,v)>

which induces a pairing
P} =Y®,P':4Ax(Y®B)— Y® C.

Now it is easily proved that the diagram

Ty (€C(m))"(n)=C(m, n)

A(m) x B(n) T
commutes for any m and n. Thus we have the commutative diagram
X®(Y®o)
Il
(o[t ]

(C(m))*(m)=C(n, m)

(PV

(X® ) x (Y B) =[SMX"'X z(m)] x [SY x B(n)] :

(P’x)?\* X" Y" x UMX"' x C(m, n)]

I
Y®(X®C0)
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Now let C=<C,[d,,0,0«,1) be a symmetric bimonoidal category and let
us take the categories B"C using the structure <C, 1., 0).

THEOREM 3.4. For any pair of integers m, n=0 there is a pairing
P,,: B"C x B"C — B™*"C

such that
(i) PO,O=DX:CXC_)C’
(ii) the diagrams

B!C x B"C x Bnciﬂﬂ__, B!C x BmnC

lPﬁ,led ipl,m-rn

BmC x BnC Piim,n > BitminC

and r

B"C x B"C B"C x B™C

Py 2 [
Bm+nC

commute up to coherent natural isomorphisms A, .t Pypin(@, Py (b, )=

P1+m,n(Pl,m(a’ b)’ C) and Tm,n: Pm,n(b’ c)an,m(c’b)'

PrROOF. Assume that a pairing P, ,: B"C x B"C—~B™*"C has been defined.
Then from Proposition 3.3 we get pairings

Prsin = (Pmn)si: (' ® B"C) x B"C —> S ® B™*"C,
Ppnes = (Pnn)i: B"C x (S' @ B"C) —> S! @ B™+"C

m,n)S1t -

such that (P,4q,)5: B™1C x B"*1C—»Bm*"*2C coincides with (P, ,41)st
(=Pp+1pn+1)- Thus starting from Pyo,=[],: CxC—C, we can inductively
construct the pairings P, ,: B"C x B"C—B™+"C.

The natural isomorphisms 4, ,,, and 7, , are also defined inductively. The
inductive step is as follows. Assume that there is a diagram of pairings

C,xCyx Cy 29X, ¢, xc, ,

JGxId | 1F

Ci,2XC3 —— Cy25
together with coherent natural isomorphisms
A: F(a, E(b,c)) = H(G(a,b),c).

Then we have a diagram
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(S'®C) x Cy x C; “XE, (510C) x C,

|71 | lF"
(S'®Cy ) xC; —X S'®Cy 4,
Now define a natural isomorphism
A F'(u, E(b,c)) = H'(G'(u, b), )

as follows. For any objects u=[xy,..., X, {as;05,7>]€S'®C,, beC, and ce
C,, we have

Fl(“? E(b’ C)) = [xla---’xk’ <a.’S;a.,9,T>] ’
H’(G’(u’ b)7 C) = [xla“" xka <aga ag‘,T>]

in which ag=F(ag, E(b,c)) and a§=H(G(as,b),c) for any Sck. Then the
diagram

—  Flagur, E(b, ¢)) —2 H(G(asyr,b), c) <
! !
FlasOar, E(b, ¢))  H(G(asDlar, b), c)

!
H(G(aSs b)DG(aT: b)’ C)

!
— F(ag, E(b, ¢))OF(ar, E(b, c)) }g{ H(G(ag, b), c)OH(G(ar, b), ¢) —

Commutes for any. S, Tck with SnT=¢. Hence we get an isomorphism
ag;as, ) =<as; o5,r) which induces A': F'(u, E(b, ¢))= H'(G'(u, b), ¢). Similarly
we can define natural isomorphisms

A": F"(a, E'(v, ¢))~ H'(G"(a, v), ¢),
A": F"(a, E"(a, E"(b, w))= H"(G(a, b), w)

where E': (S1®C,)x C3->S'Q®C, 3, E": C;x(S'®C3)—S'®C, 3, F': Cy x(S!
®C,,3)»S'®C, 53 and H": C; , x(S'®C;3)->S'®C,,,5. Moreover we can
show that (1')"=(1"), (A")"=(1")", and (")’ =(4")" (as natural transformations).
Thus starting from the coherent natural isomorphisms

aOx(bOxo=(@Oxb)Oxc,
we can define natural isomorphisms
Al,m,n: Pl,m+n(u, Pm,n(v’ W)) = Pl+m,n(Pl,m(u’ U), W) .

Similarly we can define coherent natural isomorphisms
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Tns PV, W) = Py (W, 0).
This proves (ii).

Now let E(C)={|B"C|,¢,} be the spectrum associated with C=(C,[],,0).
Then the pairing P,, , induces a map

limn: |B"C| A |B"C| —> |B™nC].

Furthermore there is a system of maps {,: S"—|B"C|} induced by a map ¢,:
§9={0, 1}—|C| where ¢¢(1) is the class of 1eOC. The system {u,,,,¢,} defines
a multiplication on the spectrum E(C), which is associative, unital and com-
mutative up to homotopy (cf. [13], § 13). Thus we have

COROLLARY 3.5. Let C be a symmetric bimonoidal category. Then the
spectrum E(C) becomes a commutative ring spectrum.

§4. Exact Categories

Let M={(M,E) be an exact category where M is a small additive category
and E a family of ‘‘exact sequences” in M (cf. [10]). One may regard M as a
full subcategory of an abelian category A, closed under extensions and containing
the zero object, and E a family of all sequences

i .
0—s m’>——>m—]» m’'— 0

which are exact in A. (i is called an admissible monomorphism and j an admis-
sible epimorphism.)
For an exact category M, Quillen [10] defined higher K-groups of M by

K{(M) = ;4 (IQM], *) for i20
where QM is a category defined as follows.

