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1. Introduction
Let 2 be the open unit disc in C and let & be its boundary. Then the
group G=SU(1, 1) of all two-by-two complex matrices of the form (‘}li g)

with |a|2—|b|?=1 acts transitively both on 2 and # by linear fractional
transformations

Z——)g~z=

az+b . a b

bz+a it g= (E a)

The discrete series representations of G can be realized on Hilbert spaces of
holomorphic (or anti-holomorphic) functions on 2, while the principal con-
tinuous series representations can be realized on L%(#). Every member of the
principal continuous series representations of G is irreducible except one, say V,
which is given by

V(@) NH(w) =jlg™", w*f(g~'-u), felX%), geG, ueA
where j(g~1, u) denotes the complex Jacobian of the holomorphic map z—g~!.z
atu(ilg™, w=(bu+ayif g =(% 5.
The so-called holomorphic discrete series representations of G are para-

metrized by the integers n>2, and the n-th representation T, is realized on the
Hilbert space

H,= {ho]omorphic functions fon 2; S [f(D12( = |z|®)*2dxdy < oo}
2

with group action
(TN (@) =jg™", 2)"*f(g™" -2), feH,, geC, zeD.

Note that in the case n=1 we have H, ={0}. However, one can associate to the
integer n=1 a representation of G that is similar in appearance to those above.
Indeed, if we let H3(2) be the Hardy space for 2, i.e.,
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H*(2) = {holomorphic functions f on 2; sup S | f(ru)|2du < oo}
o<r<i1J2z

(du = Lebesgue measure on %), then H¥(2)+# {0} and the action T, given by
(TN (2) =j(g™", 2)V2f(g7"-2), feHX D), g€G, ze D

defines an irreducible unitary representation of G on H%(2). This representation
does not belong to the holomorphic discrete series of G but is, in a sense, a limit
of the holomorphic discrete series, and is of special interest due to the fact that
it is unitarily equivalent to a proper subrepresentation of the ‘‘exceptional”
representation (V, L?(#)) above. The realization of (T,, H*(2)) as the sub-
representation of (V, L3(#)) arises from the well-known imbedding of H?*(2)
into L?(#) given by taking boundary values.

The possibility of such a realization of irreducible components of reducible
continuous series representations was investigated by Knapp and Okamoto [15]
in more generality, namely, in the context of a linear simple Lie group that acts
on a hermitian symmetric space. (In this connection see also Knapp and Wallach
[16] and Midorikawa [22].) On the other hand, for a simply connected real
semi-simple Lie group G whose associated symmetric space G/K is hermitian,
Harish-Chandra ([7], [8], [9]) constructed a certain class of (not necessarily
unitary) representations that includes the holomorphic discrete series. These
representations can be realized on the spaces of holomorphic sections of holo-
morphic vector bundles over G/K arising from finite dimensional irreducible
representations of K (or on the spaces of holomorphic vector valued functions on
G/K by trivializing vector bundles). Both Rossi and Vergne [25] and Wallach
([281, [29]) have studied the unitarizability of these representations and obtained
complete results for the case of line bundles. In that specialized context (case of
line bundles), it is also shown in [25] that those representations which are indexed
by certain ‘‘integral or half-integral points” can be realized on Hardy type Hilbert
spaces associated with various boundary orbits of G/K (in the unbounded reali-
zation as a Siegel domain of type II), and that they are naturally imbedded (in
terms of appropriate boundary values) in certain continuous series representa-
tions. As noted in [25], the representation which corresponds to the maximal
(codimension one) boundary of G/K is a member of the limits of holomorphic
discrete series in the sense of Knapp and Okamoto [15]. Although Knapp and
Okamoto constructed their representations on Hilbert spaces of holomorphic
sections of holomorphic line bundles over G/T (T being a compact Cartan sub-
group), it turns out that those representations can also be realized on vector
valued Hardy type spaces associated with the maximal boundary of G/K.

Now in view of the above results of Knapp-Okamoto and Rossi-Vergne, it
is natural to pose the following questions:
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(1) In general (vector bundle) case, can one construct, corresponding to
each boundary orbit of G/K, Hardy type Hilbert spaces on which G acts by
unitary transformation?

(2) Supposing it is possible, are they imbedded in certain continuous series
representations?

One of the main purposes of this paper is to give affirmative answers to these
questions in the case where G is a connected simple Lie group that admits a
faithful matrix representation (and whose quotient G/K by a maximal compact
subgroup K carries a hermitian symmetric structure). Our construction is
based on the bounded domain realization of G/K. We also consider the (opera-
tor valued) reproducing kernel functions for these Hardy type Hilbert spaces and
intertwining operators associated with the kernel functions.

Here is a more detailed description of the contents of this paper. In the
following it is convenient to use the notion of vector bundle, though we do not
use in the text.

In section 2 we review some known facts that are needed in this paper, in a
manner which is convenient for our later use. For a group G of above type, let
2 be the Harish-Chandra realization of the corresponding hermitian symmetric
space G/K as a bounded domain in p* (cf. 2.1). The action of G on 2 extends
smoothly to 2, the closure of 2 in p*, and the topological boundary % —2
breaks into r (r=rank G/K) G-orbits, say %,,..., #, where #,>5%,,, (1<i
<r—1); thus £, is the Silov boundary of 2. Each boundary #; decomposes,
in a G-equivariant manner, into complex submanifolds of p*, called boundary
components of 2 or holomorphic arc components of #;, which are themselves
isomorphic to a bounded symmetric domain of rank r—i. For each i=1,...,r,
there is a naturally associated point 0;€ #; and a holomorphic arc component
%, of #; containing o;, and it is known that every holomorphic arc component
of &, is of the form k-%, ke K. Further, there exists, for each 1<i<r, a
semi-simple subgroup G; of G with €;=G;-0;; thus if we let K; be the isotropy
subgroup of G; at o;, then ¥;~G,/K;. Let P,={geG;g-%¥,=%;} and S;=
{g€G; g-0,=0;}. Then P;is a maximal parabolic subgroup of G, and we have
a Langlands decomposition P;=M;A4;N; such that if we put L;=M;nS; then
S;=L;A;N,. Each boundary #;=G/S; has a natural quasi-invariant measure du
so that

| fduw = jikg,-oddkdg,
i KxG;
for any integrable f on &;, where dk, dg; are Haar measures on K, G;.
In Section 3 we define, for each 1<i<r, a certain subset F(G)< |/ —1t*
(t=Lie algebra of a compact Cartan subgroup T of G) consisting of highest



78 Toru INOUE

weights of irreducible representations of K. (To each member of &#(G), we shall
associate a Hardy type space and an irreducible unitary representation of G in
Section 4.) It turns out that in the case i=1 the defining condition of & ,(G) is
equivalent to the condition imposed by Knapp and Okamoto [15]. Our defini-
tion of #(G) is given in such a way that each member of % (G) is expressed
explicitly in terms of fundamental highest weights; cf. (3.8).

In Section 4 we construct, corresponding to each member of #,(G), unitary
representations of G. Fix i, 1<i<r, and 1e #(G). Let 1, be the irreducible
unitary representation of K on E; with highest weight A, and let e, be a nonzero
highest weight vector. If we let E; be the linear span of {r,(k)e,; ke K}, then
for each vea¥ (a;=Lie algebra of A4;,) we obtain (cf. (4.9), (4.10)) irreducible
representations o, , and ‘s, , of S; on E;, ‘o, , being unitary, and the unitarily
induced representation U, ,=Ind,;¢ ', , is realized on the Hilbert space L%(G,
g;,) of L? sections (relative to the quasi-invariant measure du on ;) of the
G-homogeneous vector bundle over the boundary %;=G/S; associated with the
representation o,, of S;. (In the case v=0, we write g;, U, instead of o, ,
U,o.) Next we introduce a Hardy type Hilbert space H*(2, 1) of E,-valued
holomorphic functions on 2 (cf. (4.16), (4.35)), which is imbedded in L*(G, o;)
by taking appropriate boundary values. H2(2, A) is naturally identified with a
space H%(G, 7;) of holomorphic sections of the holomorphic vector bundle over
G/K associated with the representation t; of K (the vector bundle being holo-
morphically trivial). We then show (Theorem 4.49) that H*(2, 1) is nonzero
and the action T, of G on H%(2, 1) given by

(Ty(9)F)(2) = J(g7 !, 2)"'F(g™'-2), FeH¥ 2, 1), geG, ze P

(J,=automorphic factor of type t,; cf. 2.4) defines an irreducible unitary rep-
resentation of G on H3*(2, A), and that the imbedding H*(2, 1) L*G, 0;)
commutes with the action of G.

In Section 5 we first construct, corresponding to each 1 e % (G), an irreduci-
ble unitary representation x,; of M; and form the continuous series representations

Vv = Indp a6 (1 ® e " ®1), veal.

We then show (Proposition 5.9) that the V, , is unitarily equivalent to a subrep-
resentation (U, ,, LG, o,,; p;)) of the representation (U, ,, L*(G, g,,)) in
Section 4; here L*(G, 0,,; p;) is a subspace of L*(G, o,,) consisting of those
sections that are holomorphic on every holomorphic arc component of £,
Finally, we show (Theorem 5.13) that the representation T, of G on H*2, ) is
unitarily equivalent to a proper subrepresentation of ¥, (=V,,) and hence V, is
reducible.

In Section 6 we discuss the reproducing kernel function K; of H*2, 1) and
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derive (Proposition 6.4) an explicit formula for K,;. We then specialize to the
case where 7, (1€ #(G)) are one dimensional representations of K. In this
situation there exists at most one, say, w;e % (G) for each 1<i<r; cf. (6.16).
(If we take a suitable covering G° of G, then for each 1 <i<r there exists a unique
Ae F(G°) with dim E;=1. But G° is not necessarily a linear group.) In the
case i=r, H¥(2, w,) turns out to be the usual Hardy space for the bounded
symmetric domain 2 (cf. (6.17)), and hence the kernel function corresponding to
w, is the Cauchy-Szego kernel function of 2. For kernel functions corresponding
to these w;, 1<i<r, we find more explicit formulas; cf. Proposition 6.22. The
formula for the Cauchy-Szeg6 kernel function was first derived by Koranyi [17,
Proposition 5.7] by translating the results (due mostly to Gindikin [3]) on Siegel
domains of type II to bounded symmetric domains by the Cayley transform (due
to Koranyi and Wolf [18]); for the classical domains it was first found by Hua
[12].

In Section 7 we give (Theorem 7.4) an integral operator £;: L*G, o,)
—H?(G, t;) (here we identify L?(G, o,) (resp. H*(G, t,)) with a certain subspace
of the space of E; (resp. E;) valued functions on G) which is regarded as
the orthogonal projection operator if we identify H?(G, ;) with a subspace of
L2(G, 0,), and also show that on the subspace L%(G, ad;; p7), £, is given by

2.00) = ] T(HGRAk  g€G, B LXG, a3 p7)

where f is a positive constant. Intertwining operators that take such a form as
above were considered by Okamoto [24] and Knapp and Wallach [16] in other
contexts, e.g. intertwining maps from non-unitary principal series representations
to (limits of) discrete series representations. We note that in the special case
A=w, in the notation of Section 6, £, corresponds to the integral operator
associated with the Cauchy-Szeg6 kernel function (cf. the remark at the end of
this paper).

For the groups associated with classical hermitian symmetric spaces of tube
type, i.e., for Sp(n, R), U(n, n) and 0*(4n) Gross and Kunze have produced, in
their study of the primary decompositions of metapletic representations ([5], [6]),
some irreducible unitary representations with highest weights which are not in
discrete series. (The representations that we shall construct have this property;
cf. Lemma 4.52.) In a similar way Kashiwara and Vergne [14] have obtained
series of such representations for U(p, q) and the metapletic group Mp(n, R), a
two-sheeted covering of Sp(n, R). In these papers, however, it is not discussed
whether some of those representations have realizations in Hardy type spaces
or whether they are imbedded in continuous series representations. For the
conformal group U(2, 2), related topics were considered by Jacobsen and Vergne
[13], and by Gross, Holman and Kunze [4]. In particular, in [4] some vector-
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valued Hardy spaces for the corresponding Siegel domain (an unbounded realiza-
tion of G/K, G=U(2, 2)) are introduced.

The author would like to express his thanks to Professor K. Okamoto for
his constant advice and encouragement and to Professor M. Takeuchi for several
helpful suggestions.

2. Notations and preliminaries

Let G be a connected simple Lie group with a faithful matrix representation
and K a maximal compact subgroup of G. We assume that G/K admits an
invariant complex structure. Then K has one dimensional center, and one may
choose a compact Cartan subgroup T of G with T<K. We denote the Lie
algebras of G, K, T by g, I, t, and their complexifications by g, f_, t,; as a general
notational convention the subscript ¢ shall always mean ‘‘complexification”.
Since G has a faithful matrix representation, we can regard G as a subgroup of
a connected group G, with Lie algebra g,. Let K, T, denote the analytic
subgroups of G, corresponding to f, t,.

Let @ be the set of nonzero roots of (g, t,), and let @, and &, be the set of
compact and noncompact roots, respectively; thus ®=&_ U @,, and if g=f+p
is the Cartan decomposition corresponding to K, we have

fc = tc + Zaed>c gg -and pc = Zae(b,, g:

where g* denotes the complex root space for a root a. If a € @, we denote by
H, the unique element of ./ — 1t such that

2(u, 0)f(a, ) = {p, H forall pe./ —1t*

where \/—11t* is the real vector space of all linear functions on t, which assume
purely imaginary values on t, and ( , ) is the inner product on \/—1t* induced by
the Killing form of g,. For each a e ®, we choose a root vector X,eg, such
that [X,, X_,]1=H,, and such that the complex conjugation of g, with respect to
g permutes X, and X _,, whenever ae ®,. Note that {a, H,>=2, B(X,, X_,)
=2/(a, «) (B( , )=Killing form of g,) for all ae @, and that X,+ X _,, /- 1(X,
—X_areingifaed,.

By our assumption on G/K, there exists an ordering of the root system @,
such that the sum of two noncompact positive roots is never a root. We fix such
an ordering once and for all, and let @* be the resulting set of positive roots.
We write @F for &.n &+ and @7, for &, n d*. The choice of ¢* determines a
splitting

P.=p"+p with p* =3 4:0% and p~ =3, 0ra.%
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Both p* and p~ are Ad (K,)-invariant, abelian subalgebras of g, which are com-
plex conjugate to each other. Let P* and P~ be the corresponding analytic
subgroups of G,. Then K, normalizes P* and K,-P* is a parabolic subgroup of
G,. The G-orbit of the identity coset in G,/K,- P~ is open and can be identified
with G/K, since GN K,-P~ =K. Thus the imbedding G/K<=G,/K,-P~ induces
an invariant complex structure on G/K.

2.1. Harish-Chandra realization of G/K (see [9], [31]). The map p* x K,
xp~—G,, given by (x, k, y)—»expx-k-exp y, is a holomorphic diffeomorphism
onto a dense open subset Q=P*.K_-P~ of G, which contains G. Therefore an
element g € Q can be written in a unique way as

(2.2) g =1n.9)m(9)-n_(9), mo(9)eK,, m.(g)eP*.

It is known that the map {: Q—p*, given by {(g9)=log n,(g), induces a holomor-
phic diffefomorphism of G/K onto {(G)=2, and that 2 is a bounded domain in
p*. This is the Harish-Chandra realization of G/K as a bounded domain. We
will make the following identification:

GIK =2 cpt = GJK,-P.
Note that the action of G on 2 is given by

2.3) g-z=1{(gexpz), ge@G, ze 2.

2.4. Automorphic factor (see [21]). For a holomorphic representation t of
K, on a finite dimensional complex vector space E, we define the (canonical)
automorphic factor of type 7, J.: G x 2—GL(E), by

(2.5) J(g, z) = (no(gexpz)), g€Gq, ze P,

where 7w, is as in (2.2). It is then easily verified that J, has the following
properties:

(2.6a) JAg, z) is C® in ge G and holomorphicin ze 2;

(2.6b) J (9192, 2) = J {91, 92-2)J (92, 2) for g4, 9,€G, ze D;
(2.6¢) J{k, z) = 1(k) for keK, ze 2.

The formula (2.6b) will be referred to as the cocycle formula. We note that the
definition of g -z and J(g, z) can naturally be extended to any pair (g, z), g € G,,
zep* such that gexpze Q=P*K_P~, and that the cocycle formula (2.6b) is
valid for g,, g, € G,, ze p* such that both g,expz and g,g,expz are in Q. In
particular, for a fixed geG, J(g, -) can be defined and is holomorphic on
{ze p*; g exp z € Q} which is an open subset of p* containing &, the closure of
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2 in p*. Note also that

(2.7a) J(k, z) = (k) for keK,, zep®,
(2.7b) Jdp,z)=1 for pePt, zep®,
where I denotes the identity transformation of E.

