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§1. Introduction

In the theory of combustion, the Cauchy problem is considered for the
equation

d 2
(1.1) a—z;=—g}u2—+f(u), t>0, xeR,

with the initial condition
(1.2) u(0, x) = a(x).

Here f(n) is a Lipschitz continuous function on [0, 1] with f(0)=f(1)=0 and
f(w=0 for 0<u<1. The solution u(t, x) of (1.1) and (1.2) corresponds to the
temperature and the function f(u) is the speed of chemical reaction. Kanel’
considered the asymptotic behavior of the solution of (1.1) and (1.2) in the follow-
ing cases I and II (cf. [9]).
Case I.  f(0)=f(1)=0, f(u)>0 for O<pu<1, f'(0)>0 and a(x) is nonnegative in
R, positive on some interval and dominated by 1 in R.
Case II.  f(u)=0 for 0<u<py,<1, f(1)=0, f(u)>0 for uo<p<1 (uy is a posi-
tive constant), and a(x)=1 for |x|< ¢, a(x)=0 for |x|> £ >0.
In [9] the following results were obtained: In the case I, the ‘‘burning up” occurs,
that is, the solution u(t, x) of (1.1) with the initial condition (1.2) converges to 1
uniformly in x on each finite interval in R as t—o00. In the case II there exist
positive numbers ¢, and ¢, such that for any initial value a(x) with £< ¢, the
“‘extinction of flame” occurs (that is, the solution u(t, x) of (1.1) with the initial
condition (1.2) converges to 0 uniformly in x as t—o0), and for any initial value
a(x) with £ > ¢, the ‘‘burning up” occurs. In this paper we shall consider a simi-

2
lar problem of ‘‘burning up” when -5‘1—2 in (1.1) is replaced by a fractional power

of Laplacian as in (I,); namely we shall find a sufficient condition on f(ux) under
which the ‘‘burning up” occurs for any nonnegative initial value a(x)#0. The
equations of type (1.1) occur also in population genetics, population growth
models, etc. (see A. Kolmogoroff-I. Petrovsky-N. Piscounoff [12] and D.G.
Aronson-H. F. Weinberger [1]). In these fields equations with time-lag are con-
sidered. (For example, in a herbivore population grazing on vegetation, the
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effect of overgrazing affects a later generation rather than that existing at that
time. For such models it is natural to hypothesize a time-lag in f(u) correspond-
ing to the effect of population size on growth rate.) Also, in connection with some
control problems the parabolic equations with time-lag have been studied by
several authors. A. Inoue-T. Miyakawa-K. Yoshida [7] considered the initial
boundary value problem of the equation of type (1.1) with time-lag in a domain of
R3.

In this paper we are concerned with the asymptotic behavior of the positive
solution of the semilinear equation

) a%u(t, x)=—(=A)*u(t, x) +Fu(t—r(t, x), x), u(t, x)), t>0, xe R4,

with the initial condition
1) u(t, x) = a(t, x), —-re<t<0, xeRY,

where r(t, x) is a bounded continuous given function with 0<r(t, x)<r, and «
a given constant with 0<a<1. Define p(t, x) by the Fourier transform

13 pt,x) = (21r)"‘SRd exp(—iz-x — f|z]?29)dz, O<a<l.

Then p(t, x) satisfies p(t-+s, - )=p(t, -)*p(s, -) and is the fundamental solution
of

(1.4) %%— = — (-4

By a solution of (I,) with the initial condition (I,) (abbreviated: a solution of (I))
we always mean a solution of the integral equation

u(t, x) = P,a(0, x) + S;dsP,_sF(u(s—r(s, ) ), u(s, ) (x), t>0,

@)

u(t, x) = a(t, x), —ro<t<0, xeR?
where
(15) Pa,x) = {_p(t, x=)a0, ydy.

We treat the following two cases; these are called the case F(4, 1)=0 and the
case F(A, u)>0 for >0, u>0, for simplicity.
Case F(4, 1)=0: The functions a(t, x) and F(4, p) satisfy the conditions (a.1°)
and (F.1°).
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(a.1°) af(t, x) is a nonnegative, bounded and uniformly continuous function on
[—ro, 0] x R? with 0< a(t, x)<1 and a(0, x)£0.

(F.1°) F(4, p) is a nonnegative Lipschitz continuous function on [0, 1] x [0, 1]
with F(4, 1)=0 for A€[0, 1], F(4, u))>0 for (A, w)e(0, 1]1x(0, 1) and
nondecreasing in A for each fixed u.

Case F(4, p)>0 for A>0, u>0: The functions a(t, x) and F(J, u) satisfy the

conditions (a.1) and (F.1).

(a.1) af(t, x) is a nonnegative, bounded and uniformly continuous function on
[—rq, 0] x R? with a(0, x)#0.

(F.1) F(4, p) is a nonnegative locally Lipschitz continuous function on R, X
R, =[0, o0) x [0, o0) with F(4, u)>0 for A>0, u>0, and nondecreasing
in A for each fixed u.

In the case F(4, 1)=0, the equation (I) (namely, (I')) has a unique solution
u(t, x) with O<u(t, x)<1 for t>0 by virtue of Lemma 2.1 and Theorem 2.2.
We call such a solution the positive solution dominated by 1 of the equation (I)
and denote it by u(t, x) or u(t, x; a, F; r) when we want to stress the initial value
a(t, x), the nonlinear term F(A, u) and the time-lag r(t, x). In the case F(4, p)
>0 for A>0, u>0, by Lemma 2.1 and Theorem 2.2 the equation (I) has a unique
positive local solution. That is, there exist positive T and u(t, x) such that
(i) u(t, x) is defined in [0, T) x R¢, strictly positive in (0, T) x R4, and satisfies

the integral equation (I'), and
(ii) for any T'<T, u(t, x) is bounded and continuous in [0, T'] x R?.
Let T,=T,(a, F; r) be the supremum of all T satisfying the above conditions
(i) and (ii). In case T,,= o0, u(t, x) is a global solution of the equation (I), and in
the contrary case (T,, <o0), u(t, x) is said to blow up in a finite time and T, is
called the blowing-up time of the solution u(t, x). In general we have T, < oo,
and the existence and uniqueness theorems hold for t< T, of course. Similarly
to the case F(4, 1)=0, such a solution is called simply the positive solution of (I)
and denoted by u(t, x) or u(t, x; a, F; r). In the case F(4, 1)=0, we say that the
positive solution u(¢, x) dominated by 1 grows up to 1 as t—oo if u(t, x) converges
to 1 uniformly on each compact set K in R4 as t—co. In the case F(A, u)>0
for A>0, u>0 we say that the positive global solution u(t, x) grows up to infinity
as t— oo if for each positive constant M and each compact set K in R there exists
a positive time T < oo such that > T and x € K imply u(t, x)>M.

Now our problems can be stated.

Find a (sufficient) condition on F for each of the following:
Case F(2, 1)=0:
(A.1) Any positive solution of (I) dominated by 1 grows up to 1 as t—co.
Case F(1, w)>0 for A>0, u>0:
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(A.2) Any positive global solution of (I) grows up to infinity as t—co.
(A.3) Any positive solution of (I) blows up in a finite time.

When r(t, x)=0 (the case without time-lag), these problems were considered
by many authors. In this case, putting F(4, p)=f(u) and a(t, x)=a(x), the equa-
tion (I) can be written as follows.

an (,%u(t, xX) = —(=A)ult, x) + fQu(t, x)), t>0,

u(0, x) = a(x), xeR‘.

Case f(1)=0 (or F(4, 1)=0): When a=1 (the Laplacian case), the problems
were considered by Ya. I. Kanel’ [9], N. Ikeda-Y. Kametaka (unpublished),
K. Masuda [13], K. Hayakawa [6] and K. Kobayashi-T. Sirao-H. Tanaka [11].
The time-lag case with a=1 (the Laplacian case) was also treated by K. Kobayashi
[10]. In [11] and [10] considerably sharp sufficient conditions for (A.1) (as
well as (A.2) and (A.3)) were obtained. Our present results are generalizations of
the results of [11] and [10] to the time-lag case (I) with 0<a<1. The main
results in the case F(4, 1)=0 are the following (see § 5 and § 7).

THEOREM 5.1. Let F(A, p) satisfy (F.1°) and the following conditions.

2a
d

(F.3) S"F(,(A)/z“ di=w  forsome &>0,
()

where Fy(A)=inf {F(&, n): A<E<S, A<n< 0} for 0KA<L4.

(F.4) There exist positive constants é and cy (< 1) such that

1420
Fs(id) > oty S FyA)  for 0<Ay <Ay A < co, Ahy < Co.

Then, for any initial value a(t, x) satisfying the condition (a.1°) and for any
nonnegative bounded continuous time-lag r(t, x), the positive solution u(t, x;
a, F; r) of the equation (1) dominated by 1 grows up to 1 as t— co.

THEOREMY. Let F(A, 1) be nondecreasing in pe [0, c;] (for some positive
constant cy) with F(0, 0)=0 satisfying (F.1°) and the following conditions.

(F.4") There exists a positive constant c; (< 1) such that

FyAd) = A F () for 0<dy<ch Ay > 1, 4, < c)

1) 1In §7 this result is stated as Theorem 7.1 removing the condition F(2, 1)=0.
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Then, for some small initial value a(t, x) satisfying (a.1°), the positive solution
u(t, x; a, F; r) of the equation (I) converges to 0 uniformly in x as t— 0.

Case f(W)>0 for u>0 (or F(4, p)>0 for 1>0, u>0): When a=1 (the
Laplacian case) and f(u)=p!'*# with >0, the problems were considered by
H. Fujita [3], [4], K. Hayakawa [5] and K. Kobayashi-T. Sirao-H. Tanaka
[11] (with general f). When O<a<1 (the case of the fractional power of Lap-
lacian) and f(u)=u'*#, there are works of M. Nagasawa-T. Sirao [14] and S.
Sugitani [15]. Our present results (case F(A, ©)>0 for A, u>0) will generalize
these earlier results (especially, [11: Theorems 3.5 and 4.1] and [10: Theorem 3])
to the time-lag case with 0<a<1. Namely, we shall obtain the following results
in §6 and §8.

