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Introduction

Recently various infinite loop space machines have been studied ([1], [3],

[7], [11]). Among the interesting applications are the iterated deloopings of the
classifying spaces of symmetric monoidal categories. Thus we can associate
functorially an Ω-spectrum to any symmetric monoidal category.

However, as we start from a category, it seems natural and helpful to have a
categorical construction corresponding to the space level delooping.

The main purpose of this paper is to show that there is such a "categorical

delooping". Precisely, to each symmetric monoidal category C we shall associ-
ate functorially a new symmetric monoidal category BC such that its realization
\BC\ becomes the delooping of \C\ in the sense of Segal [11].

Since BC is again a symmetric monoidal category, we can repeat this process
so as to get a sequence of symmetric monoidal categories

C9BC,B2C,...9B
nC9....

Then the classifying spaces \BnC\ form a connective spectrum E(C), and hence

we get a functor d->E(C) from symmetric monoidal categories to spectra.
One advantage of our construction is that it gives a rather simple description

of the multiplicative structure of the spectrum E(C) associated with a symmetric
bimonoidal category C. That is to say, starting from a pairing (cf. Definition 3.1)

Π X : C x C—>C,

we can canonically construct a coherent system of pairings

Pm>n: B
mC x BnC > Bm+nC

which induces a system of maps

μm,M: |B»C| Λ |B»C| — |B»+»C|

making E(C) a ring spectrum.
The paper is organized as follows. The categories B"C are defined in § 1 and
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§2. We construct the pairings Pm>n: BmCxB"C-+Bm+"C for any symmetric
bimonoidal category C in §3. §4 shows that BC becomes an exact category if

so is C and that QBC is isomorphic to BQC for the Quillen construction Q [10].

Finally § 5 shows that almost all the above constructions and propositions can be

extended to the equivariant cases. In particular we shall associate a G-spectrum

to any symmetric monoidal G-category when G is a finite group.

§ 1. /'-spaces and jΓ-categories

In this paper all the spaces that we consider are compactly generated weak
Hausdorίf spaces [14] and <% will denote the category of such spaces*).

Let Γ be the category whose objects are finite sets n = {l,2,...,n} and mor-
phisms from m to n are the maps Θ: 2m->2n which preserve unions and set dif-
ferences. We use 'T-space" to mean any contravariant functor from Γ to ,̂
and an original Γ-space of Segal [11] will be called a "special Γ-space". Thus
a special Γ-space is a Γ-space A such that

(i) A(Q) is contractible, and

(ii) for any n the map Pn: A(n)-+A(l) x ••• x^4(l) (n-times) induced by the

maps ik: l-*n in Γ, where ίfc(l) = {fc}c:n, is a homotopy equivalence.
If A and B are Γ-spaces, then Γ-maps from A to B are natural transformations

Γ: A-^>B.

For a (nondegenerately) based space X, define a covariant functor X: Γ-+°tt
as follows. For any integer n we put X(n) = X" and for any map θ: m-»n in Γ

we put Θ*(xl9...9xm) = ( x ' ί 9 . . . 9 x ' n ) where Xy = xt for je 0(0 and x} = * otherwise.
Let A be a Γ-space.

DEFINITION 1.1. For any based space X, X®ΓA denotes the quotient
lln^oX" xA(ri)/~ in ^ where the equivalence relation ~ is generated by
(0*(xl5...,xm), α)~(x1?...,xm, θ*α) for all Xj εX, aeA(n) and θ: m-»n. If Γ: A
—!-+B is a Γ-map, the induced map from X ®ΓA to X ®ΓB is also denoted by
X®ΓF.

REMARK. By Proposition 3.2 of [11], Sί®ΓA is homeomorphic to the
geometric realization of A viewed as a simplicial space Aop >Γop—^U^f.

Hence S1 ®ΓA is homotopy equivalent to BA(l) if A is a "good"special Γ-space.
(See [11], § 1 and Appendix A.)