2.8. Description of the root system ® (see [9], [23]). Two linearly inde-
pendent roots a, f§ are called strongly orthogonal if neither a+f nor a—f is a
root. We choose a maximal strongly orthogonal set

(2.9) 1 V2seees Veds V1> 72 >>79,, r=rankQ

of @} as follows. Let y; be the highest root of ¢ (we know that y, belongs to
;) and for each j, y;,, be the highest positive noncompact root that is strongly
orthogonal to each of yy,..., ;. We write H, X;, X_;forH,, X,, X_,. Let

(2.10) a=35RX;+X_).

This is a maximal abelian subspace of p. Let t~=3%_; RH; and let © denote
restriction of roots from t, to t~. Identifying each element of y,..., 7, with its
7 image, we put

Cy = {ae®t; n(a) = 0};

C; ={oce<1>:';n(a)=%yj} for 1<j<r;
(2.11) N; ={oce¢,‘;;n(oc)=—;—yj} for 1<j<r;
Cjk={oced>j;n(a)=%(yj—yk)} for 1<j<k<r;

Njk={ae¢:;n(a)=—;—(yj+yk)} for 1<j<k<r.

Then, by results of Harish-Chandra [9] and Moore [23], we have (since our
construction of {y,,..., y,} differs from that of Harish-Chandra, their results
should be modified slightly; cf. Takeuchi [27] in this connection):

(2.12&) ¢+ = CO U U (CJ V] NJ) u U (Cjk U N_]k) U {'yl,..., Yr}'
1<j<r 1<j<k<r

The number of roots in Cj (resp. C;) is equal to that in N (resp. N;)
(2.12b) and is independent of j, k, 1< j<k<r (resp. j, 1< j<r); we call
this number u (resp. v). Moreover, if r>1 then >0 (v may be 0).
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(2.12¢)  Nonzero n images of compact simple roots for @* are
1 1 .
1 2)5000s r—1 r -
{500 = 10 5 0rr = 10} if 0=0

1 1 .
{—%—(?1 - ')’2),--., ?(’Yr—l - ’Yr)s 7?1‘} if v # 0.
(2.12d)  The y; all have the same length.

2.13. Cayley transforms (see [31], [32]). For each 1<i<r, we define an
element c; € G,, which is called the (partial) Cayley transform, by

(2.14) e= T1 exp (X_; - X)).
1<j<i 4

It verifies

O = H, M@+ X=X A XL, for i<
Moreover

(2.16) G-o e Pt-K, P

and

(2.17) & =cit

where the bar denotes the complex conjugation of G, with respect to G. An
explicit computation in SL(2, C) plus the commutativity of X; and X, for
Jj#k shows that

(2.18) ¢, =exp(—Xi-; X,)-exp(log /2 Xi, H))-exp(Ti-, X_)).
exp (Zhor %X + X_ )
=exp (X i, (tanh x;)X;)-exp (— X i~ log(cosh x;)H )
-exp (X i, (tanh x)X_)).

(2.19)

2.20 Maximal parabolic subgroups (see [31], [32], [1]). For each i,
1<i<r, let 'C§? denote the set of positive roots which are of the form a—p
with a, Be Cj, 1< j<k<i, and set C§’ =Co—'C{¥ where Cj, C, are as in (2.11)
(it is clear that 'C{P = C,). Using the notation in (2.11), we define
2la) & =+CP U U (£C;U EN)U U (£CuU =Ny

i+1<j<r i+1<j<k<r

U {ZEPis15000s £}
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(221b)  '®;=+'CP U U (£C;.
1<j<k<i

Then (2.12a) implies
{ae®; a0, H +-++ H) =0} = ®, U 'D,.

Thus if we set h;=R(H,+---+ H;) and let Z4(h,) denote the centralizer of b; in
g., we have

Zﬁc(bi) = tc + Zae(b; 92‘ + Zae’dig g:

Let g;, (resp. 'g;.) be the subspace of g, generated by the H, and the X, for
o€ P; (resp. 'P;) with the convention that g;, (resp. 'g;,)={0} in case ®; (resp.
‘®,) is empty. As follows from (2.12a) and the definition of '‘C{’ and C§”, no
roots of @; and of '®; add up to a root, whence @, and 'P; are closed systems, i.e.,
if o, Be P, (resp. '®P;) and a+ f € @, then a+ f € P; (resp. 'P;); moreover ;= —P,,
'¢9,=—'¢P;. Hence g;, and 'g;, are semi-simple subalgebras of g,, which are
contained in Zg (h;). Furthermore, since no roots of @; and of '®; add up to a
root, g; . and 'g; , are ideals in Z,,(},), and Zg(h;) decomposes as an orthogonal
(relative to the Killing form for g,) direct sum

(2'22) ZQc(bi) = gi,c @ ,gi,c @ ii,¢: (_B bi,c With ii,c < t¢:'
Now (2.15) implies
(2.23a) Ad(c)(Zi=1H)) = Xi=1 (X; + X_)).

Thus if we set a;=R3>}_; (X;+X_)), then
(3.23b) Ad (c)b; = a;.

Noting that Ad(c;) acts trivially both on g;, and i;,, we see from (2.22) and
(2.23b) that

ch(ai) = gi,c @ Ad (ci),gi,c (—B ii,c @ ai,c

(Z4(a;)=centralizer of a; in g,). Each direct summand of this decomposition,
being invariant under the complex conjugation with respect to g (invariance of
Ad (¢;)'g;,, follows from (2.17), since, in view of (2.15), Zy(bh;) and hence 'g;, is
preserved by Ad (c;?)), arises as the complexification of a real subalgebra of g.
Hence if we put g;=g;.Ng, g;=Ad (c;)'g;. N g and i;=i; ., N g, then

Zg(ai) =g;®g DL D a;
Let

(2.24a) n;: sum of the negative eigenspaces of ad (Xi-; (X; + X_))) on g,
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(2.24b) P;: normalizer of n; in G.
Then P; is a parabolic subgroup of G and we have the semidirect sum
Lie algebra of P, =(g; ® g; ® 1; ® q;) + n;.

Let G, Gj, I;, A;, N; denote the analytic subgroups of G corresponding, respec-
tively, to g, gi, i;, @, m.  Letting a be as in (2.10), put F=exp,/—1anKk;
F is a finite subgroup normalizing G;, G;, and I, commutes with it. Now let
M;=FI,G,G;. Then M; is a closed subgroup of G and we have a Langlands
decomposition

(2.25) P; = MiA;N;

(for Langlands decomposition of a parabolic subgroup, see Warner [30]). In
our situation it is known (cf. Knapp and Okamoto [15], p. 386) that the finite
group F is generated by the elements

expn(X; — X_)) =expn/—1H;, 1<j<r.

Let F; be the subgroup of F generated by {expn,/—1H;; 1<j<i}. Then itis
clear that F; commutes with G;. Furthermore, since \/—1H;eg; for i+1<j<r,
it follows that

(2.26) M, = FI,G,G;.
We note that
(2.27) the Cayley transform c¢; centralizes F;, I; and G;.

The group P; is a maximal parabolic subgroup of G, and every maximal parabolic
subgroup of G is conjugate to one of the groups P; (1<i<r).

2.28 Boundary orbits, boundary components (see [31], [32]). The for-
mula (2.18) shows that ¢;e P*- K_- P~ so that {(c;) e pt where { is asin 2.1. Put
0;=c;-0 in the notation of (2.3), and let #;=G-o; (the orbit of o; under G).
Then

92—-9= \U %, (disjoint union)
and 4, is the Silov boundary.
With g;, G; being as in 2.20, put f;=g; nf, p;=g; N p, ¥ =g;. N p*, and let K;

denote the analytic subgroup of G; with Lie algebra ¥, Then g,=f+p; is a
Cartan decomposition; moreover we have the direct sum decomposition

gi,c = fi,n: + p;’- + P:’
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and so the space G;/K; is hermitian symmetric. It is known that the hermitian
symmetric space G,/K; is irreducible. Now let 2,=G;-0, ¥;=G;-0;. Then
2,;~G,;/K; and, since g-0;,=0;+¢ -0 for g € G, by (2.27), we have

?i=ci'9i=oi+ @i'

Furthermore

The transforms of the €;’s by elements of G are the boundary components of 2.
We note that g, <=t by definition; hence

(2.29) G,=K,cK, ¢ =1{o), and #%,=K-o,

Note also that G; is noncompact if i#r.
It is known that the parabolic subgroup P; (=F,I;G,G;A;N;) in 2.20 is the
normalizer of the boundary component €, i.e.,

(2.30) P,={geG;g-%¢,=¢%,}.
Moreover,
(2.31) F,I,G;A;N; (this is a group) acts trivially on €.

Proor oF (2.31). We first check that N, acts trivially on €;. Since N; is
normalized by G;, and since G; acts transitively on &, it suffices to show that
n-o0;=o0; or that cync;-o=o for all ne N;; in turn, for this, it will be enough to
show that Ad (c;\)n;=f,+p~, because K, P~ is the isotropy subgroup of G, at o.
By (2.23) and the definition (2.24a) of n;, Ad (c;')n; is contained in sum of the
negative eigenspaces of ad (H;+---+H;) on g,. But, in view of (2.12a), all these
eigenspaces are in f,+p~, so N, centralizes ¥;. Next we check that GjA4; acts
trivially on %;. Since G{4; commutes with G, it suffices, by the same reason as
above, to show that Ad(c;!)(gi+aq)c<f,+p~. But this is clear because
Ad (ciVg;c'g;. T, and Ad (c;)a;=h;cf,. Finally as for FI;, one needs only
to note that it is contained in K and commutes with ¢; and G;. [ ]

Let S; denote the isotropy subgroup of G at o;. Then, since S;< P;, (2.25),
(2.26), (2.30) and (2.31) imply

(2.32) Si = FiIiKiG;AiNi'
2.33. Normalization of measures. We fix i, 1<i<r. Let t;=g;nt; this

is a Cartan subalgebra of g, If we put t;=3"%_,,; RH; and tf ={Het;
{yj» Hy=0 for all i+1< j<r}, then t;=t}+./—1t;. The root subsystem &;
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defined by (2.21a) can be naturally identified (by restriction) with the root
system of (g;,, t;.). In &, &* induces the system of positive roots

(2.34) ot = &, n P+

Now assume 1<i<r—1; thus G; is noncompact. Letting a, p; be as in
(2.10) and in 2.28, we set ag=anp;. Then

(2.35a) a(,-) = Z_’]"=i+ 1 R(X.I + X_J)

and a; is a maximal abelian subspace of p;,. If c, is the (full) Cayley transform
for g given by (2.14), then (2.15) implies

Ad(c)t; = az and Ad ()t} = tf.

Therefore Ad (c)t;.=(f +q(;)), and its dual map ‘Ad (c,) sends the (tf+aq),
root system of g;, to the t;, root system ®; of g;,. Let Z; be the restriction to
ag; of the elements in ‘Ad (c;!)®;; hence X; is the restricted root system of g;
with respect to a;. Via Ad(c,), @7 induces a system of positive roots X} in
Z;. We denote by af;, the corresponding positive Weyl chamber in a4,. Then
(cf. Moore [23]) we have

(2.35b) a-('-i) = {Z§=i+1 xJ(Xl + X_j)ea(i); xi+1 > xi+2 > > x,. > O}.

Let A be the analytic subgroup of G; corresponding to a;;, and let A, =exp af;).
We define a function D, on Af;, by

Di(exp X) = Hae):;" (Sinh a(X))m(a), Xe a.(*'i)

where m(a) is the multiplicity of «, i.e., the number of roots in *Ad (c;!)P; which
restrict to a. If X=3"%_;, x(X;+X_))ea(;, then one finds from (2.12ab),
(2.21a) and (2.15) that

D(exp X)

(2.36) = TII (sinh2x;)(sinhx;)?*- T]  {sinh(x; + x;)sinh(x; — x,)}*
i+1<j<r i+1<j<k<r

=2t T] (sinhx;)?**!(coshx;)- [JI {(coshx;)* — (coshx;)*}*
i+1<j<r i+1<j<k<r

where u, v are the constants in (2.12b). For any point X =3%_,, x(X;+X_})
€ a, we regard (X;4 1, X;42,..., X,) as the coordinates of X and denote by dX the
measure dx;,---dx, on a;. Let da be the Haar measure on A4, which corre-
sponds to dX under the exponential mapping. We normalize the Haar measure
on K; to have total mass one. Then (cf. Helgason [11], pp. 381-382) there exists
a unique determination of the Haar measure on G; such that
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237 [, f@ddgi=(_ jkiak)D(@)dk;dadk,

i1XAdy

for all fe C(G,) (continuous with compact support). In the case i=r, G,=K,
<K (cf. (2.29)), so we normalize the Haar measure on G, so that S dg,=1.
G

Now return to the general case 1<i<r and let a;, n;, P;, S, be as in 2.20.
Define p; € a} (=dual space of a;) by

(2.38) p{H) = % trace (ad (H)|,), Hegq

and, using this p;, define a function p on G as follows. Since P; is a parabolic
subgroup, each g € G can be uniquely written in the form g=kman where ke K,
meM;nexpp, acd;, neN; (cf. Warner [30], p.78); so put p(g)=e 2ri(a).
Then

(2.39) pisa C® rho-function (cf. [30], Appendix 1) on G for the subgroup P;,

i.e., p is a strictly positive C* function on G satisfying p(e)=1 (e=identity
element of G), p(gp)=4p(p)4c(p)~*p(9), g€ G, peP; where 4;, Ap, are the
modular functions of G, P;. In fact in the present case 4;=1 since G is simple,
and it is easy to verify that

(2.40) p(p) = 4p(p) for peP; and p(gp) = p(g)p(p) for geG, peP,

Moreover, we see without difficulty that
(2.41) Ap(s) = As(s) forall seS;

and so the p is a rho-function also for the subgroup S;.

For further normalization of measures we need the following well-known
measure theoretic result. Let W be a locally compact group countable at infinity,
and suppose X and Y are closed subgroups such that X-Y is open in W, the
complement of X -Y in W has Haar measure zero, and X N Y is compact. Then
(cf. Bourbaki [2], p. 66) we have:

The left Haar measures of W, X, and Y may be normalized in such a
way that for any integrable or non-negative Borel function f on W

(2.42)

- 4w(y)
{, ronaw = reen 47 Baxdy

where 4y, 4y are the modular functions on W and Y, respectively.

Now let dk denote the Haar measure on K such that S dk=1. Then, since
K
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G=K-P;, KnP; is compact, and since 45=1, (2.40) and (2.42) imply that the
left Haar measures on G and P; can be normalized so that

(2.43) SGf (9)dg = SKXP_f (kp)p(p)~'dkdp
for any integrable f. Similarly, since P;=G;-S;, and G;Nn S; (=K,) is compact,

(2.41) and (2.42) ensure that we can normalize the left Haar measure on S; such
that

(2.44) [, ror=(_ _ rgodgds

for any integrable f on P, As p(g;5)=p(g,)p(s)=p(s) for g;eG; and se€S,,
(2.43) and (2.44) then lead to

(2.45) [ S@dg =T flgop(syakdgds
G KxXGiXS;
for any integrable f on G.
As noted before, the p is a rho-function also for the subgroup S;. Let du

denote the quasi-invariant measure on %;=G/S; associated to this rho-function
(cf. [30], Appendix 1), which is defined by the formula

(2.46) [J@r@ds = auo) se9as g =gs,
for all fe C(G). Then we observe that

(2.47) ng(u)du(u) - SG F(kg; 0)dkdg,

for any integrable F on %;. Indeed if we set f (g)=gs f(gs)ds (g=g-0;) for
fe C[G), then

[, fwduw = § | au){, saspas

i

f (kgis)p(kgis)p(s)~dkdgds  (by (2.45))

S
= | f@r(@ag
b

Kx

= |, fkg,-0pdkdg,
KXG;

for any fe C(G). Since the assignment f— £ is a surjection of C(G) onto C(%)),
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(2.47) follows.

3. Definition of # ,(G)

In this section we define, for each 1<i<r, a subset &F i(G)c\/—_lt*; in the
next section we shall associate to each member of % (G) a Hardy type space and
an irreducible unitary representation of G.