THEOREM 6.1. Let F(A, u) satisfy the conditions (F.1), (F.3) and (F.4).
Then, for any initial value a(t, x) satisfying (a.l) and for any nonnegative
bounded continuous time-lag r(t, x), the positive global solution u(t, x; a, F; r)
of the equation (1), if it exists, grows up to infinity as t— oo.

THeoOREM 8.1. Let F(A, p) satisfy the conditions of Theorem 6.1 and the
following condition.

F.5) There exist positive constants Ay, o and cs such that
p 0> Ho 3

(@) F(do, p2) = ¢3F (o, p1) Jor po < py < py,

© dﬂ
S T,
( ) F(AOa ,u) ®
Then, for any initial value a(t, x) satisfying (a.1) and for any nonnegative
bounded continuous time-lag r(t, x), the positive solution u(t, x; a, F; r) of the
equation (I) blows up in a finite time.

The author would like to express his sincere gratitude to Professor H. Tanaka
for his valuable advice and continuous encouragement.

§2. Comparison theorems

In this section we prepare some theorems of comparison type (Theorems 2.2,
2.2" and 2.5) for later use.

2.1. First we deal with the existence and uniqueness of solutions for the
initial value problem:

QU _ (= d)u + Fu(t—r(t, X), X), u(t, X)), >0,
) ot

u(t, x) = a(t, x), —rg<t<0, xeR4.
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Here o and r, are positive constants with 0<a<1 and r(t, x) is a continuous
function on [0, c0) x R4 with 0<r(t, x)<r,. As stated in §1, by a solution of
the equation (I) we mean a continuous solution of the corresponding integral
equation (I'). The following lemma can be proved by a routine iteration method
and so is omitted.

LemMMA 2.1. Suppose that F(A, u) and a(t, x) satisfy the following condi-
tions:
(2.1) F(A, p) is a locally Lipschitz continuous function on Rx R.
(2.2) af(t, x) is a bounded continuous function on [—ry, 0] x R?.
Then, there exist u(t, x)=u(t, x; a, F; r) and positive T,=T,(a, F; r) (<)
satisfying the following conditions (i), (ii) and (iii).
(1) u(t, x) is defined in [0, T,)) x R%, bounded and continuous on [0, T]x R¢
for any T<T,.
(ii) u(t, x) satisfies the integral equation (I') for 0<t<T,.
(i) When T, < o0, u(t, x) can not be prolonged to a solution of (I') beyond T,,.
Moreover such u(t, x) and T,, are unique.

THEOREM 2.2. Suppose that FyA, p), i=1, 2, satisfy the condition (2.1)
and at least one of the functions F(, u), i=1, 2, is nondecreasing in A for each
fixed u. Let aft, x), i=1, 2, satisfy the following condition.

(2.3) a(t, x) is bounded and uniformly continuous function on [—ry, 0] x R4,
If F,>F, and a,>a,, then

u(t,x;ay, Fi3r) > u(t, x; a,, Fpy 1)
for 0<t<Ty(ay, Fy; r) and x e R4,

For proving this theorem we prepare two lemmas. First, for any ¢ with
0<e<r,, we consider the following auxiliary equation.

% _(—Ayu + Fu(t=rt, x), %), u(t, x)), >0,
a,) ot
u(t, x) = a(t, x), —-ro<t<0, xeRY,

where r(t, x)=r(t, x) V ¢ (=max (r(t, x), €)). This equation (I,) has a unique
(local) solution u(t, x; a, F; r,) by Lemma 2.1.

LemMA 2.3. Let F(A, p) and a(t, x) satisfy the conditions (2.1) and (2.3),
respectively. Then we have

(i) lim To(a, F; 1) > Tu(a, F; 7);

(i) for any 0<T<T,(a, F;r), u(t, x; a, F; r,) converges to u(t, x; a, F;r)
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uniformly on [0, T}xR% as ¢ } 0.

ProOOF. Put u(t, x)=u(t, x; a, F; r) and u(t, x)=u(t, x; a, F; r,).

Step 1. We prove the lemma in the case when F(4, u) is bounded and
Lipschitz continuous on RxR. In this case the equations (I) and (I,) have
global solutions, that is, T (a, F; r)=T,(a, F; r,)=00, and hence (i) is obvious.
Since u,(t, x) satisfies the integral equation (I') with r(s, -) replaced by rJs, -),
the Lipschitz continuity of F implies that

@4 ludt, x) - u(t, x)
t
< L dsP, - {lu(s=7(,,) = us= (5.9, M + lugs,) = (s, N} (o),
where L is the Lipschitz constant of F. Putting

v () = sup [luys,") — u(s, )«

—ro<s<t

wi )= sup  u(ty,") — u(ts, ),
—ro<t1<t,<t
t2—t15¢

we have
[uls =7 (s, x), x) — u(s—r(s, x), x)|
< us—rLs, x), x) — u(s—rs, x), X)| + [u(s —rys, x), x) — u(s —r(s, x), x)|
< 0ls) + wi(s),
and hence by (2.4)
o f) < 2LS:)vz(s)ds + Lw o).

Therefore we have v, (f)< Lw,(f)te?L*, t>0. Since what we have to prove was
that v (f)—0 as ¢ | 0, it is enough to prove that w()—0 as ¢ | 0 for each fixed ¢>0.
First, assuming 0<t,<t,<t and t,—t,<e we estimate |u(t,, x)—u(t,, x)|; we
have

u(ta, X) — u(ty, x) = P {P,,_,a(0,-) — a(0, )} (x)

+ S:dsptl-s{Ptz—nF(u(s—_ F(S, ')! ’)9 u(s, )) - F(u(s - r(s, ')’ ')’ u(s, ))} (X)

+ S:zdsP,z_sF(u(s— (s, ), ), u(s, ) ()

=14+ 11+ IIL

It is easy to see that |[IIT| < Me, where M = sup |F(4, u)|. Putting

A,ueR
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Wg = sup ”P‘Sa(o’ ) - a(oa ')“oo,
0<6<Ze
we have easily |I| <w?—0ase¢ | 0. The second term II can be estimated as follows.

Take an arbitrary positive constant h. Then, in the case t; <h we have |II|<
2Mt, <2Mh, while in the other case (t, > h)

= S:_h(n-)ds + g

= II] + IIz.

" (-+-)ds
ti—h

1

Putting w?=sup {||P;P,¢ — P,¢|l.: 0<6<e and || ,< M}, we see easily that
w! converges to 0 as ¢} O for each fixed h>0, because {P,p: ||¢],<M} is an
equicontinuous family. Then, we have for ¢, >h

1 < (7 dslPr, - PPy, - F(u(s = (s, ), w5, D} ()
= PPy PG5 = 1G5, ), ), s, M} )

ti—h
< g whds < wht,
0

and |II,|<2Mh. Therefore, if 0<t,<t,<t and t,—t,<e, we have
lu(ty, x) — u(ty, x)| < w2 + wht + 2Mh + Me.
In the case when —ry<t,<0, 0<t,<t and t,—t, <¢g, we have

lu(tz, x) — u(ty, )l < w2 + sup [a(0,") — a(ty, ), + Me,

—e<11<0

and in the remaining case (—r <1, <1,<0, t,—t,<¢) we have
|u(12, x) - u(tl’ X)l < sup ”a(tz, ) - a(th ')“oo'
0<t>—11<¢

Consequently we have, for any positive £,
wi(t) < wd + wht + 2Mh + Me

+ sup “a(oa ) - a(tb )”oo + sup ”a(tZ’ ) - a(tb ')”oos
—e<t1<0 0<t2—11<¢

and hence we obtain lim w,(#)=0.
ed0

Step 2. Let F(4, p) be locally Lipschitz continuous on RxR. If 0<T
<T,(a, F; r), then there exists a positive constant M such that

lu(t, x;a, F;r)| < M for 0<t<T, xeR4.

Let Fy(4, p) be a bounded and Lipschitz continuous function on Rx R which
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is equal to F(4, p) for |4], |u|<2M. Then by Step 1, for any T’ such that 0< T’
<T,(a, Fy; r) (=00), u(t, x; a, Fy; 1) converges to u(t, x; a, Fy,; r) uniformly
on[0, T"JxR? ase | 0. Since u(t, x; a, Fyp; ¥)=u(t, x; a, F; r)e[-M, M] on
[0, T] x R¢, there exists a positive constant g, such that |u(t, x; a, Fy; )| <2M
on [0, T]xR?, provided 0<e<g,. Therefore, u(t, x; a, Fy; r)=u(t, x; a, F;
r,) on [0, T]x R4, provided 0<e<eg,, and hence u(t, x; a, F; r,) converges to
u(t, x; a, F; r) uniformly on [0, T]x R? as ¢ | 0. Thus we have proved (i) and
(ii) of Lemma 2.3 for F(A, u) satisfying (2.1).

Next we consider the equation without time-lag:

o %’;_ = —(=dyu +f(t, x,u), t>0,

u(0, x) = a(x), xe RS9,

where it is assumed that f(¢, x, 1) and a(x) satisfy the following conditions (2.5)

and (2.6), respectively.

(2.5) f(t, x, p) is defined and continuous in [0, o) x R4x R, also for any
constants T>0and M >0 (a) f(t, x, u) is bounded on [0, T]x R4 x[— M,
M7 and (b) there exists L= L >0 such that

|f(t9 X, lul) _f(t’ X, Au2)l < Ll’“"l - HZ‘

for 0 <t < T, xeR? and |y, |u,| < M.
(2.6) a(x) is a bounded continuous function in R¢.
As in the case of (I), by a solution of (II) we mean a continuous solution of the
corresponding integral equation. The existence of a unique (local) solution
u(t, x)=u(t, x; a, f) of (I) is well-known. The following comparison lemma is
also well-known in case a=1 (cf. [12]); the proof for the case 0 <a <1 is similar.

