HIROSHIMA MATH. J. 10 (1980), 185–187

A note on Gruenberg algebras

Naoki Каwамото

(Received September 5, 1979)

1. Let $\rho(L)$, e(L) and $\overline{e}(L)$ denote respectively the Hirsch-Plotkin radical, the sets of left Engel and bounded left Engel elements of a Lie algebra L over a field \mathfrak{k} . The classes of abelian, nilpotent and solvable Lie algebras over \mathfrak{k} are denoted respectively by \mathfrak{A} , \mathfrak{N} and $\mathfrak{E}\mathfrak{A}$. If \mathfrak{X} is a class of Lie algebras, then $\mathfrak{L}\mathfrak{X}$ and $\mathfrak{k}\mathfrak{X}$ denote respectively the classes of locally \mathfrak{X} -algebras and algebras with ascending \mathfrak{X} -series.

Simonjan [3] has shown that the class of Gruenberg algebras equals $\pounds \mathfrak{A} \cap \mathfrak{L}\mathfrak{N}$ over a field of characteristic 0. Amayo and Stewart have asked the following among "Some open questions" in [1]:

Question 40. Over a field of characteristic p>0, suppose that $L \in \pounds \mathfrak{A} \cap L\mathfrak{R}$. L \mathfrak{R} . Is it true that $x \in L$ implies $\langle x \rangle$ asc L?

In this note we shall give an affirmative answer to this question. This will be obtained as a collorary of the following theorem, which is proved over a field of characteristic 0 in [1, Theorem 16.4.2].

THEOREM 1. Let L be a Lie algebra over a field t of arbitrary characteristic. (a) If $L \in \pounds\mathfrak{A}$, then $\rho(L) \subseteq \mathfrak{e}(L) = \{x \in L \mid \langle x \rangle \text{ asc } L\}$.

(b) If $L \in \mathbb{R}\mathfrak{A}$, then $\overline{\mathfrak{e}}(L) = \{x \in L \mid \langle x \rangle \text{ si } L\}$.

COROLLARY Let L be a Lie algebra over a field \mathfrak{t} of arbitrary characteristic belonging to $\mathfrak{t}\mathfrak{A} \cap \mathfrak{L}\mathfrak{N}$. Then $x \in L$ implies $\langle x \rangle$ asc L.

We employ notations and terminology in [1]. All Lie algebras are not necessarily finite-dimensional over a field \mathfrak{k} of arbitrary characteristic unless otherwise specified.

2. We show the following lemma on ascending series of a Lie algebra, which is an extension of Lemma 16 in [2].

LEMMA. Let L be a Lie algebra and $x \in e(L)$. Assume that L has an ascending \mathfrak{X} -series where $\mathfrak{X} = \mathfrak{A}$, $\mathfrak{L}\mathfrak{N}$ or $\mathfrak{L}\mathfrak{E}\mathfrak{A}$. Then L has an ascending \mathfrak{X} -series with terms idealized by x.

PROOF. Let $(L_{\alpha})_{\alpha \leq \lambda}$ be an ascending \mathfrak{X} -series of L with an ordinal λ . Let H_{α} be the sum of $\langle x \rangle$ -invariant subspaces of L_{α} ($\alpha \leq \lambda$). Then H_{α} is the largest $\langle x \rangle$ -invariant subalgebra of L_{α} (cf. [2, Lemma 15]). Clearly $H_0 = L_0 = 0$,

Naoki KAWAMOTO

 $H_{\lambda} = L_{\lambda} = L$ and $H_{\alpha} \leq H_{\beta}$ for $\alpha \leq \beta \leq \lambda$. Let $\alpha < \lambda$. Then $[H_{\alpha}, H_{\alpha+1}] \subseteq [L_{\alpha}, L_{\alpha+1}]$ $\subseteq L_{\alpha}$ and $[H_{\alpha}, H_{\alpha+1}]$ is an $\langle x \rangle$ -invariant subspace, whence $[H_{\alpha}, H_{\alpha+1}] \subseteq H_{\alpha}$ and so $H_{\alpha} < H_{\alpha+1}$. Let $\mu \leq \lambda$ be a limit ordinal and $y \in H_{\mu}$. Since $x \in e(L)$, there exists an integer n = n(x, y) such that $[y, {}_{n}x] = 0$. Thus $\langle y^{\langle x \rangle} \rangle = \langle y, [y, x], ..., [y, {}_{n-1}x] \rangle$ is a finitely generated subalgebra of $L_{\mu} = \bigcup_{\alpha < \mu} L_{\alpha}$. Hence $\langle y^{\langle x \rangle} \rangle \leq L_{\alpha}$ for some $\alpha < \mu$. Since $\langle y^{\langle x \rangle} \rangle$ is idealized by $x, \langle y^{\langle x \rangle} \rangle \leq H_{\alpha}$. Therefore $H_{\mu} = \bigcup_{\alpha < \mu} H_{\alpha}$. Thus $(H_{\alpha})_{\alpha \leq \lambda}$ is an ascending series of L with terms idealized by x.

Let $\mathfrak{X} = \mathfrak{A}$. Then for any $\alpha < \lambda$ $H^2_{\alpha+1} \leq L^2_{\alpha+1} \leq L_{\alpha}$ and $H^2_{\alpha+1}$ is idealized by x. Hence $H^2_{\alpha+1} \leq H_{\alpha}$, that is, $H_{\alpha+1}/H_{\alpha} \in \mathfrak{A}$.