As in 2.33 we identify the root subsystem &; with the root system of
(80> 1i0).- Similarly the root subsystem '®; defined by (2.21b) can be identified
with the root system of ’g;, with respect to the Cartan subalgebra 't; =
‘g; . N1, and & induces the system of positive roots '®¢F ='®;n &* in 'P,. We
let {ay,..., o} be an enumaration of the set of simple roots for ¢+ such that

(3.12) { o, is the unique noncompact simple root for @* and, for each

1<i<r—1, {a,..., o} is the set of simple roots for &7,
and such that
(3.1b) for each 2<i<r, {4 1,..., %} is the set of simple roots for '&f;

this can be done because the simple roots for @} (resp. '®7) are the simple roots
for @* that are in ®f (resp. '®;}) and «, is the lowest root in @}, and because
& i, 'Pf>'df_, for 2<i<r. In what follows, we shall find it convenient
to put Iy=1. Note that, in case r>1, we have

32 1<l <l_,,l,<li=1and ;<l;j<I,_; foreach 2<i<r-—1;

this follows from (2.12c). We denote by {4,,...,4;} the set of fundamental
highest weights, i.e., 4; is the weight such that 2(4;, a,)/(%, o) =0 for 1<k<I.

3.3. LEMMA. Let H,,..., H, be as in 2.8.

(1) <Ay, Hoy=1forall 1<k<r.

(2) Fix i, 1<i<r, and j, 1<j<li. Then for 1<k<i, {A;, Hy) is a
strictly positive integer independent of k.

(3) Fix i, 2<i<r, and j, l;_;+1<j<l. Then {A;, H)=0 for all
i<k<r.

(4) Fix i, 2<i<r. Then {A;, H)>><{A;, H) for all ;+1<j<I.

Proor. (1) Let {y,,...,7,} be the strongly orthogonal noncompact posi-
tive root system as in (2.9). Since g, is simple, f, acts irreducibly on p*, so
every y, 1<k<r, can be written in the form y,=a,+ > }_,n;a; where n; are
nonnegative integers and ay, ; are as in (3.1). Therefore



Unitary representations and kernel functions 91

— 2(115 yk) = 2(11’ al) — (U" s & )
Ay Hi (Vi 7o) D) (vi, vi) :

Since y, and «a, are, respectively, the highest and lowest weights of the irreducible
f,-module p*, we have («, «;)=(y;, y1)- On the other hand (y,, y,)= y:) for
all 1<k<r by (2.12d). Thus (1) follows.

(2) In view of (2.22) t, admits the orthogonal direct sum decomposition

tc = ti,c @ ,ti,c @ ii,c @ bi,c'

If 1<k, k'<i, then it is readily seen that H,— H,. is orthogonal to the subspaces
;. t;cand b;,, so H,—H,.e€'t;.. Thus (3.1b) implies that if 1<k, k'<i then
{(Aj, Hy—H»> =0, ie., {ij, H)=(4; H) for every 1<j<I;.

Now (4;, H;) is a nonnegative integer for each pair of indices j, k because
A; is a highest weight. Therefore to complete the proof of (2), it suffices to show
that {1;, H;>>0 for every 1< j<I. But this is clear since y, can be written as
integral linear combinations y, =X %_; nja; with all n;>0 (the root system & is
irreducible and y, is the highest root).

3 If i<k<r, y,e®;_;,. Hence we can write y,=>'tno; with n;
nonnegative integers, which implies (3).

(4) Recall (3.2) that [;<I,_,. By parts (2) and (3) of the present lemma
we may assume [;<l;_, and it suffices to show that {1; H,>><{4;, H;) for
Ii+1<j<l;_;. Since p* is an irreducible f,-module with y, the highest weight,
we have y;=y,— X}, n;u; with n ;=0. Hence, and because y,, y; have the same
length, it is enough to show

(3.4) n;>0 for L+1<j<l,.

Take any jo, lj+1<jo<l;_;. Then a;, €’C{—'C§~V by the definition (2.21)
of @, '®;. Thus there exist an integer k (1<k<i) and two roots §, f’ € C; such
that «;,=f—p. Now
1 __ 1
s B) = (v ?(')’k )= - _2‘(7ia ) <0,

so y;+p is a root. Since y, —(y;+B)=2}-,nju;—a;,—p" and y, is the highest
root, we must have n;,>0. This establishes (3.4), and (4) follows. [ ]

Foreach 1<i<rand 1< </, let
(3.5) = %u(i - D+ur—-i)+ov+1 (u, v being as in (2.12b))

(3.6) k=, Hy.
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Then p; is an integer or a half-integer and, according to Lemma 3.3, k; is a posi-
tive integer for every 1< ;<! and in partlcular ky=1. With G, T being as in
Section 2, define

(3.7 Z(G) = {Ae \/—11*; e* is well defined on T}.
Now, for each 1<i<r, we define
) o meR m;eZ*2<j<ly,
my + Z j=2 j j = —Di
(3.8b) Fi(G)=ZF; n £(@G),

where Z+={0, 1, 2,...}. Corresponding to each element of & (G), we shall
construct an irreducible unitary representation of G in the next section. The
motivation for the definition (3.8) will become clear during the course of our
construction of the representation. But we note here that if Ae #; (2<i<r) then
/ vanishes on the Cartan subalgebra 't;, of 'g; .; this is evident from (3.1b). Let

(3.9) 5 = % Y eor O

Then we can rephrase the definition (3.8a) as follows:

3.10. PROPOSITION. Let Ae./—11t* be such that 2(A, a)/(o, @) is a non-
negative integer for every compact positive root o of (g,, t,). Then A is in &,
if and only if:

(1) (A4, Hpy =<4 Hpy;
2 <A+6,H,+--+H)=0.

ProoF. By assumption, A can be written in the form A=3%t_, m;i; with
mieR, mjeZ* (2< j<I). Then Lemma 3.3 (2) implies

A Hiy =<4 Hy = Yooy m({Aj, Hy) — Ay, Hp).
Since m;>0, it then follows from Lemma 3.3 (4) that
(3.11) LH))=XLHy&emj=0 for [+1<j<1L
Under the above equivalent conditions we have

{A, H{+-+ H)

(3.12) =X ShaamKay He
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=i(m, + Zj_';z m;k;)  (by Lemma 3.3 and (3.6)).

On the other hand if we let 7(6) denote the restriction of J to t~ as in 2.8, then by
(2.12ab)

27(0) = lgsryj + u1 > %‘()’j +y)+u X %(yj = 74

<j<k<r 1<j<k<r

(3.13) +20 3 Ly,
155<r 2

= > (I+v+ul—j)y;.

1<j<r

Thus, and since {y;, H,) =26, we get

b, Hy+-+Hp)= lSZ‘,S_(l + v+ u(r —j))

(3.14) - i(l +o+ur—Lui 4 1)>

= ipi'
The assertion of the proposition now follows from (3.11), (3.12) and (3.14). [ |

Note. In the extreme case i=1, the two conditions in Proposition 3.10
reduce to the single condition {(A+6, H,)»=0, and so this is the case which was
considered by Knapp and Okamoto [15].

Let
(3.15) of . =0, N Pf, Df, =&, n Df;

they can be identified with the set of compact and noncompact positive roots of
(810> 1;,0), respectively.
The following lemma will be needed in Section 4 below.

3.16. LeMMA. Suppose r>1 and fix i, 1<i<r—1, and AeF; Then
{A+96, H,><O0 for all ae®f,.

Proor. Recall the direct sum decomposition g;,=¥f; . +p7+p; in 2.28.
Since the hermitian symmetric space G;/K; is irreducible, f, acts irreducibly
on pf. Note that the set of weights of this representation is naturally identified
with @f, with 9., the highest weight. Hence if a€ ®],, a can be written as
a=7;4,— 2n;o; where n; are nonnegative integers and «; are simple roots
for ®f,. Since (4, H,) =1 for any simple root « of * and since {4, H,» >0 for
all o e @7, it then follows that the condition {(A+4, H,» <0 for every ae @}, is
equivalent to the single condition {1+, H;,,»<0. Now (3.13) implies
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(5,H,-+1>=1+v+u(r—i—1)=p,—%u(i+ 1).

On the other hand, since 1= Zj; , Mk with my + 3 5;2 mk;= — p;, using Lemma
3.3 one finds that

Ay Hip) =my + Zi‘:z miA;, Hip 1)

1 I
=m; + 21’;2‘ m;k; + Zj=l'“,,+1 m;<{A;, Hiy )

I
=ttt

=—-p—-2 mj(U-j, H,) — <lj9 H;.))

< —p.

Hence, and because of the fact that u>0 if r>1 (cf. (2.12b)), it follows that
A+6,Hpy><— %:u(i +1)<0.

This completes the proof. [ ]

We close this section with some comments on whether the set &# (G) is non-
empty or not. If the number p; in (3.5) is an integer and if moreover G, is simply
connected, then #(G)=%,; and hence Z,(G)#¢g (3=the empty set) for all
1<i<r. On the other hand if i (1<i<r) is odd then, by its definition, p; is an
integer for every simple Lie algebra g (whose associated symmetric space is
hermitian symmetric). Also if, for a given g, the integer u in (2.12b) is even, then
p; is again an integer for every 1<i<r. But when, for a given g, u is odd (this
is the case when g is sp(n, R) or so(2n+1, 2); see the Table below) and if more-
over i (1<i<r) is even, then we must take, corresponding to g, a non-linear Lie
group G to ensure that &#(G)+#g.

In any case, for a linear group G, if we let G° be a two-sheeted covering of
the linear universal covering of G (covering group G of G is called the linear
universal covering of G if G is again linear and if G, is simply connected), then
F{(G°)=%; and hence F(G°)#¢g for all 1<i<r. But in this paper we will
mainly be concerned with linear groups.



Unitary representations and kernel functions 95

Table
g r u v p,=%u(i—l)+u(r—i)+v+1
(I1<i<r)
su(p, 9) (p=2q=21) ¢q 2 p—q p+q—i
s0*(4n) n 4 0 4n—-2i—-1
s0*(4n+2) n 4 2 4n—-2i+1
sp(n, R) n 1 0 n—%+%
so(n, 2) (n>3) 2 n-2 0 pi=n—1, p2=—g—
eﬁ(_14) 2 6 4 p1=11, p2=8
€7(-25) 3 8 0 py=17, p,=13, p3=9

4. Construction of representations

We retain the notation of Sections 2, 3 and fix i, 1<i<r, and Ae F(G).
Since 4 is @}-dominant, i.e., 4 satisfies (4, a) >0 for all « € @7, and since 1 € £(G)
(notation of (3.7)), there exists an irreducible holomorphic representation 7; of
K, on E, (say) with highest weight .. We endow E; with a hermitian structure
such that the action of 7,(K) becomes unitary. Let e; € E, be a highest weight
vector of norm one. Letting K; . be the analytic subgroup of K, with Lie algebra
f

1,00 We denote

A : restriction of A to t;

4.1) E;: linear span of {t,(k)e;; keK;},
771 restriction of 1y(K;,) to E;.

4.2, LeMMA. The representation t; of K;, on E; is irreducible. The
highest weight of t; on the Cartan subalgebra t,, of ;. with the relative
ordering, is X and e, is a highest weight vector.

Proor. Let t; also denote the differential of 7;. To prove the lemma, it
is enough to show that if f is a positive compact root of (g;,, t;,) With X, as root
vector then 7(X )e;=0. But this follows from the fact that the positive compact
roots of (g;, t;,) are the restrictions to t;, of the members of @;n &7 and if X,
is a root vector of a € ®;n ¥}, X, is also a root vector of the restriction to t;, of

o |
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Recall (2.25) the Langlands decomposition P;=M;4;N; and the isotropy
subgroup S; of G at 0;. Let L;=M;nS;. Then it follows from (2.26) and (2.32)
that

Si = LiAiNi and Li = FiIiKiG:"
If ¢; is the Cayley transform given by (2.14) then, since S;=G n ¢;K P~ ci!,
4.3) c;1S;c; = K P~

Thus, and because the representation 7, of K, on E, is uniquely extended to that
of K_P~ which is trivial on P~, we can define a representation 1’ of S; on E, by

(4.4) 7(s) = 1,(c7lsc;), seS;

We denote by P; the orthogonal projection operator of E, onto E;, and by
E} the orthogonal complement of Ej in E;.

4.5. LemMA. (1) The action of 1$9(L;) on E, is unitary and leaves the
subspaces E;, E} invariant. Moreover 15"|g,=1,|k,.

() ()l =e*(a)l for all ae A;, and Ej is stable under t{"(A;); here
p;€a¥ is as in (2.38) and I denotes the identity transformation of Ej;.

(3) PytiP(n)lg,=I for all ne N;, and Ej is stable under t{P(N)).

Proor. (1) The last assertion of (1) is obvious since ¢; commutes with
K;. 1t is easily verified that c; also commutes with subgroups F; and I;. As
F.I,cT, it then follows that the action of 7$¥’(F,I,) is unitary and leaves the sub-
spaces E;, Ej invariant. Now, by definition, Ad(cj')gjc’g;.<f,; cf. 2.20.
But taking into account (3.1b) and the definition (3.8) of &#(G), one sees that A
vanishes on the Cartan subalgebra 't;, of 'g;,; therefore t{" is trivial on Gi.
As L,=F,I;K,G}, the assertions of (1) are now evident.

(2) If ae A, then cilac;eexp./—1t by (2.23). Hence, and because of the
fact that the subspaces E; and Ej are spanned by weight vectors for 1, it is clear
that both E; and Ej} are stable under 7$9(a). According to (1) and Lemma 4.2,
(K|, is irreducible. Since 4; commutes with K;, it follows that t{”(a)|g,
(a € A;) are scalar operators. Thus to prove (2), it suffices to calculate the effect
of 1$9(a) to the highest weight vector e;. Now

W(a)e, = T(cilac)e; = A (THURg,
Hence the assertion of (2) amounts to the identity
4.6) {pp XD = (A, Ad (T H)X) for Xea;.

Recall (2.23a) that Ad (¢;)(Xj=; H)=X%-1(X;+X_}), and that n;, is sum
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of the negative eigenspaces of ad (Xi-,(X;+X_;)) on g, Thus Ad (ciHm;, is
sum of the negative eigenspaces of ad (Xi—;H;) on g,. Therefore, if we put
H=Ad (c;1)X for X €q;, one finds

{pis X = 5 trace (ad (X)],, )

1
= —5' trace (ad (H)lAd(crl)ni,e)

= — (38, H) (dis asin (3.9))
= {4, H) (by Proposition 3.10 and the fact that dim a; = 1),

which establishes (4.6), and completes the proof of (2).

(3) Let 7, (resp. 7)) also denote the corresponding representation of f,+p~
(resp. the Lie algebra of S;) on E;,. To prove (3), it is sufficient to show that
9(n,)E; <Ej; in turn, for this, it will be enough to show that 1,(X)E, < E} for
all XeAd(c;)n;,. As observed in the proof of (2), Ad (c;')n;, is sum of the
negative eigenspaces of ad (X~ H;) on g;. Thus if we let

&o.(i) = {aed; <o, H +---+ H;) < 0},
&, (i) = {aed,; (o, H, +:++ H) <0},
then
4.7 Ad (i, = X seor (huos ) 85
Further, by (2.12a),

o)=Y (=C)u U (=Cu)s

1<j<i 1<j<i<k<r
(4.8) P;()= U (=Ny)u U ( Niu U (=Ny)
1<£j<i 1<j<k< 1<j<i<k<r

U {"' '))1,.-., - ))l} .

Now let E; =" E* be the orthogonal direct sum decomposition of E; into weight
spaces for the representation t,; the weights y are all of the form py=1—-3 , s:n,0
with n, nonnegative integers. Then E;=3 E*, the sum taken over the weights u
of the form p=A—Y.of no As Of, =C{?u U Cju U Cy by

1<j<r i+1<j<k<r

definition, it then follows from (4.8) and (2.12ab) that 1f o€ @7 (i) then Erten E;
={0} for any weight p for t,; therefore we conclude that t,(X)E,<Ez for all
X €Y uos 102 On the other hand tx(X)E;={0} for all X €3 ,c0;¢;)082%; this
follows from the fact that &, (i)c(—®}), and that 7,(p~) acts trivially on E,.
The assertion of (3) now follows from (4.7). ']
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Because of Lemmas 4.2 and 4.5(1), we may define an irreducible unitary
representation 't{¥ of L, on E; by setting
4.9 TP = tP(Dlg; lely
Now we define, for each vea¥, representations ‘s, , and o, , of S;=L;A;N; on
E; by
(4.10a) '0,(lan) = e/~ (a) '7{)(]),
(4.10b) o, (lan) = er+v"1(a)'t$(l), lane L,A;N;

where p;eaf is as in (2.38). Note that ‘s, , is irreducible and unitary (with
respect to the inner product induced from that of E;).
We consider the unitarily induced representation

(4.113) U).,V = IndS‘TG ,o'l,v.

