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Introduction. All rings considered here are commutative with identity.
In this note, we give two examples of noetherian Hilbert rings. The most famous
example of a noetherian Hilbert domain is an affine domain over a field. Such
an integral domain is equicodimensional, i.e. its all maximal ideals have the same
height. Noetherian Hilbert domains with maximal ideals of different height are
given in [1], [5], [6], [10] and [11]. Krull’s example in [6] is obtained by a
localization of K[X, Y], where K is a countable, algebraically closed field.
Heinzer in [5] constructs a noetherian Hilbert domain with maximal ideals of
preassigned height, and subsequently in [1] and [10] the same examples as
Heinzer’s are constructed by making use of the following proposition in [4,
(10. 5. 8)]: Let A be a noetherian ring and let s be a non-nilpotent element
contained in rad(4). Then A, is a Hilbert ring.

By the way, in [6] and [11], two dimensional noetherian Hilbert domains
with only a finite number of height one maximal ideals are constructed. How-
ever almost all noetherian Hilbert domains already known have the following pro-
perty: Let MM be a maximal ideal of a noetherian Hilbert domain 4. Then, if
n=ht(M)>2, A has infinitely many height n maximal ideals.

In Section 1, we show that if A4 is a noetherian ring containing an uncountable
field and if S is a multiplicative subset of A generated by countably many elements
of rad(A4), then S™!'4 is a Hilbert ring. In Section 2, we construct a noetherian
Hilbert domain with a preassigned number of maximal ideals of preassinged
height by making use of a modification of Krull’s method in [6, p. 371].

Notation. Let 4 be a ring. Then
Max (4) = {P eSpec(4); P isa maximal ideal in A},
Ht,(A) = {P e Spec(4); ht(P) = n},
rad (4) = N gemax()P-
Let p be a prime ideal in a ring A. Then
U(p) = {BeSpec(4); Pop and ht(P/p) = 1}.
C = the field of complex numbers.
N = the set of natural numbers.

1. We need some preliminary results.

LemMMA 1. Let A be a noetherian ring. Then A is a Hilbert ring if and
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only if U(p) is an infinite set for any non-maximal prime ideal p in A.
Proor. The assertion follows from Theorem 4 in [3].

LEMMA 2. Let A be a ring containing an uncountable set E such that a—b
is a unit of A for all a#b in E. Then the following statements hold.

(@) LetI, I,(n=1,2,..) be ideals in A. If I is finitely generated and if
I3 %,1,, then I<I, holds for some n.

(b) If A is noetherian, and if B> p are prime ideals in A such that ht(B/p)
>2, then U(p Ay) is an uncountable set.

Proor. (a) Let xy,..., x, be generators for I. Set H={x;+ax,+ -+
ai=ix;4.-+a"1x,; acE}. Since E is an uncountable set, there is an integer
n such that I, contains r-elements x; + -+ +(a;)/~!x;+ - +(a) " !x, (i=1, 2,..., 1)
of H, where a;#a; if i#j. As is well-known, the determinant of r X r-matrix
((a)i~1) is [T;> j(a;—a;). This is a unit in A4 by our assumption. Therefore I,
contains Xi,..., X,. Thus I<I,.

(b) Since A is noetherian, P= U 5.»Q hold, where W={Q e U(p); Q= P}.
Suppose that U(pAg) is countable. Then by (a) P=2 for some Qe W. This
contradicts the assumption that ht(B/p)>2.

LemMMA 3. Let A be a ring satisfying the following conditions either (a)
or (b):

(a) A contains an uncountable field.

(b) A is a semi local ring such that A/ is uncountable for each maximal
ideal M in A.
Then A contains an uncountable set E such that a—b is a unit in A for all a#b
in E.

Proor. If A satisfies the condition (a), there is nothing to prove. Suppose
that A satisfies the condition (b). Let 9,,..., M, be the maximal ideals in A.
Let J be a set such that card (J)= min {card (4/M,); i=1,..., r}, where card (x)
stands for the cardinality of *. Let S; be a complete set of representatives for
the non-zero elements of A/, and let {a;;; jeJ, a;;#ay, if j#h} be a subset of
S;. For each j, there exists a; of A such that a;=a;; (mod M) for i=1,...,r.
Then E={a;; jeJ} is a desired set (cf. [8, p. 94]).

