Unitary representations and kernel functions associated with boundaries of a bounded symmetric domain

Toru Inous

(Received July 17, 1979)

1. Introduction

Let \mathscr{D} be the open unit disc in C and let \mathscr{B} be its boundary. Then the group $G=S U(1,1)$ of all two-by-two complex matrices of the form $\left(\begin{array}{ll}a & b \\ b & \bar{a}\end{array}\right)$ with $|a|^{2}-|b|^{2}=1$ acts transitively both on \mathscr{D} and \mathscr{B} by linear fractional transformations

$$
z \longrightarrow g \cdot z=\frac{a z+b}{\bar{b} z+\overline{\bar{a}}} \quad \text { if } \quad g=\left(\begin{array}{ll}
a & b \\
\bar{b} & \bar{a}
\end{array}\right) .
$$

The discrete series representations of G can be realized on Hilbert spaces of holomorphic (or anti-holomorphic) functions on \mathscr{D}, while the principal continuous series representations can be realized on $L^{2}(\mathscr{B})$. Every member of the principal continuous series representations of G is irreducible except one, say V, which is given by

$$
(V(g) f)(u)=j\left(g^{-1}, u\right)^{1 / 2} f\left(g^{-1} \cdot u\right), \quad f \in L^{2}(\mathscr{B}), g \in G, u \in \mathscr{B}
$$

where $j\left(g^{-1}, u\right)$ denotes the complex Jacobian of the holomorphic map $z \rightarrow g^{-1} \cdot z$ at $u\left(j\left(g^{-1}, u\right)=(\bar{b} u+\bar{a})^{-2}\right.$ if $g^{-1}=\left(\begin{array}{ll}a & b \\ b & \bar{a}\end{array}\right)$.

The so-called holomorphic discrete series representations of G are parametrized by the integers $n \geq 2$, and the n-th representation T_{n} is realized on the Hilbert space

$$
H_{n}=\left\{\text { holomorphic functions } f \text { on } \mathscr{D} ; \int_{\mathscr{D}}|f(z)|^{2}\left(1-|z|^{2}\right)^{n-2} d x d y<\infty\right\}
$$

with group action

$$
\left(T_{n}(g) f\right)(z)=j\left(g^{-1}, z\right)^{n / 2} f\left(g^{-1} \cdot z\right), \quad f \in H_{n}, g \in G, z \in \mathscr{D}
$$

Note that in the case $n=1$ we have $H_{1}=\{0\}$. However, one can associate to the integer $n=1$ a representation of G that is similar in appearance to those above. Indeed, if we let $H^{2}(\mathscr{D})$ be the Hardy space for \mathscr{D}, i.e.,

$$
H^{2}(\mathscr{D})=\left\{\text { holomorphic functions } f \text { on } \mathscr{D} ; \sup _{0<r<1} \int_{\mathscr{D}}|f(r u)|^{2} d u<\infty\right\}
$$

$(d u=$ Lebesgue measure on $\mathscr{B})$, then $H^{2}(\mathscr{D}) \neq\{0\}$ and the action T_{1} given by

$$
\left(T_{1}(g) f\right)(z)=j\left(g^{-1}, z\right)^{1 / 2} f\left(g^{-1} \cdot z\right), \quad f \in H^{2}(\mathscr{D}), g \in G, \quad z \in \mathscr{D}
$$

defines an irreducible unitary representation of G on $H^{2}(\mathscr{D})$. This representation does not belong to the holomorphic discrete series of G but is, in a sense, a limit of the holomorphic discrete series, and is of special interest due to the fact that it is unitarily equivalent to a proper subrepresentation of the "exceptional" representation $\left(V, L^{2}(\mathscr{P})\right.$) above. The realization of $\left(T_{1}, H^{2}(\mathscr{D})\right)$ as the subrepresentation of ($V, L^{2}(\mathscr{B})$) arises from the well-known imbedding of $H^{2}(\mathscr{D})$ into $L^{2}(\mathscr{B})$ given by taking boundary values.