Let us write down this representation more explicitly. Let p be the rho-function
on G for the subgroup S;, which was defined in 2.33, and let du be the correspond-
ing quasi-invariant measure on G/S; defined by the formula (2.46). Then (cf.
Warner [30], p. 374) the representation space of U, , may be regarded as

all Borel measurable f: G—E; such that

(4.11b) L%G, 6,,) = (1) f(gs) = p(s)*/? '01(8)"1f(g) for geG, seS,
@ 1512 =__pler"|f@)Pdu(@) < o
151

where we identify functions which are equal almost everywhere on G. (In
connection with condition (2), note that the integral is constant on left S; cosets
and hence defines a function on G/S;. Note too that condition (1) can also be
written as f(gs)=0;,(s)"'f(g) because p(s)=e 2*i(a) if s=lan.) L%(G, a;,)is
a Hilbert space with inner product

AR ORCOSEOLTE)

and U,, acts on LG, g,,) by left translation: U, (9)f(9")=f(g"'g’). For
every veaf, U,, is a continuous unitary representation of G. But our main
concern in this paper is with the case v=0. We write o,, U,, L%(G, a,) for 0, 4,
Us00 LXG, 05,0)-

Let the normalization of measures on K and G; be as in 2.33.

4.12. LemMA. Fix veaf. Then for all fe L¥(G, a,,),
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171 =, 1/ kgoldkdg,

Proor. For a given fe L%G, o, ,), we may define a real valued function F
on #;=G/[S; by F(g-0)=p(9)!|f(9)]>, geG. If keK and g,€G,, then p(kg,)
=1 by definition of the function p, so F(kg;-0;)=|f(kg;)|>. Thus, using the
formula (2.47), we get

1717 = §, Foodut) = Fkgi-o)dkdg,

= Ifeg)didg,
KxGi

for all fe L*(G, a;,,,). |

Let 0(2, E,) be the space of all E,-valued holomorphic functions on 2
and let 0(2, E;)<0(2, E,) be the subspace of functions having a holomorphic
extention to a neighborhood of the closure of 2 in p*. We denote

J,: automorphic factor of type 7,

(cf. (2.5)). In view of (2.6a) we may define, for each g € G, an action T,(g) on
0(-@’ E/I) by

(4.13)  (TU9F)(2) =Jig7', 2)7'F(g™'-2), FeO(D,E), ze 9.

Then it follows from (2.6b) that T,(g,9,)=Ti(9,)Ti(g,) for g,, g, € G. Further-
more, according to the remark after (2.6), the subspace @(2, E,) is stable under

T(9)» 9€G. ~
For Fe0(2, E,), we define F: G-»E; by

(4.14) F(g) = P3J(gc;, 0)"'F(g-0), geG

(P; is the orthogonal projection of E; onto E; and ¢; is the Cayley transform).
For the representation o, (the case v=0 in (4.10b)) of S; on E;, we put

C*(G, 0;) = {fe C(G, Ep; f(95) = 0,(s)"'f(9), g€ G, s€S;}.

Then G naturally acts on C*(G, a,) by left translation.
The key step in the construction of representations on Hardy type Hilbert
spaces is the following lemma.

4.15. LeMMA. If FeO(2, E,), then the function F defined by (4.14)
lies in C*(G, 0;). Moreover the mapping F—F is equivariant with respect to
the action of G.
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ProoF. Let Fe®(2, E,); then clearly FeC*(G, E;). If geG and Ian
€ S;=L;A;N;, then, since cj!lanc;e K P~ (cf. (4.3)), we get

J.(glanc;, o)~ = J,(geicitlanc, o)t
= J,(cilanc;, 0)~1J,(gc;, 0)71
(by the cocycle formula (2.6b))
= 1{(lan)"1J (gc;, 0)7!
(by (2.7a) and the definition (4.4)).

Thus, using Lemma 4.5 and recalling that S; is the isotropy subgroup at o;, we
have

F(glan) = Pyr{P(lan)'J (gc;, 0)'F(glan- o)
= e77(a) 't ()7'P1J (gc;, 0)'F(g - 0)
= a(lan)"'F(g),

and so FeC>(G, 0;). The G-equivariance of the mapping F—F follows from
the cocycle formula (2.6b). [ ]

Keeping in mind Lemmas 4.12 and 4.15, we define a seminorm || ||; on
0(2, E,) by setting

IFl; = S |P3J y(kgic;, 0)'F(kg; - 0,)|*dkdg;, Fe@(é, E).
KXGy
Now let

(4.16) 09, E;) ={Fe0(9, E)); |F|, < ©}.

We will later show that the above seminorm is actually a norm (Corollary 4.34),
and that 0%(2, E,;)# {0} for all Ae #(G) (Corollary 4.39). Since U, is unitary
on L*(G, 0,), Lemmas 4.12, 4.15 and the definition of the seminorm imply

the action T, of G on 0(2, E,) leaves the subspace 0%(2, E,) invariant
and preserves the seminorm.

(4.17) {

Moreover, if Fe®*2Z, E,) then the function F defined by (4.14) belongs to
L*G, 0;). Let £, denote the mapping F—F of 0%2, E;) into L*G, a,).
Then by Lemma 4.15,

SF,. 049, E)) » LXG, 0,) is equivariant with respect to the action



Unitary representations and kernel functions 101

If Xeg,, X=X+ —-1X,(X,, X,€g9), and if fis a differentiable function
on G, define functions r(X)f and I(X)f on G by

(X)) (9) = - (f(g exp X)) + V= 11(g exp 1X))li—o,
(4.19)
1X)) (9) = -L(f(exp (= 1X,)g) + V=Tf(exp (= tX)g);=o-

As in 2.28 we put p; =g; , N p~.
The following lemma will be used in Section 5.

4.20. LeMMA. Let Fe®(9, E,), and define F: G»E; by (4.14). Then
" X)F=0 for all X ep;.

Proor. For Fe®(2, E;) and geG, let us put 'F(g)=F(g-0;) and J(g)
=J,(gc;, 0). Then, for X eg,,

(@.21)  ((X)F)(9) =~ PJ(g) ' ((X)))(9)I(9)~! 'F(g) + P1J(g)"'(r(X)'F)(g)-

Let 7: G»2 =G/K be the canonical projection. Then = restricts to the canoni-
cal projection of G; onto 2,=G,/K;. Hence if X eg;,, dn,X (e=identity of G)
may be identified with a complex tangent vector of 2; at o.

Now fix g€ G and define y: 2;,-g-%; by y(z)=gc;-z; y is a holomorphic
diffeomorphism of 2; onto the boundary component g-%; containing g-o;.
Then, since ¢; commutes with G,, it follows that

(r(X)'F)(9) = [(dy,edn.X)F]1(g-0)  forall Xeg,,.

But if X e p;7 it is not difficult to show that dn,X is an antiholomorphic tangent
vector of 9; at o, hence dy,odn X is that of g-%; at g-0;. Since F restricted to
the boundary component g - €; is holomorphic, we conclude

(4.22) (r(X)'F)(g) =0 forall Xep;.

On the other hand, since ¢; commutes with G;, by the same argument as the one
in the proof of Lemma 5.7 of [1] one finds that

(4.23) rX)J =0 forall Xep;,
and our assertion follows from (4.21)—(4.23). ]
Now let Af;), D;, da be as in 2.33, and =, be as in (2.2).

4.24. PROPOSITION. Let Ae #(G) and, for each e€E,, let 1, denote the
constant function 1,(z)=e, z€ 9. Then we have
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(€3]

B el | 1imo(@y DD (@Mda  if i
||1.n%={
B2d(y1d() lef? if i=r,

where y; denotes the character of t;, d(2) (resp. d(i)) the degree of 1, (resp. t3),
and B;=(/2)* with p, as in (3.5).

The proof requires the following lemma.

4.25. Lemma. (1) J,(g, 0))=J,(g, o) for all g € G;.
2) Jy(c, O)IE;=/3?1[ and E3 is stable under J,(c;, 0).

Proor. (1) As it follows from (2.18), my(gc;) =mo(g)me(c;) for all g eG,.
Thus J,(gc;, 0)=J,(g, 0)J;(c;, 0), while J (gc;, 0)=J (g, 0,)J ;(c;, 0) by the cocycle
formula, so (1) follows.

(2) Since J,(c;, 0)=1,(mo(c;)) by definition, and since 7my(c;)=exp (log \/f-
Yi_H;)eexp/—1t by (2.18), it is clear that both E; and E} are stable under
Ji(c;, 0). As ¢; commutes with G, it follows that ny(g)7mo(c;)=mo(c;)mo(g) for all
g €Gy; in particular mo(c;) commutes with K;. Since 7,(K))|g, is irreducible by
Lemma 4.2, it then follows that J,(c; o)lg; is a scalar operator. But, using
Proposition 3.10 and (3.14), we obtain

J (¢, 0)e; = 1,(exp (log ﬁZ}:lHj))ez = (\/7)<A’H’+"'+H’>ex
= (\/ 2) ire,
where e; is the highest weight vector for t;. Thus (2) follows. ']

ProOF OF ProposITION 4.24, For each ecE,, define ¢,: G-=E; by ¢.(g9)
=P;J,(gc;, o) te. Then by definition of the seminorm,

103 = 19.GkaiPddg,

We first suppose i#r. Then, applying the integration formula (2.37), we get

I.1% = S |¢o(kkak,)|2D(a)dkdk dadk,.

KxK,xA(*")xKi

Since ¢, € C*(G, 7;) by Lemma 4.15, it follows that
|@o(kkiaky)| = |o,(k2) ¢ (kkia)| = ¢ (kkia)l

because K;cL; and o,(k,) is unitary. Thus, noting that K;=K and using the
invariance of Haar measure on K, we obtain
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113 = #kalD(@)dkda

)

(4.26) - S |P.J (kac,, o)-'e[2D(a)dkda
KXA:()

=5 IPia 0 e (k) el2D @)dkda

KXA(”

where f?=2r:, and in the last step we have used Lemma 4.25 and the cocycle
formula. Because of Lemma 4.2, we can choose an orthonormal basis e, =e;,
e,,..., e, of weight vectors for 7, in such a way that e,,..., e,z are in E;. Let
e=Y % xe, x;eC, and write for ke K, t,(k)e;=3 4% 1;(k)e;, Then, since
(k) e, =Y 4% 1, (k)e;, we obtain from (4.26)

13 = £, %7 {)PsJ(a, 0)"te,|2D a)dkda

XAl 1<i,52d(2)

= lf%d(l)‘‘(Z‘,-’i’})lxilz)SA+ |Z 4% P1J(a, 0)~le;|2 D(a)da,

)

the second equality following from Schur orthogonality relations for t,. Now
J(a, 0)=1,(mo(a)) by definition, and, in view of (2.19), mo(a) eexp \/—1t;. Thus
J(a, o) is diagonal relative to the basis ey,..., €4;), so we conclude that

.13 = /3?61(/1)“IeIZSA+ xx(mo(a)~*)D(a)da.

)

Next let i=r. Then G,=K,=K by (2.29), so using the invariance of Haar
measure and arguing as above, one finds that

113 = { JoGordk = { 1Pa,ke,, o tel2dk
= 2 [Pt tel2dk = BRA(HAC) el

This completes the proof of the proposition. ]

4.27. CorROLLARY. Let e; be a highest weight vector of 1, with |e;|=1, and
let 1, denote the constant function 1,(z)=e;, zeé. Then

11,02 [ ﬁ%d()“)-lSA+ xi(mo(a)"2)Da)da  if i#r
Al = W
prd(D)d(2) ! if i=r.

Furthermore |1,],=11,];le| for all ec E,.

We note that if 1, is as in the preceding corollary, then
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(4.28) 4], # 0.

Indeed, if we define a function ¢ on K xG; by ¢(k, g)=|PzJ(kgic;, 0) le,|?,
then ¢ is continuous and |]1,1|I,21=S ok, g)dkdg;. As ¢(e, e)=p2#0 by
KxG;

Lemma 4.25(2), it follows that ||1,],#0.

4.29. LEMMA. ||F|;>[1,],1F(0)| for all Fe 03, E,).

Proor. It is known that K contains the group T! of rotation z—eifz
(zept, 0<0<2m) as a central subgroup; cf. Koranyi and Wolf [18], p. 269.

Let dt denote the Haar measure on T! such that S ldt= 1. We first note that if
— T
Fe0(2, E,), then

(4.30) F(o) = S F(t-2di forall zed,

T
because the restriction of F to the complex line spanned by z is an E,-valued
holomorphic function of one complex variable.

Now, for F e 02, E,), we have

I1FI3 = _ 1P37Ckgic, o) Flkg;-0)2dkdg;

= S [S |P3J (tkgc;, 0)"* F(tkg;- Oi)Izdt} dkdg,
KxGy T

. [, IPssaCka,co oyt Fitkg, o)i2dt | didg,
KxGy T!

(since T! is a central subgroup of K)

= (| Paitkac, oy Ftkg,-opat|” dkdg,
KxGy T!
= S |P3J i(kgic;, 0)~*F(0)|*dkdg; (by (4.30))
KXGy
= [1,13IF(0)I? (by Corollary 4.27). (]

4.31. COROLLARY. 0% 9, E;)#{0} if and only if ||1,]|,< 0.

Proor. If |1,],<o0, then 1,€0% 2, E,). Conversely, if Fe0*2, E,)
and F3#0, then there exists a g € G such that F(g-0)#0. Thus, using (4.17) and
Lemma 4.29, we get

IF11: = 1Tulg™DF |2 = [111:(Ti(g™HF) (0)] = (11,1217 :(g, 0)*F(g - 0)] .

Since ||F||,<oo and |J,(g, 0)"1F(g-0)| #0, it then follows that |1,] ;< co. [ ]
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4.32. CorOLLARY. For any compact subset X of @, there exists a constant
Cx < oo such that

(4.33a) |F(2)] < CxlIF|;
forall Fe0(2, E,) and all ze X.

Proor. Let a be the maximal abelian subspace of p as in (2.10) and let
A=expa. Then we know that G=KAK. Since K-o=o0, there then exists,
for a given compact subset X of 2, a compact subset Y of 4 such that X<KY-o.
Put Cx=suly) [J:(a, 0)| - I1,]I7t where |J,(a, 0)| denotes the Hilbert-Schmidt norm

of J,(a, o')‘.e If ze X then z=ka-o for some ke K and ae Y, and we have
|F(2)| = |J(ka, 0)(Ty(ka)~'F)(o)|
= |1x(k)J (a, 0)(Ty(ka)~'F)(o)|
= [J(a, 0)(Ty(ka)~'F)(0)|
< Ux(a, 0)| - [(Ty(ka)~"F) (0)|
< sup |J (a, o) - |71 - I Ty(ka)"'F||;  (by Lemma 4.29)

= CxlFl (by (4.17))
for all Fe (2, E,). [ |
Corollary 4.32 implies

4.34. CoroLLARY. Let Fe0X9,E,); if |F|;=0, then F=0. Conse-
quently the seminorm | ||, on 02, E,) is a norm.

We denote
(4.35) H%(2, }): the completion of 0*(Z, E,) in the norm | ||,.

H*(2, J) is a Hilbert space, whose inner product is given on the dense subspace
02(@, E}.) by

(F, F)
(4.36)

=S (P1J :(kgic;, 0)'F(kg;-0y), P3J (kgici, 0) 1 F'(kg;- 0)))dkdg;.
KXGy

From Corollary 4.32 one easily proves in the standard way that H%(2, A) can be
identified with a subspace of 0(2, E,). Note that

(4.33b) the inequality (4.33a) is valid for every Fe H(2, 1).
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We also note that the mapping .#; in (4.18) extends uniquely to a G-equivariant
isometric isomorphism, again denoted by .£,, of H*2, 1) onto a closed sub-
space of L%(G, ¢,). Hence, and because (U;, L*(G, 0;)) is a unitary representa-
tion of G, we conclude that

T, defines a unitary representation of G on H*(2, 1) and the mapping
S, is an isometric intertwining operator from H%(2, 1) into L*(G, ¢,).

(4.37) {

Of course, (4.37) is insignificant unless H%(2, A) is nonzero. For that, we
will prove

4.38. PROPOSITION. ||1,]|; < o0 for all AeF(G).

This proposition, together with Corollaries 4.31 and 4.27, immediately
implies

4.39. CorROLLARY. For any LeF(G), H¥(2, )#{0} and all constant
functions 1, (e € E,) belong to H¥(2, ).

Note. Because of Corollary 4.27, in order to prove Proposition 4.38 we
may assume i#r and it suffices to show that

(4.40) the integral S _ amo(ay2)Dya)da is finite.
(€3]

Such an integral occurs in Harish-Chandra’s work [9] on holomorphic discrete
series. There he gives a criterion for the finiteness of the integral and also cal-
culates its value explicitly. Using his criterion one may verify (4.40). Our
integral in question, however, looks slightly different from Harish-Chandra’s; so
for the sake of completeness we directly establish (4.40) following the lines of
Harish-Chandra’s computation.