LEMMA 4. Let A be a noetherian ring and let S be a multiplicative subset
of A generated by countably many elements. Let p be a prime ideal such that
pnNS=¢. If U(p) is an uncountable set, then U(S~1p) is also an uncountable
set.

Proor. Considering A/p, we may assume that A4 is an integral domain and
p=0. Let S be the multiplicative subset in A generated by s;, S3,.e0s Sps.-- -
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For each s, there is only a finite number of height one prime ideals in 4 which
contain s,. Therefore Ht,(S~1A) is uncountable.

We can now prove the following:

THEOREM 5. Let A be a noetherian ring satisfying the following con-
ditions either (a) or (b):

(a) A contains an uncountable field.

(b) A is a semi local ring such that A/ is uncountable for each maximal
ideal M in A.
Then, if S is a multiplicative subset of A generated by countably many elements
of rad (A), S™'A is a Hilbert ring.

Proor. Let S™!'p be an arbitrary non-maximal prime ideal in S™'A4, and
let S™1B be a maximal ideal containing S~'p, where p, P e Spec(4). Since S
is a subset of rad(4), P is a non-maximal prime ideal in 4. Hence dim(4/p)>2.
Therefore by Lemma 3 and (b) of Lemma 2, U(p) is uncountable, so U(S~1p)
is infinite by Lemma 4. Thus S~!4 is a Hilbert ring by Lemma 1.

THEOREM 6. Let A be a noetherian Hilbert ring such that U(p) is un-
countable for any non-maximal prime ideal p in A. Let S be a multiplicative
subset of A generated by countably many elements. Then S~'A is a Hilbert ring.

Proor. Let S™'p be a non-maximal prime ideal in S~'4, where
p € Spec(4). Since U(p) is uncountable, U(S~!p) is infinite by Lemma 4.
Therefore S~1A is a Hilbert ring.

REMARK. Let T be the multiplicative subset of C[X] generated by {X —a;
aeC—N}, and let A=(T"!C[X])[Y], where X, Y are indeterminates. Let
S be the multiplicative subset in 4 generated by {X—n; n=2, 3,...}. Then 4
contains an uncountable field and Max (4) is uncountable, but S7'4 is not a
Hilbert ring.

2. We shall consider the following question: Let 9t be a maximal ideal of
a noetherian Hilbert domain A, and let n=ht(M). Then, do there exist infinitely
many height n maximal ideals in A?

Krull [6, p. 371] and Roberts [11] constructed two dimensional noetherian
Hilbert domains with only a finite number of height one maximal ideals. Hence,
if n=1, the above question is not true. We begin with some affirmative cases.

ProPOSITION 7. (a) If A is a noetherian Hilbert domain, then the above
question is true for A[X], where X is an indeterminate.

(b) Let (A, M) be a noetherian local domain, and let s be a non-zero
element of M. Then the above question is true for A; (A is a Hilbert domain by
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[4, (10. 5. 8)]).
For the proof of this proposition, we need the following lemmas.

LemMMA 8. (Theorem 1 in [7]). Let P be a height n prime ideal in a
noetherian ring. Then almost all the prime ideals directly above B have

height n+1.

LeMMA 9. Let (A, M) be a noetherian local domain. If there exists a
height one prime ideal q in A such that ht(M/q)=1, then {p € Spec (4); M>p >0
is saturated} is an infinite set.

Proor. This is immediate from Proposition 1 in [7].

PRrOOF of Proposition 7. (a) Let 9t be a maximal ideal in A[X]. By
Theorem 5 in [3], M=MN N 4 is a maximal ideal in A. Then it is easy to see
that there exist infinitely many maximal ideals in A[X], containing MMA[X],
of height At(N)=ht(IN) + 1.

(b) Let pA4, be a maximal ideal in A,, where p eSpec (4). We see then
immediately that dim (4/p)=1. Let Mop>p,;>:-->p,_;>0 be a saturated
chain of prime ideals in A4, where n=ht(p). By applying Lemma 9 for A/p,,
we see that W, ={qeSpec(A4); M>q>p,, ht(M/q)=ht(q/p,)=1} is an infinite
set. Hence W,={qe W,; q®s, ht(q)=n} is infinite by Lemma 8. Therefore
g4, is a height n maximal ideal in A for each qe W,.