The possibility of such a realization of irreducible components of reducible continuous series representations was investigated by Knapp and Okamoto [15] in more generality, namely, in the context of a linear simple Lie group that acts on a hermitian symmetric space. (In this connection see also Knapp and Wallach [16] and Midorikawa [22].) On the other hand, for a simply connected real semi-simple Lie group G whose associated symmetric space G / K is hermitian, Harish-Chandra ([7], [8], [9]) constructed a certain class of (not necessarily unitary) representations that includes the holomorphic discrete series. These representations can be realized on the spaces of holomorphic sections of holomorphic vector bundles over G / K arising from finite dimensional irreducible representations of K (or on the spaces of holomorphic vector valued functions on G / K by trivializing vector bundles). Both Rossi and Vergne [25] and Wallach ([28], [29]) have studied the unitarizability of these representations and obtained complete results for the case of line bundles. In that specialized context (case of line bundles), it is also shown in [25] that those representations which are indexed by certain "integral or half-integral points" can be realized on Hardy type Hilbert spaces associated with various boundary orbits of G / K (in the unbounded realization as a Siegel domain of type II), and that they are naturally imbedded (in terms of appropriate boundary values) in certain continuous series representations. As noted in [25], the representation which corresponds to the maximal (codimension one) boundary of G / K is a member of the limits of holomorphic discrete series in the sense of Knapp and Okamoto [15]. Although Knapp and Okamoto constructed their representations on Hilbert spaces of holomorphic sections of holomorphic line bundles over G / T (T being a compact Cartan subgroup), it turns out that those representations can also be realized on vector valued Hardy type spaces associated with the maximal boundary of G / K.

Now in view of the above results of Knapp-Okamoto and Rossi-Vergne, it is natural to pose the following questions:
(1) In general (vector bundle) case, can one construct, corresponding to each boundary orbit of G / K, Hardy type Hilbert spaces on which G acts by unitary transformation?
(2) Supposing it is possible, are they imbedded in certain continuous series representations?

One of the main purposes of this paper is to give affirmative answers to these questions in the case where G is a connected simple Lie group that admits a faithful matrix representation (and whose quotient G / K by a maximal compact subgroup K carries a hermitian symmetric structure). Our construction is based on the bounded domain realization of G / K. We also consider the (operator valued) reproducing kernel functions for these Hardy type Hilbert spaces and intertwining operators associated with the kernel functions.

Here is a more detailed description of the contents of this paper. In the following it is convenient to use the notion of vector bundle, though we do not use in the text.

In section 2 we review some known facts that are needed in this paper, in a manner which is convenient for our later use. For a group G of above type, let \mathscr{D} be the Harish-Chandra realization of the corresponding hermitian symmetric space G / K as a bounded domain in \mathfrak{p}^{+}(cf. 2.1). The action of G on \mathscr{D} extends smoothly to $\overline{\mathscr{D}}$, the closure of \mathscr{D} in \mathfrak{p}^{+}, and the topological boundary $\overline{\mathscr{D}}-\mathscr{D}$ breaks into $r(r=\operatorname{rank} G / K) G$-orbits, say $\mathscr{B}_{1}, \ldots, \mathscr{B}_{r}$, where $\overline{\mathscr{B}}_{i} \supset \mathscr{B}_{i+1}(1 \leq i$ $\leq r-1$); thus \mathscr{B}_{r} is the Silov boundary of \mathscr{D}. Each boundary \mathscr{B}_{i} decomposes, in a G-equivariant manner, into complex submanifolds of \mathfrak{p}^{+}, called boundary components of \mathscr{D} or holomorphic arc components of \mathscr{B}_{i}, which are themselves isomorphic to a bounded symmetric domain of rank $r-i$. For each $i=1, \ldots, r$, there is a naturally associated point $o_{i} \in \mathscr{B}_{i}$ and a holomorphic arc component \mathscr{C}_{i} of \mathscr{B}_{i} containing o_{i}, and it is known that every holomorphic arc component of \mathscr{B}_{i} is of the form $k \cdot \mathscr{C}_{i}, k \in K$. Further, there exists, for each $1 \leq i \leq r$, a semi-simple subgroup G_{i} of G with $\mathscr{C}_{i}=G_{i} \cdot o_{i}$; thus if we let K_{i} be the isotropy subgroup of G_{i} at o_{i}, then $\mathscr{C}_{i} \cong G_{i} / K_{i}$. Let $P_{i}=\left\{g \in G ; g \cdot \mathscr{C}_{i}=\mathscr{C}_{i}\right\}$ and $S_{i}=$ $\left\{g \in G ; g \cdot o_{i}=o_{i}\right\}$. Then P_{i} is a maximal parabolic subgroup of G, and we have a Langlands decomposition $P_{i}=M_{i} A_{i} N_{i}$ such that if we put $L_{i}=M_{i} \cap S_{i}$ then $S_{i}=L_{i} A_{i} N_{i}$. Each boundary $\mathscr{B}_{i}=G / S_{i}$ has a natural quasi-invariant measure $\mathrm{d} \mu$ so that