Now let C be a small category and let OC (resp. MC) denote the object set
(resp. morphism set) of C. Then C is called a topological category if

*) X^w iff X is a compactly generated space and the image of X under the diagonal map is
closed in k(Xx X) (cf. [14]).
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( i ) both OC and MC are compactly generated weak Hausdorff spaces,
(ii) all the structure maps of C are continuous, and
(iii) the identity map 0C->MC is a cofibration.
The category whose objects are topological categories and whose morphisms

are continuous functors is denoted by ΉstfF .
Recall that a (special) Γ-category [11] is a contra variant functor C: Γ

-*cgs#3~ such that
(i) C(0) is equivalent to the category with a single morphism, and
(ii) for each n the functor Πϋ = ι l* : C(n)->C(l)x ••• x C(l) (n-times) is an

equivalence of categories.
A Γ-category C induces two Γ-spaces OC and MC such that OC(n) (resp.

MC(n)) is the space of objects (resp. morphisms) of C(n). Moreover there are
Γ-maps

source
MC I OC,

target

(*) MCxocMCcomposi t ion>MC,

OCidentity> MC,

given by the structure maps of each C(n).

DEFINITION 1.2. For any based space X, X®ΓC denotes the topological
category whose object space and morphism space are X ®Γ OC and X®ΓMC
respectively, and whose structure maps are induced by the Γ-maps in (*).

X®Γ C is a coend (cf. [6]) of the functor

ΓxΓ°p
UJ UJ

(m, n) < — > Xm x C(n)

in which X is considered as a category with identity morphisms.
If C and D areΓ-categoriesandΓ: C-i-J) is a natural transformation, then

for any X we get a functor

Let C and C' be Γ-categories, and let C x C ' denote the product n^C(n)
x C'(n).

PROPOSITION 1.3. ^(^(CxC') is naturally isomorphic to (X®ΓQ
x (X ®Γ;C')
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PROOF. Let P: C x C-*C and Q : C x C'-»C" be the projections. Then we

have a functor

P* x β* : X ®r (C x CO — -> (X ®Γ C) x (X ®Γ C') .

We will construct the inverse R of P* xQ* as follows. Let u = [xi9...9xm9ά] and

ι/' = [xi,..., xjp α'] be objects of X ®Γ C and X ®Γ C' respectively, where a e C(m)
and α' e C'(n). Then we define

where 0: m + n-»m and ^: m + n-»n are maps in Γ defined by

{i} for i ^ m ί 0 for i ^ m

0 for i > m, [ {i — m} for i > m

so that (β*α,^V)6C(m+n)xC'(m + n). For morphisms / and/' of
and ^Γ®Γ C', R(fJ'} is defined by the same formula. Then we have (P* x Q*)R
= Id, because

P*R(u,u') = [xl5...,xm,x;,...,x;,0*a]

= [xι,...,xm,α] = w,

Similarly we can show that R(P* x Q*) = Iά and this completes the proof.

Now let C be a Γ-category and let |C|' denote the Γ-space ιn-HC(n)| where
|C(n)| is the geometric realization of the nerve of C(n) (i.e., the classifying space

of C(n)). Obviously |C|' becomes a special Γ-space.

PROPOSITION 1.4. For any based space X, \X®ΓC\ is naturally homeo-
morphίc to ^®Γ|C|'. In particular |S1®ΓC| coincides with the geometric

realization of the simplicial space [n] |̂C(n)|.

PROOF. We will use the notations of MacLane [6], e.g., X®Γ C is denoted

by \ n Xn x C(n). Consider the functor S : A x Aop x Γ x Γop->^ given by

,ro,n) = Δp x X>» x NqC(ή)

where Δp is the standard p-simplex and NqC(n) = MC(n)xOC(n) xOC(n)MC(n)
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(g-times). Since the geometric realization of the simplicial space [q]*-+NqC(n) is
the classifying space |C(n)|, X ®Γ |C|' is identified with the iterated coend

CmΓCp Ί
S([p],ω,m,m) .

J I— J _]

On the other hand, \X®Γ C\ coincides with the iterated coend

because \ Xm x NpC(m) is the p-th nerve of the category X ®r C. Since these

two iterated coends are naturally isomorphic (cf. [6]) we have the proposition.

§ 2. Symmetric Monoidal Categories

Let C be a topological category. C is called a symmetric monoidal category

if there exists a functor

Π: C x C - >C

together with an object e e C and coherent natural isomorphisms

ax,y,z' x π (y π )̂ — > (* π y) π 2,

ex,, : x Π y — > j D x,

ϊy : e D y - > y,

rx : x\3 e - > *•

Generalizing the method of Segal [11], we construct a Γ-category C (which
is also denoted by CΓ) as follows.