LemMMA 2.4. Let f(t, x, ) and a(x), i=1, 2, satisfy the conditions (2.5)
and (2.6), respectively. If fi> f, and a;>a,, then u(t, x; ay, f1)=>u(t, x, a,, f,)
for 0<t<T,(ay, f;) and x e R%, where T,(ay, f,) is the blowing-up time of u(t,
X; ag, f1).

ProoF oF THEOREM 2.2. For each i=1, 2, let ui(t, x)=u(t, x; a;, F;; ry)
be the solution of the equation (I,) with a and F replaced by a; and F;, respec-
tively. By virtue of Lemma 2.3 it is sufficient to show that for any sufficiently

small ¢>0
ul(t, x) > u2(t, x) for 0<t< Ty(ay, Fy3r), xeR4

We assume here that F,(4, p) is nondecreasing in A for each fixed u and we shall
prove, by induction in n, that
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2.7 ul(t, x) > u2(, x) for —ro<t<ne, xeRi, n=0,1,2,...

The case when F,(4, u) is nondecreasing in A can be treated similarly. When
n=0, (2.7) is valid since ui(t, x)=ayt, x) for —ry<t<0. Assume that (2.7) is
true for n. Let ne<t<(n+1)e. Since t—r/(t, X)<ne, the induction hypothesis
implies that

ul(t—ryt, x), x) > u2(t—ryt, x),x) for ne<t<(n+1l)s, xeR4.

Put f(t, x, p)=F(ui(t—ryt, x), x), u) for ne<t<(n+1)e and xeR?. Then we
have

fl(t9 X, l“) 2 Fl(ug(t_rc(ta X), X), :u) 2 fZ(t, X, ﬂ)

Since ui(t, x), i=1, 2, satisfy the equation

Ou_
ot

= —(—=4)*u + f(t, x, u), ne <t < (n+1g,
u(ne, x) = ul(ne, x), xeR4,
an application of Lemma 2.4 yields
ul(t, x) > u(t, x) for ne <t < (n+1e, xeR4,
and hence
ul(t, x) > u2(t, x) for —ro<t<(n+1)e, x e R4,

This completes the proof.

2.2. We consider the following equations:

6_611_ = —(—=4)*u + F(uy(t, x), u(t, x)), t>0,
® ‘

u(t, x) = a(t, x), —ro<t<0, xeRY,
] Q= —(—du+ F@i(t, 0, ut, ), >0,
@ !

u(t, x) = a(t, x), —ro<t<0, xeR4,

where u,(t, x)= min u(s, x) and u*(t, x)= max u(s, x).
t—ro<s<t t—ro<s<t _
Writing down the integral equations corresponding to (I) and (I) and employing

the iteration method, we can prove the following lemma.

LeMMA 2.1'. Let F(A, u) and a(t, x) satisfy the conditions (2.1) and (2.2)
in Lemma 2.1, respectively. Then there exists a unique (local) solution, in the
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same sense as in Lemma 2.1, for each of the equations (I) and (I).

The solutions of the equations (I) and (I) are denoted by u(t, x; a, F; ry)
and i(t, x; a, F; ry), respectively; they are called the minimum solution and the
maximum solution; the corresponding blowing-up times (< o) are denoted by
T.(a, F; ro) and T(a, F; r,), respectively.

For any ¢ with 0<e<r,, we consider the following auxiliary equations:

OU — _(—APu + Flugt, x), u(t, ), 1> 0,
1) ot
u(t, x) = a(t, x), —ro<t<0, xeRY,
_ Qo (—dpu+ F@i 0, ut x), >0,
t
(9]
u(t, x) = a(t, x), —re<t<0, xeR4,
where
Uy(t, x) = min u(s, x),
t—ro<s<t—e
u¥(t, x) = max u(s, x).
t—ross<t—e

As in Lemma 2.1, under the conditions (2.1) and (2.2) there exists a unique
(local) solution for each of the equations (I,) and (I,). We denote the solutions
of the equations (I,) and (I,) by u,(t, x; a, F;r,) and ii(t, x; a, F; r,), respectively.

The following lemma can be proved by a method similar to that of Lemma
2.3.

LeMMA 2.3'. Let F(4, p) and a(t, x) satisfy the conditions (2.1) and (2.3)
in Theorem 2.2. Then we have

i) lUm T¢(a, F;ro) = Ty(a, F; ro);
(i) LimTsa, F5ro) > Tula, Fi ro)
(ii) lziT% Te(a, F; ro) > Tyo(a, F; ro);
(iii) for any 0<T<T.(a, F; ry), ut, x; a, F; ry) converges to u(t, x; a, F;
ro) uniformly on [0, TIxR? as ¢ | 0;

(iv) for any 0<T < T (a, F; ro), i1, x; a, F; ry) converges to u(t, x; a, F; ry)
uniformly on [0, T]xR? as ¢l 0.

Making use of Lemma 2.3’ and Lemma 2.4, we can prove the following theo-
rem; the proof is quite similar to that of Theorem 2.2 and so is omitted.
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THEOREM 2.2'. Suppose that F(i, u) and aft, x), i=1, 2, satisfy the
conditions (2.1) and (2.3), respectively, and that at least one of the functions
F,(A, n), i=1, 2, is nondecreasing in A for each fixed u. If F;>F, and a,>a,,
then

(i) u(t, x;aq, Fi;r9) > u(t, x; a5, Fysr9) for 0<t<T,, xeR4
(ll) ﬁ(t:' X5 4y, Fla rO) = l_l(t’ X5 as, FZ, ro) for 0 <t< Tooa xERda
Where Zoo=Zoo(a]> Fl; rO) and Too= Too(ab FI, rO)-

Now we can state the final main theorem of this section; the proof can be
accomplished by making use of Lemmas 2.3’ and 2.4 as in Theorem 2.2.

THEOREM 2.5. Let F(A, u) and a(t, x) satisfy the conditions (2.1) and (2.3),
respectively. Then we have

(1) u(t,x;a, F;rg) <u(t,x;a, F;r) for 0<t<T.,(a, F;r), xeRY
(i) u(t,x;a, F;r)<iu(t, x;a, F;r,) for 0<t< Ty(a, F;ry), xeR4,

where 0<r=r(t, x)<r,.

§3. A sufficient condition for the growing-up of minimum solutions

We begin with some simple properties of the fundamental solution p(t, x)
of (1.4).

LemMMA 3.1. Let t>0 and x, yeR?. Then we have the following properties:
(3.1) p(ts, x) = t~4/CDp(s, -1/ 2a)x),

(32) p(t,x)<p(t,y)  for |x|>|yl.
(33) plt, x=) = o7 p(t, 290( 29).

(3.4) If a(x) is a nonnegative continuous function on R® not being identically
zero, then for each positive t we can find positive numbers  and t, such that
P,a(x)>Bp(ty, x) for any x € R4, where the operator P, is defined by (1.5).

Proor. (3.1) follows immediately from the definition (1.3) of p(t, x) by
making a change of variable. Let 6, be a one-sided stable process with index a
and define q(t, s)ds=P(0, € ds)>0, namely

Swe““q(t, s)ds = exp (—t1%).
1]
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Then p(t, x) can be written in the following form ([2]):

ngqa, s)(4ns)4/2 exp( - %)ds for O<a<l,
0
p(t, x) = 1

2
(4nt)=412 exp(— lzl > for a=1,
and hence we see (3.2). Since |x—y|<|2x|V |2y|, we have by (3.2)

pit,x —y)  pt2x)  p@2y) _ p2x) p(, 2y)
p@, 0 = p@0) r#, 0 = p@0)  p@0) °

where aAb (aVb) denotes min(a, b) (respectively max (a, b)). Finally we
show (3.4). By the assumption on a(x), there exist ¢>0 and a measurable subset
A of R4 with positive Lebesgue measure such that a(x)>& on A. Using (3.3)
and (3.1) we have

pt, x —y) > ﬁp(n 2x)p(t, 2y)

B Hiliﬁz’dl’(z‘“t, x)p(t, 2p).

Therefore (3.4) follows from

Pa() = | p(t x=y)a(dy = e p(t, x—y)dy

> {ep(t, 0)“2“’S p(t, 2y)dy}p(27%°t, x).
A
The proof of the lemma is finished.

In the sequel, we assume that F(4, u) is a nonnegative locally Lipschitz
continuous function on R, x R, =[0, o) x [0, o0) and a(t, x) is a nonnegative,
bounded and uniformly continuous function on [—rgy, 0] x R? such that a(0, x)
does not vanish identically, unless explicitly mentioned otherwise. We consider
the equation

O (—fyu + Flug(t, %), u(t, x)), 1> 0,
) ot
u(t, x) = a(t, x), —ro<t<0, xeR4.

By virtue of Theorem 2.5 in the preceding section, if the solution u(t, x) of the
equation (I) grows up to infinity then the solution u(t, x) of the equation (I) with
the same initial value as u(t, x) also grows up to infinity as t—oco. Therefore, in
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this section, we seek a sufficient condition in order that the solution u(t, x) of the
equation (I) grows up to infinity as t—co.

We put F(A)=F(, 2). Then our result is the following:

THEOREM 3.2. Assume that the function F(1, p) satisfies the following con-
ditions:
(F.1) F(4, p) is a nonnegative locally Lipschitz continuous function on R,
xR, with F(A, ©)>0 for .>0, u>0 and nondecreasing in A for each
fixed p.
(F.2)  F(4, p) is nondecreasing in u for each fixed A.