$$
\int_{\mathscr{A}_{i}} f(u) d \mu(u)=\int_{K \times G_{i}} f\left(k g_{i} \cdot o_{i}\right) d k d g_{i}
$$

for any integrable f on \mathscr{B}_{i}, where $d k, d g_{i}$ are Haar measures on K, G_{i}.
In Section 3 we define, for each $1 \leq i \leq r$, a certain subset $\mathscr{F}_{i}(G) \subset \sqrt{-1} t^{*}$ ($\mathrm{t}=$ Lie algebra of a compact Cartan subgroup T of G) consisting of highest
weights of irreducible representations of K. (To each member of $\mathscr{F}_{i}(G)$, we shall associate a Hardy type space and an irreducible unitary representation of G in Section 4.) It turns out that in the case $i=1$ the defining condition of $\mathscr{F}_{1}(G)$ is equivalent to the condition imposed by Knapp and Okamoto [15]. Our definition of $\mathscr{F}_{i}(G)$ is given in such a way that each member of $\mathscr{F}_{i}(G)$ is expressed explicitly in terms of fundamental highest weights; cf. (3.8).

In Section 4 we construct, corresponding to each member of $\mathscr{F}_{i}(G)$, unitary representations of G. Fix $i, 1 \leq i \leq r$, and $\lambda \in \mathscr{F}_{i}(G)$. Let τ_{λ} be the irreducible unitary representation of K on E_{λ} with highest weight λ, and let \boldsymbol{e}_{λ} be a nonzero highest weight vector. If we let E_{λ} be the linear span of $\left\{\tau_{\lambda}(k) \boldsymbol{e}_{\lambda} ; k \in K_{i}\right\}$, then for each $v \in \mathfrak{a}_{i}^{*}\left(\mathfrak{a}_{i}=\right.$ Lie algebra of $\left.A_{i}\right)$ we obtain (cf. (4.9), (4.10)) irreducible representations $\sigma_{\lambda, v}$ and ' $\sigma_{\lambda, v}$ of S_{i} on $E_{\lambda},{ }^{\prime} \sigma_{\lambda, v}$ being unitary, and the unitarily induced representation $U_{\lambda, v}=\operatorname{Ind}_{s_{i} \uparrow G}{ }^{\prime} \sigma_{\lambda, v}$ is realized on the Hilbert space $L^{2}(G$, $\sigma_{\lambda, v}$) of L^{2} sections (relative to the quasi-invariant measure $\mathrm{d} \mu$ on \mathscr{B}_{i}) of the G-homogeneous vector bundle over the boundary $\mathscr{B}_{i}=G / S_{i}$ associated with the representation $\sigma_{\lambda, v}$ of S_{i}. (In the case $v=0$, we write $\sigma_{\lambda}, U_{\lambda}$ instead of $\sigma_{\lambda, 0}$, $U_{\lambda, 0}$.) Next we introduce a Hardy type Hilbert space $H^{2}(\mathscr{D}, \lambda)$ of E_{λ}-valued holomorphic functions on \mathscr{D} (cf. (4.16), (4.35)), which is imbedded in $L^{2}\left(G, \sigma_{\lambda}\right)$ by taking appropriate boundary values. $\quad H^{2}(\mathscr{D}, \lambda)$ is naturally identified with a space $H^{2}\left(G, \tau_{\lambda}\right)$ of holomorphic sections of the holomorphic vector bundle over G / K associated with the representation τ_{λ} of K (the vector bundle being holomorphically trivial). We then show (Theorem 4.49) that $H^{2}(\mathscr{D}, \lambda)$ is nonzero and the action T_{λ} of G on $H^{2}(\mathscr{D}, \lambda)$ given by