DEFINITION 2.1. (i) For each n the objects of C(n) are the systems

where as is an object of C for each Sen, and αs>Γ: as^τ-^asOaτ is an isomor-

phism for each pair of disjoint subsets 5, Ten, such that (a) a0-e and (b) the

diagrams
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ΊdχaTjU ,

~~"s "\
as,

"siLTiLU —

, u
as

'• —

commute for any disjoint subsets S, Tand U.
A morphism from <«s;α5}Γ> to (bsιβS)Ty in ί(n) is a system </s> of mor-

phisms/s: as^>bs (/0 = ide) such that the diagram

I A\ps, T

bsΏbτ

\as,τ

asΏaτ '

commutes for any S, Tc=n with S n T = 0.
(ii) For any 0: m-»n, Θ*: C(n)-^C(m) is given by

(17, K c = m , 17 n 7=0),

(L7 cm).

We consider θί(n) as a subspace of

where (OC)S and (MC)S>Γ are copies of OC and MC respectively. JVfC(n) is

regarded as a subspace of

OC(n) x ΠsCn(MC)s x OC(n)

by the assignment / = </s>ι-> (source(/), (/s), target(/)).

Note that C(0) is the category with a single morphism, and ί(l) is isomorphic

to C. In order to see that C is a (special) Γ-category, it suffices to prove

LEMMA 2.2. The functor PB = Π? = ι ** : C(n)->C(l)n = Cn induced by the
maps ί k : 1-m, ιfc(l) = {fc}cn, is an equivalence of categories.

PROOF. Define a functor /„: Cw-+C(n) as follows. For any object (aί9...,

an) of Cn, we take
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where as = ailΠ(" Ώ(aile_lΏaik)—) for each S = {i1,...,zk_1,i f c}c:n with iί<
<ίk-ι<ik and αs,τ is ̂ e uniquely determined isomorphism aS]LT^as[Σ\aτ. For
a morphism (Λ,.'..,/,,) of C», /„(/!,-, /») = </s> is given by /s^DG DtΛfc.,
Π/ίk) ) for S={i 1 , . . . ,z f c _ l 5 i j k } . Obviously we have Pπ/n = Id. On the other
hand, there is a natural isomorphism λn : Id-^InPn given by the composition

- > tf{ίl} D (-D (a[ik_2} D fl{ik_lfik>)-)

- > a[iί} D (-D (α { ίk_2} D (α { ί k_ l } D α{W)) )

of idΠ( D(idDα{i>Uίjf+lf...ik})-) for each object <αs;αs,r> of C(n). This
proves that Pn is an equivalence.

REMARK 2.3. In fact C is a functor from Γ to the category of symmetric
monoidal categories. For objects α = <0s;αSίΓ> and b = (bs',βStTy of C(n) we

take αDb = <αsΠfcs;

DEFINITION 2.4. For any based space X, X®C denotes the category X
®ΓC.

By definition, there is a commutative diagram

XxC(l)
idxjo^^ I

jrxC(O) X®C

^\ Iιo*xid\ik I
* x C(0)

where X is regarded as a category having only identity morphisms, and ε (resp.
p) is a unique morphism from 0 (resp. 1) to 1 (resp. 0) in Γ. Since |C(0)| = * the
functor X x C(1)^X®C induces a continuous map

X Λ |C| >\X®C\.

Now let C = <C, Πo^c) an^ ^ = ̂ ?DDJ^D) be symmetric monoidal cate-
gories. A monoidal functor from C to D is a functor F: C-+D together with an
isomorphism Fec-+eD and coherent natural isomorphisms ψ: F(a Πcb) = Fa
ΠFb. It is checked that F induces a natural transformation

such that F<αs;αSjT> = <tfs;α5 ) Γ> where af

s>=Fas (for 5^0) and u'sτ =
FaSίLT-+F(as Qc aT)-^Fas ΠD Faτ. Consequently we get a functor
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X®F = X®ΓF: X®C >X®D

for any based space X. Moreover if λ: F-Ϊ-+F' is a natural transformation of
monoidal functors (i.e., the diagram

commutes for any α, ί?eOC), we can define a natural transformation λ: X®F
_ι_>X(χ)F' in the following way. For any object ι/ = [x1,...,xπ,<α5;αS)Γ>] of X
®C the objects X®F(u) and X®F'(u) are represented by (x1,...,x/l,ί

ί<fls;α5>τ»
and (*!,...,xπ,F'(as\αs>τ» respectively. Since the diagram

ψ > FasUDF<*τ

\λ \λ \*Γ\D*

+ P, * / *

F'aslLT

 as>τ> F'(asΏcaτ) ——> FfasΠDf'aτ

commutes for any disjoint subsets 5, Ten, there is a natural isomorphism <AS>:
F(as;aS)Ty^F'(as;oιStTy with λs = λas: Fas-*F'as, which induces the desired
isomorphism

lu: X ® F(u) ^ X ® F'(u).

