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Let G be a bounded region in the complex plane, and let f(G) be the algebra
of bounded analytic functions on G, in the strict topology. The strict topology
was introduced by Buck (see [B]) — for a survey of this and related matters see
[R]. Suffice it to say that the strict topology is the strongest topology on the
bounded holomorphic functions for which a sequence is convergent if and only
if it is uniformly bounded and pointwise convergent to its limit (see [RR], Corol-
lary, p. 172). A function fe f(G) is called exterior (see [RS], p. 72) when the
principal ideal generated by fis dense in $(G). Examples can be found (we give
one later) of bounded regions G with 0 € 0G such that f(z)=z is not exterior. On
the other hand, if éG consisted of isolated Jordan curves, say, then this function
z would certainly be exterior (see [RS], Theorem 5.17). In this paper, we con-
sider f(z)=z—1, AeC, and discuss the principal ideal that it generates. We
prove that aside from the trivial case where A& G, so that (z—2) is a unit in B(G),
there are exactly three possibilitiess. We conclude by proving that (z—A41) is
exterior if and only if there is no strictly continuous multiplicative linear func-
tional in the fiber over 1. We rely heavily in our exposition on results in Gamelin
and Garnett’s paper [GG] which appeared at about the time our work in this
area was being done.

DEFINITION. A point A€ dG is called an essential boundary point of G if
there is an fe B(G) such that for no region W that contains A does there exist an
extension of fin B(G U W). (See [RUD], p. 333.)

THEOREM. Let G be a bounded region, all of whose boundary points are
essential. Let B(G) be the algebra of all bounded analytic functions on G, in
the strict topology. For €@, let

I(A) ={(z - D f:fepG)}.
Then exactly one of the following possibilities holds:
1) I(A) is dense in B(G); that is (z— 1) is exterior.
2) I(2) is closed in B(G) and has codimension 1 in B(G).

1) The research of the second author was partially supported by a grant from the National
Science Foundation.



596 C. W. KennEL and L. A. RUBEL

3) I(A) is not closed in B(G) and has codimension 1.
Further, there exist a region G and three points 1,, A,, 23 € G for which possi-
bility 1), 2), 3) holds, respectively. Finally, 2) holds if and only if e G. In
the remaining case (A& G), 1) holds if and only if the condition * of Proposition 1
holds.

REMARK 1. We have made the restriction A € G since otherwise I(2) = B(G).

ProoF oF THEOREM. First, if 2 € G, then I(})={fe B(G): f(2)=0}, so that
I(2) clearly has codimension 1, and is easily seen to be strictly closed. Hence if
A€ G, then 2) holds.

To handle the case AedG, we first recall the definition of analytic capacity
(see [Z], p. 11). The remainder of our proof will be presented in a series of sepa-
rate results, which, when taken together, complete the proof of the theorem.

DEerFINITION. Let K be a compact subset of C. The analytic capacity of K
is denoted by y(K) and is defined by

#(K) = sup {|f'(0)|: fe BC\K), |f(2)] < 1 forall zeC\K, and f(0) = 0},
where C is the extended complex plane.
ProrosiTiION 1. If A€0G and O<a<1, let
S(n, a, A) = {z: a"1 < |z — }] < a"}, n=1,2,....

If
* >a"y(CG n S(n, a, A)) = oo,

then (z—4) is exterior in f(G)..

' Proof. Following P. C. Curtis [C], Proof of Theorem 3.5, pp. 42-44, we
choose a sequence {f,}, n=1, 2,... in B(G) with the following property: for each
n, there is a simply-connected region W, with 1€ W, and a function f, € (GU W,)
such that f,(A)=1 for all n, sup {|f(2)|: ze GU W,} <13 for every n, and {f,}
converges uniformly to zero on each compact subset of G.

Now let

= fu(2) = fu(A)
ga(z) = =1

so that g, € B(G U W,) and sup {|(z—A)g,(2)|: ze G} <15. If ze G then lim,,,(z
—Ng(2)=lim,_ . (f(z2)—f,(A)=—1. By the above-mentioned property of the
strict topology, —(z— A)g,(z) converges strictly to 1 in G so that (z— 2) is exterior,
and the proposition is proved.
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DerINITION. If G is a bounded region and if A € 0G, then the fiber over A is
defined as the family of all multiplicative linear functionals L on B(G) for which
L(2)= A, where 2 is the identity function 2({)={ for all { € G.

