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Let G be a bounded region in the complex plane, and let β(G) be the algebra
of bounded analytic functions on G, in the strict topology. The strict topology
was introduced by Buck (see [B]) — for a survey of this and related matters see
[R]. Suffice it to say that the strict topology is the strongest topology on the
bounded holomorphic functions for which a sequence is convergent if and only
if it is uniformly bounded and pointwise convergent to its limit (see [RR], Corol-
lary, p. 172). A function /ejβ(G) is called exterior (see [RS], p. 72) when the
principal ideal generated by / is dense in β(G). Examples can be found (we give
one later) of bounded regions G with 0 e dG such that /(z) = z is not exterior. On
the other hand, if dG consisted of isolated Jordan curves, say, then this function
z would certainly be exterior (see [RS], Theorem 5.17). In this paper, we con-
sider /(z) = z — A, AeC, and discuss the principal ideal that it generates. We
prove that aside from the trivial case where λ<^G, so that (z — λ) is a unit in β(G)9

there are exactly three possibilities. We conclude by proving that (z — λ) is
exterior if and only if there is no strictly continuous multiplicative linear func-
tional in the fiber over λ. We rely heavily in our exposition on results in Gamelin
and Garnett's paper [GG] which appeared at about the time our work in this
area was being done.

DEFINITION. A point λedG is called an essential boundary point of G if
there is an/e/?(G) such that for no region Wthat contains λ does there exist an
extension of /in β(G U W). (See [RUD], p. 333.)

THEOREM. Let G be a bounded region, all of whose boundary points are
essential. Let β(G) be the algebra of all bounded analytic functions on G, in
the strict topology. For λeG9 let

I(λ) = {(z-λ)f:feβ(G)}.

Then exactly one of the following possibilities holds:
1) I(λ) is dense in J?(G); that is (z-λ) is exterior.
2) I(λ) is closed in β(G) and has codimension 1 in β(G).
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3) I(λ) is not closed in β(G) and has codimension 1.
Further, there exist a region G and three points λl9 λ2, / l 3 e G for which possi-

bility 1), 2), 3) holds, respectively. Finally, 2) holds if and only if λeG. In
the remaining case (A^G), ί) holds if and only if the condition * of Proposition 1
holds.

REMARK 1. We have made the restriction λe G since otherwise I(λ) = β(G).

PROOF OF THEOREM. First, if λ e G, then I(λ) = {fe β(G): /(λ) = 0}, so that
clearly has codimension .1, and is easily seen to be strictly closed. Hence if

λ eG, then 2) holds.

To handle the case λedG, we first recall the definition of analytic capacity
(see [Z], p. 11). The remainder of our proof will be presented in a series of sepa-
rate results, which, when taken together, complete the proof of the theorem.

DEFINITION. Let K be a compact subset of C. The analytic capacity of K

is denoted by γ(K) and is defined by

y(K) = sup {|/' (oo)| : /e β(C\K), |/(z)| < 1 for all z e C\K, and /(oo) = 0} ,

where C is the extended complex plane.

PROPOSITION 1. IfλεdG and 0<α<l, let

S(n, α, λ) = {z: an+ί < |z - A| < 0"}, n = 1,2,....

//

* Σa~nγ(CG n S(n, α, λ)) = oo,

then (z — λ) is exterior in β(G).

PROOF. Following P. C, Curtis [C], Proof of Theorem 3.5, pp. 42-44, we
choose a sequence {/„}, n = l, 2,... in β(G) with the following property: for each
n, there is a simply-connected region FFΠ with λ e Wn and a function fneβ(G U PFΠ)

such that /B(λ) = l for all n, sup {|/π(z)| : z e G U Wn}<13 for every n, and {/„}
converges uniformly to zero on each compact subset of G.

Now let

so that gn e jS(G U Pfπ) and sup {|(z - %π(z)| : z e G} < 15. If z e G then lim,,.̂  (z
- A)^π(z) = limM_ oo (/M(z) -/„(;.))= -1. By the above-mentioned property of the

strict topology, — (z — A)#M(z) converges strictly to 1 in G so that (z — λ) is exterior,
and the proposition is proved.
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DEFINITION. If G is a bounded region and if λ e dG, then the fiber over λ is
defined as the family of all multiplicative linear functional L on β(G) for which
L(z) = λ, where z is the identity function z(ζ) = ζ for all ( 6 G.

The following is well-known and not hard to prove. A proof can be given
using Corollary 2.2 on p. 458 of [GG].