Let $\mathfrak{X} = Le\mathfrak{A}$ and S be any finite subset of $H_{\alpha+1}$ ($\alpha < \lambda$). Since $x \in e(L)$, $K = \langle S^{\langle x \rangle} \rangle$ is a finitely generated subalgebra of $L_{\alpha+1}$. By the hypothesis $L_{\alpha+1}/L_{\alpha}$ is locally solvable, whence $K^{(m)} \leq L_{\alpha}$ for some integer m. Furthermore $K^{(m)}$ is idealized by x, so that $K^{(m)} \leq H_{\alpha}$. Thus $H_{\alpha+1}/H_{\alpha} \in Le\mathfrak{A}$.

Similarly, if $\mathfrak{X} = \mathfrak{L}\mathfrak{N}$, then $H_{\alpha+1}/H_{\alpha}$ ($\alpha < \lambda$) is an $\mathfrak{L}\mathfrak{N}$ -algebra.

PROOF OF THEOREM 1. (a) Let $x \in e(L)$. By Lemma L has an ascending \mathfrak{A} -series $(H_{\alpha})_{\alpha \leq \lambda}$ with terms idealized by x. Put $H_{\alpha,i} = \{y \in H_{\alpha+1} | [y, ix] \in H_{\alpha}\}$ for any $\alpha < \lambda$ and any $i \in \mathbb{N}$. Then it is easily seen that

$$\begin{split} H_{\alpha} + \langle x \rangle &= H_{\alpha,0} + \langle x \rangle \vartriangleleft H_{\alpha,1} + \langle x \rangle \vartriangleleft \cdots, \\ \cup_{i \ge 0} (H_{\alpha,i} + \langle x \rangle) &= H_{\alpha+1} + \langle x \rangle. \end{split}$$

Therefore $\langle x \rangle$ asc L.

(b) Let $x \in \overline{e}(L)$. Then there exists an integer n = n(x) such that $[L, _n x] = 0$. By the same argument as above we have

 $L^{(i+1)} + \langle x \rangle \vartriangleleft^n L^{(i)} + \langle x \rangle \quad (i \in \mathbb{N}).$

Therefore $\langle x \rangle$ si L. This completes the proof.

PROOF OF COROLLARY. Since $L \in \pounds\mathfrak{A} \cap \mathfrak{L}\mathfrak{N}$,

$$L = \rho(L) \subseteq \{x \in L \mid \langle x \rangle \text{ asc } L\} \subseteq L$$

by Theorem 1.

We note that $\rho(L) \subseteq e(L)$ in general and that the subsets $\{x \in L | \langle x \rangle \text{ asc } L\}$ and $\{x \in L | \langle x \rangle \text{ si } L\}$ are not necessarily subalgebras of L over a field of positive characteristic. To see these we consider Hartley's example L=P+(x, y, z) [1, Lemma 3.1.1 and Example 6.3.6]. The following facts are well known: (a) If char $\mathfrak{t}=0$, then $\rho(L)=P$ and $y \in \mathfrak{e}(L)$. (b) If char $\mathfrak{t}=p>0$, then $\rho(L)=P$ and $x, y \in \mathfrak{e}(L)=\overline{\mathfrak{e}}(L)$ but $z=[x, y]\notin \mathfrak{e}(L)=\overline{\mathfrak{e}}(L)$. Since $L\in \mathfrak{E}\mathfrak{A}$, the assertions follow from Theorem 1.

We remark that Corollary may be obtained from [2, Theorem 17].

3. As usual, let $\{L, E\}$ and \mathfrak{E} denote respectively the smallest L-closed and É-closed class containing \mathfrak{A} and the class of Engel algebras. Then it is well known that $\{L, E\}$ $\mathfrak{A} \cap \mathfrak{E} \leq L\mathfrak{N}$ [1, Corollary 16.3.10]. If $\langle x \rangle$ asc L for any $x \in L$, then clearly $L \in \mathfrak{E}$. Hence by Corollary we have the following

THEOREM 2. Let L be a Lie algebra. If $L \in \{L, E\}$ and $\langle x \rangle$ asc L for any $x \in L$, then $L \in L\mathfrak{N}$. In particular if $L \in E\mathfrak{N}$, then the following conditions are equivalent: (a) $L \in \mathfrak{Gr}$, i.e., $\langle x \rangle$ asc L for any $x \in L$. (b) $L \in \mathfrak{E}$. (c) $L \in L\mathfrak{N}$.

Finally we note that over any field there exists a Lie algebra L where for any non-zero $x \in L \langle x \rangle$ as c L but $\langle x \rangle$ is not a subideal of L. Consider, for example, a Lie algebra L constructed by Simonjan [4, Theorem 4]. It belongs to the class $\notin \mathfrak{A} \cap L\mathfrak{N}$, and $\bar{\mathfrak{e}}(L)=0$ so that $\{x \in L | \langle x \rangle \text{ si } L\}=0$. Hence by Theorem 2 we see that this algebra has the above property.

References

- [1] R. K. Amayo and I. Stewart: Infinite-dimensional Lie Algebras, Noordhoff, Leyden, 1974.
- [2] N. Kawamoto: Subideality and ascendancy in generalized solvable Lie algebras, Hiroshima Math. J. 9 (1979), 701-716.
- [3] L. A. Simonjan: On two radicals of Lie algebras, Dokl. Akad. Nauk SSSR 157 (1964), 281-283, translated in Soviet Math. Dokl. 5 (1964), 941-943.
- [4] L. A. Simonjan: Certain examples of Lie groups and algebras, Sibirsk. Mat. Ž. 12 (1971), 837–843, translated in Siberian Math. J. 12 (1971), 602–606.

Department of Mathematics, Faculty of Science, Hiroshima University