DErINITION 4.1. QM has the same objects as M. A morphism in QM
from m’ to m is an isomorphism class of diagrams

y P i
M «—nr——m

where i (resp. p) is an admissible monomorphism (resp. admissible epimorphism).
(For details, see [10].)

Since M is an additive category, we have a I'-category M.

LEMMA 4.2. We can make each M(n) an exact category such that the
functor 0*: M(m)—M(n), induced by a map 0: n—m in I, is an exact functor.
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Proor. Let E, be the family of all sequences

{as;os ) @’ <bs; Bs,1> iS)* {es3 Vs,

in M(n) such that the sequence ag_is, bg Js, cs belongs to E for each Scn.
Then it is easily proved that {(M(n), E,> satisfies the conditions to be an exact
category. If 0: n—m is a map in I', then 0* takes the sequences in E,, into those
in E, and therefore 0* becomes an exact functor.

Note that QM is also a symmetric monoidal category: Given two objects
m; m'e OQM=0M we take their sum m@m’. Consequently we have a I'-
category (QM)". Since the isomorphisms in QM are in one-to-one correspond-
ence with the isomorphisms in M, any object {as;as ) of (QM)"(n) may be
regarded as an object of M(n), and conversely. Thus O(QM)"(n) coincides with
OM(n)=0Q(M(n)). Now obviously we have

LEMMA 4.3. QM :n—Q(M(n)) is naturally isomorphic to (QM)" as a
I'-category.

Now let X be a based space. Then we have

THEOREM 4.4. The category X®M becomes an exact category. Further-
more there is a natural isomorphism

X®@0M =~ 00X ®@M).

VPROOF. Let E be the family of all sequences u’'—»u—u” in X®M, rep-
resented by

(x, <as; a5 1) =D, (3 (bg; B )LD, (x Coosys )

in which {ag;as 1) 455 (bg; Bs.r> {29 {cs;¥s,7) IS an exact sequence in M(n).
By Proposition 4.2 this definition does not depend on the choice of representatives.
Therefore E is well-defined and enjoys all the requisite properties of exact
sequences. This proves the first part of the theorem. Now we prove the second.
From the above argument we have an isomorphism

QX® M) =X® 0M

where QM is the I'-category n—Q(M(n)). On the other hand, by Lemma 4.3,
QM is isomorphic to the I-category n—(QM)*(n), and hence we get an iso-
morphism

XQ®@0Mx~X ®,(QM)" =X ® OM.
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COROLLARY 4.5. Let M be an exact category. Then, for any n=1 there
is a natural isomorphism

B"(QM) =~ Q(B"M).

§5. Equivariant Delooping

In this section we shall summarize (without proof) how our previous con-
structions and propositions extend to the equivariant cases. Let G be a finite
group.

DEFINITION 5.1. A symmetric monoidal G-category is a G-category C with
a structure of a symmetric monoidal category, i.e., C={C, [,e,a,c,r, ) having
a G-action G x C—C such that

(i) the functor [(J: Cx C—C is equivariant, i.e., g(alla’)=gadga’ for
any a, a'€ OC and g(f[f")=gfgf’ for any f, f'e MC and g € G,

(ii) eeOC is a fixed point, and

(iii) the diagrams

g(x0O(yO2)) 2228 g((xOy)02)  g(xOy) 22225 g(yOx)

H | H H

9z,0Y

gx0O(gyOgz) 225 (gxOgy)Ogz, gxOgy 2%, gyOgx,

g(eOx) 8= gx &=, g(x[e)

I

edgx — 5 gx —2 5 gxOe
commute for any x, y, z€ OC and g € G.

ExAMPLE 5.2. Let # be a category whose objects are natural numbers
and whose morphisms are invertible complex matrices. Thus

0% = N, M# = 1,50 GL(n,C)

with source (4)=target (4)=n for A€ GL(n,C). Define a structure of sym-
metric monoidal category as follows

mOn=m+n for m,neN
A 0

AOB= for A, Bel,GL(n,C).
0 B

On the other hand, the complex conjugation defines an involution on £, and
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hence # becomes a symmetric monoidal Z/2Z-category.

Let X be a (nice) based G-space, and let C be a symmetric monoidal G-
category. Then we have

THEOREM 5.3. The category X®C=X ®rC’ becomes a symmetric mon-
oidal G-category.

Let W be a G-module containing exactly one copy of each irreducible G-
module as a direct summand and let S¥ denote the one-point compactification of
W. Put

BC=S"®C and B*"*'C=S"®B'"C for nx=1.
Then it follows that the functor
S¥ x B*C — S¥ ® B"C = B""1C
is equivariant and hence induces a G-map
&,: S A |B*C| — |B*t1(].

THEOREM 5.4. E(C)={|B"C|,¢,} is a G-spectrum in the sense of Araki-
Murayama [2].

REMARK. Segal [12] has announced that if A is a G-I'-space (e.g., 4
=|C|’) and if A(1) is group-like, then there is a G-homotopy equivalence A(1)
~ QW (SY® A).

By the result of [2], E(C) defines an RO(G)-graded G-cohomology theory.
In particular the category # of Example 5.2 induces a (connective) KR-thoery.

Now assume that C has a pairing
O,:CxC—C
which commutes with the G-action on C. Then the induced pairings
P,,s: B"C x B"C — B™*nC
are also equivariant. Thus we have

COROLLARY 5.5. If C is a symmetric bimonoidal G-category, then E(C)
becomes a ring G-spectrum.
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