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On some semilinear evolution equations with time-lag
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§ 1. Introduction

In the theory of combustion, the Cauchy problem is considered for the
equation

(1.1) r = ~+^(w)' />0' xeR>

with the initial condition

(1.2) ι/(0,x) =

Here /(μ) is a Lipschitz continuous function on [0, 1] with /(0)=/(1) = 0 and
/(μ)>0 for 0<μ<l. The solution u(t, x) of (1.1) and (1.2) corresponds to the

temperature and the function /(μ) is the speed of chemical reaction. KaneΓ

considered the asymptotic behavior of the solution of (1.1) and (1.2) in the follow-

ing cases I and II (cf. [9]).

Case I. /(O) =/(!) = 0, /(μ) > 0 for 0 < μ < 1, /'(O) > 0 and a(x) is nonnegative in
R, positive on some interval and dominated by 1 in R.

Case II. /(μ) = 0 for 0<μ<μ0<l,/(l) = 0,/(μ)>0 for μ 0<μ<l (μ0 is a posi-

tive constant), and φc) = l for |x|<^, a(x) = Q for \x\>ΰ>0.

In [9] the following results were obtained : In the case I, the "burning up" occurs,

that is, the solution u(t, x) of (1.1) with the initial condition (1.2) converges to 1

uniformly in x on each finite interval in R as ί->oo. In the case II there exist
positive numbers £1 and £2 such that for any initial value a(x) with ^<£ί the
"extinction of flame" occurs (that is, the solution u(t, x) of (1.1) with the initial

condition (1.2) converges to 0 uniformly in x as ί-»oo), and for any initial value

a(x) with ΰ>£2

 tne "burning up" occurs. In this paper we shall consider a simi-
d2

lar problem of "burning up" when -̂ -y in (1.1) is replaced by a fractional power
ux

of Laplacian as in (IJ; namely we shall find a sufficient condition on /(μ) under

which the "burning up" occurs for any nonnegative initial value α(x)^0. The

equations of type (1.1) occur also in population genetics, population growth

models, etc. (see A. Kolmogoroff-I. Petrovsky-N. Piscounoff [12] and D. G.
Aronson-H. F. Weinberger [1]). In these fields equations with time-lag are con-

sidered. (For example, in a herbivore population grazing on vegetation, the
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effect of overgrazing affects a later generation rather than that existing at that

time. For such models it is natural to hypothesize a time-lag in /(μ) correspond-
ing to the effect of population size on growth rate.) Also, in connection with some

control problems the parabolic equations with time-lag have been studied by
several authors. A. Inoue-T. Miyakawa-K. Yoshida [7] considered the initial

boundary value problem of the equation of type (1.1) with time-lag in a domain of

R*.

In this paper we are concerned with the asymptotic behavior of the positive
solution of the semilinear equation

(11) -^-«(ί, *) = -(-AYu(t, x)+F(u(t-r(t, x), x), u(t, *)), f>0, xeRd,

with the initial condition

(12) u(t, x) = a(t, x), - r0 < t < 0, x e Rd,

where r(ί, x) is a bounded continuous given function with 0<r(ί, x)^r0 and α
a given constant with 0<α< 1. Define p(t, x) by the Fourier transform

(1.3) p(t, x) = (2π)-df exp(-iz jc - ί|z|2α)dz, 0 < α < 1.
JRd

Then p(t, x) satisfies p(ί + s, ) = p(f, )*P(S> •) and is the fundamental solution
of

(1.4) = -(-ΔYu.

By a solution of (Ix) with the initial condition (I2) (abbreviated : a solution of (I))
we always mean a solution of the integral equation

ιι(ί, x) = Pta(09 x) + dsPt __sF(u(s - r(s, •), •), φ, •)) W, ί > 0,
(!') Jo

[ u(ί, x) = α(ί, x), - r0 < ί < 0, x e iίd,

where

(1.5) P,fl(0, x) = ( X/, x-yXO,
Jκd

We treat the following two cases; these are called the case F(λ, 1) = 0 and the
case F(λ, μ)>0 for >l>0, μ>0, for simplicity.

Case F(A, 1) = 0: The functions a(t, x) and F(A5 μ) satisfy the conditions (a.Γ)
and (F.l°).
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(a.l°) α(f, x) is a nonnegative, bounded and uniformly continuous function on
[-r0, 0] xRd with 0<α(f, x)<l and α(0, x)fέO.

(F.l°) F(λ, μ) is a nonnegative Lipschitz continuous function on [0, 1] x [0, 1]
with F(λ, 1) = 0 for λe[0, 1], F(λ, μ)>0 for (λ, μ)e(0, l]x(0, 1) and
nondecreasing in λ for each fixed μ.

Case F(λ, μ)>0 for A>0, μ>0: The functions a(t, x) and F(λ, μ) satisfy the
conditions (a.l) and (F.I),
(a.l) a(t, x) is a nonnegative, bounded and uniformly continuous function on

[-r0, 0] xR d with 0(0, x)^0.
(F.I) F(λ, μ) is a nonnegative locally Lipschitz continuous function on R+ x

jR+ = [0, oo)x [0, oo) with F(λ, μ)>0 for A>0, μ>0, and nondecreasing

in λ for each fixed μ.

In the case F(λ, 1) = 0, the equation (I) (namely, (Γ)) has a unique solution
w(f, x) with 0<w(ί, x)<l for ί>0 by virtue of Lemma 2.1 and Theorem 2.2.
We call such a solution the positive solution dominated by 1 of the equation (I)
and denote it by w(ί, x) or u(t, x; α, F; r) when we want to stress the initial value
α(ί, x), the nonlinear term F(λ, μ) and the time-lag r(ί, x). In the case F(λ, μ)
>0 for A>0, μ>0, by Lemma 2.1 and Theorem 2.2 the equation (I) has a unique
positive local solution. That is, there exist positive Tand w(ί, x) such that
(i) u(t, x) is defined in [0, T)χβd, strictly positive in (0, T)xKd, and satisfies

the integral equation (Γ), and

(ii) for any 7" < T, u(t, x) is bounded and continuous in [0, Γ'] x Rd.

Let TOO = ̂ oo(α> -f > r) be the supremum of all T satisfying the above conditions
(i) and (ii). In case T^ = oo, u(t, x) is a global solution of the equation (I), and in
the contrary case (T00<oo), u(t, x) is said to blow up in a finite time and T^ is

called the blowing-up time of the solution u(t, x). In general we have Γ^^oo,

and the existence and uniqueness theorems hold for t<T00, of course. Similarly
to the case F(λ, 1) = 0, such a solution is called simply the positive solution of (I)
and denoted by w(ί, x) or u(t, x; α, F\ r). In the case F(λ9 1) = 0, we say that the
positive solution u(t, x) dominated by 1 grows up to 1 as f->oo if w(f, x) converges
to 1 uniformly on each compact set K in Rd as ί->oo. In the case F(λ, μ)>0
for A>0, μ>0 we say that the positive global solution u(t, x) grows up to infinity
as f-»oo if for each positive constant M and each compact set K in Rd there exists

a positive time T<oo such that ί>Tand x e K imply u(t, x)>M.

Now our problems can be stated.

Find a (sufficient) condition on F for each of the following:

CaseF(λ, 1) = 0:
(A.l) Any positive solution of (I) dominated by 1 grows up to 1 as f-»oo.

Case F(λ, μ)>0for Λ>0, μ>0:
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(A.2) Any positive global solution of (I) grows up to infinity as ί-»oo.

(A.3) Any positive solution of (I) blows up in a finite time.

When r(f, x) == 0 (the case without time-lag), these problems were considered

by many authors. In this case, putting F(λ9 μ)=/(μ) and a(t, x) = φc), the equa-

tion (I) can be written as follows.

ί -jLu(t, x) = -(-A)«u(t, x) + /(ιι(f, x)), t > 0,
(HI) dt

(ιι(0, x) = α(x), xeRd.

Case /(I) = 0 (or F(λ, 1) = 0): When α = 1 (the Laplacian case), the problems

were considered by Ya. I. KaneΓ [9], N. Ikeda-Y. Kametaka (unpublished),
K. Masuda [13], K. Hayakawa [6] and K. Kobayashi-T. Sirao-H. Tanaka [11].
The time-lag case with α = 1 (the Laplacian case) was also treated by K. Kobayashi
[10]. In [11] and [10] considerably sharp sufficient conditions for (A.I) (as

well as (A.2) and (A.3)) were obtained. Our present results are generalizations of
the results of [11] and [10] to the time-lag case (I) with 0<α<l. The main
results in the case F(λ, 1) = 0 are the following (see § 5 and § 7).

THEOREM 5.1. Let F(λ, μ) satisfy (F.l°) and the following conditions.

Γδ 2+-%-
(F.3) \ Fd(λ)/λ d dλ = oo for some δ > 0,

Jo

where Fδ(λ) = mf {F(ξ, η): λ<ξ<δ, λ<η<δ] for 0<U<<5.

(F.4) There exist positive constants δ and c0 (< 1) such that

C0λ2 F//10 for 0 < λ1 < λ29 λι < c0, λ^λ2 < c0.

Then, for any initial value a(t, x) satisfying the condition (a.l°) and for any

nonnegative bounded continuous time-lag r(t, x), the positive solution u(t, x;
α, F\ r) of the equation (I) dominated by 1 grows up to 1 as t-+ao.

THEOREM^. Let F(λ, μ) be nondecreasing in μe [0, c'2~\ (for some positive
constant c2) with F(0, 0) = 0 satisfying (F.l°) and the following conditions.