2a
(F.3%) S"FA(A)/A” Tdi=ow  forsome &> 0.
0

(F.4*%) There exists a positive constant ¢ (< 1) such that

2a

@) Fydiy) > chy S Fyh)  for 0<A <2y, Ay <o

2a

(b) F,(idy) > chy CFyh) for 0<ly<2 <c

Then, for any initial value a(t, x) satisfying

(a.1)  af(t, x) is a nonnegative, bounded and uniformly continuous function on
[—ro, 0] x R? with a(0, x)#0,

the positive minimum solution u(t, x; a, F; ry) of the equation (I) blows up in a

finite time or grows up to infinity as t— co.

For proving the theorem we prepare two lemmas. We note that the mini-
mum solution u(t, x)=u(t, x; a, F; ry) satisfies the integral equation

u(t, x) = Pa(0, x) + StdsP,_sF(g*(s, 3, uls, N (x), >0,

a) 0
u(t, x) = a(t, x), —r,<t<0, xeR4,

LemMA 3.3. Suppose that a(t, x) is a nonnegative, bounded and continu-

ous function on [—ry, 0]xR¢ with a(0, x)#0 and F(1, p) is a nonnegative

locally Lipschitz continuous function on R, xR .. Then, for any fixed time t,
later than ry, there exist positive numbers B and t, such that

u(ty+s, x; a, Fy;rg) > Bp(s+to+rg, x)  for —ro<s<0, xeR4

Proor. Since u(ty, x)=u(ty, x; a, F; ry) is the solution of (I'), by the non-
negativity of F we have
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u(ty+s, x) > P, .,a(0, x), —re<s<0, xeR4

By (3.4) in Lemma 3.1, there exist positive numbers f§ and ¢, such that P,
> Bp(ty, x), and hence we have

[—roa(o’ x)
u(ty+s, x) = Py o (Bp(to, ) (X) = Bp(s+ro+to, X)
for any —r,<s<0 and x e R4, completing the proof.
For a fixed time ¢, (>rq) we put @(t, x)=u(t,+t,x), —ro<t<0. Then by
the above lemma there exist positive constants  and ¢, such that d(t, x)> Bp(t+

to+71o, X)=d(t, x), —ry<t<0, and hence by making use of Theorem 2.2" we
have

u(t, x) = u(t—ty, x; @, F; ro)
> u(t—ty, x; 8, F; ry), t>t,.
Therefore, in order to prove the theorem it is enough to consider the case when
3.5) a(t, x) = Bp(t+1ty+rgy, X), —ro<t<0, xeR4.

" Moreover by Theorem 2.2’ it is also enough to prove the theorem for a smaller
initial value. Thus we may assume that the initial value is of the form (3.5) with
0<B<c/p(ty, 0), to>2r, where ¢ is the constant appearing in (F.4*). Before
stating the next lemma we introduce some notations.

(3.6) () = Bp(t+1o, 0) = B(t+10)"¥/**p(1, 0),

3

1+
uo(t, x) = Bp(t+to, 2 x),

t/2
o) = |, FL06)/0()ds

2a

= 2G| I
d 0(t/2)

t 1
(P,,(t) = 2"(P_1{<(P<'2"':T1‘> - ?)VO} , n=0,1,2,..,

Vo) =1, Ypis(O = Y0 D), n=012,...
The following properties can be proved easily.

3.7 ¢(t) is a strictly increasing function and lim ¢(t) = oo.
t—

a8 w0 =0{(o(57)-E5)v0}, n=0,12.,

k=0
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where we interprete that > =4 =0 for n=0.
(3.9 If (1) > t,, then t > 27¢,,.

In fact, (3.7) is immediate from the assumption (F.3*) since F (1) is positive for
A>0and 6(f) | 0 as t 1 o0, and (3.8) is also trivial by the definition of (). We
show (3.9). Since Y, ()=0 {2 "t)— X124 27*} > t, by (3.8), the monotonicity
of ¢ implies @(27"t)— > 12§ 27% > (t,) and then 27"t>t,, that is, t>2"t,.

LemMMA 3.4. Suppose that F(A, p) satisfies the conditions (F.1), (F.2) and
(F.4%), and let a(t, x)=Bp(t+1to+ry, x) for —rq<t<0 where p and t, are posi-
tive constants with 0<f<c/p(to, 0) and t,>2r,. Then we have

(3.10)  u(t, x; a, F; ro) > {1+ B,(D}uo(t+ro, x)  for Y,(6)>1t5, n=0,

where

B,l(t) — A1+y+...+-),n.2_(1+d)22;:)k},u—k-1-{(p( tn ) _ nil<L>k}y"’ 2)
2 K=o\ 2

20 d
y=1+—4, o=,

and A is a positive constant.

This lemma will be proved in §9, and here we proceed to the proof of the
theorem.

Proor orF THEOREM 3.2. Let a(t, x) be given by (3.5) with 0<f<¢/p(ty, 0)
and t,>2r,. Then (3.7) implies

o (o(d)- () on(6(E) -
Val) = ¢ <<p< )= 2(7) )=\ )—2)

provided the right hand side of the above inequality is positive. For the proof of
the theorem it is enough to show that u(t, x; a, F; r,) grows up to infinity assum-

ing that it does not blow up in a finite time. We may consider only the case A< 1
where A is the constant appearing in Lemma 3.4. We put

Ay = 27+ Zi=oky ™"t < o5,
Making use of Lemma 3.4 and then the inequality

A1+7+~~-+’7" > (Av/O=D)yvn,

we have for V(1) >1t,

2) 3pzi=0 for n=0.
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(3.11) u(t, x; a, F; ro) > B, (Dug(t+rg, X)

> {Ay/(V'I)A(,(qo( Ztn > — 2)}y“uo(t + ro, X).
Let K be a compact subset of R? and set
T = max {¢~'(2A7707VAG! +2), ¢~ (o(to) + 2)} .

Then we have, for t>2"T, n>1,
(3.12) V(0 > 1, and AV/(V“”AO{QD(%> - 2} > 2.

By (3.9) the first inequality in the above implies t>2"t,, which combined with
to>2r, again implies t+t,+r,<2t. Therefore, for 2"*1T>t>2"T, n>1, and
xeK,

3

d __1
(3.13) Uo(t+rg, ) = P(t+1o+70) 22 p(1, 2" 2a (4 1y +1ry) 29 %)
_d_, 143 __1
> f(2t) 2= inf p(1, 2" 2« (3ty+ry) 2% x)
xeK
> A,27(+2)d/Q2a),

where A, =BT~4/C2)inf p(1, 21+3/C20) (3¢, +ry)~1/20x) > 0.
xeK
Finally we obtain by (3.11), (3.12) and (3.13)

u(t, x; a, F; rg) > A, 27"~ {n*2)d/20)} for 2"H1T >t > 2"T, xeK,

which completes the proof of Theorem 3.2.

§4. Some results on the growing-up of minimum solutions

In this section we consider the equation (I), and prove the following com-
parison theorem, which implies that the local behavior of the function F near the
origin plays an important role for the asymptotic behavior of the solution u(t, x;
a, F; ry) of (I) as t— 0.

THEOREM 4.1.  Suppose that F(., ) and F(A, p) satisfy the following con-
ditions:
(i) F(4, p) is a Lipschitz continuous function on [0, 1] x [0, 1] with F(4, 1)=0
for any A€[0, 1] and F(A, u)>0 for A€ (0, 1] and ue (0, 1).
(ii) F(A, p) is a locally Lipschitz continuous function on R, xR, =[0, c0) x
[0, o) with F(, 0)=F(0, u)=0 and nondecreasing in u for each fixed A.
(iii) F(A, p) and F(1, p) are nondecreasing in A for each fixed p.
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(v) lim inf LG 1)

=5 > 0.
(A40,p40) F()», W >

Moreover, we assume that for any ro>0 and any initial value a(t, x) satisfying
(a.1) of Theorem 3.2 the solution #(t, x)=u(t, x; a, F; ry) of

@n G~ (—tyu+ Fuat, x), utt, )

either blows up in a finite time or satisfies

4.2) lim sup [|4(t, )|, = ©
t— 0

Then any positive solution u(t, x) of the equation (I) with the initial value a(t, x)
satisfying (a.1) and 0<a(t, x)<1 grows up to 1 as t—o0 for any ry,>0.

Fundamentally the proof of this theorem is similar to that of Theorem 3.3
of [11], but some changes and modifications in details are necessary. First we
prepare two lemmas, in which we assume that F(A, p) satisfies (i) and (iii) of
Theorem 4.1.

Lemma 4.2. If, for any ro>0, any positive solution #(t, x) of (4.1) either
blows up in a finite time or satisfies

lim sup ”E(ta )”oo = 0,

then the same holds for any positive solution of

@3) W (— 2w+ 5F gty %), ut, %)

for any 6>0 and ry>0.

Proor. Let ii4t, x) be the solution of (4.3) with initial value d(t, x). Then
1 4(t, x) satisfies

(44) @67, 57100x) = [p(6, 5710x = )a(0, y)dy
5-1
o], as(peme — s, 67e0x — F( min iiy(z, ), (s, 1) dy.
§—ro<t<s

Making a change of variables and using (3.1), we see that the right hand side of
(4.4) is equal to
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(ot x= a0, y)ay

t -~ .
+S dsgp(t—s,x—y)F( min  #i,(t, 671CNy), 6;(07 15,07 C)y))dy,
0 (s/6)—ro<t<s/é

where ay(t, x)=d(6"1t, ~1/(20)x). Therefore, noting

min _ d,(t, 67YCy) = min  #,(67'r, 671 0y),
(s/d)—ro<t<s/é s—0ro<t<s

we have
i1, x) = u(ot, 81/Nx; as, F; o),
which implies the statement of Lemma 4.2.
Next we introduce a class o/ of nonnegative monotone radial functions:
& ={aeCRY: a(x) >0, #0; a(x)> a(y) for |x| < |yl}.