We start the proof of Proposition 4.38 with a lemma. Recall the systems of
positive roots @* and @} in Section 2 and define 5=%Zae¢+ a, 5i=%zae¢‘+ o.
Similarly define 6; , 6, , using &7, ®}, in (3.15); so that 6;=9; . +9;,.

4.41. LemMmA. 6|y, =0, , forall 1<i<r.

Proor. Let {y,...,7,}, Cj, Nj, Cji, N, be as in (2.9), (2.11).  For each y,,
let 5; denote the Weyl reflection corresponding to y;. If ae Cj, then <{a, H;>=1;
hence —sj(@)=<a, H;>y;—a=y;—a, so y;—a is a root which is clearly in N;.
Conversely if fe N;, then (B, H;)=1; therefore —s;(f)=y;—p is a root, which
belongs to C;. Consequently, for each 1<j<r, the mapping C;—N; given by
a—y;—a is bijective. Thus if aeC; with 1< j<i, then —sjx)eN; and a+
(=si(@)lt;,o=7jlt,,,=0 (the second equality following from its definition of t; ).
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Hence by grouping the summands in pairs, we see that
Yaec;un, i, =0 forevery 1<j<i.

Similarly, for 1< j<k<r, the mapping Cy— N given by a— —sja)=7y;—a is
bijective, and so one finds as above that

2 aeCpuN o =0 provided 1 <j<k<i or 1<j<i<k<r.

Now, in view of (2.12a), (2.21a) and (2.34),

Pt —dt="C® U U (C;UN)U \U (CyU Ny
1<j<i 1<j<k<i

U (Cir UNR U {y15ee0 2.
1<j<i<k<r

Thus we conclude that

Zaew—w “ln,e =0
and hence that
pIpe “'n,., = Zaem:f °f|t,,ca
which implies the lemma. [ ]

PROOF OF PrROPOSITION 4.38. As noted after Corollary 4.39, it is sufficient
to show that

S ung@OD(@)da <0 (1<i<r—1).

)
Let X=X7%_,1x{(X;+X_)eal;) and put H(X)=23%';,log(coshx;)H;.
Then, since ny(exp X)=exp (— X 5=;+, log(cosh x;)H;) by (2.19), it follows from
our normalization of the measure da that

@4 uro(@ D (aa = | | 1exp HX)Dexp X)dX.

) A(:)
Here, according to (2.36),
Dfexp X) = 2! [T (sinhx;)?**!(cosh x;)

i+1<j<r

(4.43)
[T {(coshx,)* — (cosh x;)?}*.

i+1<j<ksr

If we define, for Het;,,

A(exp H) = [Taeoy,—cgp {e2H)/2 — ema(/2}
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(C§ is as in (2.21a)), then using (2.12ab) we get

{ (sinh x ;)2 }v {(cosh x;)? — (cosh xk)z}u
i+1<j<r cosh Xj i+t1<j<k<r cosh X cosh Xk

Afexp H(X)) =
This combined with (4.43) gives
Dyexp X) = 2r~id(exp H(X)) [T (sinhx;)(cosh x;)t+otu(r=i=1),
i+1<j<r
But
L+o+ulr—i—1)=<26, Hj) —1 forall i+1<j<r.

In fact, by (2.12b), (2.21a) and (3.15),

1 1
26;,, Hj> = <i+1§j3r7’j tu X ‘2‘"()’1' + ) + Ui > Vi H;)

i+1<7<k<r +i<j<r

-.=(1 +%u(r—i— 1)+—£—U>< 2 vpHp

i+t1<j<r
=24+ulr—i—1)+o.
Hence

(4.44)  Dyexp X) =2"iA(exp H(X)) [1 sinhx;(cosh x;)?3:.mH>=1,
i+t1<j<r

On the other hand, using the same argument as in the proof of Lemma 25 of
Harish-Chandra [9], one derives from Weyl’s character formula the identity

xx(exp H)A(exp H)
(4.45)
= {wo IT 0o, Hp}™* X e(s){ TI <A+ 0y, sHyp} et 0 enst
aeC((,i) seW; aeC((,i)

for all He X5, {CH;; here W, denotes the Weyl group of (f;, t;,), wo the
order of the subgroup of W, generated by Weyl reflections corresponding to the

roots in C{”, &(s) the sign of s, and 50=é‘z¢ecf,““-

Now, since f;, normalizes pf, each element of W; permutes the members of
@7, and leaves 26, , invariant. Thus if we put, for each se W,

C(l’ S) = 2r~i8(s) {WO I_!i) <60’ Ha>}_1 l—.[(A)<;L + 5i,c7 SHa> ’
aeCqy aeCo’

then, since 6;=9; .+, ,, it follows from (4.44) and (4.45) that

xx(exp H(X))D;(exp X)

= > C(4,s) T] sinhxj(cosh x;)X4+dusH =1,
seW; i+1<j<r

(4.46)
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If we make the change of variables y;=(cosh x;)~! then, in view of (2.35b), a{;
corresponds to the region {3 %_;.  YAX;+X_));0<y;y;<yisa<--<y. <1}
We denote this region by b and put dy=dy;,,---dy,. Then we conclude from
(4.42) and (4.46) that

@4 | @ I0@da= 3 co.9f | T1_yersmsmidy,

A biti<j<r

Now Lemma 4.41 implies {A+0;, sH;» ={A+46, sH;) for all se W; and i+1<j
<r, while, according to Lemma 3.16, {1+6, H,» <0 for every ae®},. Since
&}, is invariant under each se W, it then follows that <{A+9;, sH;» <0 for all
seW, and i+1<j<r. From this it is now clear that the right-hand side of
(4.47) is finite, thus finishing the proof of the proposition. [ ]

Finally we observe that
(4.48) the representation (T, H3(2, 1)) is irreducible.

In fact the proof in Kunze [19] can be modified slightly to cover this case. Al-
ternatively, one may proceed by a standard method as follows. Let $ be a non-
zero closed invariant subspace of H%(2, A). Take a function Fe$ such that
F(0)#0 and let T! be the central subgroup of K as in the proof of Lemma 4.29.
Then, for te T!, the function z—17,(¢)(T,(1)"'F)(z) again lies in $ because 1,(1)

is a scalar operator. Hence the function S T,(0) (T,(t)"1F)dt, being the limit of
T1
a sum in $, also belongs to 9. Since 7,(t)(T,(t)"'F)(z)=F(t-z) and since
S F(t-z)dt=F(o0) (cf. (4.30)), we then see that the constant function z—F(o)
T1

belongs to $; hence 1,€ 9. If the orthogonal complement $H* of $ is nonzero,
the above argument shows that 1, is also in $*, which is a contradiction; this
gives (4.48).

The results obtained above can be summarized as follows:

4.49. THEOREM. For any Ae F(G) (1<Li<r), HX(2, 1) is nonzero and
(T,, H(2, A)) is an irreducible unitary representation of G. Furthermore
(T, H¥(2, 1)) is unitarily equivalent to a subrepresentation of (U,, L*G, 0,)).

For later use, we mention here other realization of (T;, H¥(2, A)). Let

fgk) = (k)" f(9), 9€G, keKk,
r(X)f=0 forall Xep~

0(G’ T).) = fE Cw(G3 E}.),

where r(X) is as in (4.19). For Fe®(2, E,), define a function ¢,F: G-E, by

(4.50) FiF(9) = Ji(9, 0)7'F(g-0), geG.



110 Toru INOUE

Then (cf. Baily and Borel [1], p.493) #,F lies in 0(G, 7,) and the resulting
mapping #,: 0(2, E,)-0(G, 1,) is bijective. We put

(4.51a) HX(G, 7;) = #,(HX2, 7).

One can define an inner product on H%(G, t;) so that ¢, (restricted to H¥(2, 1))
is a unitary isomorphism. Via ¢,, (T,, H¥(2, 1)) may be transported to a
unitary representation of G on H*(G, ;). We observe that the transport of T,
to H*(G, t,) is given by left translation:

(4*51b) (T).(g)f)(g’) =f(g_lg’)’ g, g,EG’ fG HZ(G, TA)'

The following lemma will be needed in Section 5. For X €g,, we define I(X)
as in (4.19).

4.52. LeMMA. Letting 1, be the constant function as in Corollary 4.27,
put Y,= ¢,(1;). Then , is K-finite of type t,. Moreover , satisfies I(H),
=<4, H)Y, for Het, and (X)W ,=0 for all positive roots o of (g,, t,).

Proor. The first assertion is obvious. As for the second, define a function
U, Q-E; by y(w)=J,(w, o) 'e, where Q=P*K_P~ and e, is the highest
weight vector for 7,. Then , is the restriction of i/, to G. As Q is open in
G,, we can define, for X eg,, I(X)¥, asin (4.19). Since V¥, is clearly holomor-

phic, it then follows that I(X)J A(w)=%n/7 Jexp (—tX)w)|,=o for we®, X eg..

Since e; is the highest weight vector for 7,, these observations, together with (2.7),
imply the second assertion of the lemma. ]

5. Imbedding in continuous series

We again fix i, 1<i<r, and Ae #£(G). In this section we construct an ir-
reducible unitary representation u,; of M; and show that the representation (T3,
H2%(2, 1)), which was constructed in Section 4, is unitarily equivalent to a proper
subrepresentation of the induced representation V;=Ind 4,n,1¢ (12®1®1) and
hence ¥ is reducible.

With , E; being as in (4.1), let

F Borel measurable,

2 T . .
(5.1a) LX %, A)=1{ F:¥,~E;; ||F“§ — S |J.(gici, 01 F(g;-0,)|2dg; < oo [ °
G;

and let
(5.1b) HX%;, %) = LX(%;, ) n 0(%,;, Ey)

where €; is the boundary component containing o; and 0(¥;, E;) denotes the
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space of all E;-valued holomorphic functions on ¥;. Then L%(%;, 1) (functions
which are equal almost everywhere being identified) is a Hilbert space with inner
product

(F, F) = | (iaics 07 *Flgi-0), Jigico o' F'(g0))dgs
Given F e L%, 1) and g € G,, define Ty(g)F: ¥,—~E, by

(5.2) (T{9)F)(2) = J (974, 2)7'F(g7" - 2), z€e¥.

Then, as follows from 4.25(1) and the definition of E; Ti(g)F takes values in
E;, and it is easily seen that Tj defines a unitary representation of G; on L%, 1)
and HX%,, A) is an invariant subspace. Therefore, arguing as in Section 4, one
finds that the norm convergence in H%(%¥,, 1) implies uniform convergence on
every compact subset of %; and hence H%%, 1) is a closed subspace of
LX(%,, 7).

5.3. LemMA. HX(%,, 1)#{0}.

Proor. Let 1, be the constant function on £ as in Corollary 4.27. The
restriction of 1, to #;, which we denote again by 1,, clearly lies in 0(%,;, Ej).
Therefore, to prove the lemma, it suffices to show that ||1,]|;<oo. If i#r then,
using the integration formula (2.37) and carrying over the similar computation as
in the proof of Proposition 4.24, we get

g = Vikakse, o)'e;D(a)dk dadk,

.
XA X

N [J(a, 0)~11,(k,)"'e;|? Da)dk,da

KixAg,

- 5

= Bd({  1a(mo(@)HDia)da

i)

= d(A)d(A)11,]3  (by Corollary 4.27).

Likewise, also in the case i=r, we obtain ||1,]|3 =d(A)d(1)~!|1,]|2. Since |1,];,
< o0 by Proposition 4.38, the lemma follows. ]

Let '7¢) be the irreducible unitary representation of L; on E; defined by (4.9)
and form the unitarily induced representation @, =Ind,1,,'1%’. We denote by
L2(M,, 't{V) the representation space of fi,. Since M;=F,[;G;G;, and since
FI,G; acts trivially on €;=M;/L;=G,;/K; (cf. 2.28), M, preserves every G;-
invariant measure on ¢;. Thus we may take
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f Borel measurable,
(5.4a) L*(M,;, 't9) = { f: M; - Ez; f(ml) = 't$)()"1f(m), meM,, le L,
[ 17@ordg, <

and fi, acts by left translation. We also define

HX (M, 't§P)
(5.4b)
= LA(M;, 't9) n {fe C*(M,, E;); (X)f = 0 for all X € p7}

where py=g;,Np~, and r(X)f is defined similarly as in (4.19). Then it is clear
that the subspace H2(M,, '7i") is invariant under the representation fi,.
Now, for Fe LX%;, 1), define #;F: M,—E; by

(5.5) FiF(m) = Jy(me;, o) 'F(m-0), meM,

(Since M;=F;I;G;G;, Lemmas 4.5(1) and 4.25 ensure that #;F actually takes
values in E;.) Then, for me M; and /e L,, we have

FiF(ml) = J,(mlc;, 0)"F(ml-0,)
= J,(mcicitle;, 0) 1 F(m-0,)
= J,(citle;, 0)71J (me;, 0)"1F(m-0;)
= ") 7 1F (m),

and so it follows that #;F € LA(M,, 't{"). Therefore one finds without difficulty
that the mapping ¢ ;: LX(%;, 2)—LA(M,, 't{?) is a surjective isometry.

5.6. LEMMA. The subspace HX(M,, 't{9) of LX(M,, '7\?) is closed, non-
zero and corresponds to the subspace H¥%,, ) under the unitary isomorphism
I LA%, H)»LAM,, 1),

Proor. In view of Lemma 5.3, it suffices to show that Fe C*(%,, E;) is
holomorphic if and only if n(X)_#;F =0 for all X € p; (£ F stands for the func-
tion defined by (5.5)). But this follows from an argument similar to that used in
proving Lemma 4.20. [ ]

5.7. LEMMA. The restriction of the representation f[i, to the subspace

HX(M,, 't is irreducible.

ProOOF. By means of the unitary isomorphism ¢ ;: L*(%;, 1)— LM, 't{?),
fi;, may be transported to a unitary representation of M; on L*(%;, A). Itis
easy to see that the transport of fi, to LX(%,, 1) is given by
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(H(m)F)(2) = J(m™!, 2)"'F(m™"-2), FeLlX%, 1), meM, ze%,

Now to prove the lemma it is enough to show that the representation (ji,,
HX(¥%,, X)) of M, is irreducible on the subgroup G;. But this follows as in the
proof of (4.48). : ]

Let u, denote the restriction of i, to H2(M, 't{’). Then by the above
lemma p, is an irreducible unitary representation of M;. For each vea¥, we
define an irreducible unitary representation p,®ev-1"®1 of P;=M;4;N; on
HYM,, '7") by

(4, ® eV~1v @ 1)(man) = p,(m)ev="(a), mane M,A;N;

and form the continuous series representation

Vl,v = IndM.'A;N,‘TG (:u/l ® eJTlv ® 1) .

Let $,, denote the representation space of ¥V, ,. Then, in view of (2.39) and
(2.43), we may take

14 -Borel measurable,
P(gman) = {er*V=1¥(a)u,(m)}~1¥(g),

_ . 2 O
95y ={ ¥: G- HAM,;, '1}"); g€G, mane P, ("

1) = SK” Y(k)|2dk < o

\ /

Next we show that the representation (V;,, $,,) is unitarily equivalent to
a subrepresentation of (U, ,, L*(G, ¢, ,)) defined by (4.11). For this purpose we
consider the space

C%O(G, Gl,v; pl_)
= L*G, 0;,) N {feC®(G, Ep); (X)f =0 forall Xep;}.

(5.8)

The closure of C3(G, 0,,; p;) in L*(G, 0,,), which we denote by L*(G, g, ,; p7),
is clearly a closed, U, ,-stable subspace.

5.9. PROPOSITION. For every veaf, the representation (V,,, 9,,) of G is
unitarily equivalent to (U,,,, LG, 0, ,; 7).

Proor. For feC3(G, g;,;p;) and geG, define f,;: M;—»E; by f(m)
=f(gm). It is easily checked that f,e H¥(M, 't{’). Next define ¥,: G-
HX(M,, ') by ¥ (9)=f,- Then we claim:

(5.10) Y,€9,, and [/ =|f].
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Indeed if man € M;A;N; then, for m, € M;,
¥ (gman)(m,) = f(gmanm,) = f(gmm amynm,)
= e/ (q)f (mm,) (7 nmy € N)
= =71 =/"1v(a) (uy(m) ' f) (m,y)
= [P V=T (@)u(m)~ ¥ (g)] (m,).

Moreover
12,02 = § e scoreai = § {§ 15ordafar

=, 1fkgodkdg; = 1S1P.
KxGi

This implies the claim (5.10).