(F.3«) (δFΔ(λ)/λ2+~<Γdλ< oo for some δ > 0, where FΔ(λ) = F(λ, λ).

(F.4') There exists a positive constant c'2 (< 1) such that

FA(^I) > c'2λ2FΔ(λ,) for 0 < λl < c'2, λ2 > 1, λ,λ2 < c'2.

1) In §7 this result is stated as Theorem 7.1 removing the condition F(λ, 1)=0.
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Then, for some small initial value a(t, x) satisfying (a.l°), the positive solution
u(t, x; a, F; r) of the equation (I) converges to 0 uniformly in x as f-»oo.

Casef(μ)>Q for μ>0 (or F(λ, μ)>0 for Λ>0, μ>0): When α=l (the

Laplacian case) and f(μ) = μl+β with β>0, the problems were considered by
H. Fujita [3], [4], K. Hayakawa [5] and K. Kobayashi-T. Sirao-H. Tanaka

[11] (with general/). When 0<α<l (the case of the fractional power of Lap-
lacian) and f(μ) = μl+β, there are works of M. Nagasawa-T. Sirao [14] and S.
Sugitani [15]. Our present results (case F(λ, μ)>0 for λ, μ>0) will generalize

these earlier results (especially, [11: Theorems 3.5 and 4.1] and [10: Theorem 3])

to the time-lag case with 0<α< 1. Namely, we shall obtain the following results

in §6 and §8.

THEOREM 6.1. Let F(λ, μ) satisfy the conditions (F.I), (F.3) and (F.4).

Then, for any initial value a(t, x) satisfying (a.l) and for any nonnegative

bounded continuous time-lag r(t, x), the positive global solution u(t, x; a, F; r)

of the equation (I), if it exists, grows up to infinity as ί-»oo.

THEOREM 8.1. Let F(λ, μ) satisfy the conditions of Theorem 6.1 and the

following condition.

(F.5) There exist positive constants λ0, μ0 and c3 such that

(a) F(λ0, μ2) > c3F(λ0, μx) for μ0 < μγ < μ2,

du

Then, for any initial value a(t, x) satisfying (a.l) and for any nonnegative

bounded continuous time-lag r(t, x), the positive solution u(t, x; a, F ; r) of the

equation (I) blows up in a finite time.

The author would like to express his sincere gratitude to Professor H. Tanaka

for his valuable advice and continuous encouragement.

§ 2. Comparison theorems

In this section we prepare some theorems of comparison type (Theorems 2.2,

2.2' and 2.5) for later use.

2.1. First we deal with the existence and uniqueness of solutions for the

initial value problem :

du = -(-Δ)«u + F(u(t-r(t, x), x), u(t, x)), t > 0,
(I) ' dt

u(t, x) = a(t, x), -r0 < ί < 0, x e Rd.
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Here α and r0 are positive constants with 0<α< 1 and r(f, x) is a continuous
function on [0, oo)x/?d with 0<r(ί, x)<r0. As stated in § 1, by a solution of
the equation (I) we mean a continuous solution of the corresponding integral

equation (Γ). The following lemma can be proved by a routine iteration method

and so is omitted.

LEMMA 2.1. Suppose that F(λ, μ) and a(t, x) satisfy the following condi-

tions:
(2.1) F(λ, μ) is a locally Lipschitz continuous function on RxR.
(2.2) a(t, x) is a bounded continuous function on [ — r0, 0]xRd.
Then, there exist u(t, x) = u(t9 x; a, F; r) and positive T^ — T^(a, F; r) (<oo)

satisfying the following conditions (i), (ii) and (iii).
( i ) u(t, x) is defined in [0, T00)xRd, bounded and continuous on [0, T~\xRd

for any T<T00.
(ii) u(t, x) satisfies the integral equation (l')for 0<ί<T00.

(iii) When T00<oo, u(t, x) can not be prolonged to a solution o f ( ΐ ) beyond T^.
Moreover such u(t9 x) and T^ are unique.

THEOREM 2.2. Suppose that F^λ, μ), i = l, 2, satisfy the condition (2.1)
and at least one of the functions F^λ, μ), i = !9 2, is nondecreasing in λ for each
fixed μ. Let at(t9 x), ΐ = l, 2, satisfy the following condition.

(2.3) a(t, x) is bounded and uniformly continuous function on [ — r0, 0] x Rd.

If F^>F2 and al>a2, then

u(t, x; α l 5 F t; r) > w(ί, x; α2, F2; r)

for 0<ί<Γ00(α1, Fii r) and xeRd.

For proving this theorem we prepare two lemmas. First, for any ε with
0<ε<r0, we consider the following auxiliary equation.

w = _(_Δγu + F(ιι(f-rβ(f, x), x), tι(ί, x)), t > 0,

u(t, x) = α(ί, x), - r0 < t < 0, x e K^

where rε(f, x) = r(ί, x) V ε ( = max(r(ί, x), ε)). This equation (Iε) has a unique
(local) solution w(ί, x; α, F; rε) by Lemma 2.1.

LEMMA 2.3. Lei F(A, μ) and a(t, x) satisfy the conditions (2.1) and (2.3),
respectively. Then we have

(i) lim TUa, F; rε) > TJa, F; r);
εTδ"

(ii) /or any 0<T<T00(a, F; r), w(ί, x; a, F; rε) converges to u(t, x; a, F; r)
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uniformly on [0, T] xRd as ε J, 0.

PROOF. Put u(t, x) = w(f, x; α, F; r) and uε(t, x) = u(t, x; a, F; rε).
Step 1. We prove the lemma in the case when F(λ, μ) is bounded and

Lipschitz continuous on RxR. In this case the equations (I) and (Iε) have
global solutions, that is, T^(a, F; r)=T00(α, F; rε) = oo, and hence (i) is obvious.
Since uε(t, x) satisfies the integral equation (Γ) with r(s, ) replaced by rε(s, ),
the Lipschitz continuity of F implies that

(2.4) |uβ(f, x) - ιι(f, x)|

liφ-r/s,.),-) - φ-r(v),OI + |ιφ, ) -
Jo

where L is the Lipschitz constant of F. Putting

ι?β(0= sup ||Mε(s,0-φ,

wε(t)= sup IKί^O-ufeOIL,
-ΓQ^ίl^ί2^ί

ί2-ίι^ε

we have

\u8(s-re(s, x), x) - w(s-φ, x), x)|

< \uε(s - rε(s, x), x) - u(s - rε(s, x), x)| + | u(s - rε(s, x), x) - 11(5 - r(s, x),

< ΌB(S) + wε(s),

and hence by (2.4)

vε(t) <

Therefore we have vε(t)<Lwε(ήte2Lt, ί>0. Since what we have to prove was
that tfε(0-»0 as ε J, 0, it is enough to prove that wε(0~»0 as ε I 0 for each fixed ί>0.

First, assuming 0<tl<t2<t and t2 — tί<ε we estimate \u(t2, x) — u(tl9 x)|; we
have

u(ί2, x) - u(tl9 x) = Ptί{Pt2-tla(Q9 ) - α(0,-)} W

s{Pt2_tίF(u(s-r(s, ),.)9 u(v)) - F(u(s - r(s, •), 0, tι(

= 1 + 11 + III.

It is easy to see that |IΠ|<Mε, where M= sup \F(λ, μ)\. Putting
λ,μeR
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w f i°=osupj|pχo,o-«(θ, )IL,

we have easily |I| < w°-»0 as ε j 0. The second term II can be estimated as follows.
Take an arbitrary positive constant h. Then, in the case t,<h we have |Π|<
2Mij < 2Mft, while in the other case (^ > ft)

Γtι-h Γti
II = (-)ds + (-)ds

Jo Jti-h

= II, + Π2.

Putting w* = sup{\\PδPhφ-Phφ\\00:Q<δ<ε and ||<p||oo<M}, we see easily that
w* converges to 0 as ε i 0 for each fixed /z>0, because {Phφ: H^IL^M} is an
equicontinuous family. Then, we have for ίx > h

111,1

- PJP^^φ- r(s, •), •), u(s, •))} (x)|

Jo

and |Π2| < 2M/ι. Therefore, if 0< ̂  < t2 < t and t2-ti< ε, we have

|w(ί2, x) - u(tl9 x)\ < w° + wjί + 2Mh + Mε.

In the case when — r0 < t x < 0, 0 < t2 < t and t2 — tί< ε, we have

\u(t2, x) - u(tl9 x)| < w° + sup ||α(0, 0 - α(ίls OIL + Mε5
-ε<ίι^0

and in the remaining case (— r0 < t, < t2 < 0, t2 — tι < ε) we have

|ιι(f2, x) - ιι(ίls x)| < sup ||fl(f2, ) - flCί^Olloo
0^f2-ίι^ε

Consequently we have, for any positive h,

wε(ί) < w° + wε

Λί + 2Mh + Mε

+ sup ||fl(0,.)-β(ίι, ) l l o o + SUP \\<*(t2, 0-φι, OIL,
-ε<fι<0 0^ί2-ίι^ε

and hence we obtain lim wε(ί) = 0.
ε l O

Step 2. Let F(λ, μ) be locally Lipschitz continuous on RxR. If 0<Γ
<T00(α, F; r), then there exists a positive constant M such that

\u(t, x; a, F; r)| < M for 0 < t < T, x

Let FM(λ, μ) be a bounded and Lipschitz continuous function on R x R which
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is equal to F(λ, μ) for |A|, |μ|<2M. Then by Step 1, for any T such that 0<T'
<T00(a, FM; r) (=00), u(t, x; a, FM; rε) converges to u(t, x; α, FM; r) uniformly

on [0, T'] xRd as ε I 0. Since u(t, x; α, FM; r) = n(f, x; 0, F; r) e [-M, M] on
[0, T] χjRd, there exists a positive constant ε0 such that |w(ί, x; α, FM; rε)|<2M
on [0, T] xRd, provided 0<ε<ε0. Therefore, w(f, x; α, FM; rε) = u(t, x; α, F;
rε) on [0, T]χjRd, provided 0<ε<ε0, and hence u(t, x; a, F; rε) converges to
w(ί, x; fl, F; r) uniformly on [0, T] xRd as ε I 0. Thus we have proved (i) and
(ii) of Lemma 2.3 for F(λ, μ) satisfying (2.1).