LemMma 4.3. If a(t, x) is bounded continuous on [—ry 0]xR? and
belongs to o for each —ro<t<0, then the solution u(t, x; a, F; ry) of the equa-
tion (4.1) with initial value a(t, x) belongs to o for each 0<t<T (a, F; ry).

This lemma can be proved in a way similar to [11: Lemma 3.2] noting that
p(t, x) is a positive monotone decreasing function of |x| for each ¢>0.

ProOF OF THEOREM 4.1. From what we have remarked immediately after
the proof of Lemma 3.3 in § 3, it is enough to prove that the solution u(t, x) of (I)
with a special initial value a(t, x)=Bp(t+ty+rg, X), —ro<t<0, grows up to 1
as t—»00. However, since by Theorem 2.2’ it is also enough to deal with the case
of smaller initial value, we may consider only the case when the initial value a(t, x)
is continuous on [ —r,, 0] x R4 and satisfies the following conditions.

(4.5) There exists a compact subset K, of R? such that a(t, x)=0 for x& K|,
—ro<t<L0.

(4.6) a(t, x)e .o for each te[—ry, 0] and |al, < 1.

Given such an initial value a(t, x), we take an arbitrary positive constant M so
that 1>M>|al|,. By the assumptions (i) and (iv) we can take 6>0 so small
that F(A, p)>0F(4, p) for 0<A, u<(1+M)/2. Lemma 4.2 together with the
assumption of Theorem 4.1 implies that the solution u(t, x; a, 6F; ry) of (4.3)
either blows up in a finite time or satisfies lint1 sup lut,-; a, 6F; ro)||l = 0, and

hence if we define T; by
T, = inf {t > 0: [lu(t, -5 a, 6F; ro)ll o > (1+M)/2},
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then Ty<oo. Moreover, it can be easily proved that ]ifn T;=00. Now the rest
si0
of the proof is divided into three steps.
Step 1 is to prove that the inequality
(4.7)  u(t,x;a, F;ro) > u(t, 0; a, 6F; ro) — dMot; — M |x|r71/@®)

holds for 0<t, <t<T;, where M, and M, are positive constants. Let F,(1)=
F(4, 2) and My=F ,(14+M)/2). Then 0<SF(A, y)<SM, for 0< A, p<(1+M)/
2. Since

u(t, x; a, 6F; ro) = u(ty, x; v, 6F;ry), 0<t, <t<T;

holds with o(s, x)=u(t—t, +s, x; a, 6F; ry) for —r,<s<0, applying Theorem
2.2' to the equations (I) with nonlinear parts 0, F, M, and the common
initial value v(s, x), we have

u(ty, x; v, 05 ro) < ult, x; a, 6F; ro) < ulty, x; v, SMy; 1),
and hence for O0<t, <t< Ty
(4.8) P, v(0, x) < u(t, x; a, 5F; ro) < P, (0, x) + SMt,.
Putting x=0 in the second inequality of (4.8) we have
4.9 P, v(0,0) > u(t, 0; a, 6F; ro) — 6Mot;, 0<t, <t<T;

On the other hand, by the property (3.2) we have for each >0
g—p(t,x)so for x; >0, 1<i<d,
X
—aa-p—(t,x)>0 for x;<0, 1<i<d,
Xi
where x=(x,, X,,..., X;), and hence for each fixed i (1<i<d)
0
|55 | pttss x = 200, »)ay |

2 9
= |, 5 i x = 2000, D)y + | 5201, x = y)o(0, )y |
< 1100, )|l max(S P ¢ x—pydy, - e x - )d)
S s o a 6xi 1s y)ay, o 5x,~ 15 y)ay

= 160, |, plts, y )y,

where _V=(y1, Yaseees yd)ERd5 Qi={yERd:yi2xi}’ y(i)=(y1:"'9 i1 0’ Yi+1s
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ves Y €RY and dy®O=dy, ---dy;_dy;,---dy,. Making use of (3.1), we have

Snd—lp(tl’ y(i))dy(i) = t;d/(Za)Sp(l, 11-1/(2a)y(i))dy(i)

- tII/(Z“)Sp(l, P dy®,
and hence
0 ) .
l‘aTPnD(O, x)| < t;—l/(la)"v(o’ ')”oogp(la y(‘))dy(')'
Therefore

2 d
|7 2,00, )| < 750000, 913 2 {(p01, y)ap o)
< tI"“(%ﬁfd- {Sp(l, y‘“)dy‘”}z,
1
“10) |P,w(0, %) ~ P00, 0)| = ,So(x, P P00, 5x))ds|

< IxI{S;|VP,lv(O, sx)lza's}”2

y1+M

< afegren LEM gualpq, gy

= |x|eg1/ O M,
where M, =(1 +M)2‘1d1/2Sp(1, yM)dy®.  Combining (4.9) with (4.10) we have

P, (0, x) > u(t, 0; a, 6F; ro) — Moty — |x|t71/COM,,  0<t, <t< T,
and this together with the first inequality of (4.8) implies
@.11)  ut, x; a, 6F; ro) > u(t, 0; a, 6F; ro) — SMot, — |x|t71/COM,,

for 0<t,<t<T; By the assumption F(1, u)>6F(1, ) for 0< A, u<(1+M)/2,
Theorem 2.2’ implies that u(t, x; a, F; ro)>u(t, x; a, 8F; ry) for 0<t< T;, and
hence we obtain (4.7) noting (4.11).

Step 2. Let K be a compact subset of R? such that Ko, K. We shall
prove that there exists a positive constant T (>2r,) such that

4.12) u(t,x;a, F;ro)>M for T—-2ry<t<T and xek.

Since u(T;—t,, x; a, 6F; ry), 0<t,< Ty, belongs to o as a function of x by
Lemma 4.3, we have
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u(T; — 13, 05 a, 6F; 1g) > Pou(T; — 15, 0; a, 6F; 1)
> y(n, 0; a, 5F; ro) - 6M0t2,

for 0<t, < Ty, using the second inequality of (4.8) with t=T; and ¢, =¢,. More-
over, since the definition of Ty implies u(Tj, 0; a, 6F; ro)=(1+M)/2, we have
for 0<t, < T;

1+M
2

(4.13) E(Té - t2, 0; a, 5F; ro) > - 5M0t2.

Combining (4.13) with (4.7) of Step 1, we have

4.14) w(Ts — 15, x;a, F;ro) > I-ZM — OMyt, — OMyt, — M |x|ert/Co
for O0<t,<T;—1t,<T; In the above inequality we can choose first large ¢, and

then small >0 so that

tl < TJ - 2r0,

(4.15) 1+ M

2

— 6My-2ry — SMyt, — My|x|t7V/2) > M forany xeK.

From (4.14) and (4.15) we have for any 0<¢t,<2r,
u(Ty—ty, x;a,F;rg)>M for 0<t, <T;—1t,<T;, xek,

and therefore we obtain (4.12) with T=Tj.
Step 3. For any fixed ¢t with T—r,<t< T we put

afs, x) = u(t+s, x; a, F; ro), —ro<s<0,
w(s, x) = u(s, x; a,, F; ro) = u(t+s, x; a, F; ry), s>0.

Since a(s, x)<M (x € K), a(s, x)=0 (x& K) and T—2r,<t+s<Tfor —r,<s<0,
(4.12) implies

a/s, x) = u(t+s, x; a, F; ro) > M > a(s, x), xeKk,
as, x) > 0 = a(s, x), x&EK,
for any —r,<s<0, and hence Theorem 2.2’ and (4.12) imply that
u(t+s, x; a, F; ro) = w(s, x) > u(s, x; a, F; rg) > M,
for any xe K and T—2ry,<s< T, that is,

l_l(t’x;a’F; r0)>M9
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for any xe K and 2T—3r,<t<2T. Repeating this argument, we have
u(t, x; a, F;ro) > M,
for any xe K and nT—(n+ 1)ro<t<nT, and hence we find T*>0 such that

u(t, x; a, F; ro) > M,

for any xeK and t>T* (for example, T*=<[;T—:|— 1>T—— l:rljro). This
4] 0

completes the proof of the theorem, since 0<u(t, x; a, F; ry)<1 and M was

arbitrary under the condition |a| <M <1.

§5. Growing-up problem: The case F(4, 1)=0

In this section we consider the equations (I) and (I). Combining Theorem
3.2 with Theorem 4.1 and Theorem 2.5 we shall obtain the following results.
For 6>0, we put

FyA) =inf{F( n): A< E<S, A<n<d), O0<Ai<o.

THEOREM 5.1. Suppose that the function F(A, u) satisfies the following
conditions.
(F.1°) F(A, p) is a nonnegative Lipschitz continuous function on [0, 1]x [0, 1]
with F(A, 1)=0 for any A€[0, 1] and F(A, w)>0 for (A, w)e(0, 1]x
(0, 1), and nondecreasing in A for each fixed .

2a

(F.3) S"F,;(,l)//l2+ Tdi=w  forsome &> 0.
0
(F.4) There exist positive constants 6 and ¢, (< 1) such that

2a
FyAhy) > coha @ Fy(Ay) for 0<A; < Ay Ay < cop Aihs < Co.

Then, for any initial value a(t, x) satisfying

(a.1°) a(t, x) is a nonnegative, bounded and uniformly continuous function on
[—ro, 0] x R4 with 0< a(t, x)<1 and a(0, x)#£0,

and for any nonnegative bounded continuous time-lag r(t, x) with 0< r(t, x)<r,,

the positive solution u(t, x; a, F; r) of the equation (1) dominated by 1 grows up

to 1 ast—o0.

REMARK 5.2. Under the condition (F.1°) (or (F.1)), F42) is equal to
inf F(4, n), and moreover if F(A, u) is nondecreasing in yu for 0<u<4, then

A<n<o
Fy()=F,()=FQ, .
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The theorem is the immediate consequence of Theorem 2.5 and the follow-
ing theorem.