In view of (5.10), one can define an isometry # of L%(G, 7;,,,; p;) into 9, ,,
satisfying 2(f)=Y¥, for fe C3(G, 0,,; p7). Since it is obvious that # inter-
twines U, , and V,,, the proof of the proposition will be complete when it is
established that # is surjective. For ¢ € C®(G) and he HX(M,, 't{"), define
Fgu: GoH¥(M,, 'tV) by

Fose) =, po) "0 [ @ 7 © D(p)Ihdp, g<G

(p is the rho-function in (2.39)), and further define f;,: G=E; by f,.(9)
=(F4,1(9)) (e) (e=identity of M;). We are going to show that

(5.11) Jfon€C2(G, 0,,; p7) and R(fy4) = Fop

Since Fy, (¢ € C2(G), he H(M,, '7{")) span a dense subspace of $,, (cf.
Warner [30], p. 371), this will imply that 2: L*(G, 0,,; p7)—9,, is surjective
and, in view of our earlier remark, thus serve to complete the proof of the
proposition.

First observe that if lan € S;=L;A;N;, then

fon(glan) = [e»=V=1(a)uy()~1F »n(9)](e)
= e PV () TP [(F 4 4(9)) ()]
= 0,,(lan)™ f, ,(9)

for geG. Since convergence in H%(M,, 't{") implies uniform convergence on
every compact subset of M;, we have, for me M,,
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(Fg(9))(m) = SP‘ p(p) 2¢(gp) [(1, ® eV~ ® 1) (p)h](m)dp,
which in particular implies f; ,€ C*(G, E;). Now

(5.12) Foram) = (w(m) ' F 4 1(9)) () = (F41(a)) (m)

for ge G, me M;. Thus, and since r(X)(F4,(9))=0 for X ep7, it follows that
r(X)fs4=0 for all X ep;. Furthermore

[ oo, VaatkadPdcdg; = { I(Fo(l0) (g)IPdkdg,

= IFsu0I2dk < o,

These observations show that f, , e C3(G, 0,,; p7). Also (5.12) implies 2(f,,)
=F,, This establishes (5.11) and completes the proof. [ ]

We write V,, §, for V, o, 9,0 (the case v=0). According to Harish-Chandra’s
irreducibility criterion [10, Lemma 3, p. 145] of the representations induced from
a parabolic subgroup of G, the representations V, ,=Ind, 4,v,16(H: @€ " ®1)
are irreducible for all v#0, at least for the case that the representation p, of M;
is square-integrable (this is the case when i=1; cf. Knapp and Okamoto [15]).
However, for the exceptional case V, (=V, ), we have

5.13. THEOREM. The representation (T,, HX(2, 1)) which was constructed
in Section 4 is unitarily equivalent to a proper subrepresentation of (V,, 9,),
and consequently (V,, ©,) is reducible.

In order to prove this theorem we need some notation and a lemma. Letting
g: be as in 2.20, put ¥;=g;nf, p;=g;np. Then g;=F;+p; is a Cartan de-
composition and we have a corresponding decomposition of the complexification
8i,0.=F .+pi. Let K; be the analytic subgroup of G; with Lie algebra f; and
let Ky,=Kn M;. Then, since K;=G;n K, (2.26) implies K, = F;[;K;K.

5.14. LEMMA. Let B; be the analytic subgroup of T with Lie algebra
J—1R(H,+--+H). Then B; is isomorphic to a circle group. Furthermore
B; commutes with Ky,,.

PROOF. As is easily seen, Ad (exp (2n/—1(H,+--+H}))) operates on g,
as the identity, whence the first assertion follows. As for the second assertion,
it suffices to show that B; commutes with K; since B; commutes with F;[;K;.
For this it will be enough to show that H, +---+ H; commutes with ; .. Since
8:,.=Ad(c) g, by definition, g;, is spanned by vectors Ad (c;)X,, Ad(c;)H,

with ae’®;=+'C§?U U (£Cy); cf. 220. If ae +'C§’ then Ad(c)X,
1<j<k<i
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=X, Ad(c)H,=H, because every root in C, is strongly orthogonal to all y;
(1< j<r); cf. Moore [23]. If ais a root in '®; with n(oc)=—é~(yj—yk) (a<j, k<i,
j#k), then using the formula [X_,, [X,, X;]]=q(1~p)X, on p. 143 of [11] (p,
q are integers so that f+ no, p<n<gq, is the a-series containing /) we obtain from
(2.18) that

Ad (€)X, = (X, = [X, [X_jp X,J1+ [X_;, X,] = [Xe X.D),
Ad (¢)H, = H, — 1<y HOH, + Sy HOHY)
+ L B (X)) + 2 HY (Xt X)),

Here X,~[X,, [X_j, X,11, Ho=(Cr HH;+ (o HOH) €, and [X_,,
Xa] - [Xka Xa]’ <'Yj’ Haz>(Xj+X—j)+ <yk, Ha>(Xk+X—k) € p’i,c' ThUS, and Since
i, c=Ti .+ i, (vector space direct sum), f; , is spanned by vectors

X,, H, with ae+'C{,

Xa - [Xk’ [X—j’ Xa]]

1 } with ﬂ(d)=‘%(’yj"'))k), ]-S]a kSl,_]?ék
Ha - ‘2‘(<‘yj5 Ha>Hj + <’))k, Ha>Hk)

As H,+---+ H, clearly commutes with these vectors, we conclude that H;+---
+ H; commutes with f; .. This completes the proof of the lemma. [ ]

Proor oF THEOREM 5.13. In order to prove that (T,, H3(2, 1)) is unitarily
equivalent to a subrepresentation of (V,, §,), it is enough, in view of Proposition
5.9, to show that the range of the mapping .#; in (4.37) is contained in L2(G, o,;
p7). But this follows from Lemma 4.20 and the definition of L*(G, o,; p7).

We have yet to show that (T,, H¥(2, 1)) is not unitarily equivalent to (V,,
9,). Let B; be as in Lemma 5.14. The argument that follows is adapted from
Knapp and Okamoto [15] who study the case i=1, and consists of examining the
restrictions to B; of T, and V, to see that they are different. Since B; is isomor-
phic to a circle group, we can think of its character group as the integers. In an
obvious sense, the integers extend in two directions from 0. Hence the proof of
the theorem will be complete if we verify the following two statements.

The restriction V,|p, contains infinitely many characters of B; in both
directions with positive multiplicity.

(5.15) {

(5.16)  In positive direction, the restriction T,|p, contains no character of B;.
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The proofs of above statements are practically identical with the proofs of Lemmas
7.2 and 7.3 in [15], so we will just sketch their main outlines.

Let Ky,=KnM,; as before. Then, since G=KM;A;N; and K n M;A4;N;
=K, one can prove (5.15) by the same argument as the one in the proof of
Lemma 7.2 of [15], if we can show that

(5.17) _B;Ky,, is a compact group and B; N Ky, is a finite cyclic group.

But the first assertion of (5.17) is an immediate consequence of Lemma 5.14.
As for the second assertion of (5.17), one only needs to note that H, +--- + H;
does not commute with a; and hence that the Lie algebra of B; N K, is 0. This
verifies (5.17) and hence (5.15) follows.

Now we turn to the verification of (5.16). First observe that

(5.18) {a, Hy+--+H;) >0 for every positive root «;

this follows from (2.12a). Thus using Lemma 4.52 and (5.18) one can show, just
as in the proof of Lemma 7.3 of [15], that the eigenvalues of T,(H,+---+ H,) are
all<{A, H;+---+H,> on a dense subspace of H%2, A). Since {1, H +---
+H;)=—<0, H{+ -+ H;)=—1ip;<0 by Proposition 3.10 and (3.14), and since
B,=exp \/—1R(H,+---+ H,), this implies (5.16) and completes the proof of the
theorem. [

6. Kernel functions

Retain the setup of Sections 3 and 4. According to Corollary 4.39, every
constant function 1,, ec E,, lies in H%(2, /). Hence, and because of (4.33b),
for each point z € 2, the point evaluation

E,: F— F(z), FeH*2, )

is a continuous linear mapping from H?(2, A) onto E,. Therefore E, has the
continuous non-singular adjoint E¥*: E;—»H?(2, ) such that

(6.1a) (F(2), @)g, = (F, Efe)y2(s,3

for all Fe H¥(2, /) and ec E;,. We define the function K,: 9 x 9 -GL(E,) by
6.2) K, (z, w) = E,E¥, z,we2.

Then the formula (6.1a) is rewritten as

(6.1b) (F(z2), €)g, = (F(-), Ki(+; 2)@)n2(a,)-

K, will be called the reproducing kernel function of H*%(2, 1). (For the general
theory of operator valued kernel functions and the connection with unitary
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representations, see Kunze [20].) It is obvious that
(6.3a) K,(z, w) is holomorphic in z and K,(w, z)=K,(z, w)*

where K,(z, w)* denotes the Hilbert space adjoint of K,(z, w). Since T, given by
(4.13) defines a unitary representation of G on H*(2, 1), one also obtains

(6'3b) K).(g *Z, 9 W) = Jj.(ga Z)K).(Z’ W)Jf(gs W)

for all z, we2 and all geG (J¥(g, w)=adjoint of J,(g, w)). In fact, since
E,.,=J,(g, 2)E,T)(g~*) by definition of T,, we have

K(g-z,9-w)=E,. E}.,
= Jx(9, 2)E.Ty(g ) Tig~)*E}J7(g, w)
= J\(9, DEEJI(g, w)  (Ti(g™") is unitary)
= J{9, 2)K(z, w)3(g, w).

The following proposition gives a formula for the kernel function K, in terms
of the automorphic factor J;,. Recall that 2 is realized as a bounded domain in
p*; thus if we let w—#w denote the conjugation of g, with respect to g, then for
we 2, exp w makes sense and lies in P~.

6.4. PROPOSITION. The reproducing kernel function K, of H*2, 1) is
given by

(6.5) Ki(z, w) = [1,]132J (exp (— W), 2)~!
for z, we 2, where ||1,], is as in Corollary 4.27.

It is not difficult to show that the function K, given by (6.5) satisfies (6.3a)
and (6.3b). Then we may prove Proposition 6.4 by showing, as in Satake [26,
Proposition 2, p. 86], that the function K;: 2 x 2->GL(E,) satisfying (6.3a) and
(6.3b) is unique up to constant factors. Here, however, we derive the formula
(6.5) directly from (6.3a) and (6.3b) (some intermediate steps in the proof will be
needed later).

Our proof of Proposition 6.4 rests on the following lemmas.

6.6. LEMMA. Forall ze 2,
Ki(z, 0) = K;(0, 2) = ||1,]172]
where I is the identity transformation of E,.

Proor. If we take g=ke K, z=w=o in the formula (6.3b), then
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K(0, 0) = 1,(k)K,(0, 0)7,(k)* and hence K(o, 0)t;(k) = 7;(k)K (0, 0)
for all ke K. As 1, is irreducible, bearing (6.3a) in mind one finds that
6.7) K;(0,0) =cI with ceR.

Similarly we get
Ki(z, 0) = ty(k)'Ky(k - z, 0)t;(k)

for all ze 2, ke K. Hence, using the same technique as in the proof of Lemma
4.29, we have, forall ze 2,

Kz, 0) = | 11007 Ktk 2, oyr,idk

=S 1,(tk) K, (tk - z, o)t,(tk)dk  forall teT!
K

(T! is as in the proof of Lemma 4.29)

S (K Ktk -z, oyr(K)dk  forall teT!
K
(since T! is a central subgroup of K)

- S (1K (t - 2, o)z (K)dtdk
TixK

= S 7,(k)"1K (o, 0o)t,(k)dk (K ,(z, w) is holomorphic in z)
K

=cl (by (6.7)).
As ce R, it then follows from (6.3a) that
(6.8) K,(z, 0) = K,(o, z) = cl.

It remains to show that ¢=||1,]|32. For this, take e=e;, F=1,, z=0 in (6.1b) to
get

1 =(1,0-), Ki(-, 0)ey)
= (1,(+), c1,(-))  (by (6.8))
= c|Lll}
Thus ¢= 1,72, as desired. (]

The complex conjugation in g, with respect to g lifts to an involutive auto-
morphism of the underlying real Lie group of G,, which we shall denote by g—
o(g). In the next lemma it is convenient to denote the anti-automorphism



120 Toru INOUE

g—g~! of G, by g—«(g). Recall (2.2) that any element g e Q=P*K P~ can be
written in a unique way as

g =n.(9)-mo(9)-n-(9), mo(9)€K,, n.(g)eP*.
6.9. LEMMA. IfgeQ=P*K_ P, then (a(g) € 2 and
ton,(g9) = n_ca(g), com(g) = mpea(g), ¢on_(g) = miea(g).
Proor. If geQ, then

to(g) = ca(n,(9)-mo(9) - m_(9))

= com_(9)-come(g) - co7.(9) -

Since 6(P*)=P¥, 6(K,)=K,, and since P*, K_ are groups, it follows that com(g)
€ P¥, (omy(9) e K, and hence that co(g)e 2. Then the lemma follows from the
uniqueness of the factorization

t0(g) = m4c0(g) - Mota(g) - m_co(g) - |

6.10. LEMMA. Let t be a holomorphic representation of K, on a finite
dimensional Hilbert space E and suppose that t is unitary on K. Then for
kekK,

(k)* = t(a(k)™
where t(k)* is the Hilbert space adjoint of (k).

Proor. Let 1 denote the corresponding representation of f, on E. Given
Zef, write Z=X+ \/—1Y with X, Yef. Then

HZ)* = (H(X) + /= 1H(Y))*
= #X)* — /—1#Y)*
= —#(X) + /—1#(Y) (i is skew-adjoint on T)
= #(-2),
from which the lemma follows. ]

Proor oF ProrosiTION 6.4. Fix z, we2 and choose geG such that
g-w=o. Then, using the formula (6.3b) and Lemma 6.6, one obtains

Kz, w) = [1,]1520,(9, 2)"1J%(g, g™ - o)
= 11,032J,(9, 271%™, ).

(6.11)
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Let g=n.,(g9)-mo(g9)- m_(g) be the factorization as in (2.2). Then, since g exp z
€ Q=P*K_P~, it is clear that both n_(g)exp z and ny(g)n_(g)expz are in Q.
Therefore, by the remark after (2.6) together with (2.7)

Ji(g, 2)7
= Jy(m_(9), 27 x(mo(9), m-(9) - 2)" T (4(9), TMo(@Im-(9)-2)7*
= Ju(m_(9), 2)"'1x(mo(9))~ "
On the other hand, using Lemmas 6.9, 6.10, and noting that 6(g)=g, one finds
JH(g7"5 0) = 1u(mo(g™")* = 1x(moea(9))*

= 1,(camo(9))* = 14(mo(9)) .
Thus we get

Ki(z, w) = [[1,)172J (- (9), 2)~*.
But, again by Lemma 6.9,
n(g9) = n_co(g™") = com, (97",

while n,(g ')=expw since w=g~!-0 (cf. (2.3)); therefore n_(g)=exp (—Ww).
Hence the proposition is proved. [ ]

In view of (6.2), (6.11) and the remark after (2.6), for each fixed we 2 and
eckE,,

the function z—K,(z, w) is holomorphic on 2 and the function z—

6.12 { d
(6.12) K ,(z, w)e belongs to 0*(2, E,)

where 032, E,) is as in (4.16). Thus if Fe 0%, E,), we see from (6.1b) and
(4.36) that

(F(2), e)

(6.13) =S (P1J (kgic;, 0)'F(kg;- 0)), PiJ(kgic;, 0)" K (kg;- 0;, 2)e)dkdg;
KxG;

=(S Ki(z, kg;-0)J%(kgic;, 0) 1 PyJ (kgic;, 0) ' F(kg;- 0,)dkdg;, 9)
KxG,;

for all ee E;. Define a function M,: #,—End (E,) as follows. Given ue %,
there exist k € K and g; € G; such that u=kg;- 0;; then put

(6.14) M;(u) = J3(kgici, 0)7'PiJ(kgici o)™ "

(It is easily checked that M, is a well defined function on £;) Then, from
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(6.13), (6.14) and (2.47) we obtain

(6.15) F(z) = S K,(z, M, (wF(u)du() forall Fe0X3J,E,)
Bi

where du is the quasi-invariant measure on &; defined by the formula (2.46).

In the remainder of this section we specialize to the case where 7, (1€ F(G))
is a one dimensional representation of K, and want to find more explicit formula
for the kernel function of H2(2, 1) than the one given by (6.5). It turns out that
this kernel function is proportional to a positive power of the Bergman kernel
function of 2.

Before proceeding further we note that if we write, for a given e #(G),
A=34 m;A; with my+ XL, k;m;= —p; as in (3.8a), then the degree d(2) of 1,
is 1 just when m;=0 for 2< j<I;. Thus if #,c#(G) and hence F(G)=F;
(see (3.7) and (3.8) for notation), then there exists a unique w; € & (G) with d(w,)
=1, i.e.,

(6.16) a),- = - pill'
We also note that

H%(2, w,) is the usual Hardy space for the bounded symmetric domain

(6.17) { 2 =G/K (provided w, € #(G)).