Next we consider the equation without time-lag :

,u), ί > 0 ,
(II)

ιι(0, x) = α(

where it is assumed that /(ί, x, μ) and α(x) satisfy the following conditions (2.5)

and (2.6), respectively.
(2.5) /(ί, x, μ) is defined and continuous in [0, oo) x Rd x JR, also for any

constants T>0 and M>0 (a)/(ί, x, μ) is bounded on [0, T] x Rd x [ - M,
M] and (b) there exists L = LΓjM>0 such that

, x, μO -/(ί, x, μ2)| < L|μι - μ2|

for 0 < ί < T, xeK d and IμJ, |μ2| < M.

(2.6) α(x) is a bounded continuous function in Rd.
As in the case of (I), by a solution of (II) we mean a continuous solution of the
corresponding integral equation. The existence of a unique (local) solution
w(ί, x) = w(f, x; α,/) of (II) is well-known. The following comparison lemma is

also well-known in case α= 1 (cf. [12]); the proof for the case 0<α< 1 is similar.

LEMMA 2.4. Let /f(ί, x, μ) and αf(x), i = l,2, satisfy the conditions (2.5)

and (2.6), respectively. ///ι>/2 αnd α^ί^, then u(t, x; a^f^>u(t, x, α2,/2)
/or 0<ί<T00(α1,/1) αnd xeJR d, w/zere T00(al9fί) is the blowing-up time of u(t,

PROOF OF THEOREM 2.2. For each ί = l, 2, let wj(ί, x) = w(ί, x; αί? F f; rε)

be the solution of the equation (Iε) with a and F replaced by at and Fi9 respec-
tively. By virtue of Lemma 2.3 it is sufficient to show that for any sufficiently

small ε > 0

ul(t, x) > ιιj(ί, x) for 0 < t < TΛ(al9 F, rε), x e Rd.

We assume here that F^A, μ) is nondecreasing in λ for each fixed μ and we shall

prove, by induction in π, that
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(2.7) u\(t, x) > ι*J(f, x) for -r0 < t < nε, x eRd, n = 0, 1, 2,... .

The case when F2(λ, μ) is nondecreasing in λ can be treated similarly. When

w = 0, (2.7) is valid since u[(t, x) = αf(ί, x) for -r0<ί<0. Assume that (2.7) is
true for n. Let nε<f<(π + l)ε. Since t — rε(t, x)<nε, the induction hypothesis

implies that

"K* - rε<Λ *)> *) ̂  w?0 ~ rε(Λ *)> )̂ for nε < ί < (n + l)ε, x e Rd.

Put /,(*, x, μ)=Fi(ui(t-rε(t, x)9 x), μ) for nε<ί<(n + l)ε and xeRd. Then we
have

Λ(ί, x, μ) > F^iiJίί-r.ίί, x), x), μ) > /2(f, x, μ).

Since wj(ί, x), ί = l, 2, satisfy the equation

- = -(-^)αw +/,(ί, x, 11), nε < ί <

sw(nε, x) = wj(nε, x),

an application of Lemma 2.4 yields

wKί, x) > u2

ε(t, x) for ns<t<

and hence

tiifo x) > uj(ί, x) for - r0 < t < (n + l)ε, x e Rd.

This completes the proof.

2.2. We consider the following equations :

du

Si
= -(-Λ)«ιι + F(κφ(ί, x), ιι(ί, x)), t > 0,

(!)

(i)
Xί, x) = α(ί, x), -r0 < ί < 0, xeR",

where u*(f, x) = min u(s, x) and u*(ί, x) = max u(s, x).

, u(t, x) = α(ί, x), - r 0 < f < 0 , xeRd,

-- -(-A)"u + F(u*(t, x), u(t, x)), ί > 0,

Writing down the integral equations corresponding to (I) and (I) and employing
the iteration method, we can prove the following lemma.

LEMMA 2.1'. Let F(λ, μ) and a(t, x) satisfy the conditions (2.1) and (2.2)
in Lemma 2.1, respectively. Then there exists a unique (locaϊ) solution, in the
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same sense as in Lemma 2.1, for each of the equations (I) and (ϊ).

The solutions of the equations (I) and (I) are denoted by u(t, x; a, F; r0)
and ΰ(t, x', a, F; r0), respectively; they are called the minimum solution and the
maximum solution; the corresponding blowing-up times (<oo) are denoted by
J^O, F; r0) and T^(a, F; r0), respectively.

For any β with 0<ε<r0, we consider the following auxiliary equations:

ί ΊF = -(-Δ">*u + Γ(M*Λ *)> "(*, *)), t > 0,
(L) dt

( u(t, x) = a(t, x), - r0 < t < 0, x

tι(ί, x) = α(ί, x), - r0 < ί < 0,

where

w(5, x),

w*(ί, x) = max u(s9 x) .

As in Lemma 2.1, under the conditions (2.1) and (2.2) there exists a unique

(local) solution for each of the equations (Iε) and (ϊε). We denote the solutions

of the equations (Iε) and (ϊε) by wε(ί, x; α, F; r0) and ΰε(t, x; α, F; r0), respectively.

The following lemma can be proved by a method similar to that of Lemma
2.3.

LEMMA 2.3'. Let F(λ, μ) and a(t, x) satisfy the conditions (2.1) and (2.3)
in Theorem 2.2. Then we have

( i ) ygiΠoίX F\ r0) > Tn(a9 F; r0);

(ii) lim Tfcία, F; r0) > ^(α, F; r0);
εTo"

(iii) /or any 0<T<Γ00(α, F; r0), ι/β(ί, x; α, F; r0) converges to u(t, x; Λ, F;

r0) uniformly on [0, T] χβd as ε 4 0;

(iv) /or αn^ 0<Γ< T^ίfl, F; r0), UB(t, x; α, F; r0) converges to U(t9 x; α, F; r0)
uniformly on [0, T] xR d as ε i 0.

Making use of Lemma 2.3' and Lemma 2.4, we can prove the following theo-

rem; the proof is quite similar to that of Theorem 2.2 and so is omitted.
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THEOREM 2. 2'. Suppose that F^λ, μ) and α t (ί, x), ί = l, 2, satisfy the
conditions (2.1) αnrf (2.3), respectively, and that at least one of the functions

Fi(λ, μ), ι = l, 2, is nondecr easing in λfor each fixed μ. If Fl>F2 and ai>a2,
then

(i) u(t, xι aί9 F t; r0) > u(t, x; a2, F2; r0) /or 0 < ί < 7 ,̂

(ii) S(ί, x; α1? F!; r0) > S(ί, x; α2, F2; r0) /or 0 < ί < T^,

where ΓGO = Γ00(α1, F I ; r0) and 7^=7^^ F I ; r0).

Now we can state the final main theorem of this section the proof can be
accomplished by making use of Lemmas 2.3' and 2.4 as in Theorem 2.2.

THEOREM 2.5. Let F(λ, μ) and a(t, x) satisfy the conditions (2.1) and (2.3),
respectively. Then we have

(i) u(t9 x; α, F; r0) < u(t, x; α, F; r) for Q < t < TJ,a, F; r),

(ii) ι/(ί, x; α, F; r) < ΰ(ί, x; α, F; r0) /or 0 < ί < T^Cα, F; r0),

w/iβre 0<r = r(ί, x)<r0.

§ 3. A sufficient condition for the growing-up of minimum solutions

We begin with some simple properties of the fundamental solution p(t, x)
of (1.4).

LEMMA 3.1. Let ί>0 and x, yeRd. Then we have the following properties:

(3.1) Xίs, x) = rd/<2β>p(s, r1/^^).

(3.2) p(t,x)<p(t, y) for \x\ > \y\ .

(3.3) p(ί, x- 30 > - rt, 2x)p(t, 2y) .

(3.4) // α(x) is a nonnegative continuous function on Rd not being identically
zero, then for each positive t we can find positive numbers β and ί0 such that
Pta(x)>βp(t0, x) for any xeRd, where the operator Pt is defined by (1.5).

PROOF. (3.1) follows immediately from the definition (1.3) of p(t, x) by
making a change of variable. Let θt be a one-sided stable process with index α
and define q(t, s)ds = P(θtεds)>Q, namely

Γ°°
\ e~λsq(t9 s)ds = exp (- tλ«) .
Jo
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Then p(t, x) can be written in the following form ([2]):

}ds for 0<α<J,

p(t, x) =
i / i v u \

for α = l,

and hence we see (3.2). Since \x — y\ < \2x\ V \2y\, we have by (3.2)

P(t, x ~ y) ^ p(t, 2x) p(t, 2y) p(ί, 2x) p(t, 2y)
X/,0) - X/,0) Λ p(t,0) - X/,0) ' p(t,0) '

where a Λ b (a V b) denotes min (a, b) (respectively max (a, bj). Finally we
show (3.4). By the assumption on a(x\ there exist ε>0 and a measurable subset
A of Rά with positive Lebesgue measure such that a(x)>ε on A. Using (3.3)
and (3.1) we have

p(t, x- y)> p^ Q) p(t, 2x)p(t, 2y)

= -^-ΰy2-dp(2-2«t, χ)p(t, 2y).