$$
\left(T_{\lambda}(g) F\right)(z)=J_{\lambda}\left(g^{-1}, z\right)^{-1} F\left(g^{-1} \cdot z\right), \quad F \in H^{2}(\mathscr{D}, \lambda), g \in G, z \in \mathscr{D}
$$

($J_{\lambda}=$ automorphic factor of type τ_{λ}; cf. 2.4) defines an irreducible unitary representation of G on $H^{2}(\mathscr{D}, \lambda)$, and that the imbedding $H^{2}(\mathscr{D}, \lambda) \subsetneq L^{2}\left(G, \sigma_{\lambda}\right)$ commutes with the action of G.

In Section 5 we first construct, corresponding to each $\lambda \in \mathscr{F}_{i}(G)$, an irreducible unitary representation μ_{λ} of M_{i} and form the continuous series representations

$$
V_{\lambda, v}=\operatorname{Ind}_{M_{i} A_{i} N_{i} \uparrow G}\left(\mu_{\lambda} \otimes e^{\sqrt{-1} v} \otimes 1\right), \quad v \in \mathfrak{a}_{i}^{*} .
$$

We then show (Proposition 5.9) that the $V_{\lambda, v}$ is unitarily equivalent to a subrepresentation $\left(U_{\lambda, v}, L^{2}\left(G, \sigma_{\lambda, v} ; \mathfrak{p}_{i}^{-}\right)\right)$of the representation $\left(U_{\lambda, v}, L^{2}\left(G, \sigma_{\lambda, v}\right)\right)$ in Section 4; here $L^{2}\left(G, \sigma_{\lambda, v} ; \mathfrak{p}_{i}^{-}\right)$is a subspace of $L^{2}\left(G, \sigma_{\lambda, v}\right)$ consisting of those sections that are holomorphic on every holomorphic arc component of \mathscr{B}_{i}. Finally, we show (Theorem 5.13) that the representation T_{λ} of G on $H^{2}(\mathscr{D}, \lambda)$ is unitarily equivalent to a proper subrepresentation of $V_{\lambda}\left(=V_{\lambda, 0}\right)$ and hence V_{λ} is reducible.

In Section 6 we discuss the reproducing kernel function K_{λ} of $H^{2}(\mathscr{D}, \lambda)$ and
derive (Proposition 6.4) an explicit formula for K_{λ}. We then specialize to the case where $\tau_{\lambda}\left(\lambda \in \mathscr{F}_{i}(G)\right)$ are one dimensional representations of K. In this situation there exists at most one, say, $\omega_{i} \in \mathscr{F}_{i}(G)$ for each $1 \leq i \leq r$; cf. (6.16). (If we take a suitable covering G° of G, then for each $1 \leq i \leq r$ there exists a unique $\lambda \in \mathscr{F}_{i}\left(G^{\circ}\right)$ with $\operatorname{dim} E_{\lambda}=1$. But G° is not necessarily a linear group.) In the case $i=r, H^{2}\left(\mathscr{D}, \omega_{r}\right)$ turns out to be the usual Hardy space for the bounded symmetric domain \mathscr{D} (cf. (6.17)), and hence the kernel function corresponding to ω_{r} is the Cauchy-Szegö kernel function of \mathscr{D}. For kernel functions corresponding to these $\omega_{i}, 1 \leq i \leq r$, we find more explicit formulas; cf. Proposition 6.22. The formula for the Cauchy-Szegö kernel function was first derived by Korányi [17, Proposition 5.7] by translating the results (due mostly to Gindikin [3]) on Siegel domains of type II to bounded symmetric domains by the Cayley transform (due to Korányi and Wolf [18]); for the classical domains it was first found by Hua [12].