THEOREM 5.3. Under the conditions (F.1°), (F.3) and (F.4) of Theorem
5.1, for any ro>0 and any initial value a(t, x) satisfying (a.1°), the positive
solution u(t, x; a, F; ry) of the equation (I) grows up to 1 as t— 0.

This theorem follows immediately from the following lemma, Theorem 3.2
and Theorem 4.1.

LemMA 54. For each function F(A, u) satisfying the conditions (F.1°),
(F.3) and (F.4) of Theorem 5.1 there exists a function F(A, ) satisfying the con-
ditions (F.1), (F.2), (F.3*), (F.4*) of Theorem 3.2 and (iv) of Theorem 4.1.

ProoF. In a way similar to Lemma 3.6 of [11], for the function Fy1) we
can find a nondecreasing locally Lipschitz continuous function Fy(A) satisfying
the following conditions (i) ~ (iv).

(i) F 0 =0, F())>0 for A>0.
(i) S‘s FD)/A+Ceidd) = oo for some & > 0.
0

(iii) There exists a positive constant ¢ (<1) such that
Fy(A1hdy) = cALt@alDF (), 0<Ay <4y Ay <ec
Fy(Ahy) = cAZr@aIDF (1), 0<i <A <e

@iv) lirixli(r)xf Fy(A)|F42) > 0.

Then, F(A, u)=F;(A A ) has the desired properties.
Next we consider the following equation without time-lag.

W= —(—tyutf@), t>0,
(111) J

u(0, x) = a(x), x e R4,

Then we have the next theorem in a way similar to the case with time-lag. In this
case we can replace the conditions (F.3) and (F.4) by (f.3) and (f.4) which are
slightly weaker.

THEOREM 5.5. Suppose that f(u) satisfies the following conditions:

(f.1°)  f(w) is a Lipschitz continuous function on [0, 1] with f(1)=0 and f(u)>0
for O<u<1.
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t 2+-22
(£.3) gof(u)/u du=oco  forsome &> 0.

(f.4)  There exists a positive constant ¢, (<1) such that

1+-2%
fluips) > capp @ f(y) for 0 <py <y, py < ey Pylta <cy.

Then, for any continuous initial value a(x) with 0<a(x)<1 and a(x)#0, the
solution u(t, x; a, ) of the equation (III) grows up to 1 as t—oo.

§6. Growing-up problem: The case F(4, u)>0 for A>0, u>0

This case can be treated by modifying the results of the preceding section.

THEOREM 6.1. Suppose that the function F(A, p) satisfies the conditions
(F.1) of Theorem 3.2 and (F.3), (F.4) of Theorem 5.1. Then, for any initial value
a(t, x) satisfying (a.1) of Theorem 3.2, for any ro>0 and for any bounded continu-
ous time-lag r(t, x) with 0<r(t, x)<ry, the solutions u(t, x; a, F;r) of the
equation (I) and u(t, x; a, F; ro) of () blow up in a finite time or grow up to
infinity as t— oo.

PrOOF. Asin § 35, by virtue of Theorem 2.5 it is enough to prove this theorem
for the solution u(t, x; a, F; ro) of (I). We assume that u(t, x; a, F; ry) is a
global solution of (I). Let g,(x), n>1, be Lipschitz continuous functions on
[0, n] satisfying the following conditions:

(i) g,w=1 for 0< pu< nf2
(i) 0<g,W<1 for n2<u<n.
(i) gn(n) = 0.
Since F,(4, u)=F(4, wg,(u) satisfies the conditions (F.3), (F.4) and the condition

(F.1") F,(A, p) is a nonnegative Lipschitz continuous function on [0, n] x [0, n]
with F,(4, n)=0 for Ae€[0, n] and F,(A, u)>0 for (4, w) € (0, n] % (0, n)
and nondecreasing in A for each fixed u.

Therefore by Theorem 5.3 (with an obvious modification), u(t, x; a, F,; o) grows
up to n as t—oc0. On the other hand, since F(4, u)>F,(A, u), n>1, Theorem 2.2’

implies
u(t, x; a, F; ro) > u(t, x; a, F,; 1o) for n>1,
from which the theorem follows.

In case without time-lag, we have the following result in a similar way.
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THEOREM 6.2. Let f(u) be a locally Lipschitz continuous function on [0, o0)
with f(u)>0 for u>0 and satisfy the conditions (f.3) and (f.4) of Theorem 5.5.
Then for any nonnegative bounded continuous initial value a(x) with a(x)#0
the solution u(t, x; a, f) of (II1) blows up in a finite time or grows up to infinity
as t—oo.

§7. Condition for non growing-up

In this section we consider the equations (I) and (I), and seek a sufficient
condition in order that some positive solutions of these equations die out as
t—>00. Our result is

THEOREM 7.1. Suppose that the function F(A, p) satisfies the following con-
ditions:
(F.1a) F(A, p) is a nonnegative locally Lipschitz continuous function on R, X
R, with F(0, 0)=0.
(F.1b) There exists a positive constant ¢, (<1) such that F(A, p) is nondecreas-
ing in A and u for 0< A, u<c,.

+2a

(F.3) SBFA(A)//IZ Tdi <o  for some &>0.
0

(F.4) There exists a positive constant ¢ (< 1) such that
F A (A125) = chA,F4(A1) for O <A, <ch, Ay >1, 414, < 5.
Then, for some small initial value a(t, x) satisfying the condition (a. 1) of

Theorem 3.2, the positive solutions u(t, x; a, F; r) of the equation (I) and
iu(t, x; a, F; ry) of (I) converge to 0 uniformly in x as t— 0.

We may assume that the constants ¢, and c5, are the same by taking the
smaller one. By Theorem 2.5 we may consider only the equation (I). Moreover
it is sufficient to prove the theorem for (T) replacing the local conditions (F.1b),
(F.4’) by the following global conditions.

(F.1b") F(A, p) is nondecreasingin A and yon R, xR,.
(F.4")  There exists a positive constant ¢, (<1) such that

F (Ady) > cAF4(Ay)  for A, >1, A; >0.
Let h(s, x)=P,a(0, x) for s>0 and h(s, x)=a(s, x) for —ry;<s<0 and set

b=  sup h*(t, x)/P,a(0, x), h*(t, x) = max h(s, x).
,xeRd

t t—ro<s<t

Assuming b < oo, we consider the equation
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iil’-(t)— F,(bk(®)v (1)
a W ="k

v(0) =1,

t>0,

7.1

where k(t)=|P,a(0, )| .

LeMMA 7.2. Suppose that F(, u) satisfies the conditions (F.1a), (F.1b%),
(F.4") and a(t, x) satisfies the condition (a.1) of Theorem 3.2, and let v(t) be the
solution of the above equation (7.1). Then, we have

i(t, x; a, F; ry) < v(t)P,a(0, x)
whenever v(-) exists till time t.

This lemma corresponds to Lemma 5.2 of [11] and the proof is similar, as
sketched here. We put

Uo(t) = 1,

o(f) = 1+ L StFA(bk(s)u,,_l(s))/k(s)ds, n=1,2..

€2 Jo

[ uO(t’ x) = Pta(oa x); t> 0’
uo(t, x) = a(t, x), —ro<t<0,

i, %) = Pa(0, %) + | dsPeo Fua(s ) i DG, 1> 0,

u,(t, x) =a(t,x), —-ro<t<0, n=1,2,...
Then we can prove by induction that
u,(t, x) < v,(t)P,a(0, x) for t>0, n=0,1,2,...

The conclusion of the lemma follows since v,(f)—v(f) and u,(t, x)—i(t, x; a, F;
ro) as n—oo whenever u(-) exists till time t.

Proor oF THEOREM 7.1. Let 0<f<l1,t,>r, and a(t, x)=Bp(t+1,, X),
—1ro<t<0. Then we have

k(t) = IBp(t+10, )l = Bp(t+15,0),  t>0,
b = {(to—ro)/te} ™2™,

Now we consider the solution v(t) of the equation (7.1) and the solution w(t) of

12 G = s FabB k@), w(®) = 1.
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Using the condition (F.4") to F,(bf~1/2k(t)) with A, =bk(f)w and A,=p"1/2w"1
>1 (for 1<w< p~1/2), we have
Fy(bB~1%k(2) =

Fy(bk(t)w) > F4(bk()w),

v B
3k () c k(t) ¢ k(t)
for 1I<w< Y2, Therefore

v(f) < w(t) whenever w(f) < p~1/2,

w(t) can be solved explicitly; in fact we have

wit) = exp {-Lp | Falbb KON 4

(d+2a)/d B(2a—d)/(2d)
< exp {20 p(1, 0y2et4
2

S 8- 112k(0)FA(A)A—2-(2¢/d)dl} s

which converges to 1 uniformly in ¢ as t,— 00, because k(0) = fp(t,, 0)—0 as t,— 0.
Therefore w(t)< f~1/2 for all ¢t if t, is sufficiently large, and hence v(¢) is bounded.
Thus u(t, x; a, F; ro)<v(t)P,a(0, x)—0 as t— 0.

ExampLE. If F(4, p) is nondecreasing in A and u for small A>0 and p>0,
then FyA)=F ,(A)=F(A, A) for smaller 6>0. We consider the case when F (1)
(=F,(2)) is given by

1+2 1 1 1 1\t
Fy(A)=2 {logT-log(z) - logg-1) T-(log(,,) 7) }

near the origin, F(A, u) is smooth on [0, 1] x [0, 1], positive in (0, 1]x (0, 1),
nondecreasing in A€ [0, 1] for each fixed u (0<u<1), nondecreasing in u (for
small u>0) for each fixed 1 (0<A<1), and F(4, 1)=0 for 0<A1<1, where ¢ >0,
n>1 and logy,pu=loglog---logu (k-times). (For example F(4, p)=A%u"-

<log—> , where £>0, >0, 0>0 and &+n=1+(2a/d).)