Indeed, if we identify the representation space E,_ of 7, with complex numbers
and if we let @(2) denote the space of all holomorphic functions on &, then
recalling that G,=K,<K (cf. (2.29)), we have for all fe 0(2),

”fl ‘%" - SKxG le"(kg"c" 0)—1f(kgr : o,)lzdkdg,
= { Wake,, oy 1(k- o)k
= Bfg [7o, (k)1 f(k-0,)|2dk (by Lemma 4.25)
K

= 3 1S (k-0)2dk.

Since this is just a Hardy type norm for 0(2), (6.17) follows. Therefore the
kernel function of H(2, w,) is the Cauchy-Szegd kernel function of the bounded
symmetric domain 2. But under the assumption that G is a matrix group, it
may happen that &#,(G)=¢ as remarked at the end of Section 3; thus in order
to treat the case of arbitrary irreducible 2 =G/K, one must drop the assumption
that G is linear. But we assume for the moment that G is a matrix group and
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that w; € Z(G) for all 1 <i<r; we shall indicate later how to drop this assumption.

We shall denote by k; the kernel function of H%(2, w;)). To make the for-
mula (6.5) more explicit in the present situation, letting §, be half the sum of
positive noncompact roots of (g, t,), we define a particular one dimensional
representation 7,; of K, by

725 (k) = det (Ad (k)|,+), keK,
(thus 26, is the weight of 7,5 ). We also define a function k: 2 x 2-C by
(618) k(Z, W) = J26,.(exp(_w)a Z).

We first show that this function k is, up to a constant factor, the Bergman kernel
function of 2. We begin by recalling the definition of Bergman kernel function;
see Helgason [11]. Let

0%(2) = {holomorphic functions f: 2 - C; | f|? = Sglf(z)]zdz < oo}
where dz denotes the Euclidean measure on p*. Then 0%(2) is a complete
Hilbert space and for each z € 2 the point evaluation f— f(z) is a bounded linear
functional on 0%(2); so there exists a unique reproducing kernel function of
0%(2). This function is by definition the Bergman kernel of 2. We shall
denote this kernel function by b.

The following formula for the Bergman kernel function is perhaps known,
but we include a proof, as it is not readily available in the literature.

6.19. PrROPOSITION. Let k by the function defined by (6.18). Then the
Bergman kernel function b of 2 is given by

b(z, w) = vol (2)'k(z, w).

Proor. From the general theory of Bergman kernel, one knows that
b(z, w) is holomorphic in z, b(w, z)=b(z, w) for all z, we 2, and that b satisfies

b(g'z, gW) = .](g’ Z)-lb(z5 W)](g, w)_l

for all z, we 2, g € G where j(g, z) denotes the complex Jacobian of the holo-
morphic map z—g-z at ze 2. In the present situation it is also known (cf.
Baily and Borel [1], Lemma 1.9) that

J(9, 2) = 3509, 2).
Therefore by the same argument as in the proof of Proposition 6.4, we obtain
b(z, w) = [|11]|72J,,(exp (- W), 2)

where 1 denotes the constant function 1(z)=1,ze2. But clearly |1|%=
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vol (92), finishing the proof. [ |

Now we turn to the consideration of the kernel function k; Letting n
=dim¢; 2, n;=dim; ¥; and d;=dimg Z;, we set

n—n;

(6.20) U= S, —d;

where %; and &, are, respectively, the boundary component and the boundary

orbit containing o;. (It can be shown that —; <q;<1; cf. Remark after Lemma

6.24 below.) As 2 x 2 is simply connected, we can uniquely define powers
k(z, w)? of k(z, w) with k(o, 0)?i=
Using the notation of Corollary 4.27, put

B | wml@ ID(@da if i#r
(6.21) g, ={ At
p? if i=r.

Then, by the same corollary, £;=|1, |2, since d(w;)=1. Thus 0<t;<oo by
(4.28) and Proposition 4.38. Before stating the next proposition, let us notice
that kz, w), being holomorphic in z and anti-holomorphic in w, is completely
determined by its restriction to the diagonal of 2 x 2. Note also that every
point in 2 can be written in the form k-(X%-;¢,X;)=Ad (k)(X5=11;X;) with
keK, —1<t;<1; cf. Kordnyi and Wolf [18], p. 269.

6.22. PrROPOSITION. Let k be the function defined by (6.18) and let g,
K; p; be the constants as in (6.20), (6.21), (3.5). Then the reproducing kernel
function k; of HX(2, w,) is given by

(6.23a) k(z, w) = £7'K(z, w)*

for all z,we 2. Moreover, if z=k-(Xj=1t;X;) with ke K, —1<t;<1, then

(6.23b) k(z,z) =x7* TI (1 — 377
1<j<r
Notes. (1) The constant p; in the formula (6.23b) (which is an integer
or a half-integer by definition (3.5)) can also be written as p:ﬂ;_qui:
(3n—d,) (n—n;) n =
rGr—n,—d) (see Lemma 6.24 below), in particular p,=— since n,=0.

(2) In the extreme case i=r, k, is the Cauchy-Szego kerne] function of 2
as remarked before. The formula (6.23b) for k, was obtained by Koranyi [17,
Proposition 5.7] using different methods (note that the constant £; depends on
the normalization of measures).
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The proof of Proposition 6.22 rests on the following lemmas. Recall the set
of fundamental highest weights, {4,,..., 4,}, in Section 3.

6.24. LEMMA. Letting u, v be the constants as in (2.12b), put s=u(r—1)
+v+2. Then:
(1) 26,=s4,.
3n—d,
r

(2) For each i, 1<i<r, we have p;,=sq;. Moreover s=: , Wwhere

n=dim¢ 2 and d,=dimg &, (#,=Silov boundary of 2).

Proor. Since f, normalizes p*, its Weyl group permutes the elements of
&} and leaves 20, invariant. Therefore (29,, «)=0 for all a € @, and it follows
from the definition of A, that 26,=¢A, for some te R. We must show that
t=u(r—1)+v+2. For this we will calculate the effects of 25, and A, to the
vector H,;. According to (2.12ab),

M) = ¥ ytu T a0t to T 5,
157<r 1<j<k<r 2 15 2
(6.25)
_ 1 . _ 1 _
= <1 + 5 u(r—1) + 5 v)lgsryj,
so we get
20, H) = u(r — 1) + v + 2.

On the other hand {4,, H,>=1 by Lemma 3.3(1), whence (1) follows.
(2) By definition, pi=%u(i— D+u(r—i)+o+1 and g=-""" . On
the other hand, using (2.12ab), one finds that L

n =dimep* = |0} = L r{u(r — 1) + 20+ 2},

n; = dimg pf = |9}, =%(r—-i){u(r—i—1)+2v+2},

and
d, = dimg G/S; = dimg G/P; + dimg P,/S;
= dimg n; + dimg %; (n; is as in (2.24a))
= %i{u(i — 1)+ du(r — i) + 4o + 2} + 2n,
=2n - %i{u(i —1)+2}.

The assertion of (2) then follows from straightforward computation. B
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REMARK. From Lemma 6.24(2), it is easily seen that —;—Sqi<1 for each
1<i<r.

6.26. LEMMA. w; = — 2g,0,.

ProOOF. Since w;=—p;A; by (6.16), this is an immediate consequence of
Lemma 6.24. [ ]

PROOF OF PROPOSITION 6.22. To prove the first assertion, it is enough to
show that both functions coincide on the diagonal of 2 x 2. Fix ze2 and
choose g € G so that z=g-0. Let us write J(g, z) in place of Jo(g, z). Then,
taking into account (6.3b), Lemma 6.6, and the definition (6.21) of &;, we get

ki(z’ Z) = Ji(g’ 0)’8,-(0, O)Ji(gf 0)
= £7'|J(g, o)I%.

Let A be the abelian subgroup of G as in the proof of Corollary 4.32. Then,
since G=KAK, we can write g=kak' with k, k'e K, ae€ A, and it follows from
the cocycle formula that

Vg, o)l = ik, a-o)||Ja, o)l |Ji(K’, o).

But, in view of (2.19), J(a, o) is real, while |J(k, a-0)|=|J(k’, 0)]=1, and so
one finds '

k(z, z) = k71J(a, 0)%.
Now by Lemma 6.26,
(6.27) Jia, 0) = J,;5(a, 0)791.
Therefore we conclude that
k(z, z) = k7'J ;5 (a, 0)72%,

On the other hand, since k(g-0, g-0)=J;5(g, 0)"'J,;5.(g, 0)~*, the same argu-
ment as above yields

k(z, 2)1 = J;,,(a, 0)72%,

and the first assertion follows.

Given aeAd, write a=exp(X=; x;(X;+X_)); then, in view of (2.19),
a-o0=3"%.,(tanhx;)X; Thusif —1<t;<1, there exists a unique a € 4 such that
a-o=3"_,t;X;, Moreover, as we have already observed,

k(ka-o, ka-o) = £7'J(a, 0)? for keK, aeA.
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Therefore to prove the second assertion of the proposition it suffices to show that
if a=exp (X5=1x;(X;+X_))), then
J(a, 0)= TI {1 — (tanhx,2}~P/2
1<j<r

or equivalently that

J{(a, o) = 1sIJISr(COSh x;)Pe.
By (6.27) and the definition of the automorphic factor, we have

Jia, 0) = J55(a, 0)77 = 135 (mo(@))™%;
here, according to (2.19), mg(a)=exp(— 2=, log(coshx;)H;). But (6.25)
implies
{26,, — %=1 log(coshx;)H ;> = — s3¥"_, log(cosh x;).

Thus, and since p;=sq; by Lemma 6.24(2), we obtain

Jfa, 0) = TI (cosh x;),
1

<Jj<r

as we wished to show. ]

ExaMPLE. To illustrate how one gets a precise formula for the kernel
function k; in concrete cases, we consider the case where G=SU(p, q) (p>qg>1)

and K= {(g g); aeUp), de U(g), (det a)(det d)= 1}. In this case rank G/K
=q and we have G,=SL(p+gq, C), K, = {(g 2), aeGL(p, C), deGL(q, C),
(det a) (detd)= 1}. If g is a (p+q) X (p+q) complex matrix, we write g=<‘z_ Z
where the matrix blocks are of the size given by

aispxp, bispxqg, cisqgxp, disqxq.

Then g,=sl(p+gq, C), fc={<g 2,), trace a +trace d=0}, Pc={<2 8 }, and we

) s (e (X Y e (X))

Each g=(‘; Z)e G is written uniquely as

(1,, bd-1><a—bd-1c 0 )( 1, 0 )
g= :
0 1, 0 d/\aic 1,

so {(g)=(g bg_l> where { is as in 2.1. It then follows (cf. Wolf [31]) that the
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Harish-Chandra realization of G/K is given by

’ 0 :z
9=C(G)=[< )ep*;lq—-z*z >0},
00

where z* is the conjugate transpose of z and ‘>0 means “‘is positive definite”.
Moreover, if we identify p* with the space M, (C) of pxq complex matrices,
then (cf. [31], p. 327) for each 1<i<gqg

(6.28a) B, ={zeM, (C); 1, — z*z is positive semidefinite
and rank (1, — z*z) = q — i}
and we can put

(6.28b) %, = {( > €M, (C);1,; — z*z > o} :
0

z

Now let (8 6),(8 8))69, and put z’=<8 (Z)>, w’=<8 8)) Then, since

w’ =<?v* 8> (bar denoting conjugation of sl(p+g, C) with respect to su(p, q)),
mo(exp (—w')exp z)

I, 0 1, z
= K_,-component of in the factorization (2.2)
q

—w* 1

1, + z(1, — w¥z)"lw* 0 )
0 1, —w*z .

a0

0d € K,, then

But if k=<

T55,(k) = det (Ad (k)|,+) = (det a)i(det d)7 = (det d)~»*9.
Thus
J5,(€xp (= W), 2') = Tp5 (mo(exp (—W') €xp z))
= det (1, — w¥z)~(p*a),

According to Proposition 6.19, this is the Bergman kernel function of 2 up to a
constant factor.

Now dim¢ 2 = pq, while by (6.28) dimg #;=2pq—i? and dim; €;=(p—1i)-
(g—1i). Hence, in the present case, the constant g; in (6.20) turns out to be equal
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to _p_—‘l—_:_];z Therefore we conclude from Proposition 6.22 that, up to a constant

factor, the kernel function k; is given (under the identification 2 ={ze M, (C);
1,—z*z>0}) by

k(z, w) = det(1, — w¥z)~(ptaD 1<i<yg)

for z, we 2. In the extreme case i=q, k, is the Cauchy-Szegd kernel function
of 2 and is given by

k(z, w) = det(1, — w*z)7P. B

As remarked before, in order to account for all k; (1<i<r) in the case of
arbitrary irreducible 2 =G/K, one must drop the requirement that G is linear;
this is the case when w;= —p;A, with p; a half-integer. We shall briefly indicate
that, even in this case, one can define the kernel function k; and its explicit for-
mula is again given by (6.23). For this purpose we take, in place of G, a two-
sheeted covering G° of the linear universal covering of G; then w; e #(G°) for all
1<i<r; cf. the remark at the end of Section 3. G° naturally acts on 9;g-z
=p(g)-z (p: G°>G being the covering homomorphism). Let K°, G}, A4}, N;
denote the analytic subgroups of G° corresponding to , g;, a;, n; respectively, and
let M;=p~\(M)), Si=p~(S), Li=M;nS;. If we define J5; : G°xZ—-C by
J55,(9, 2)=J,5(p(9), z) then, since p; is a half-integer and since w;=—p;A,
= —2¢;6, by Lemma 6.26, we can uniquely define a continuous function J:
G°x 92 —C by J(g, 2)=J5%5,9, z)~% with Ji(e, z)=1 (e=identity of G°). One
can check that J; satisfies the following conditions:

JAg, z) is C® in g e G° and holomorphic in ze€ Z;
(6.29) § Ji(9192 2) = JU91> 92-2)i(9a, 2) for gy, 9,€C’, z€T;
Ji(k, z) = 1o (k) for keK°, zeZ.

Now let 0(2) denote the space of all holomorphic functions on 2 and
0(2)<0(2) the subspace of functions holomorphic on 4. By (6.29) we can
define (in algebraic sense) a representation T; of G° on 0(2) by

(TN () =Ji(g™ ", 27 f(g7"-2), feO(2), geG® ze D.
Note that the subspace 0(%) is stable under the representation T;. Let

02(9?, wi)

= {£0@); 1517 = B, Vilkgs, o) f(kgy- 0)lPdidg; < oof

K°x

where f; is as in Proposition 4.24 and dk, dg; are Haar measures on K°, Gj.
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6.30. LEMMA. 0%, w,) is stable under T(g) (g € G°) and T(g) preserve
the seminorm || |;.

PrOOF. We may define a C* rho-function p° on G° for the subgroup S; in
the same way as in 2.33. Thus, for ge G°, write g=kman (ke K°, me M; N
expp, a€ A;, ne N;); put p°(g)=e"?,1(a) with p; as in (2.38). Then, just as in
(2.45), we can normalize various Haar measures in such a way that

(6.31 [..f@xig = . rleqi0pydkdgds

K°xGi

for any integrable f.
Now fix Fe0XJ, ;) and xe G°. If we put F(g)=Jg, 0,)"F(g-0;) for
g € G°, then

IT(x)F|1?

= ﬂ%g o Jitkgi 07T, kgy- 0T F(x™ kg - 0,)*dkdyg;

K°

= 1. Wi kg, o) Fx~kg;- 0)lPdkdg,

K°

= B, \FGkg)Pdkdg,

K°

Therefore to prove the lemma it suffices to show that
63 | Fkgrdkdg = \FGkgdkdg,
K°xGi K°xGi

for all xe G°. First we claim:
(6.33) |F(gs)|2 = p°(s)|F(g)|? forall geG® and seS;
In fact, fox; geG°, ses;,
F(gs) = Ji(gs, o) F(gs-0;)

= Ji(s, 0)71Ji(g, 0)~'F(g - 0)

= Ji(s, 0)~'F(g)
and if we write s=lan with e L}, a € A;, ne N3, then

Ji(s, 0) = Ji(l, 0)J(a, 0)J(n, 0)).

But it is easy to check that |Ji(I, 0)|=|Ji(n, 0;)|=1, while, by Lemma 4.5(2)
together with the fact that w;= —24,5,, we have
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Ji(a, 0) = J5,(p(@), 0)~% = Jps (ci'p(a)c;, 0)~ 7 = efi(a).
Therefore
|F(gs)|2 = |J3(s, 0)I72|F(g)|?> = e2*(a) |F(g)|> = p°(s) |F(g)|2

for all g € G° and s € S;, establishing (6.33).
Now put ‘ﬁ(g'oi)=$59 ¢(gs)ds for ¢ € C(G°) and ge G°. Then using (6.31)
and (6.33) we get

[, onc FkaDP kg, 0Dy,
K°xGi

|F(kgs)|*¢(kgis)p®(s)'dkdg,ds

Sx‘*xc‘.’xs‘:

IF(9)1?¢(9)dg

G

o
[ IFe1g)gctg)dg
o

" |F(x~kg)|>d(x~ kg, - 0;)dkdg;.