Therefore (3.4) follows from

Pta(x) = ( p(t, x-y)a(y)dy > e( p(t, x-y}dy
jRd JA

> {sp(t, or^-'f p(t, 2y)dy}p(2-2«t9 x).

The proof of the lemma is finished.

In the sequel, we assume that F(λ, μ) is a nonnegative locally Lipschitz
continuous function on R+ x/£+ = [0, oo)x [0, oo) and a(t, x) is a nonnegative,
bounded and uniformly continuous function on [ — r0, 0] x Rd such that α(0, x)

does not vanish identically, unless explicitly mentioned otherwise. We consider

the equation

-(~A)*U + F(u*(t, x), »(*, x», * > 0,
(I)

u(t, x) = α(ί, x\ - r0 < t < 0, x e Rd.

By virtue of Theorem 2.5 in the preceding section, if the solution u(t, x) of the
equation (I) grows up to infinity then the solution u(t, x) of the equation (I) with

the same initial value as u(t9 x) also grows up to infinity as f-»oo. Therefore, in
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this section, we seek a sufficient condition in order that the solution u(t, x) of the

equation (I) grows up to infinity as ί-*oo.

We put FA(λ) = F(λ, λ). Then our result is the following:

THEOREM 3.2. Assume that the function F(λ, μ) satisfies the following con-

ditions:
(F.I) F(λ, μ) is a nonnegative locally Lipschitz continuous function on R+

xR+ with F(λ, μ)>0 for λ>0, μ>0 and nondecreasing in λ for each

fixed μ.
(F.2) F(λ, μ) is nondecreasing in μfor each fixed λ.

(F.3*) (δFΔ(λ)/λ2+^dλ = oo for some δ > 0.
Jo

(F.4*) There exists a positive constant c (< 1) such that

!+-¥
(a) FA(λM > cλ2

 d FA(λJ for 0 < λ, < λ2, λ, < c,

2+^f-(b) FJ(A1A2) > cλ2

 d FΔ(λJ for 0< λ2 < λ, < c.

Then, for any initial value a(t, x) satisfying
(a.l) a(t, x) is a nonnegative, bounded and uniformly continuous function on

[-TO, 0] xRd with α(0, x)^0,
the positive minimum solution u(t, x; a, F\ r0) of the equation (I) blows up in a

finite time or grows up to infinity as

For proving the theorem we prepare two lemmas. We note that the mini-
mum solution u(t, x) = u(t, x; a, F; r0) satisfies the integral equation

u(t, x) = P(α(0, x) + \ dsPt-sF(u*(s, •), u(s, •))<», ί > 0,
Jo

u(t, x) = α(ί, x), -r0 < t < 0, x e JRd.

LEMMA 3.3. Suppose that a(t, x) is a nonnegative, bounded and continu-
ous function on [ — r0, Qi]xRd with 0(0, x)^0 αnJ F(λ, μ) is a nonnegative

locally Lipschitz continuous function on R+ xR+. Then, for any fixed time t^
later than r0, there exist positive numbers β and t0 such that

u(t± + s, x', a, F', r0) > βp(s4-ί0 +
 ro> *) f°r —r0<s<Q, xeRd.

PROOF. Since u(tl9 x) = u(tί, x; a, F; r0) is the solution of (I'), by the non-
negativity of F we have
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u(tι+s, x) > P,1+X0, x), -r0 < s < 0, xεRd.

By (3.4) in Lemma 3.1, there exist positive numbers β and t0 such that P f l__ r ofl(0, x)
>βp(t0, x), and hence we have

t0, x)

for any — r0<s<0 and x eRd, completing the proof.

For a fixed time ti (>r0) we put a(t, x) = u(tί + t,x)9 — r 0<f<0. Then by

the above lemma there exist positive constants β and tQ such that ά(t, x)>βp(t +

ίo + ro» *) = #(*, x), — r0<ί<0, and hence by making use of Theorem 2.2' we
have

u(t, x) = u(t-tl9 x; α, F; r0)

> u(t-tl9 x; a, F; r0), ί > f l β

Therefore, in order to prove the theorem it is enough to consider the case when

(3.5) fl(ί, x) = βp(t + ί0 + r0, x), - r0 < ί < 0, x e Rd.

Moreover by Theorem 2.2' it is also enough to prove the theorem for a smaller

initial value. Thus we may assume that the initial value is of the form (3.5) with

Q<β<c/p(t0,0), t0>2r0 where c is the constant appearing in (F.4*). Before

stating the next lemma we introduce some notations.

(3.6) 0(0 = βp(t + tθ9 0) = β(t + ίor
d/(2α)Xl, 0) ,

t| 3

w0(ί, x) = βp(t + t0, 2 2 αx),

r
=

J

t/2

o

β(ί/2)

^r)vθ| , n = 0, 1, 2,...,

Άo(0 = *, ^B+ι(0 = WΦ.(0), n = 0, 1, 2,... .

The following properties can be proved easily.

(3.7) φ(f) is a strictly increasing function and lim φ(t) = oo.

(3.8) ψn(t) = φ
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where we interprete that ZKo = 0 for n = 0.

(3.9) If ψn(t) > t09 then t > 2%.

In fact, (3.7) is immediate from the assumption (F.3*) since FΔ(λ) is positive for
A>0 and θ(t) 4 0 as 1 1 oo, and (3.8) is also trivial by the definition of ψn(t). We

show (3.9). Since \l/n(ί) = φ~l{φ(2~nt)- Σϊ=o 2"fe} > ί0 by (3.8), the monotonicity
of φ implies φ(2-nf)-Σfc=o2~ fe><K*o) and then 2~nt>t0, that is, t>2ntQ.

LEMMA 3.4. Suppose that F(λ, μ) satisfies the conditions (F.I), (F.2) and
(F.4*), and let a(t, x) = βp(t + t0 + r0, x) for — r0<ί<0 where β and t0 are posi-
tive constants with 0<β<c/p(t0, 0) and t0>2r0. Then we have

(3.10) u(t,x'9a9F;rQ)>{l + Bn(t)}u0(t+rQ,x) for \l/n(i)>tΌ, n > 0,

where

Bn(t) = ̂ ι+r+-+7-.2-("'>SΪ^*""-k-1.{φ(-|r) - Σ

. , 2α </
?=1+^-, σ = _,

is a positive constant.

This lemma will be proved in § 9, and here we proceed to the proof of the

theorem.

PROOF OF THEOREM 3.2. Let a(t, x) be given by (3.5) with 0<β<c/p(tθ9 0)
and ί0>2r0. Then (3.7) implies

provided the right hand side of the above inequality is positive. For the proof of
the theorem it is enough to show that u(t, x; α, F; r0) grows up to infinity assum-
ing that it does not blow up in a finite time. We may consider only the case A< 1
where A is the constant appearing in Lemma 3.4. We put

AQ = 2~(1+σ)Σ^=° f ey~k~1 < 00.

Making use of Lemma 3.4 and then the inequality

we have for ψn(t) > t0

2) ΣjfcΞj-0 for n=0.
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(3.11) u(t, x;a,F;r0)> Bn(t)u0(t + r0, x)

Γ) - 2)Y"u0(t + r0, x).

Let K be a compact subset of Rd and set

Γ= max {φ-^lA-vHi-VAo1 + 2), ψ-l(φ(t0) + 2)}.

Then we have, for t>2"T, n> 1,

(3.12) Ψn(t)>t0 and A^-^A^φf^ - 2J > 2.

By (3.9) the first inequality in the above implies t>2nt0, which combined with
ί0>2r0 again implies ί + ί0 + r0<2ί. Therefore, for 2n+1T>t>2nT, /ι>l, and
xeK,

(3.13) U0(t + r0, x) =

2« infp(l, T 2α(3ί0 + r0)
xeK

where ^^jST^/^^inf p(l, 21+3/(2α)(3ί0 + r0)-1/(2α)χ) > 0.

Finally we obtain by (3JL1), (3.12) and (3.13)

w(ί, x; α, F; r0)>y!12yn-ί("+2)d/(2α)> for 2n+1T>t>2"T, xeK,

which completes the proof of Theorem 3.2.

§ 4. Some results on the growing-up of minimum solutions

In this section we consider the equation (I), and prove the following com-
parison theorem, which implies that the local behavior of the function F near the
origin plays an important role for the asymptotic behavior of the solution u(t,x;

a, F; r0) of (I) as ί->oo.

THEOREM 4.1. Suppose that F(λ, μ) and F(λ, μ) satisfy the following con-

ditions:
( i ) F(λ9 μ) is a Lipschitz continuous function on [0, 1] x [0, 1] with F(λ, 1) = 0

for any λe[0, 1] and F(λ, μ)>0for Ae(0, 1] and μe(0, 1).
(ii) F(λ, μ) is a locally Lipschitz continuous function on R+ χβ+ = [0, oo)x

[0, oo) with F(λ, 0) = F(0, μ) = 0 and nondecreasing in μfor each fixed λ.
(iii) F(λ, μ) and F(λ, μ) are nondecreasing in λfor each fixed μ.
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(iv) lim inf ? > 0.
, μ)

Moreover, we assume that for any r0>0 and any initial value a(t, x) satisfying

(a.l) of Theorem 3.2 the solution w(ί, x) = #(ί, x; α, F; r0) 0/

(4.1)

eίf/zer W0ws up in a finite time or satisfies

(4.2) lim sup || δ(f, Oi l αo = <x>
ί-κx>

Then any positive solution u(t, x) of the equation (I) with the initial value a(t9 x)
satisfying (a.l) and 0<α(ί, x)<l grows up to 1 as t-+oo for any r0>0.