(a) If0<o<1, then we can prove that F(A, u) satisfies the conditions (F.1°),
(F.3) and (F.4) of Theorem 5.1, and hence any positive solution of (I) with the
initial value a(t, x) satisfying (a.1°) grows up to 1 as t—co.

(b) If o>1, then we can prove that F(4, u) satisfies the conditions (F.1a),
(F.1b), (F.3%) and (F.4") of Theorem 7.1. Therefore some positive solution of
(I) dominated by 1 converges to 0 uniformly in x as t—oo (cf. [11]).

§8. Remarks to the blowing-up problem

In Theorem 6.1 we have found a sufficient condition under which the solu-
tion u(t, x; a, F; r) of the equation (I) either blows up in a finite time or grows
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up to infinity as r—oco. Here we seek a sufficient condition under which the so-
lution u(t, x; a, F; r) of (I) blows up in a finite time. In this problem, of course,
the behavior of F(A, u) near u= oo for large A plays an important role.

THEOREM 8.1. Suppose that the function F(A, u) satisfies the conditions of
Theorem 6.1 and the following (F.5).
(F.5) There exist positive constants Ay, uo and c5 such that

(@) F(ho, p2) = c3F (4o, Hy) Jor po < py < py,

' d#
® gy <.

Then, for any initial value a(t, x) satisfying (a.1) of Theorem 3.2 and for any
ro>0, the solution u(t, x; a, F; ry) of () (and hence, for any continuous time-lag
r(t, x) with 0<r(t, x)<r,, the solution u(t, x; a, F; r) of (I)) blows up in a finite
time.

PrOOF. Assuming that u(t, x)=u(t, x; a, F; ry) does not blow up in a finite
time, we derive a contradiction. By Theorem 6.1 u(t, x) grows up to infinity as
t— oo and hence for any M >, there exists t,;>r, such that u(t, x)> M for |x|<1
and t>t,—ry,. We put

pM(t) = min u(t+tMa x) > M, = 0’
|x|<1

n = inf ming p(t, x—y)dy > 0.
0<r<1 |x|<1) |yI<1

Now u(t, x) satisfies the following equation

t
(8.1 ult+ 1y, ) = Pty X) + || dSPy Flua sty ), w5 + 30 ) (),
for any 0<t< o0, and then

pu(t) = inf min Pu(ty, x) > npy(0) 2 nM > p,,  0<1<1,
0<t<1 |x|<1

provided M > py/n. Therefore by the assumption (a) of (F.5) we have
t
pu(®) = 1M + esi| Fo pu(s)ds,
for 0<t<1and M>puy/n. Let ¢(t) be the solution of

(8.2 o(0) = 1M + c3n{| Fldo, 9(9)ds.

Then we have, for 0<t<1,
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(8.3) pu(®) = @(1).

In fact, (8.3) can be proved as follows. Let ¢,(¢) be the solution of (8.2) with the
first term yM (in the right hand side) replaced by nM —e& (>u,). First we show
that p, ()= @.(t). Assume the contrary and define

T =inf{t > 0: pp () < @ (D)}.

Then we have

(B4 0= py(® = 90 > & + esn|| {Fhor pu(5) = esFUho, @5)}s >

since the integrand in the above is nonnegative by (a) of (F.5). (8.4) is absurd.
Since 0 <& (<nM — ;) is arbitrary, we have (8.3). On the other hand, since ¢()
satisfies the equation

(1) dy o,
S,,M F(}-o, 7)) = c3mt,

the assumption (b) of (F.5) implies ¢(1)= oo provided M is large enough. There-
fore py(1)=o0, which contradicts the assumption that u(t, x) does not blow up
in a finite time.

In the case without time-lag we have the following result.

THEOREM 8.2. Suppose that the function f(u) satisfies the conditions of
Theorem 6.2 and the following (£.5).

(f.5) There exist positive constants u, and c5 such that

fu2) = e3f(uy) Jor po < py < pa.
Then, for any nonnegative bounded continuous initial value a(x) (£0), the
solution u(t, x; a, f) of (III) blows up in a finite time if and only if
© g
8.5) S Sy <.

Proor. We prove ‘“‘only if” part. Suppose that u(t, x)=u(t, x; a, f)
blows up at time T, < oo, take t, < T, so that [u(t,-)| >, for any t>¢, and set
ao=|lu(to,)ll,. The assumption (f.5) implies the existence of a constant ¢, >0
such that

(8.6) Fuz) = eaf (1y) for 0 <y <y, po < iy

t
Since, u(t+ty, x)=Pu(ty, x)+ SodsP,_s fu(s+1ty,-)) (%), t<T,—1ty, an application
of (8.6) yields
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1 t
e+t Yo < a0 + o Fuls+ 10,95, 1< T — 1,

Let ¢(t) be the solution of the equation

o(f) = aq + czzg; F(o(s))ds.

Then [u(t+1to, ) <o) for t<t, (LT, —1t,<0), where ¢, is the blowing-up
time of ¢(¢). Since ¢(¢) satisfies the equation

o du 2
=%, t<t,< o0,
Sao fw) — "+ ©

the integral of left hand side of (8.5) is finite. This completes the proof of the
lemma.

ReMARK 8.3. As in Theorem 3.2 we can prove the following fact. Any
positive solution of (III) either blows up in a finite time or grows up to infinity
as t— o0, if f(u) satisfies the following conditions.

(f.1)  f(w) is a nonnegative locally Lipschitz continuous function on R, =[O0,
o0) with f(u)>0 for u>0.

(f.2)  f(w) is nondecreasing.

(f.3) The same as in Theorem 5.5 in § 5.

(f.4*) There exists a positive constant ¢ (< 1) such that

(@ fluap) = cpd* @D f(py)  for 0<py <py, py <e,

() flppo) = cp3*CDf(u)  for 0<p, < py <c.

However, this fact combined with Theorem 8.2 implies that only the blowing-up
case occurs, because Sm f(wtdu<oo follows from (a) of (f.4*). For the case
a=1, see Theorem 2.1 of [11].

§9. Proof of Lemma 3.4

In this section we prove Lemma 3.4 stated in §3. We adopt the notations of
§3. Especially, we must recall the notations of (3.6) and the properties (3.7),
(3.8) and (3.9). In addition, we must notice that the followings hold.

9.1) V,(t) > t, implies ¢,_(f) > 2""1¢,, n=1,2,...
(9.2) For any constants k>1 and t>s5>0, we have

o(kt) — o(ks) = ck™?{p(t) — @(s)}, o =d]a
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In fact, (9.1) is immediate from (3.9), that is, ¥, (f)=y,-(¢,-,())>1t, implies
Qu—1()>2""11,. (9.2) is proved as follows. By the definition of ¢(f), we have

©.3) o(xt) — o(xs) = SZFAT%Q“

_ (112 F4(0(x¢))
—Kgs/z AG(Kf) ac.

On the other hand, by the monotonicity of F 4, we have

F (0(x€)) = F 4(B(E +10)™4/p(1, 0)) > F 4(™4/206(Z)) .

Here we can apply the assumption (F.4*%) in Theorem 3.2 to F,(x=4/(20f(&))=
F 4(A14;) with A;=0(¢) and A,=x"9/(2%) because we have assumed that f§ is so
small that 0(¢)<c by 0<B<c/p(ty, 0). In case 1;<A, we have from (a) of
(F.4%)

F (k=4 C06(8)) > cAy+P*/DF 4(Ay)
= ck™1=@WQENF ,(0(£))
> cx™1m@WHF 40(0),
while in case 4, >4, we have from (b) of (F.4*)
F (k=412 D0(8)) = cAZ*C*/DF 4(Ay)
= ek~ 1-WnF (0(2).
Therefore, in both cases we have
F(0(k&)) > ck~1-W@DF (0(¢)),

and hence, noting 0(x¢) < 0(¢), we obtain from (9.3)

o(kt) — o(xs) > CK—d/aS:Z——FAO(&()é)) d¢

=ck™{o() — @(s)}, o =d]u
We now proceed to the proof of Lemma 3.4.

We shall prove (3.10) by induction in n.

Step 1. We consider the case n=0. Assume that Yy (t)=t>t,>2r, in
this step. First we note that u(t, x)=u(t, x; a, F; r,) satisfies the integral equa-
tion
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o u(t, x) = P,a(0, x) + S;dsgp(t—s, X = Y)F(us(s, ), u(s, y)dy, 1>0,
) u(t, x) = a(t, x), —rg<t<0, xeR4,
where a(t, x) is given by (3.5) and
uy(s, ) = min_u(z, ).
We note that by (3.2)
9.4 P,a(0, x) = Bp(t+to+ry, X)
> Bp(t+ty+ry, 2113/Q2)x)

= ug(t+ry, X).

Let 0<s<t. We first estimate u(z, x) for s—ro<t<s. By the nonnegativity of
F we have

> P.a(0, y) = pp(t+to+ro, y), >0,
u(, y)
=a(t, y) = Pp(r+to+re, y),  —rg<t<0.
Using (3.1) and then (3.2), we have for s—ro<t<s
u(t, y) = B(t+1+r0)"4CIp(1, (t+1t9+ro) "1 2y)

T+t0+r0
= ( s+1

> 374CN0y(s, p),

Y B (s + 1) 1@p(1, (s 1g) D21y

where we have used that (74 ty+rg)/(s+ o) <(to+1)/to<3 for T<s and ty,>2r,.
Hence

min {uy(s, y), u(s, y)} > 374C0y(s, y).

Therefore, by the monotonicity of F,, we have from (I') and (9.4)
9.5 ult, x) > ug(t+7, X) + S;dsg Ht—s, x—y)F ,3-4C@uq(s, y))dy.

Next, let us assume that y e Q={|y|<(s+1,)/?}. Then we have by (3.2)
uo(s, y) = 0(s)p(L, (s+1o)~ 1/ 202143/ y)/p(1, 0)
> 0(s)p(1, 21+3/@2)/p(1, 0).