In particular, if C = ̂ C,O,e,a9c9r9iy is a symmetric monoidal category, the
functor Π ' C x C - » C becomes a monoidal functor. Since the Γ-category
(C x CΓ is canonically isomorphic to C x C, we get a functor

Π: (X ® Q x (X ® C) ̂  X ®Γ (C x C)

= X ® (C x C)

Furthermore the natural isomorphisms a, c, r, I induce coherent natural isomor-
phisms

a : u Π (v D w) s (w Π u) D w,

in which e e X®C is the class of <e> 6 ί(0). Thus we have
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THEOREM 2.5. X®C = <X®C, G,έ, a,c, r,/> is a symmetric monoidal
category.

NOTE. If w = [x1,...,xm,<αs;αs>τ>] and u = [>ι, ...,yn, <bυ\βυ,v>~\ areobjects
of X® C, then wΠ^ is represented by the object

(xlί...,xm,);1,...,3;π,<αΘQ Q bφQ;γQfRy)

of Jfm+nx<?(m-r n) where 0 :m + n-»m and φ:m+n->n are the maps defined
in the proof of Proposition 1.3 and γQtR is the composition: aθ(Q1LR){3bφ(QjLR)

^(^QΠ^Πί^QD^^KQD^DKKDM Note that if Q = {'Ί> Λ>
Jι,...,7jc:m + n, iί< ~<ip^m<jί<-'<jq9 then 0Q = {i1,...,ip}c:m and φβ

Since X®C is again a symmetric monoidal category, we can construct a new
symmetric monoidal category 7®(A'®C) for a based space 7.

LEMMA 2.6. 7®(^®C) z'5 naturally isomorphic to

PROOF. Let C: Γ x Γ-»^W<^" be a contra variant functor such that

C(m, n) = (ί(m)Γ(n) (cf. Remark 2.3) .

Then 7®(X®C) is canonically isomorphic to the iterated coend

for there is an isomorphism of Γ-categories

Ym x (C(m)Γ(n) >(X® CΓ(n),

UJ UJ
rv v / _ . ... \-|
LΛ^,..., Λm, \M£, tf s^T/J I—

(αs e OC(m), α5>τ 6 MC(m)) .

On the other hand, there is a natural isomorphism

τ : C(m, n) ̂  C(n, m) .
UJ UJ

given as follows: For αs = <4;y^)K> eOC(m) and α5jΓ

eMC(m), ί>u = <cg;(p^Γ>eθC(n) and /ϊl,iΓ = <^ilr:
Thus we have
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^(mXm x ΓίV" x <?(m, n)Ί

m x Γ(Π7Λ x C(n, m)

DEFINITION 2.7. For any symmetric monoidal category C, we put

J5C = S1 ® C

and inductively

Bn+1C = S1®B»C for n ̂  1.

We have already shown that the functor S1 x BnC-+Sl®BnC = Bn+1C in-
duces a continuous map

εn:S
l A \B»C\— ̂ \Bn+1C\.

Consequently we have a spectrum

Since I^C^S1 ® r |C|' (the geometric realization of the good simplical space
|C|') is equivalent to the classifying space £|C|'(1) of Segal [11], the following

proposition is a direct consequence of the main theorem of [11]. (See also [9].)

PROPOSITION 2.8. The adjoint ε: \C\->Ω\BC\ of ε0 is a group completion.

Thus ε is a homotopy equivalence if π0(|C|,*) is a group. In particular
\BnC\ is homotopically equivalent to the loop space of |Bn+1C| for n^l.

§ 3. Symmetric Bimonoidal Categories and Ring Spectra

Let A = (A9 \3A,eAy, £ = <£, ΠB, £JB> and C = <C, Πoec) t>e symmetric
monoidal categories.