K°xGi

Taking the supremum over all ¢ € C(G°) such that 0< ¢ <1, we have the asser-
tion of (6.32) and complete the proof. ]

From Lemma 6.30, following the same arguments used in Section 4, we de-
duce:

The completion HA(2, w;) of 0(Z, w;) can be identified with a sub-
space of 0(2) and is a nonzero Hilbert space with the property that for

(6.34) each z € 2, the linear map f—f(z) is continuous from H%(2, ;) onto
C. Furthermore T; defines an irreducible unitary representation of G°
on H¥(2, w).

It follows from (6.34) that the reproducing kernel function k; of H*(2, w;)
exists and satisfies

(6°35) kl(g *Z,9- W) = J‘:(g9 z)ki(Z’ W)J?(g, W)

for all geG°® and z, we 2. Once we have the formula (6.35), the proof of
Proposition 6.22 goes through without change also in the present situation.
Hence we conclude that the kernel function k; of H*(2, w,) is given by (6.23) for
any irreducible 2 and 1<i<r.
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7. Intertwining operators

Let (U,, L¥G, 0,)) and (T, H*(2, 1)) be the unitary representations of G
as in Theorem 4.49. As noted after that theorem, (T;, HX(2, 1)) is unitarily
equivalent to the representation (7T,, H*(G, t,)) defined by (4.51), and so, in view
of Theorem 4.49, H%(G, t,) can be identified with a closed subspace of L%(G, ;).

In this section we construct an integral operator 2,: L¥(G, ¢,)—H?*(G, t,)
which is regarded as the orthogonal projection operator if we identify H*(G, t,)
with a subspace of L*(G, o,). In view of Proposition 5.9, the restriction of £,
to the subspace L?(G, 0,; p;) may be more important.

Now, letting B;, |1,], be as in Corollary 4.27, put y=8;I1,/72. Given
¢ € L¥G, o;,), we define

(7.1a) 2:90) =1\ w(0I(g7", oy $lgkg)dkdg,

KxG

for all g € G for which this integral exists.

7.2. LemMA. For any ¢ € LG, 0,), the integral defining 2,p(g) exists
for all ge G. Moreover 2, is given by an integral operator with a kernel
yJ;.k(g_lkgi, 01’)_1, i-e-s

(7.1b) 2:9(0) =1\ THg kg, 007 d(kg)didg,

Proor. According to Corollary 4.39, the constant function 1, belongs to
H*(2, 1) for every ec E;. Hence if we define, for each ecE;, ¢,: G-E; by
¢(9)=P;J;(gc;, 0) e, then (4.37) implies ¢, € LG, o,) since ¢,=F,(1,). On
the other hand, if ¢ € L?(G, ;) then the left translates U,(g)¢ (g € G) also belong
to L*(G, 0;), so (U,(g™ V)¢, ¢.) (inner product in L2(G, o)) exist for all ge G
and eeE;. Now

(Usg™8, ) = | (@(gka), PaJ (kgic, o) e)dkdy,

= (§, . sx(kgc, oy dlgkgpdkdg, o).
But, using Lemmas 4.25, 6.9 and 6.10, one finds
Ji(kgici, 0) Mgy = BJE(k, i 007 TF(gs 0)7 gy
= Bt (k)" J%(gs 0) 7 gy
= Bia(k)J (97", 0)7 g,
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Therefore we obtain

(7.3) IL072Uxg7 )9, ¢.) = (2:8(9); €)

for all ¢ € L¥(G, a;), g€ G, ec E,, from which the first assertion of the lemma
follows. As for the second assertion, recall that U,(g) is a unitary operator of
L*(G, o;) for every g G. Thus

IL072(UAg7 D9, ¢.) = L1173, Ux(9)¢.)

= LI, (@(kg), Pai(g™kgic, oy 'e)dkdg,
= L1573 kg, o) 9lkg), e)dkdg,

= (] Ix kg, 0 dlkgpakdg, o)

for allee E;. This combined with (7.3) gives the second assertion of the lemma.

Our main result in this section is the following theorem.

7.4. THEOREM. Fix any i, 1<i<r, and Ae F(G). Then:
(1) For any ¢ e LG, 0;), 2,$ belongs to HXG, ;) and the resulting

mapping
9)’: LZ(G, 0’1) I— H2(G, T}.)

is a surjective G-intertwining operator. Furthermore, if we regard H*G, t,)
as a closed subspace of L*(G, 6,) then &, is the orthogonal projection operator
onto H¥G, 1,).

(2) On the subspace L¥(G, a;; p7) of L¥(G, 6,), 2, is given by

1.5) 2,9(9) = B, 1.099(gl)dk

with B=B‘%%'

The proof of this theorem requires some preparation. For an E,-valued
Borel function F on the boundary orbit #,, define (as in (4.14)) F: G-E; by

(7.6) F(g) = PyJ,(gci, 0 'F(g-0), g€G

and let
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L@, ) = {Borel functions F: @, — E,; |[F|? = S _ 1F(kg)Pdkdg, < oo}.
KXG;

Then if FeL* %, ), the argument used in proving Lemma 4.15 implies F
€ LXG, ;). Given F, F' € LX(#,, 1), let us say that F and F' are equivalent
(F~F)if |[F—F'|=0. Now define L?(%#,;, 1)° as the set of equivalence classes
(relative to ~) of elements in L*(#,;, ). Then L*(#,, 2)° is an inner product
space. For ¢ € L%G, o;) we define a function &£ ,¢: #,—E; as follows. Every
u € B, is represented as u=kg;-0;,, ke K, g;€G;; so put Z,p(u)=J,(kgc; 0)-
¢(kg,). 1t is easily verified that Z,¢ is a well defined function on #; and belongs
to LA(#;, 2). Let £3: L¥G, 6,)—L*%,, 1)° be the composition of the mapping
£, LG, 0;,)>L*(#,, /) with the canonical projection of L2* %, ) onto
LX(4,, 1)°.

7.7. LEMMA. %3 is a linear isometry of L*G, o;) onto L* (&, A)°. In
particular L%(#,;, 1)° is a Hilbert space.

Proor. If FeL*®, A) then FeL*G, o,;) as remarked before, and it is
easily seen that F~.%,F. Thus %} is surjective. The rest of the lemma is
obvious. n

Given F € L*(4#,;, 1), we define (using the notation in (6.15))

2,F(z) = g Kz, WM (w)F(u)duu)

for all ze 2 for which this integral exists.

7.8. LeMMA. For any FeL*(#,, ), the integral defining 2,F(z) exists
forall ze 9, and if F, F' € LX(#,;, 2) with F~F', then 2,F=2,F'.

ProoF. According to (6.2) and (6.12), E,Efe=K,w, z)e and E}ee
049, E)) for all z, we 2 and all ecE,. If we set F, =E}e|,, then clearly
F,,eL*(#,7). Hence if FelL?*(&, A), then (F, F,,) (inner product in
L*(G, 0,)) exists for all ze 2, ee E, where F, F,, are defined as in (7.6). Now
recalling the definition (6.14) of M, we have, for all ze 9, ecE,,

(F, F.0)

= SK G (P1J i(kgici, 0)'F(kg;- 0,), P3J(kgici, 0) 'K, (kg;- 0, 2)e)dkdg,;

= ({,, Kilz, wMi@F@duu), e)

= ('Q).F(Z)’ e) ]
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and from this the first assertion follows at once. Since F~F' <> F=F" (in
L*(G, a,)), the second assertion also follows. [ ]

- By Lemma 7.8 we may define, for F°e L*(%,, 1)°, a function 2;F°: 2 —E,
by setting 23 F°=2,F where F is any representative of the class F°. In view of
(4.37) and Lemma 7.7, H%(2, A) can be identified with a closed subspace of
L%(#;, 1)°. Note that this identification is induced by taking boundary values of
functions belonging to the dense subspace 0%(2, E)) of H(2, A).

7.9. LeMMA. For any F°eL*(#;, A)°, the function 2;F° belongs to
H*(2, ). Moreover, the mapping 23 : LA(#;, \)°>H*(2, A) is the orthogonal
projection operator onto HX(2, 1) if we regard H¥(2, ) as a closed subspace
of LA, A)°.

ProOF. According to (6.15), 2;F=F for all Fe0*3, E,). Since
0%9, E)) is dense in H%(2, 1), it follows that 2;F=F for all Fe H*2, A).
On the other hand if F°e L%(4#,, )° is orthogonal to H*(2, 1) then, since E}e
e H¥(2, ) for every ec E,, we have

0 = (F°, E*e)
= Sxxo (P3J (kgici, 0) ' F(kg;-0), PiJ(kgici, 0) ' Ky(kg;- 0;, z)e)dkdg;
‘ (F is a representative of F°)
- (L K,(z, w)M (u)F(u)du(u), e>
= (2;F%(2), )
forall ze 2 and ec E;. Thus 2;F°=0 and the lemma follows. B

With this preparation, we can now prove part (1) of Theorem 7.4.
ProoF oF THEOREM 7.4(1). Consider the following mappings:

L¥G, 0,) Z5 L@, 1)° 25 H¥(2, 1) -£5 HX(G, 1,)

where ¢, is the unitary isomorphism defined by (4.50). We are going to prove
that #,025.%5=2,; since the G-equivariance of £, is obvious, in view of
Lemmas 7.7 and 7.9 this will imply the result. So letting ¢ € L*(G, 7,) and
g € G, we calculate

(F302;°23(9)(9)
= J(g, 0)" (2222 (9)) (g - 0)
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= g, 0! Kilg-0, wM(0)2 (u)du)

= Ju(9, 0)“SKXGi Ki(g-0, kg;-0)M (kg;- 0) &L ;¢(kg; - 0)dkdg;.
Now (6.3b), Lemma 6.6 and (6.12) imply
Ky(g -0, kg;-0) = J (g, 0)K,(0, g7*kg;- 0:)J7(g> 9™ kg; - 0)
= 1132709, 0)J%(g™", kgi-0)~",
while by definition
M;(kg;-0) = J¥(kgici, 0)™'PJ y(kgici, 0)71,
Z,9(kg;- 0) = J(kgic;, 0)p(kgy) .

Therefore, using the cocycle formula and Lemma 7.2, we get

(F 2025223 (9) = |111IIIZSKXG. J3(g7 kygic;, 0)~ d(kg)dkdg;

B ’Sm. J3(g7 kg, 07 ¢(kgy)dkdg;

= 2,6(9)
for all $ € L*(G, 0;) and g€ G. Thus #,02;0.%; =2, as desired. [ ]

For part (2) we need some notation and one more lemma. With 7; being as
in Lemma 4.2, we define

f Borel measurable,

LA(Gy, 1) ={ f: G Ex; f(gh) = (0™ /(9), g€ Gy ke Ky ),
[, 17@ordg; < eo
Gi

and put
HX(G;, 1) = LXG;, ) N {f€ C*(Gy, Ep); r(X)f = 0 for all X ep;}

(r(X) is defined similarly as in (4.19)). Recall the spaces L?(M;, 't{’) and
H*(M,, 't{") defined in (5.4). Note that each function in L*(M,, ‘(") is deter-
mined completely by its restriction to the subgroup G;. Hence, and because
'7P|g, =11 (cf. Lemma 4.5(1) and (4.9)), it is obvious that
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restricting elements in L%(M,, '7") to G, sets up a unitary isomor-
(7.10) phism of L2(M,, 't$") onto L*(G,, t;) and H*(M,, 't{9) corresponds
to H*(G,, t;) under this mapping.

Therefore Lemma 5.6 implies that H?(G;, 7;) is a nonzero closed subspace of
LX(G;, p.

7.11. LEMMA. For ¢ € L¥G;,, 1;) and g € G;, set
2:8(9) = BILIF  Jig", 07 d(gg)dy;

where |1,||; is as in the proof of Lemma 5.3. Then 2; defines the orthogonal
projection operator of L*(G,, t;) onto H*(G,, 1;).

Proor. Let L%(%;, 1) and H%(%, ) be as in (5.1). For FeLX%, 1),
define (using the same notation as in (5.5) #;F:G,»E; by #¢;F(9)=
Ji(gci, 0)"1F(g-0;). Then, in view of (7.10) and Lemma 5.6, #; is a unitary
isomorphism of L%(#%, 1) onto L2(G, t;), and H2?(%;, A) corresponds to
H?(G, t;) under #; Recall the representation (T3, HX(%;, 2)) of G; defined
by (5.2). Since Tj is unitary, just as in the case of the kernel function K, of
H*(2, }) one can prove: HX(%,, 1) has a reproducing kernel K;: %; x €;—GL(E;)
such that

(F(2), @)g; = (F(-), Ki(+, 2)@)n2(e,,1)
for Fe H¥%,, 1), ec E;, z€ ¥,, and K satisfies
Kxg -2, g-w) = Ji(g, 2Kz, w)J3(g, W)
for geG,, z, we®¥; where J;(g, z) denotes the restriction of J,(g, z) to Ej.
Moreover
Ki(z, 0)) = Kx(o;, 2) = [11,[1721

for all ze ;.
We define a measure on €; by

[, sonaw =1 1(:-0)dg,

€i Gi

for fe C(%,), and define a function M;: €;—~GL(E;) by M;(w)=J%(gc;, 0)~!-
Ji(gc;, 0)~t with w=g-0;, g € G; (this is well defined). Then by the same argu-

ment as in the proof of Lemma 7.9, one finds that the orthogonal projection Q;
of L*(%;, 7) onto HX(¥%,, 1) is given by

0iF(2) = Kiz, WM0F ()
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for all Fe L¥(%,, ).
Now consider the following mappings:

L2(G, 1) 25 L%, 1) 24 H¥%, 1) 25 HY(G, 1y).

To prove the lemma it is enough to show that #;0Q;0 #7'=2;. If ¢ € LXG;,7y)
and g € G; then, calculating as in the proof of Theorem 7.4(1), we get

(22271 (9)(9)

= Jxgee oyt Kilg-0, gi-0)Ms(gi- 00T (g, 0)b(g)dg:
i
= ILIFIAge 07, 00 | T30 gici o) $laid,
i

= BILIE | I3, oy *$lag)d,

(by Lemma 4.25 and the invariance of measure)
= BHIL,lz? SGlJA(g?‘, 0)~'¢(gg:)dy;

(by Lemmas 6.9 and 6.10)

= 2;4(9).
Thus #;0Q;0 #7571 =2; and the lemma follows. [ |

PrOOF OF THEOREM 7.4(2). Since C%(G, g;; p;) (notation of (5.8)) is
dense in L%(G, o;; p;), it suffices to show that the formula (7.5) is valid for all
¢eC3(G, 0,5 7). For ¢eC%(G, 0,;p;7) and geG, define ¢,: G—E; by
¢,(9)=¢(gg). Then it is not difficult to show that ¢,e HXG;, t;). Therefore
if ¢ € C2(G, 0;; p7) then, using Lemma 7.11, we get

D(9) = dy(e) = 2:94(e) = B}IN,7 SG,J Ag7', 0)'d(99:)dg;

for all ge G. Thus, and since ||1,]|3=d(A)d(1)~1||1,]|? (cf. the proof of Lemma
5.3), we obtain

2,9(9) = B,-IIIAHI’SKW (k) (97", 0)”'P(gkgi)dkdg;

= Brd(Z)y~td(%) an(k)tﬁ(gk)dk

for all ¢ € C3(G, 0;; p7) and ge G. This completes the proof. [ ]
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REMARK. In the extreme case i=r, we have G,=K,=K (cf. (2.29)) and
hence p;={0}; therefore LG, 0,)=L?*G, o,; p;). Thus if le #£,(G) then,
since ||1,]13=p2d(1)d(A)~! (cf. Corollary 4.27) and since g dg,=1, taking (7.1b)

G

into account we see that the operator £,: L*(G, ¢,)—»H 2(G: 7,) defined by (7.1a)
is given by

2:9(9) = | :(0$(gkdk = B I3k, 0) (k)

with B=p;1d(X)~1d(4) (this is consistent with the formula (7.5)). In particular,
if A=w, (notation of (6.16)) then

H*(2, w,) = Hardy space of 2 (cf. (6.17)),
LA, w,) = LX(Z,, v,)°

- {Borel functions f: &, — C: S |f(k-0,)2dk < oo}
K

and, as is clear from our proof of Theorem 7.4(1), 2,,, corresponds to the inte-
gral operator 2, : L%4%,, w,)->H*2, w,) associated with the Cauchy-Szegd
kernel function.
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