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1. Let p(L), ¢(L) and e(L) denote respectively the Hirsch-Plotkin radical,
the sets of left Engel and bounded left Engel elements of a Lie algebra L over a
field . The classes of abelian, nilpotent and solvable Lie algebras over T are
denoted respectively by 2, 9% and . If X is a class of Lie algebras, then LX
and EX denote respectively the classes of locally X-algebras and algebras with
ascending X-series.

Simonjan [3] has shown that the class of Gruenberg algebras equals E% n LN
over a field of characteristic 0. Amayo and Stewart have asked the following
among ‘‘Some open questions” in [1]:

Question 40. Over a field of characteristic p>0, suppose that Le£An
LN. s it true that xe L implies {x) asc L ?

In this note we shall give an affirmative answer to this question. This will
be obtained as a collorary of the following theorem, which is proved over a field
of characteristic 0 in [1, Theorem 16.4.2].

THEOREM 1. Let L be a Lie algebra over a field T of arbitrary characteristic.
(@) If Let, then p(L) < ¢(L) = {xe L|<{x)ascL}.
(b) If Leg¥, then e(L) = {xeL|<{x)siL}.

CoROLLARY Let L be a Lie algebra over a field t of arbitrary character-
istic belonging to EUNLMR. Then x e L implies {x) asc L.

We employ notations and terminology in [1]. All Lie algebras are not
necessarily finite-dimensional over a field T of arbitrary characteristic unless
otherwise specified.

2. We show the following lemma on ascending series of a Lie algebra, which
is an extension of Lemma 16 in [2].

LeMMA. Let L be a Lie algebra and xee¢(L). Assume that L has an
ascending X-series where X=U, LN or LEW. Then L has an ascending X-series
with terms idealized by x.

Proor. Let (L,),<; be an ascending X-series of L with an ordinal 1. Let
H, be the sum of {x)-invariant subspaces of L, (x<1). Then H, is the largest
{x)-invariant subalgebra of L, (cf. [2, Lemma 15]). Clearly H,=L,=0,
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H,=L,=Land H,SHyfora<p<A. Leta<A. Then[H,, H, 1]S[Ly L,+1]
cL,and [H, H,, ] is an {x)-invariant subspace, whence [H,, H,,]<H, and
so H,<<H,,,. Let u<A1 be a limit ordinal and ye H,. Since xee(L), there
exists an integer n=n(x, y) such that [y, ,x]=0. Thus {y*>={y, [y, x],...,
[V, n-1x1) is a finitely generated subalgebra of L,=\U,.,L,. Hence (y**>=<L,
for some a<p. Since {y*>) is idealized by x, (y**>) <H,. Therefore H,=
Up<uH,. Thus (H,),<, is an ascending series of L with terms idealized by x.

Let X=A. Then for any a<A H2,,<L2,,<L, and H?, is idealized by
x. Hence H2, ,<H,, thatis, H,,,/H,e .

Let X=LEU and S be any finite subset of H,,, (x<4). Since xee(L), K=
(S is a finitely generated subalgebra of L,,,. By the hypothesis L,,,/L, is
locally solvable, whence K™ <L, for some integer m. Furthermore K is
idealized by x, so that K™ <H,. Thus H,,,/H,€LE.

Similarly, if ¥=190, then H,, ,/H, (#<41) is an LN-algebra.

Proor oF THEoREM 1. (a) Let xee(L). By Lemma L has an ascending
U-series (H,),<; with terms idealized by x. Put H,;={yeH,.|[y,x]€ H,}
for any <A and any ie N. Then it is easily seen that

H, + (x> = Hyo + {x) < H,y +<{x> <+,
Uizo(Hgi + X)) = Hyyq + {x).

Therefore {x) asc L.
(b) Let xee(L). Then there exists an integer n=n(x) such that [L, ,x]=0.
By the same argument as above we have

LOTD 4 {x) <1 L + {x) (ieN).
Therefore {x) si L. This completes the proof.
ProoF oF CoROLLARY. Since Le A NLN,
L=pL)c {xeL|{x)ascL} = L
by Theorem 1.

We note that p(L)& e(L) in general and that the subsets {x e L|{x) asc L}
and {x e L|{x) si L} are not necessarily subalgebras of L over a field of positive
characteristic. To see these we consider Hartley’s example L=P+(x, y, z) [1,
Lemma 3.1.1 and Example 6.3.6]. The following facts are well known: (a) If
charf=0, then p(L)=P and yee(L). (b) If charf=p>0, then p(L)=P and
x, yee(L)=7¢(L) but z=[x, y]¢e(L)==¢(L). Since Le©g?, the assertions follow
from Theorem 1.

We remark that Corollary may be obtained from [2, Theorem 17].
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3. Asusual, let {L, £} and € denote respectively the smallest L-closed and
E-closed class containing U and the class of Engel algebras. Then it is well known
that {L, E}ANE=ZLN [1, Corollary 16.3.10]. If {x) asc L for any x e L, then
clearly Le €. Hence by Corollary we have the following

THEOREM 2. Let L be a Lie algebra. If Le{r, £} and {(x) asc L for
any x€ L, then L e LR. In particular if Le £, then the following conditions
are equivalent: (a) Le®r, ie., (x)ascL for any xeL. (b) Le€. (c)
LeLMn.

Finally we note that over any field there exists a Lie algebra L where for any
non-zero x € L {x) asc L but {x) is not a subideal of L. Consider, for example,
a Lie algebra L constructed by Simonjan [4, Theorem 4]. It belongs to the
class AN LR, and &(L)=0 so that {xe L|(x)si L}=0. Hence by Theorem 2
we see that this algebra has the above property.
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