DEFINITION 3.1. A functor P: AxB-+C is called a pairing if there exist
natural isomorphisms

δ : P(a ΠA a', b) - , P(α, ft) Πc P(*f, b) ,

δ' : P(α, b ΠB b'} - > P(β, V) Dc P(<*> b1)
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such that (i) for any object b of B the functor P( , b): A-+C, given by a-+P(a, b)
for aeOA and by />-»?(/, idfe) for feMA, is a monoidal functor, and similarly
the functor P(a9 •)' B-»C becomes a monoidal functor for any aeOA, and (ii)
the diagram

P(aΠAa',bΠBb') P(a,

,

/

commutes for any a, a' e OA and b, b' e OB.

EXAMPLE 3.2. Let R be a commutative ring with unit and let 0>(R) denote

the category of finitely generated projective jR-modules. Then 0>(R) has a struc-
ture of symmetric monoidal category which comes from the direct sums, and also
has a pairing

which assigns to a pair (M, ΛΓ) e ^(Λ) x 0>(R) the tensor product M ®Λ N.

In fact 0>(R) is an example of symmetric bimonoidal category. A topologi-
cal category C is called a symmetric bimonoidal category if it has two distinct
structures of symmetric monoidal category <C, Π + , 0> and <C, Π x , 1> and if the

functor Π x ^ C x C - ^ C i s a pairing with respect to <C, Π +, 0>.

Now let A, B and C be symmetric monoidal categories and let P: AxB-^C
be a pairing. Then we have

PROPOSITION 3.3. For any based spaces X and Y, there are pairings

P'x: (X ® A) x B - > X ® C,

P'ί:A x (Y®£) - > 7 ® C

swc/ϊ ί/iαί ί/iβ diagram

,X®(Y®C)

7®(Λr®C)
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commutes.

PROOF. For each m, define a pairing

P'mιλ(m) x B — >C(m)

by ^;«%;α5tΓ>,ft) = <P(α5,b);δP(α5fT,idz,)>. Then for any map 0: k->m in Γ
we have the commutative diagram

x B

J0*xld A

x B -^

Hence we get an induced pairing

Similarly we have a natural transformation (of Γ-categories)

P'ί'.Ax B(n) - > C(n)
UJ UJ

which induces a pairing

Pϊ = y®r £": A x (7® J3) —» 7® C.

Now it is easily proved that the diagram

n)=ί(m, n)

(PX
l = C(n, m)

commutes for any m and n. Thus we have the commutative diagram

X®(Y®C)
I I

(n, m)

( AT® ̂ ) x

(^)κN, f w

r « x Γfm^«χ C(m, n)Ί



Delooping Symmetric Monoidal Categories 639

Now let C = <C, Π+,0, Π x , 1> be a symmetric bimonoidal category and let
us take the categories BnC using the structure <C, D+,0>.

THEOREM 3.4. For any pair of integers m, n^O there is a pairing

Pnttn: BmC x BnC - » Bm+nC

such that

(i) Po,o = [Hχ: CxC-»C,
(ii) the diagrams

B1C x BmC x £"C

n
Bl+mCxB"C - **ro'n

commute up to coherent natural isomorphisms λ/fm>rt: Pί>m+π(α, Pm>π(6, c)) =

Pι+m,n(Pι,m(<*, b), c) and τm,n: Pm,M(b, c)^Pπ,m(c,fc).

PROOF. Assume that a pairing Pm>rt: B
mCxB"C-*Bm+nC has been defined.

Then from Proposition 3.3 we get pairings

such that (Pm+M)si: Bm+1CχJB
M+1C-*5M fw+2C coincides with (Pm>B+1)sι

(==pm+1}W+1). Thus starting from P0,0 = Dx : Cx C-^C, we can inductively

construct the pairings Pm>n: BmCxBnC->Bm+nC.
The natural isomorphisms A/ jm)Π and τm>n are also defined inductively. The

inductive step is as follows. Assume that there is a diagram of pairings

O| X C/2 X (-^3 - ̂  >-Ί X ̂ 2 3

iσxld

together with coherent natural isomorphisms

λ:F(a,E(b9c))*H(G(a9b),c).