Our main aim in this note is to construct a noetherian Hilbert domain with
a preassinged number of maximal ideals of preassigned height. For the con-
struction of this example we require several lemmas.

For the rest of this section we assume that k is an algebraically closed field
contained in the field of complex numbers C. We denote by k™(n>2) the
affine n-space over k, and also donote by A=k[X},..., X,] the affine coordinate
ring of k". For each pair of integers (r, m), where 1<r<n—1 and m>0, U,,
is the linear subvariety of k" defined as follows: U, ,={(z;,..., Z,) €k"; z,44
=..=2,=0} and U, ,,={(zy,..., z,) €k"; z,, y=m71, 2, =---=2,=0} if m#0.
It is clear that U, o U,_ .

Let V' be a linear subvariety of k». We say that an irreducible closed subset
L (in Zariski topology) of Vis a hypersurface in V if dim (L)= dim (V)—1.

LeMMA 9. Let V and V, be linear subvarieties of k" given by X,=u and
X,=0 respectively, where ue k—{0}.  If Lis a hypersurface in V and Q,,...,Q
are points of k®—V, then there is a hypersurface H in k" such that (i) Hn V=L,
(ii) Qy5-.., O, H and (iii) H n V, does not meet the set E={(zy,..., z,) €k"; z,=0
and |z;|<1 for i=1,..., n—1}.
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Proor. Since Lis a hypersurface in V, Lis defined by an irreducible pol-
ynomial f in k[X,,..., X,_;]. Let (ay,..., a,_;, u) be a point of V—L. We
then put F/(Xy,..., X,)=(X,—ut)deW) f(X,—ut) u(1—0)(X;—a0) +ay,...,
X,—uty u(l-0(X,_,—a,_t)+a,_(t), where tek. We first show that
S={tek; F(Q;)=0 for some i} is a finite set. Suppose that F(b,,..., b,) is zero
as a polynomial in ¢ for some (by,..., b,) e k". Since F(by,..., b,) = (b, —u)des().
f(ay,...,a,—1), we must have b,=u. Therefore F/(by,..., b,) = (u—ut)iee().
f(bys..., b,—1), and hence (by,..., b,) € L. This shows that F,(Q,) is not zero as a
polynomial in #(i=1,...,s). Thus S is a finite set. On the other hand, F, is an
irreducible polynomial in A4 if t#1. Therefore it defines a hypersurface H, in
kr. Since F(Xy,..., X, 1, )= —ut)dee) f(X,,..., X,_,), we have L=H,n V.
Moreover H,NV, is defined by F/(Xj,..., X,—1, 0)=(—ut)des f(~1(t-1)X,
+ag,..., 7 (t—1)X,_;+a,_,). Now choose a positive rational number ¢ so that

1=1|z;—a;|?*<e implies f(zy,..., z,—1)#0, and also choose tek—Su {1} such
that 1<eg|t(t—1)"1|?2n~L. Then Max {|z,l,..., |z,- 1|} < 1implies > 2=} |t~ 1(t—1)z;
+a)—a?= Xt —-1)z2<|t"1(t—1)|>n<e, hence F(zy,..., z,_, 0) #O0.
This shows that H, N E=¢. Therefore the proof is complete.

LemMA 10. Let V be a linear subvariety of k", L a hypersurface in V.
Assume that dim (V)>1. If Q,,..., Q,ek"—V, then there is a hypersurface H
in k™ such that (i) Hn V=L and (ii) Q,,..., Q;&eH. Moreover assume that V is
defined by X,,,=--=X,=0((r>1). Then H can be chosen so that it does not
contain any linear subvarieties given by X,=v, X,,,=--=X,=0 where n>q
>r+1and vek.

Proor. We may assume that V is defined by X,,=--=X,=0 (r>1).
Then Lis defined by an irreducible polynomial fin k[ X,..., X,]. For each point
a=(a;;) of k" M(A<i<r and r+1<j<n), we put G(o; Xy,..., X,)=f(X;
+2" 410X X+ 202,41 a,;X;). Since f is also an irreducible pol-
ynomial in k[X4,..., X,], so is G(«; X,..., X,), and therefore it defines a hyper-
surface H, in k. It is obvious that H,n V=Land Q,,..., Q;&H, for a suitable
choice of a € k*»=",  Finally assume that H, contains a linear subvariety given
by X,=v, Xgo1="=X,=0(q=r+1,vek). Then G(x; X;,..., X, 0,..., v, 0,
o 0)=f(X;+ay,,..., X,+a,,0)=0, which is impossible. This completes the
proof.