Fundamentally the proof of this theorem is similar to that of Theorem 3.3
of [11], but some changes and modifications in details are necessary. First we
prepare two lemmas, in which we assume that F(λ, μ) satisfies (ii) and (iii) of

Theorem 4.1.

LEMMA 4.2. //, for any r0>0, any positive solution u(t, x) o/(4.1) either
blows up in a finite time or satisfies

lim sup || w(ί, Oi l oo = °°>
r-»oo

then the same holds for any positive solution of

(4.3)

for any (5>0 and r0>0.

PROOF. Let uδ(t, x) be the solution of (4.3) with initial value α(ί, x). Then
uδ(t, x) satisfies

(4.4) uδ(δ~lt, δ-W lx) = ̂ (δ-tί, δ-"Wχ - y)a(0, y)dy

+ δ(* tds(p(δ-1t - s, δ-U^x - y)F( min uδ(τ, y)9 uδ(s9y))dy.
JO J s-ro^τ^s

Making a change of variables and using (3.1), we see that the right hand side of
(4.4) is equal to
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+ (tds(p(ί-s9x-y)F( mm uδ(τ,δ-^^y),uδ(δ-^s^l
JO J (s/δ)-ro^τ<,s/δ

where aδ(t, x) = a(δ~ίt9 5~1/(2α)x). Therefore, noting

min uδ(τ, δ-W^y) = min uδ(δ~lτ, δ~^2^y),
(s/δ)-r0^τ^s/δ s-δro<,τ<.s

we have

uδ(t, x) = u(δt, δW)χ; aδ9 F; <5r0),

which implies the statement of Lemma 4.2.

Next we introduce a class stf of nonnegative monotone radial functions :

j/ = {a e C(Rd) : a(x) > 0, φ 0; a(x) > a(y) for |x| < \y\] .

LEMMA 4.3. // a(t, x) is bounded continuous on [— r0, 0]χβd and

belongs to $0 for each —r0<t<0, then the solution u(t, x; a, F; r0) of the equa-
tion (4.1) with initial value a(t, x) belongs to ̂  for each 0<ί<Γ00(α, F; r0).

This lemma can be proved in a way similar to [11: Lemma 3.2] noting that
p(t, x) is a positive monotone decreasing function of |x| for each ί>0.

PROOF OF THEOREM 4.1. From what we have remarked immediately after

the proof of Lemma 3.3 in § 3, it is enough to prove that the solution u(t, x) of (I)
with a special initial value a(t, x) = /?p(ί + f 0 + r0, x), — r0<ί<0, grows up to 1

as ί-»oo. However, since by Theorem 2.2' it is also enough to deal with the case
of smaller initial value, we may consider only the case when the initial value a(t, x)
is continuous on [ — r0, 0] xRd and satisfies the following conditions.

(4.5) There exists a compact subset K0 of Rd such that α(ί, x) = 0 for x^KQ,
-r0<ί<0.

(4.6) α(ί, x)ejaf for each ίe[-r0, 0] and IH^ < 1.

Given such an initial value a(t, x), we take an arbitrary positive constant M so

that l>M>||α||00. By the assumptions (i) and (iv) we can take δ>Q so small
that F(λ, μ)>δF(λ, μ) for 0</l, μ<(l+M)/2. Lemma 4.2 together with the

assumption of Theorem 4.1 implies that the solution u(t, x; a, δF\ r0) of (4.3)

either blows up in a finite time or satisfies limsup \\u(t, •; a, δF\ r0)||oo =
f-»00

hence if we define Tδ by

Tδ = inf [t > 0: ||H(ί, ; a, δF ^lU > (l+M)/2),
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then Tδ<co. Moreover, it can be easily proved that lim Tδ=co. Now the rest
<5IO

of the proof is divided into three steps.
Step 1 is to prove that the inequality

(4.7) u(t, x; α, F; r0) > u(t, 0; α, δF; r0) - δM^ - M,\x\q^2^

holds for Q<tί<t<Tδ9 where M0 and M1 are positive constants. Let FA(λ) =
F(λ, λ) and M0 = FΔ((1+M)I2). Then 0<^(A, μ)<δM0 for 0<A, μ<(l+M)/
2. Since

w(ί, x; a, δF; r0) = κ(ίl9 x; ι>, <5F; r0), 0<t1<t<Tδ

holds with φ, x) = w(ί — ̂  + 5, x\ a, δF\ r0) for — r0<s<0, applying Theorem
2.2' to the equations (I) with nonlinear parts 0, <5F, <5M0 and the common
initial value t;(s, x\ we have

u(tί9 x; v, 0; r0) < u(t, x; a, δF; r0) < u(ti9 x; t?, (5M0; r0),

and hence for 0< t1 < t < Tδ

(4.8) P,χθ, x) < u(t, x; α, (5F; r0) < Ptlι<0, x) + ^Moί^

Putting x = 0 in the second inequality of (4.8) we have

(4.9) Ptlt<0, 0) > u(t, 0; α, ^F; r0) - δM0ί1? 0 < t, < t < Tδ.

On the other hand, by the property (3.2) we have for each t>0

-ρjr(t, x) < 0 for Xi > 0, 1 < i < d9

dp
-(ί, x) > 0 for χi < 0, 1 < i < d9

where x = (x1? x29 9 x<ι\ an(i hence for each fixed / (1< i<d)

dd c
Sxt }R*19

-jξ-fa, x - y)dy, - ( c-jξ-(tltx - y)dy)
Ωi oxi JΩi °Xi /

where y = (yl9 y2,..., yd)<=Rd, Ω~{yeRd: Λ >xJ, /° = (jι,..., ^-i, 0, yi+l9



On some semilinear evolution equations with time-lag 209

..., yd)eRd and dy(ί) = dyL "dyί-ldyi+1 "dyd. Making use of (3.1), we have

and hence

Therefore

, x) < ίΓ1/(2α)IKO,

(4.10) , 0)

«1

o

2 ) 1 / 2

where Mx =

PfXO, x) > u(t, 0; a, (5F; r0) -

and this together with the first inequality of (4.8) implies

(4.11) u(t, x; a, δF; r0) > ι/(ί, 0; α, OF; r0) -

. Combining (4.9) with (4.10) we have

- IxlίΓ1^2"^, 0 < t, < t < Tδ,

for 0<ί1<ί<T5. By the assumption F(λ, μ)>δF(λ, μ) for 0<A, μ<(l+M)/2,
Theorem 2.2' implies that u(t, x; α, F; r0)>w(ί, x; a, <5F; r0) for Q<t<Tδ, and

hence we obtain (4.7) noting (4.11).

Step 2. Let K be a compact subset of Rd such that K0 c 1C. We shall

prove that there exists a positive constant T(>2r0) such that

(4.12) u(t, x; a, F; r0) > M for T-2r0<t<T and xeK.

Since u(Tδ — t2, x', a, δF; r0), 0<ί2<^? belongs to ja/ as a function of x by

Lemma 4.3, we have
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u(Tδ - t2, 0; α, δF\ r0) > Pt2u(Tδ - ί2, 0; β, &F; r0)

i, O α, (5f;r0)

for 0< ί2 < 7i, using tne second inequality of (4.8) with t = Tδ and t1 = ί2. More-
over, since the definition of Tδ implies u(Tδ, 0; 0, <5F; r0) = (l + M)/2, we have

forO<ί2<Γ3

(4.13) u(Tδ - ί2ϊ 0; β, δ^; r0) > -

Combining (4.13) with (4.7) of Step 1, we have

(4.14) u(Tδ - /2, x; a, F; r0) > -

for 0<ί1<T5 — t2<Tδ. In the above inequality we can choose first large ίt and
then small (5>0 so that

-2r0,

(4.15)
- δM0tί - MJ^I/Γ1/^) > M forany_

From (4.14) and (4.15) we have for any 0<ί2<2r0

u(Tδ-t2, x α, F;r 0 )>M for 0 < ^ < Td

and therefore we obtain (4.12) with T—Tδ.
Step 3. For any fixed t with T- r0< ί< T we put

α,(s, x) = w(ί + s, x; α, F; r0), -r0 < s < 0,

w(s, x) = w(s, x; at9 F\ r0) = w(ί + s, x; α, F; r0), 5 > 0.

Since a(s, x)<M(xeX), α(s, x) = 0 (x^ .K) and T-2r0<ί + s<

(4.12) implies

αt(s, x) = u(t + s, x; α, F; r0) > M > α(s, x),

at(s9 x) > 0 = α(s, x), x^K,

for any — r0<s<0, and hence Theorem 2.2' and (4.12) imply that

u(t + s, x; α, F; r0) = w(s, x) > u(s, x; α, F; r0) > M,

for any x e K and T- 2r0 ̂  s < Γ, that is,

u(t, x; α, F; r0) > M,
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for any xeK and 2T—3r0<t<2T. Repeating this argument, we have

u(t, x; α, F; r0) > M,

for any xeK and nT~(/H-l)r0<ί<πΓ, and hence we find T*>0 such that

u(t, x; α, F; r0) > M,

for any xeK and ί>T* (for example, Γ* = (T—Ί-iV-Γ—Ίr0). This
VL ro J / L ro J

completes the proof of the theorem, since 0<w(f, x; a, F; r0)<l and M was
arbitrary under the condition ||α||00<M<l.