Now we apply (F.4%) to F,(0(s)-379/Zap(1, 21+3/20)/p(1, 0)) =F 4(A;4,) with
A =0(s)<c and 1,=379/C0p(1, 21+3/20)/p(1, 0)<1. Then we have, for yeQ,
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(©-6) F4(3742Du(s, y)) = F(4142)
> min {cA3, cAL*?}F ,(Ay)
= c{374/C@p(1, 2173/CD)[p(1, 0)}1*7F 4(8(s))
= ca,F40(5))

where a, = {374/22)p(1, 21+3/22)/p(1, 0)}1*?>0 and y=1+(2a/d). On the other
hand by (3.1) and (3.3) we have

pli—s, x—y) = p(1, 0)71(t—s) 4/Cop(1, 2x(t —s)~/C)p(1, 2y(t—5)~1/C®),
and therefore from (9.5) and (9.6) we obtain

0.7 ult, x) — uo(t+ro, x)

= Stdsg p(t—s, x— y)F 4374/ @Du(s, y))dy
0 (7]
> cay [\ dsF 001, 07 (t—s5)y4120
0
x p(1, 2x(t_s)—1/(2a))g p(1, 2y(t—s)~1/2)dy
Q

. calgtdsFA(B(s)) (5 1)@ p(1, O)-1(t —5)-4/2)
0

1/(2a)
x p(1, 2x(t—s)-1/(2a))g p(l, 2y(%> )dy
lyI<1 —S

> ca, S;/stFA(B(S))B(S)—ll;(t — )@

1/(2a)
x p(1, 2x(t—s)‘1/(2"))g p(l, 2y<¥—> >dy.
Iyt =S

Let 0<s<t/2. Since we have assumed that t>t,>2r,, we have
L4ty +rg>t—s>(t+ty+ )8,

Sty _ 142t
I—s t

<3
Hence we have, using (3.1) and (3.2),
©.8) Bt—$)=4/C p(1, 2x(t—s)1/2)
> B(t+to-+ 1oy 4 EOP(1, 2x{(t+ 1o +70)/8} 4/ 2)

= “o(H"'o, x)’
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and

1/(2a)
9.9) S p(l, 2y( S*"’) ) S p(1, 2y-31C9)dy = a, > 0.
lyI<t lyl<1

Therefore we obtain, from (9.7), (9.8) and (9.9), for Y () =t>t,,

u(t, X) — to(t+To, X) > cayaytg(t+ro, x)S F ((6(s))/6(s)ds

= Calazuo(t'l'roa x)(p(t)
> Ap(Duo(t+ro, X),

where A=c2%a;a,>0.
Step 2. We shall prove that (3.10) holds also for n+ 1 under the assumption
that (3.10) holds for n. By the definition of ¢,(f) we have

A0 { <2nt+1 ) _ ZL} v o< <p(ﬁ),

and hence by the monotonicity of ¢

(9.10) () < %

Now we note that u(t, x)=u(t—¢,(?), x; a,, F; ry) where a/(s, x), —r,<s<0, is
equal to u(p,(t)+s, x) in case ¢,(f)+s>0 and to a(p,(t)+s, x) in case —ry< @,(1)
+5<0, and so u(t, x) satisfies the following integral equation:
t—=@n(t)
ult, %) = Pregoti@a®, ) + [ ds[pe =g, 0 =5, x-)

©.11) X F(u(0n(®)+5, ), 2(0n(® +5, »))dy, 1> 0,(0),

E(t’ x) = at(t_(Pn(t)a X), ¢n(t) — 7o <t< (Pn(t)'

Since u(t, x) is also the solution of the integral equation (I'), we have u(@,(?), x)
>P,,»a(0, x), and hence by (9.4)

(9'12) Pt—(p,‘(t)g((pn(t)a X) = P!a(o’ x) = uO(t+rOs X).

Assume that

Yusr1(t) > to.
Then (3.9) and (9.1) imply that

(9.13) t> 2", and  @,(f) > 2"t,.
Assuming s> ¢,(t)/2, we shall estimate F(uy(@,(t)+s, y), u(@,()+s, y)) in (9.11).
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First we estimate u,(¢,(1)+s, y)— mm u((p"(t)+'r, y) and u(p,(H)+s, y). Since
s> @ (D)[2>1t5/2> g (by (9.13)), we have by the monotonicity of (1)

V(@) +7) > Yo(@n(1) = Ysa(1) > 1 for (0<)s—ro <t <5s.
Therefore the induction hypothesis implies that, for (0<)s—r,<7<s,
(9.14) u(@,(D+7, y) > {1+ B, (¢, (1) + D}uo(@ () +7+70, )

> {14 B (@u()}uo(@u(t) + T+ 70, ),

because B,(t) is increasing in . Now we see that by (3.1) and (3.2), for any 7
with s—ry<t<s,

(9.15) ug(@u()+7+70, ) = Bp(@u(D) + T+ 710+ 1, 2143/ y)

0 O B 20,0 k) HC)
=Y wn(t)+r+ro+to> p(1,0)
> 0 )( s+, a12e) p(1,21+3/C(@, (1) + s +1,) "1 2Dy)

§ (Pn(t)+s+’o+to> p(1,0) ’

and hence by (9.14) and (9.15)
min {u, (@, (D) +s, ¥), u(e,(H)+s, y)}
s+t d/(2a)
> {1+ Buos 06N o i)

w P15 2173100, (1) +5+10) "/ 2Dy)

p(1,0)
Since
S+t0 1 (pn(t) tO
(p,,(t)+s+r0+t0 >T for SZ—Z >—2—>r0,
and
p(1, 2143/C (g, (1) +5+15) 12D y) > p(1, 21*3/C20))  for yeQ,
we have

min {uy(@,(1)+5, ¥), w(@,(1)+s, ¥)}
> {1+ B,(@,()}0(s)374 2 p(1, 21+3/CZ0)[p(1, 0),
provided that . ;(£)>t,>2ry, s>¢,(1)/2 and y € Q. Hence, putting
Ay =0() (< 0),
Ay = {14 B,(@()}374=)p(1, 21+3/C0)/p(1, 0),
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we have
F(us(on()+5, y), w(@n()+5, y)) = F4(412,),

since F(4, p) is nondecreasing in 4 and u. Now we apply (F.4%) to F,(1,4,). In
case A; <A, we have from (a) of (F.4%)

F 4(A122) = cA3F 4(41)
= c[{l + B,(pa(1))}374/ =) p(1, 21*3/C0)[p(1, 0)]7F 4(6(s))
> cB,(@a())a,F 4(0(s))

with the same constant a, appearing in the proof of Step 1, while in case 1, >4,
we have from (b) of (F.4%)

F4(A145) = A3 F 4(Ay)
= c[{1+B,(())}3740)p(1, 21+3/C)/p(1, 0)]*7F 4(6(s))
> cB,(¢n(1))a, F 4(6(s)) -
Consequently in both cases we have
F(ux(@u()+5, ¥), u(@n(t)+5, ¥)) > ca B, (@,(1))"F 4(0(s))

under the conditions ¥, ,(f)>1t,>2r, s>¢,(t)/2 and yeQ, and hence from
(9.11) and (9.12) we have

(9.16)

u(t, x) — ug(t+7o, x)

(t—¢n(2))/2
> (T st 0 0) = 5, x =) Fs(0a© +5, ), w(@u0+5, y)dy

(t—@n(1))/2

> calB,.(wn(t))vg dsFA(o(s))Snp(t—mt) —s, x—y)dy.

on(t)/2

Since (t—¢@,(1))/2>s and /2> @,(f)>t,>2r, (by (9.10) and (9.13)), we have
t+tyg+rg>t— @) — s>+t + 198,
and hence, using (3.1) and (3.3), we have
.17 pt—oH)—s,x—y)
2 (6= @a®) = 5)=H@p(1, 2x(t — 9, (1) —5)~1/2)

x p(1, 2y (t— @, (1) —5)71/9)[p(1, 0)
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—1/(2a)
> B(t+1, +r0)“‘/(2°')p(1, 2x<————t+t°8+r° ) )

x p(1, 2y(t—@,(1) —s5)~1/22)[Bp(1, 0)
= uy(t+re, x)p(1, 2y (t— @, (1) —5)~1/C")[Bp(1, 0).

Making a change of variable, we have for s <(t—¢,(1))/2

018 [ p(1, 2= 0,00 =5)1C)dy

- a/(2a) _&.._yﬂza))d
(s +1o) S|y|$1p<1,2y<t—¢n(t)—s Y

> (541940 p(1, 293109 dy = (s +1)%0a;,
Iyl<1

where we have used

S+, t—(p,,(t)+2t0 ﬂg_
o, —5 = t—g,0 1t

Combining (9.16) with (9.17) and (9.18), we have

< 3.

u(t, x) — uo(t+ro, X)

t=on/2 F,(g(s))

B N un(t ds.
> ca a; B, (¢,(t)) uy(t+ro, x)g¢"(t)/2 0(s) §

Next, we estimate the integral in the above inequality. Using t—¢,(f)>1/2 (by
(9.10)) and (9.2), we have

(t-¢n(t))/2w _ 3 B
gtp..(t)/z A0(s) ds = o(t—,(1) — ¢(,(1)

< ofargtr) - (oo ) - )

> c(2”)"’{(p< 2,.t+1 ) - (P< 2nt+1 ) + %}

— 62—(1+¢r)n.

Therefore, recalling the relation A=c?a,a, and the definition of B,(f), we finally
obtain

u(t, x) — uo(t+ro, x) > A27C+"B (9, (1)) uo(t + 7o, X)

= A1+7+"'+V"*‘2‘(1+”)z;=°’”""‘{¢<2—nt+T) -3 (L>k}y"“uo(t+ro, x)
k=0 2
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provided V,.(f)>t,. Thus (3.10) is proved for n+1. This completes the
proof of Lemma 3.4.
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