Then we have a diagram
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) x C2 x C3 - * (S1®^) x C2>3

σ/xld

Now define a natural isomorphism

as follows. For any objects u = [xί9...9xk9(as 9aιStTy']eS ί ®Cί9 foeC2 and ce
C3, we have

F'(ιι,E(4,c)) = [X!,...,**,^;^)],

ff'(G'(ιι,4),c) = [*!,..., x*,<flS;αS.Γ>]

in which β£=F(έis,E(4,c)) and 0£ = #(G(αs, fe), c) for any Sck. Then the
diagram

> F(aS]LT, E(b, c)) -±-» H(G(aslLT, b), c) <

I i
*(esD«r, £(*, c)) H(G(asΏaτ, b), c)

fi(ΰ(βs, b)ΠG(aτ, b), c)
I

• F(as, E(b, c))ΠF(aτ, E(b, c)) ̂ ϋ H(G(as, b), c)ΠH(G(aτ, b), c)

Commutes for any S, Tck with Sn T = 0. Hence we get an isomorphism

<4 4, τ> = <<*s αS,r> which induces λf : F'(u9 E(b, c)) * H'(G'(u, b)9 c). Similarly
we can define natural isomorphisms

λ":F"(a,E'(v9c))*H'(G"(a9υ)9c)9

λ'" : F"(a9 E"(a9 E"(b9 w)) s H"(G(a, b\ w)

where £': (S1®C2)xC3-^S1®C2f3, £r/: C2x(51®C3)->51®C2>3, Fff:Cίx(S1

®ct2,3)->5'1®cιJ2,3 and H": C l f2x(S1®C3)^S1®C l f2i3. Moreover we can
show' that (λy='(i'% (AT = (>IT, and (r')'=(^T (as 'natural transformations).
Thus starting from the coherent natural isomorphisms

fl D x (4 D x c) s (α Π x- 6) D x c,

we can define natural isomorphisms

Similarly we can define coherent natural isomorphisms
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*m,»' Pm,n(v, w) £ PB,m(w, Ό) .

This proves (ii).

Now let E(Q = {\B»C\9en} be the spectrum associated with C = <C, Π + ,0>.
Then the pairing Pm „ induces a map

Λ,.,,: IB-CI Λ IB-CI—>|B"+"C|.

Furthermore there is a system of maps {/„: Sn->|βπC|} induced by a map f 0

:

S° = {0,1}->|C| where <r0(l) is the class of leOC. The system {μmtn,εn} defines
a multiplication on the spectrum E(C), which is associative, unital and com-
mutative up to homotopy (cf. [13], § 13). Thus we have

COROLLARY 3.5. Let C be a symmetric bimonoidal category. Then the
spectrum E(C) becomes a commutative ring spectrum.

§ 4. Έxact Categories

Let M=<M,E> be an exact category where M is a small additive category
and E a family of "exact sequences" in M (cf. [10]). One may regard M as a
full subcategory of an abelian category A, closed under extensions and containing
the zero object, and E a family of all sequences

0 - > m' J-+ m-L» m" - » 0

which are exact in A. (i is called an admissible monomorphism and an admis-
sible epimorphism.)

For an exact category M, Quillen [10] defined higher X-groups of M by

|, *) for ί ^ O

where QM is a category defined as follows.

DEFINITION 4.1. QM has the same objects as M. A morphism in QM
from m' to m is an isomorphism class of diagrams

/ P im «-— - n > - > m

where i (resp. p) is an admissible monomorphism (resp. admissible epimorphism).

(For details, see [10].)

Since M is an additive category, we have a Γ-category Jίϊ.

LEMMA 4.2. We can make each &ϊ(n) an exact category such that the
functor 0*: (̂m)-̂ ^ )̂, induced by a map θ: n-»m in Γ, is an exact functor.
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PROOF. Let En be the family of all sequences

<αs;αs,τ> ̂  <bs;βStTy

in JVf(n) such that the sequence as

 is > bs

 j s > cs belongs to E for each 5 en.

Then it is easily proved that <M(n), £„> satisfies the conditions to be an exact
category. If Θ: n-»m is a map in Γ, then 0* takes the sequences in Em into those
in En and therefore 0* becomes an exact functor.