The following is well-known and not hard to prove. A proof can be given
using Corollary 2.2 on p. 458 of [GG].

ReEMARK 2. If A€0G and if fe B(G) is such that lim,_.f(z,)=a for each
sequence {z,} in G with lim,_, . z,=/, then for any L in the fiber over A, L(f)=a
must hold.

In [RS], Theorem 3.4, p. 245, Rubel and Shields showed that the dual space
of B(G) may be represented as M'(G)= M(G)/N(G), where M(G) is the space of
all complex Borel measures that live in G, and N(G)={ue M(G): SG fdu=0 for

all fe f(G)}. For pe M(G) and fe B(G), set L,(f)= S fdp.

LemMA 1. Suppose G is a bounded region and that the fiber over the
point A€ 0G contains a strictly continuous multiplicative linear functional L.

If {u} is chosen in M'(G) so that L(f)=gcfdufor all fe B(G), then the closure of
1(3) is equal to I(2)-={fe B(G): SG fdu=0).

Proor. By‘ the Hahn-Banach theorem, it is enough to show that if {v}e
M’(G) has the property that if S fdv=0 for every feI(4) then v=cu for some
G

ceC. Define H(G'| G) as the set of those fe f(G) that extend to lie in (G U W)
for some region W that contains 1. Since H(G'|G) is strictly sequentially dense
in B(G) (see [GG], Corollary 2.2), we need only show that v and cu have the
same action on functions in H(G’ | G).

Suppose now that fe f(G U W) for a region W that contains 1. By a result
of Arens (see [A], Theorem 2.7, p. 646), we know that there exists a sequence
{h,} in B(G U W) such that the sequence {r,} has zero as its uniform limit on GU W,
where r,(z)=f(z)—f(2)—(z—A)h,(z). This implies that {r,} converges strictly
to zero, so that

[, 7 = sy =tim §_tz = 2y, Jav 0.

Henceg fdv= f(A)S 1dv for all fe H(G'| G). But since f().)=g 1 du for all such
G G G
f, the result follows.

PROPOSITION 2. Suppose G is a bounded region with every point on 0G
an essential boundary point. If A€ 0G and if (z—A) is not exterior on G, then
I(A) is‘properly contained in I(A)~ and I(X)~ has codimension 1 in B(G).
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ProoF. If (z—41) is not exterior on G, then Proposition 1 implies that
Sa"y(CGn S(n, a, A))<oo. By [GG, Theorem 3.2], we know that the fiber
over A contains a strictly continuous multiplicative linear functional. By Lemma
1, we conclude that I(1)~ has codimension 1 in f(G).

Now suppose that for each fe f(G), there is a constant ¢ and a function he
B(G) such that f=c+(z—A)h. In this event, the cluster set of f at 4 is just the
singleton {c}. This contradicts a result of Rudin (see [RUD], Theorem 14)
which says that if 1 is an essential boundary point of G, then there is an fe f(G)
whose cluster set at A is the whole closed unit disk. Hence I(1)#I(4)~ and the
Proposition is proved. This completes the proof of the theorem, except for the
example of G and 1, 4,, A;. But to make 1) hold for A=4,, we need only be
sure that 0G contains an isolated arc on which A, lies. Then 2) holds for any
A, €G. Finally to make 3) hold for A=1, € 0G, we need only further construct
G so that = fails. Since A& G, we must then have either 1) or 3), and the failure
of = rules out 1), so that 3) must hold for this .. Such an example may be found
in [Z], pp. 57-58, and consists of the unit disc with a sequence of small discs re-
moved that converge to A=0.

RemaARrk 3. If G is a bounded simply-connected region and 1€dG, then
(z—A) is exterior on G.

Proor. It is enough, by Proposition 1, to prove that = holds. Now 0G
is a continuum and so for all large j, S(j, a, ) N G contains a continuum that
meets both the inner and outer boundaries of the annulus S(j, a, ). Hence the
diameter of S(j, a, A) N G is no smaller than a/(1—a). Thus (see for example
p. 13 of Zalcman’s notes [Z]) for each such j,

WCG n SUs a, D) = %(9G n S(j, a, 1) = ﬂ%—ﬂ'

So the above series diverges, and the result is proved.

ReEMARK 4. The function (z— A) is exterior on G if and only if the fiber over
A contains no strictly continuous multiplicative linear functional.

Proor. Compare our Theorem with the Theorem on p. 456 of [GG].
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