§5. Growing-up problem: The case F(λ, 1) = 0

In this section we consider the equations (I) and (I). Combining Theorem

3.2 with Theorem 4.1 and Theorem 2.5 we shall obtain the following results.

For δ > 0, we put

Fδ(λ) = inf {F({, η): λ < ξ < δ, λ < η < δ}, 0<λ<δ.

THEOREM 5.1. Suppose that the function F(λ, μ) satisfies the following
conditions.
(F.l°) F(λ, μ) is a nonnegative Lipschitz continuous function on [0, 1] x [0, 1]

with F(λ, 1) = 0 for any λe[0, 1] and F(λ, μ)>0 for (λ, μ)e(0, 1] x
(0, 1), and nondecreasing in λ for each fixed μ.

(F.3) (δFδ(λ)/λ2+^dλ = oo for some δ > 0.
Jo

(F.4) There exist positive constants δ and c0 (< 1) such that

1 + _2JL

F&M > c0λ2

 d F&J for 0<λί< λ29 λ, < c0, λ,λ2 < c0.

Then, for any initial value a(t, x) satisfying

(a.l°) α(ί, x) is a nonnegative, bounded and uniformly continuous function on
[-r0, 0] xRd with 0<fl(ί, x)<l and α(0, x)^0,

and for any nonnegative bounded continuous time-lag r(t, x) with 0<r(ί, x)<r0,

the positive solution u(t, x; α, F; r) o/ί/ie equation (I) dominated by 1 grows wp

ίo 1 as ί-»oo.

REMARK 5.2. Under the condition (F.Γ) (or (F.I)), Fδ(λ) is equal to

inf F(λ, η\ and moreover if F(λ, μ) is nondecreasing in μ for 0<μ<<5, then
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The theorem is the immediate consequence of Theorem 2.5 and the follow-
ing theorem.

THEOREM 5.3. Under the conditions (F.Γ), (F.3) and (F.4) of Theorem
5.1, for any r0>0 and any initial value a(t, x) satisfying (a.l°), the positive
solution u(t, x; a, F; r0) of the equation (I) grows up to 1 as ί-»oo.

This theorem follows immediately from the following lemma. Theorem 3.2
and Theorem 4.1.

LEMMA 5.4. For each function F(λ, μ) satisfying the conditions (F.l°),
(F.3) and (F.4) of Theorem 5.1 there exists a function F(λ, μ) satisfying the con-
ditions (F.I), (F.2), (F.3*), (F.4*) of Theorem 3.2 and (iv) of Theorem 4.1.

PROOF. In a way similar to Lemma 3.6 of [11], for the function Fδ(λ) we
can find a nondecreasing locally Lipschitz continuous function Fδ(λ) satisfying
the following conditions (i)~(iv).

( i ) Fδ(Q) = 0, Fδ(λ) > 0 for λ > 0.

(ii) (* Fδ(λ)lλ2+(2«/Vdλ = oo for some δ' > 0.
Jo

(iii) There exists a positive constant c (< 1) such that

Fδ(λ^λ2) > cλ^^l^F^λi), 0 < A! < A2, λ^ < c,

FδΨM > cλξ+WVFάλi), 0 < λ2 < λt < c.

(iv) lim inf Fδ(λ)/Fδ(λ) > 0.

Then, F(λ, μ) = Fδ(λ/\μ) has the desired properties.

Next we consider the following equation without time-lag.

du _ f ,λα

(III) ' dί
ί>0,

w(0, x) = φc), xeRd.

Then we have the next theorem in a way similar to the case with time-lag. In this
case we can replace the conditions (F.3) and (F.4) by (f.3) and (f.4) which are
slightly weaker.

THEOREM 5.5. Suppose that f(μ) satisfies the following conditions:

(f.l°) /(μ) is a Lipschitz continuous function on [0, 1] wiί/ί/(l) = 0 and /(μ)>0
for 0<μ<l.
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(f.3) (δf(μ)/μ2+ d dμ= oo for some δ > 0.
Jo

(f.4) There exists a positive constant cl (< 1) such that

_
d /GO for 0<μί< μ2, μ± < cί9 μίμ2 < CL.

Then, for any continuous initial value a(x) with 0<0(x)<l and α(x)^0, the
solution u(t, x; α, /) of the equation (III) grows up to 1 as t->co.

§ 6. Growing-up problem: The case F(λ, μ) > 0 for λ > 0, μ > 0

This case can be treated by modifying the results of the preceding section.

THEOREM 6.1. Suppose that the function F(λ, μ) satisfies the conditions
(F.I) of Theorem 3.2 and (F.3), (F.4) of Theorem 5.1. Then, for any initial value
a(t, x) satisfying (a.l) of Theorem 3.2, for any r0 >0 and for any bounded continu-
ous time-lag r(ί, x) with 0<r(ί, x)<r0, the solutions u(t, x; α, F; r) 0/ f/ze
equation (I) and w(ί, x; a, F; r0) 0/ (I) ί?/0w wp in a finite time or grow up to
infinity as ί->oo.

PROOF. As in § 5, by virtue of Theorem 2.5 it is enough to prove this theorem

for the solution u(i, x; a, F; r0) of (I). We assume that w(ί, x; a, F\ r0) is a
global solution of (I). Let gn(μ), n>l, be Lipschitz continuous functions on
[0, n] satisfying the following conditions:

(i) gn(μ) = l for 0 < μ < n / 2 .

(ii) 0 < gn(μ) < 1 for n/2 < μ < n.

(iiϊ) gn(n) = Q.

Since Fπ(λ, μ) = F(λ9 μ)gn(μ) satisfies the conditions (F.3), (F.4) and the condition

(F.Γ) FM(A, μ) is a nonnegative Lipschitz continuous function on [0, ή] x [0, n]
with FM(A, n) = 0 for Λe[0, n] and Fn(A, μ)>0 for (A, μ)e(0, n] x(0, n)
and nondecreasing in λ for each fixed μ.

Therefore by Theorem 5.3 (with an obvious modification), u(t, x; a, Fn; r0) grows
up to n as ί->oo. On the other hand, since F(λ, μ)>Fn(λ, μ), n>l, Theorem 2.2'

implies

w(ί, x; α, F; r0) > u(t, x; α, Fn; r0) for n > 1,

from which the theorem follows.

In case without time-lag, we have the following result in a similar way.
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THEOREM 6.2. Letf(μ) be a locally Lipschitz continuous function on [0, oo)

with /(μ)>0 for μ>0 and satisfy the conditions (f.3) and (f.4) of Theorem 5.5.
Then for any nonnegative bounded continuous initial value a(x) with a(x)φQ

the solution u(t, x; a,f) of (III) blows up in a finite time or grows up to infinity
as t-*co.

§ 7. Condition for non growing-up

In this section we consider the equations (I) and (I), and seek a sufficient

condition in order that some positive solutions of these equations die out as

ί-»oo. Our result is

THEOREM 7.1. Suppose that the function F(λ, μ) satisfies the following con-
ditions :

(F.la) F(λ, μ) is a nonnegative locally Lipschitz continuous function on R+ x
R+ withF(Q9 0) = 0.

(F.lb) There exists a positive constant c2 (<1) such that F(λ, μ) is nondecreas-
ing in λ and μfor 0<A, μ<c2.

2α

(F.3*) (*FΔ(λ)lλ2+ d dλ < oo for some δ > 0.
Jo

(F.4') There exists a positive constant c'2 (< 1) such that

^CM2) ̂
 c2^2FA(^i) for 0 < λ1 < c'2, λ2 > 1, λ^2 < c'2.

Then, for some small initial value α(ί, x) satisfying the condition (a. 1) of

Theorem 3.2, the positive solutions u(t, x; α, F; r) of the equation (I) and

ΰ(t, x; a, F; r0) of (I) converge to 0 uniformly in x as f-»oo.

We may assume that the constants c2 and c2 are the same by taking the

smaller one. By Theorem 2.5 we may consider only the equation (ϊ). Moreover

it is sufficient to prove the theorem for (I) replacing the local conditions (F.lb),
(F.4') by the following global conditions.
(F.lb') F(λ, μ) is nondecreasing in λ and μ on R+ xR+.

(FA") There exists a positive constant c2 (< 1) such that

for λ2 > 1, λi > 0.

Let /z(s, x) = P5α(0, x) for s>0 and /ι(s, x) = α(s, x) for — r0<s<0 and set

b = sup /ι*(ί, x)IPta(Q, x), Λ*(ί, x) = max h(s, x) .
feQ,xeRd t-rQ<,s£t

Assuming fc<oo, we consider the equation
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dυ FΔ(bk(t)v(t))
(7.1)

0(0) = 1,

where fc(ί)=||Ptα(0? ) l l oo

LEMMA 7.2. Suppose that F(λ, μ) satisfies the conditions (F.la), (F.lb'),
(FA") and a(t, x) satisfies the condition (a.l) of Theorem 3.2, and let v(t) be the
solution of the above equation (7.1). Then, we have

u(t, x a, F; r0) < φ)P,α(0, x)

whenever t ( ) exists till time t.