Note that QM is also a symmetric monoidal category: Given two objects
m9m'εOQM — OM we take their sum m®m'. Consequently we have a Γ-
category (βM)Λ. Since the isomorphisms in QM are in one-to-one correspond-
ence with the isomorphisms in M, any object (as;oιS)Ty of (βM)^(n) may be
regarded as an object of J&(n), and conversely. Thus 0(βM)Λ(n) coincides with

(n) = OQ(AΪ(n)). Now obviously we have

LEMMA 4.3. QUΪ:ιn-+Q(M(ή)) is naturally ίsomorphic to (QMY as a
Γ -category.

Now let X be a based space. Then we have

THEOREM 4.4. The category X®M becomes an exact category. Further-
more there is a natural isomorphism

PROOF. Let E be the family of all sequences u'-*u-+u" in X®M, rep-
resented by

(x, < α s ; α 5 , Γ > ) ~ 5 > (x,

in which (as',as,τy Os>> (bs\βStTy
 <js\ <cs;ys>Γ> is an exact sequence in Λ?(n).

By Proposition 4.2 this definition does not depend on the choice of representatives.
Therefore E is well-defined and enjoys all the requisite properties of exact
sequences. This proves the first part of the theorem. Now we prove the second.
From the above argument we have an isomorphism

where Q$ί is the Γ-category n>-»Q(M(n)). On the other hand, by Lemma 4.3,
QJίϊ is isomorphic to the Γ-category nπ->(βΛf)^(n), and hence we get an iso-
morphism

^ X ®Γ (QMΓ = X® QM.
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COROLLARY 4.5. Let M be an exact category. Then, for any
is a natural isomorphism

Bn(QM) s Q(B"M) .

643
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§ 5. Equivariant Delooping

In this section we shall summarize (without proof) how our previous con-
structions and propositions extend to the equivariant cases. Let G be a finite

group.

DEFINITION 5.1. A symmetric monoidal G-category is a G-category C with
a structure of a symmetric monoidal category, i.e., C = <C, Π,e,a,c, r, /> having
a G-action G x C->C such that

(i) the functor Π : C x C - + C is equivariant, i.e., g(a£]ar) = ga\~]ga' for
any α, aΈOC and 0(/D/')=0/D<7/' for any/,/'eMC and geG,

(ii) e e OC is a fixed point, and
(iii) the diagrams

g(χΏ(yΏz)) g(χΏy)

gχΏ(gyΏgz)

g(yΏχ)

gyΏgx ,

g(eΠχ) gx g(χΏe)

eθgx gx > gx rgx

commute for any x, y, z e OC and g e G.

EXAMPLE 5.2. Let ^ be a category whose objects are natural numbers
and whose morphisms are invertible complex matrices. Thus

0& = N, M& = JLπ^o GL(n,C)

with source (A)= target (A)~n for AeGL(n,C). Define a structure of sym-
metric monoidal category as follows

for m, neN

for A, Be JL,GL(n,C).

m Π ft = w + n

I A 0 \
y 4 D B =

\ 0 B

On the other hand, the complex conjugation defines an involution on ,̂ and
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hence ̂  becomes a symmetric monoidal Z/2Z-category.

Let X be a (nice) based G-space, and let C be a symmetric monoidal G-
category. Then we have

THEOREM 5.3. The category X®C = X®ΓC becomes a symmetric mon-

oidal G-category.

Let W be a G-module containing exactly one copy of each irreducible G-
module as a direct summand and let Sw denote the one-point compactification of
W. Put

BC = SW®C and Bn+ίC = Sw ® B"C for n ^ 1.

Then it follows that the functor

is equivariant and hence induces a G-map

εn: Sw Λ |β"C| - > \Bn+iC\ .

THEOREM 5.4. E(C) = {\BnC\9εn} is a G-spectrum in the sense of Araki-
Murayama [2].

REMARK. Segal [12] has announced that if A is a G-Γ-space (e.g., A
= |C|') and if ^4(1) is group-like, then there is a G-homotopy equivalence A(i)
~ΩW(SW®A).

By the result of [2], E(C) defines an ,RO(G)-graded G-cohomology theory.
In particular the category ^ of Example 5.2 induces a (connective) KR-thoery.

Now assume that C has a pairing

Π x : C x C - >C

which commutes with the G-action on C. Then the induced pairings

Pm%n: BmC x BnC — ̂  Bm+nC

are also equivariant. Thus we have

COROLLARY 5.5. If C is a symmetric bimonoidal G-caiegory9 then E(C)
becomes a ring G-spectrum.
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