LemmA 11. Assume that L is a hypersurface in U,,(m#0). Let Q,,
vory Qs€k"—U, .. Then there is a hypersurface H in k" such that (i) HnU,,
=L, (i) Qy,..., Q,& H and (iii) H does not contain any U,. . (where , =1,...,n—1
and m'=0, 1,...).

Proor. Itisclearthat U,y U,,<U,. 0. We may assume that Q,..., Q,
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€U,410 and Qgyq,..., QU 4 q0. By Lemma 9, there is a hypersurface H,
in U,y such that H, nU, =L, Q,,..., Qg H, and U, , ¢ H, for r'<r and
m’>0. By Lemma 10, there is a hypersurface H in k" such that HN U, ;0=
H,, Q,...,0,&H and U, , ¢ H for ¥'>r and m'20. It is now obvious that H
satisfies the above properties (i), (ii) and (iii).

Let Z be a subset of C". We denote by Z’ and Z* the closures of Z with
respect to the Zariski topology and the usual topology on C" respectively.

LemMMA 12. Let Z be an irreducible closed subvariety of k". Then
Z'=Z* in C",

Proor. See [12].

LemMMA 13. Let H,,..., H; be hypersurfaces in k*, and let Z be an irre-
ducible closed subvariety of k" with dim(Z)>1. Further let r be an integer
(I<r<n-1). If Z&¢U,,, and Z& H; for every m(=0, 1,...) and i(=1,..., ),
then Z—\Ug_o U, ,,UH, U ---UHjis an infinite set.

Proor. We may assume that k=C. In fact, by Lemma 12, (\Up=o U,
UH, U UH)*=Up o U}, UH U -~ UH}=Un-o U, ,UH{U - UH, There-
fore to prove that Z—\Ug-o U, , UH,; U - U H, is an infinite set, it is enough
to show that Z'—\Ug_o U, ,UH;U-UH; is an infinite set. Thus we may
assume that k=C. IfZ4¢ U, o, then Z¢ U, oUHU - UH, Consequently
Z—U,;10UH, U UH;is an infinite set and therefore so is Z—\Uz-o U, , U H,
U+ UH,. We now consider the case ZcU,,,,. Replacing k" by U, o, wWe
may assume that r+1=n. We then use induction on d= sim (Z). First suppose
that d=1. Since Z is uncountable and \Ug_o(ZNU,_;  )U(ZNnH)U---U(Z
N Hy) is countable, Z—\Uy_o U, ,UH; U UH; is uncountable. Therefore the
assertion has been established for the case d=1. Suppose next that d>1. We
put W =the set of all irreducible closed subvarieties W of Z with dim (W)=d—1.
W is an uncountable set. Assume that Zc\Ug-oU,—;,UH; U+ UHg; then
every element of W is contained in at least one of U,_, , or H; by the induction
hypothesis. Therefore it is an irreducible component of some of ZnU,_, , or
ZnH, Therefore W is a countable set. This is a contradiction. This shows
that Z¢UR-oU,—y,n, UH; U---UH, Wecan now choose an irreducible closed
subvariety Z; of Z so that dim(Z,)=1 and Z;¢\Up-oU,—y,UH;U--UH,
Since Z;—\Up-oU,—1mUH,;U---U Hy is an infinite set, so is Z—\Up_o U,_;
UH,U---UH; Thelemma is thereby proved.

The following is a corollary to Lemma 13.

LeEMMA 14. Let H,,..., H; be hypersurfaces in k", and let Z an irreducible
closed subvariety of k* with dim(Z)>1. Further let V be a subset of {U,

rms> T
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=1,...,n—1and m=1,2,..}. If Z&V and Z& H, for every VeV and i, then
Z—\Uygp VUH, U---UH,is an infinite set.

Proor. Choose a positive integer r such that Z¢U,, and ZcU,, .
Since Z n V=¢ for every VeV such that dim (V)>r+1, and since V< U, , for
every VeV such that dim (V) <r, it is sufficient to prove that Z—\Ug_, U, ,,UH,
U .-+ U Hy is an infinite set, but this is obvious by Lemma 13.

We now proceed to the construction of a noetherian Hilbert domain with a
preassigned number of maximal ideals of preassigned height.