This lemma corresponds to Lemma 5.2 of [11] and the proof is similar, as
sketched here. We put

»o(0 = 1,

vn(ί) = 1 + -^-(' FA(bk(S)vn^(s))lk(s)dS, n = 1, 2 .....
C2 JO

«0(f, x) = P(α(0, x), ί > 0,

tι0(f, *) = β(f, x), -r0</^0,

Mn(ί, x) = Prα(0, x) + ΓdsPr_.F(tt _1(s, •), "„_ ,(s, •)) W, ί > 0,
Jo

un(ί, x) = α(ί, x), -r0 < ί < 0, n = 1, 2,... .

Then we can prove by induction that

un(t, x) < ι;π(ί)PXO, x) for ί>0, n = 0, 1, 2,....

The conclusion of the lemma follows since vn(t)-*v(t) and un(t, x)-+U(t, x; a, F;
r0) as n->oo whenever v( ) exists till time t.

PROOF OF THEOREM 7.1. Let 0</?<1, t0>r0 and α(ί, x) = βp(t + t0, x),
— r0 < ί < 0. Then we have

ί k(t) = ||/ίXί + ίo, OIL = βp(t+to> 0), ί > 0,

Now we consider the solution y(ί) of the equation (7.1) and the solution w(ί) of

(7.2) - - ( ί ) =
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Using the condition (F.4") to FA(bβ-^2k(t)) with λ^bkφw and λ2 =
>1 (for l<w<β~V2), we have

for 1 < w < β-

v(i) < w(0 whenever w(ί) < β~1/2.

can be solved explicitly in fact we have

< exp

which converges to 1 uniformly in t as ί0-»oo, because k(Q) = βp(t0, 0)-»0 as ί0^oo.
Therefore w(t)<β~1/2 for all t if t0 is sufficiently large, and hence v(f) is bounded.
Thus ΰ(t, x; α, F; r0)<t;(OΛfl(0, x)->0 as ί->oo.

EXAMPLE. If F(λ9 μ) is nondecreasing in λ and μ for small λ>Q and μ>0,
then Fδ(λ) = FA(λ) = F(λ9 λ) for smaller <5>0. We consider the case when FΔ(λ)

^(λ) =A1+"ί"{log -f - log(2) j- log^-D ̂  - (log(π) ̂

near the origin, F(λ, μ) is smooth on [0, 1] x [0, 1], positive in (0, l]x(0, 1),
nondecreasing in λe[0, 1] for each fixed μ(0<μ<l), nondecreasing in μ (for
small μ>0) for each fixed λ (0<1<1), and F(λ, 1) = 0 for 0<A<1, where σ>0,
n > 1 and log(fe) μ = log log- -log μ (/c-times). (For example F(λ, μ) = λξμη

Uog— ) σ, where ξ>0, η>0, σ>0and ξ + ?/ = l+(2α/d).)

(a) If 0< σ < 1, then we can prove that F(A, μ) satisfies the conditions (F.l°),
(F.3) and (F.4) of Theorem 5.1, and hence any positive solution of (I) with the
initial value α(ί, x) satisfying (a.l°) grows up to 1 as f-»oo.

(b) If σ>l, then we can prove that F(λ, μ) satisfies the conditions (F.la),
(F.lb), (F.3*) and (F.4') of Theorem 7.1. Therefore some positive solution of
(I) dominated by 1 converges to 0 uniformly in x as ί->oo (cf. [11]).

§8. Remarks to the blowing-up problem

In Theorem 6.1 we have found a sufficient condition under which the solu-
tion u(t, x; a, FI r) of the equation (I) either blows up in a finite time or grows
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up to infinity as ί-»oo. Here we seek a sufficient condition under which the so-
lution u(t, x; α, F; r) of (I) blows up in a finite time. In this problem, of course,
the behavior of F(λ, μ) near μ= oo for large λ plays an important role.

THEOREM 8.1. Suppose that the function F(λ, μ) satisfies the conditions of
Theorem 6.1 and the following (F.5).
(F.5) There exist positive constants λ0, μ0 and c3 such that

(a) F(λθ9 μ2) > c3F(λθ9 μj for

dμΓα

(b) J < 00.

Then, for any initial value a(t, x) satisfying (a.l) of Theorem 3.2 and for any

r0>0, the solution u(t, x; a, F; r0) of(ΐ) (and hence, for any continuous time-lag
r(ί, x) with 0<r(ί, x)<r0, the solution u(t, x; a, F; r) of(lj) blows up in a finite

time.

PROOF. Assuming that w(f, x) = w(ί, x; α, F; r0) does not blow up in a finite
time, we derive a contradiction. By Theorem 6.1 w(ί, x) grows up to infinity as
ί-»oo and hence for any M> A0 there exists tM> r0 such that w(ί, x)> M for |x| < 1

and t>tM — r0. We put

pM(ί) = min u(t + tM9 x) > M, ί > 0,
|x|<l

η = inf min \ p(t, x — y)dy > 0.

Now u(t, x) satisfies the following equation

(8.1) u(t + tM, x) = Ptu(tM9 x) + {* dsPt_sF(u*(s + tM, ), u(s + tM, •)) (x) ,
Jo

for any 0< t < oo, and then

pM(f) > inf min Ptu(tM, x) > ?7pM(0) > ηM > μ0, 0 < ί < 1,
o^ί^i μ|^ι

provided M>μ0/η. Therefore by the assumption (a) of (F.5) we have

pM(t) >ηM +

for 0< ί< 1 and M>μ0/η. Let φ(f) be the solution of

(8.2) φ(t) = ηM + c2 F(λθ9 φ(s))ds.
Jo

Then we have, for 0< t < 1,
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(8.3) PM(O><KO

In fact, (8.3) can be proved as follows. Let φε(i) be the solution of (8.2) with the

first term ηM (in the right hand side) replaced by ηM-ε (>μ0) First we show

that pM(t)^9ε(f) Assume the contrary and define

Then we have

(8.4) 0 = pM(τ) - φε(τ) > ε + c3ίyΓ{F(A0, pM(s)) - c3F(λ0, φε(s))}ds > ε,
Jo

since the integrand in the above is nonnegative by (a) of (F.5). (8.4) is absurd.
Since 0<ε (<ηM — μ0) is arbitrary, we have (8.3). On the other hand, since φ(i)
satisfies the equation

(*) dμ __
, μ) -

the assumption (b) of (F.5) implies φ(l) = oo provided M is large enough. There-
fore pM(l)=oo, which contradicts the assumption that u(t, x) does not blow up
in a finite time.

In the case without time-lag we have the following result.

THEOREM 8.2. Suppose that the function /(μ) satisfies the conditions of
Theorem 6.2 and the following (f.5).
(f.5) There exist positive constants μ0 and c3 such that

j\μ2) ^ ^sj(μι) jor μo ^ μi ^ μ2

Then, for any nonnegative bounded continuous initial value a(x) (^0), the
solution u(t, xι #,/) o f ( l l ΐ ) blows up in a finite time if and only if

(8.5)

PROOF. We prove "only if" part. Suppose that u(t, x) = u(t, x; a,f)

blows up at time T^ < oo, take t0< T^ so that \\u(t, ) l l o o >μo for any t> t0 and set
α0=||w(ί0, ) l l oo The assumption (f.5) implies the existence of a constant c4>0
such that

(8.6) /(μ2) > c4/(μx) for 0 < μl < μ2, μ0 ̂  μ2.

Since, u(t + ί0, x) = Ptu(tθ9 x) + \' dsPt-sf(u(s + ί0, •)) (x), t<Tao- ί0, an application

of (8.6) yields
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«(ί+ίo» )IL £ β C4 JO

Let φ(f) be the solution of the equation

φ(f) = 00 +

Then || tt(f + f 0» Oil oo^φCO for *<*«> (<T00-ί0<oo), where t^ is the blowing-up
time of φ(t). Since <p(f) satisfies the equation

(>(')
L

the integral of left hand side of (8.5) is finite. This completes the proof of the
lemma.

REMARK 8.3. As in Theorem 3.2 we can prove the following fact. Any
positive solution of (III) either blows up in a finite time or grows up to infinity
as f-»oo, if /(μ) satisfies the following conditions.
(f.l) /(μ) is a nonnegative locally Lipschitz continuous function on R+ = [0,

oo) with/(μ)>0 for μ>0.
(f.2) /(μ) is nondecreasing.

(f.3) The same as in Theorem 5.5 in § 5.
(f.4*) There exists a positive constant c (< 1) such that

(a) /(μιμ2) > cμ*2

+<2*»f(μj for 0 < μ, < μ2, μ± < c,

(b) f(μ,μ2) > ̂ i+(2α/d)/(μι) for 0 < μ2 < μ, < c.

However, this fact combined with Theorem 8.2 implies that only the blowing-up
Γ°°case occurs, because \ /(μ)~1Jμ<oo follows from (a) of (f.4*). For the case

α = l, see Theorem 2.1 of [11].

§ 9. Proof of Lemma 3.4

In this section we prove Lemma 3.4 stated in § 3. We adopt the notations of

§ 3. Especially, we must recall the notations of (3.6) and the properties (3.7),

(3.8) and (3.9). In addition, we must notice that the followings hold.

(9.1) ψn(t) > t0 implies φn-Jt) > 2"-%, n = 1, 2,... .