REMARK 2. If λedG and if feβ(G) is such that limn^00/(zn) = α for each
sequence {zn} in G with limπ_*Q Cz h = λ, then for any L in the fiber over λ, L(f) = a
must hold.

In [RS], Theorem 3.4, p. 245, Rubel and Shields showed that the dual space
of β(G) may be represented as M/(G) = M(G)/JV(G), where M(G) is the space of

all complex Borel measures that live in G, and N(G) = {μ e M(G): \ /dμ = 0 for

all/e jft(G)}. For μ e M(G) and fe β(G), set Lμ(/)= f/dμ.

LEMMA 1. Suppose G is a bounded region and that the fiber over the
point λedG contains a strictly continuous multiplicative linear functional L.

If {μ} is chosen in M'(G) so that L(f) = \ fdμfor allfeβ(G\ then the closure of

I(λ) is equal to I(λ)~ = {fe β(G): ( fdμ = Q}.
JG

PROOF. By the Hahn-Banach theorem, it is enough to show that if {v} e

M'(G) has the property that if \ /dv = 0 for every fel(λ) then v = cμ for some

ceC. Define H(G' \ G) as the set of those /e β(G) that extend to lie in β(G U W)
for some region W that contains λ. Since H(Gf \ G) is strictly sequentially dense
in β(G) (see [GG], Corollary 2.2), we need only show that v and cμ have the
same action on functions in H(Gr | G).

Suppose now that fεβ(G U W) for a region Wthat contains λ. By a result
of Arens (see [A], Theorem 2.7, p. 646), we know that there exists a sequence
{hn} in β(G U W) such that the sequence {rn} has zero as its uniform limit on G U W,
where rn(z)=/(z)— f(λ) — (z — λ)hn(z). This implies that {rn} converges strictly
to zero, so that

( [/-/(λ)]dv=lim( [(z - A)fc,,]dv = 0.
JG n-*oo JG

Hence ( fdv =f(λ)( Idv for all fe H(Gf \ G). But since f(λ) = ( f dμ for all such
JG JG JG

/, the result follows.

PROPOSITION 2. Suppose G is a bounded region with every point on dG
an essential boundary point. If λedG andif(z — λ)is not exterior on G, then
I(λ) is properly contained in I(λ)~ and I(λ)~ has codimension 1 in β(G).
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PROOF. If (z —A) is not exterior on G, then Proposition 1 implies that
Σa~ny(CG n S(n, α, λ))<oo. By [GG, Theorem 3.2], we know that the fiber
over λ contains a strictly continuous multiplicative linear functional. By Lemma
1, we conclude that /(λ)~ has codimension 1 in β(G).

Now suppose that for each fe β(G\ there is a constant c and a function h e

β(G) such that f=c+(z-λ)h. In this event, the cluster set of / at λ is just the
singleton {c}. This contradicts a result of Rudin (see [RUD], Theorem 14)
which says that if λ is an essential boundary point of G, then there is an /e β(G)
whose cluster set at λ is the whole closed unit disk. Hence I(λ)^I(λ)~ and the
Proposition is proved. This completes the proof of the theorem, except for the
example of G and λί9 λ2, A3. But to make 1) hold for λ = λl9 we need only be
sure that dG contains an isolated arc on which λ t lies. Then 2) holds for any
A 2 eG. Finally to make 3) hold for λ = λ3 eδG, we need only further construct
G so that * fails. Since λ^G9 we must then have either 1) or 3), and the failure
of * rules out 1), so that 3) must hold for this λ. Such an example may be found
in [Z], pp. 57-58, and consists of the unit disc with a sequence of small discs re-
moved that converge to Λ = 0.

REMARK 3. If G is a bounded simply-connected region and λ e dG, then
(z — λ) is exterior on G.

PROOF. It is enough, by Proposition 1, to prove that * holds. Now dG
is a continuum and so for all large j9 S(j, a, λ) n dG contains a continuum that
meets both the inner and outer boundaries of the annulus S(j, a, λ). Hence the
diameter of S(j, a, λ) n dG is no smaller than aj(l — a). Thus (see for example
p. 13 of Zalcman's notes [Z]) for each such j,

y(CG n SO, fl, A)) > y(dG n SO, β, *)) >
•t

So the above series diverges, and the result is proved.

REMARK 4. The function (z-λ) is exterior on G if and only if the fiber over
λ contains no strictly continuous multiplicative linear functional.

PROOF. Compare our Theorem with the Theorem on p. 456 of [GG].
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