Assume that k is a countable, algebraically closed field contained in C. Let
1<r;<---<ry<n be a sequence of positive integers, and let my,..., m; be a
sequence of positive integers or co. Choose a subset ¥ of {U, ,; r=1,..., n—1,
m=1, 2, 3,...} so that the number of elements V of ¥ with dim(V)=n—r; is
m; for each i=1,...,s. We now define P,=the set of all irreducible closed
subvarieties of k" which are hypersurfaces in some elements of ¥, and P,=the
product of N and the set of all irreducible closed subvarieties C of k" such that
dim (C)>1 and Cd\Uyp V. Since k is countable, so are P, and P,. Therefore
we can put P,={P;; ieN} and P,={(¢;, C,); ieN}. We shall construct, in
succession, positive integers ey, e,,..., points Q;, Q,,... of k" and hypersurfaces
H,, H,,... in k" as follows. We put e;=1. Let Q,eC,—\Uyo V, and let V,
be an element of ¥ in which P, is a hypersurface. By Lemma 11, there is a
hypersurface H, in k" such that V¢ H, for every VeV, H,nV,=P, and Q,
& H,. For each positive integer i(>1), we choose an element V; of ¥ in which
P, is a hypersurface. Suppose that we can choose positive integers ey,..., ¢,_q,
points Qy,..., Q,—; of k" and hypersurfaces H,,..., H,_, in k" such that Q;e C,,—
Uy VUH, U---UH;_{, Q4,..., Q;¢eH;, V& H; for every VeV and H;nV,=P;
for i=1,...,t—1. Since {i; C=C,} is an infinite set for every irreducible closed
subvariety C fo k" such that dim (C)>1 and Cd¢\Uyy V, the set {i>e,_;; C;¢
H,U---UH,_,} is not empty. Then we put ¢,=Min {i>e,_,; C;4H; U---U
H,_;}. By Lemma 14, we can choose a point Q, of C,—\Upyp VUH U - U
H,_,, 0,#0,..., 0,—;. Then by Lemma 11, there is a hypersurface H, in k"
such that V¢ H, for every VeV, H,n V,=P,and Q,,..., Q,cH,. We shall now
prove that the above sequence H,, H,,... of hypersurfaces in k" has the following
properties:

(a) if Vis an element of ¥V, then every proper closed subvariety of V is
contained in some H,;

(b) V<¢H, forallteNand VeV

(¢) L—\U, H, is an infinite set for every positive dimensional irreducible
closed subvariety Lof k" which is not contained in any Ve ¥ and H,.

In fact (a) and (b) are obvious by the construction of H,. To prove (c), note
that {ieN; L=C;} is an infinite set. Suppose now that L=C; for some ieN.
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Then there is an integer j such that e;_; <i<e;. Ifi<e;, then L=C;cH,U---U
H;_, from the definition of e;, which is a contradiction. Therefore i=e;; hence
J={ieN; L=C,} is an infinite set. Since Q;e L—\UiZ, H, for jeJ, the as-
sertion (c) is proved.

Let now f, be a defining polynomial of H, in A=k[X,,..., X,] for each
teN, and let S be a multiplicative subset of A4 generated by f}, f5,.... We then
put R=S"1A4.

THEOREM 15. R is a notherian Hilbert domain such that (i) dim (R)=n,
(i) {rys..., ry, n}={ht(m); me Max (R)} and (iii) m; is the number of maximal
ideals in R with height r; for each i=1,..., s.

ProoF. First, (a) and (b) imply that p(V)R is a maximal ideal in R for every
VeV, where p(V) is the prime ideal in A4 corresponding to V. Next, (c) implies
that if p is a prime ideal in R such that ht(p)<n and p#p(V)R for every VeV,
then p is contained in infinitely many height n maximal ideals in R. Therefore the
proof is complete.

ReMARK. By the above property (c), ht(p)+dim (R/p)=n for any non-
maximal prime ideal p in R, but R has a maximal ideal, of which height is less than
n. Therefore R is another counterexample with relation to Remark 2.6 in [9]:
If A is a noetherian ring such that ht(p)+dim (4/p)=dim (A4) for any non-maximal
prime ideal p in A, then does A satisfy that h#(9t)=dim (A) or 1 for any maximal
ideal M in A? (cf. [2], p. 478).
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