(9.2) For any constants κ> 1 and f >s>0, we have

φ(κt) - φ(κs) > cκ~σ{φ(f) - φ(s)}, σ = d/α.
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In fact, (9.1) is immediate from (3.9), that is, ιAπ(0==ίAn-ι(φ«-ι(0)>ίo implies
1ί0. (9.2) is proved as follows. By the definition of φ(t), we have

rκt/2 F Λ ( θ ( τ } }
(9.3) φ(κt) - φ(κs) = \ of\ dτ

Jκs/2 V\τ)

-κΓJs,

FΛ(θ(κξ» dξ

s/2

On the other hand, by the monotonicity of Fj, we have

FΛ(θ(κξ)) = FΛ(β(κξ + t0Γ
d/(2*>p(l, 0)) > FΛ(

Here we can apply the assumption (FA*) in Theorem 3.2 to FA(κ~d/(2x)θ(ξ)) =
FJ(λ1A2) with λ1 = θ(ξ) and λ2 = κ~d/(2t*~> because we have assumed that β is so

small that θ(ξ)<c by 0<β<c/p(t0,0). In case l t<A 2

 we nave from (a) of
(F.4*)

:> cK-i-

while in case λί > λ2 we have from (b) of (F.4*)

Therefore, in both cases we have

and hence, noting θ(κξ)<θ(ξ), we obtain from (9.3)

= cκ-σ{φ(i) - φ(s)}9 σ = rf/α.

We now proceed to the proof of Lemma 3.4.

We shall prove (3.10) by induction in n.

Step 1. We consider the case n = 0. Assume that ^0(ί) = ί > ί0 > 2ro in
this step. First we note that u(t, x) = u(t, x; α, F; r0) satisfies the integral equa-
tion



On some semilinear evolution equations with time-lag 221

«(ί, x) = P,tf(0, x) + \ ds\p(t-s, x-y)F(u*(s, y), u(s, yj)dy, t > 0,

w(ί, x) = α(f , x), - r0 < f < 0, x

where α(ί, x) is given by (3.5) and

w*0, )>) = min M(T, 3;) .
s— ro^τ^s

We note that by (3.2)

(9.4)

, x).

Let 0<s<ί. We first estimate u(τ, x) for s — r0<τ<s. By the nonnegativίty of
F we have

f Ξ>Ptα(0, y) = βp(τ + t0 + r0, y), τ > 0,
«(τ, >)

I = α(τ, y) = Mτ + ίo + 'Ό. Λ -r0 < τ < 0.

Using (3.1) and then (3.2), we have for s — r0<τ<s

u(τ,y) >

> 3-"/^u0(s, y),

where we have used that (τ + 10 + r0)/(s + ί0) < (ί0 + r0)/t0 < 3 for τ<s and ί0>2r0.
Hence

min {«*(s, y), u(s, y)} > 3-<"<2« >u0(s, y).

Therefore, by the monotonicity of FΔ, we have from (I') and (9.4)

(9.5) u(t, x) > u0(t + r0, x) + ds Xί - s, x - y)FA(3-d^u0(s, yj)dy.

Next, let us assume that yeΩ = {\y\<(s + t0)
l^2x>}. Then we have by (3.2)

«o(s, y) = fl(s)Xl, (s + ί0)-1/(2«)21+3/(2.)y)/p(i, 0)

Now we apply (F.4*) to F4(θ(s) 3-d/<2«>Xl, 21+3/(2«))/χi, 0)) = FJ(A1A2) with
and l2 = 3-<J/(2α)χi, 21+3/(2«))/p(l, 0)<1. Then we have, for yeΩ,
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(9.6) ^(3-'/<2*>u0(s, y)) > FΔ(λ,λ2}

> min {cλl cλ^

where ̂  = {3-<l/(2ot)p(l, 21+3'<2">)/χi, 0)}1+)' >0 and 7 = 1 +(2α/d). On the other
hand by (3.1) and (3.3) we have

Xί-s, x-y) > XI, OrKί-sr'/ί2')^!, 2x(ί-s)-1/<2«))χi,

and therefore from (9.5) and (9.6) we obtain

(9.7) u(t,x)-u0(t + r0,x)

> {'ds( Kί-s, x-j;)F/3-"/(2')Mo(s, y)}dy
Jo JΩ

Let 0 < s < ί/2. Since we have assumed that ί > ί0 > 2r0, we have

ί + t0 + r0 > t - s > (t + t0 + r0)/8,

s+t0 t + 2t0

~ϊ^~ < ~~t < 3>

Hence we have, using (3.1) and (3.2),

(9.8) 0(f-s)-'/<

0, x),
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and

0.

Therefore we obtain, from (9.7), (9.8) and (9.9), for \l/0(i)==t>t0,

rt/2
u(t9 x) - u0(t + r09 x) > caίa2u0(t + rθ9 x)\ FA(θ(s))/θ(s)ds

Jo

θ9 x)φ(t)

> Aφ(i)u0(t + rθ9x)9

where A = c2aίa2>0.

Step 2. We shall prove that (3.10) holds also for n + 1 under the assumption
that (3.10) holds for n. By the definition of φn(t) we have

and hence by the monotonicity of φ

(9.10) %(0<y

Now we note that u(t, x) = u(t — φn(t), x; at, F; r0) where at(s, x), — r0<s<0, is
equal to u(φn(t) + 5, x) in case φn(t) + s > 0 and to a(φn(t) + s, x) in case — r0 < φn(f)
+ s<0, and so u(t9 x) satisfies the following integral equation:

(9'Π)

u(t, x) = Pt-Ψn«)U(
t-φn(t) Γ

dsy(t-φn(ί)-s, x-y)

, t > φn(ί),

, u(t9 x) = at(t-φΛ(t), x)9 φn(t) - r0 < t < φn(ί).

Since u(t9 x) is also the solution of the integral equation (Γ), we have u(φn(t)9 x)
>PφMa(Q9 x\ and hence by (9.4)

l x) > Pta(Q9 x) θ9 x) .(9.12)

Assume that

Then (3.9) and (9.1) imply that

(9.13) t > 2n+1t0 and φn(ί) > 2nt0.

Assuming s>φn(t)/29 we shall estimate F(u*(φu(ί) + s, y)9 u(φn(t) + s9 y)) in (9.11).
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First we estimate u*(φn(t) + s, y) = min u{φn(f) + τ, y) and u(ψn(i) 4- s, y). Since
s— ro^τ^s

s>φn(t)/2>tQ/2>rQ (by (9.13)), we have by the monotonicity of \l/n(t)

Wφι.(0 + Ό > (̂φ.CO) = ^»+ι(0 > *o for (° < )5~ro < τ < 5.

Therefore the induction hypothesis implies that, for (0<)s — r0<τ<s,

(9.14) «(φ»(0 + τ, y) > {l+Bn(φn(t) + τ)}u0(φn(t) + τ + r0, y)

because Bn(t) is increasing in t. Now we see that by (3.1) and (3.2), for any τ
with s — r0 < τ < s,

(9.15) Mo(%(ί) + τ + r0, y) =

Y/(2α)

s+t° /(2o!) />(U

and hence by (9.14) and (9.15)

min {M*(φ«(0 + s, j'), u(φn(t) + s, y)}

v XI.

Since

and

XI, 21+3/(2«)(<pn(0 + s + ί0)"1/(201^) > XL 21+3/(2«>) for y eΩ,

we have

min {u*(φn(i) + s, y), u(φn(t)+s, y)}

provided that ψn+ x(ί) > I0 > 2r0, s > φn(f)β and y e Ω. Hence, putting

ι, 0),
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we have

s, y), u(φn(t) + s, y))

since F(λ, μ) is nondecreasing in λ and μ. Now we apply (F.4*) to FAty^2). In
case λί <λ2 we have from (a) of (F.4*)

with the same constant 04 appearing in the proof of Step 1, while in case λ^

we have from (b) of (F.4*)

Consequently in both cases we have

s, y), u(φn(t) + s, y))

under the conditions ψn+1(f)>t0>2r0, s>φn(i)/2 and yeΩ, and hence from
(9.11) and (9.12) we have

(9.16)

u(t, x) - u0(t + r0, x)

C(t-φn(t))l2 (

ϊ> \ ds\p(t-φn(t)-s, x-y)F(ut(q>.(t) + 3, y), u(φn(t)+s, y))dy
Jφn(t)l2 J

Γ(t-φn(t))l2 r
> CaίBn(φn(t))Λ dsFΔ(θ(s))\ p(t-φn(t)-s, x-y)dy,

Jφn(.t)/2 JΩ

Since (t-φn(ty)/2>s and tβ>φn(i)>t0>2r0 (by (9.10) and (9.13)), we have

t + to + r0 > t - φn(i) - s > (t + t0 + r0)/8,

and hence, using (3.1) and (3.3), we have

(9.17) p(t-φn(t)-S,x-y)

, 0)
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l, 0)

l, 0).

Making a change of variable, we have for s<(ί-φn(ί))/2

(9.18)

where we have used

s + t0 t-φn(t)+2t0 iίn
ί-φ/I(0-^ - /-φw(0 < 1 + t <J

Combining (9.16) with (9.17) and (9.18), we have

u(t, x) - w0(ί + r0, x)

f(ί-<Pn(f))/2 FΛ(Q(S}}

> ca,a2Bn(φn(t)γuQ(t + r^ x)\ A^s)

}} ds.

Next, we estimate the integral in the above inequality. Using t-φn(t)>t/2 (by
(9.10)) and (9.2), we have

Therefore, recalling the relation A = c2aίa2 and the definition of Bn(f)9 we finally
obtain

u(t, x) - U0(t + r0, x) > A2-ίί+σ)nBn(φn(t)γu0(t + rQ, x)
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provided ιAΛ+ι(0>'o Thus (3.10) is proved for π + 1. This completes the
proof of Lemma 3.4.
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