In Section 7 we give (Theorem 7.4) an integral operator $\mathscr{P}_{\lambda}: L^{2}\left(G, \sigma_{\lambda}\right)$ $\rightarrow H^{2}\left(G, \tau_{\lambda}\right)$ (here we identify $L^{2}\left(G, \sigma_{\lambda}\right)$ (resp. $\left.H^{2}\left(G, \tau_{\lambda}\right)\right)$ with a certain subspace of the space of $E_{\bar{\lambda}}$ (resp. E_{λ}) valued functions on G) which is regarded as the orthogonal projection operator if we identify $H^{2}\left(G, \tau_{\lambda}\right)$ with a subspace of $L^{2}\left(G, \sigma_{\lambda}\right)$, and also show that on the subspace $L^{2}\left(G, \sigma_{\lambda} ; \mathfrak{p}_{\boldsymbol{i}}^{-}\right), \mathscr{P}_{\lambda}$ is given by

$$
\mathscr{P}_{\lambda} \phi(g)=\beta \int_{K} \tau_{\lambda}(k) \phi(g k) d k, \quad g \in G, \phi \in L^{2}\left(G, \sigma_{\lambda} ; \mathfrak{p}_{\boldsymbol{i}}^{-}\right)
$$

where β is a positive constant. Intertwining operators that take such a form as above were considered by Okamoto [24] and Knapp and Wallach [16] in other contexts, e.g. intertwining maps from non-unitary principal series representations to (limits of) discrete series representations. We note that in the special case $\lambda=\omega_{r}$ in the notation of Section $6, \mathscr{P}_{\lambda}$ corresponds to the integral operator associated with the Cauchy-Szegö kernel function (cf. the remark at the end of this paper).

For the groups associated with classical hermitian symmetric spaces of tube type, i.e., for $S p(n, \boldsymbol{R}), U(n, n)$ and $O^{*}(4 n)$ Gross and Kunze have produced, in their study of the primary decompositions of metapletic representations ([5], [6]), some irreducible unitary representations with highest weights which are not in discrete series. (The representations that we shall construct have this property; cf. Lemma 4.52.) In a similar way Kashiwara and Vergne [14] have obtained series of such representations for $U(p, q)$ and the metapletic group $M p(n, \boldsymbol{R})$, a two-sheeted covering of $S p(n, \boldsymbol{R})$. In these papers, however, it is not discussed whether some of those representations have realizations in Hardy type spaces or whether they are imbedded in continuous series representations. For the conformal group $U(2,2)$, related topics were considered by Jacobsen and Vergne [13], and by Gross, Holman and Kunze [4]. In particular, in [4] some vector-
valued Hardy spaces for the corresponding Siegel domain (an unbounded realization of $G / K, G=U(2,2)$) are introduced.

The author would like to express his thanks to Professor K. Okamoto for his constant advice and encouragement and to Professor M. Takeuchi for several helpful suggestions.

2. Notations and preliminaries

Let G be a connected simple Lie group with a faithful matrix representation and K a maximal compact subgroup of G. We assume that G / K admits an invariant complex structure. Then K has one dimensional center, and one may choose a compact Cartan subgroup T of G with $T \subset K$. We denote the Lie algebras of G, K, T by $\mathfrak{g}, \mathfrak{f}, \mathrm{t}$, and their complexifications by $\mathfrak{g}_{c}, \mathfrak{f}_{c}, \mathrm{t}_{c}$; as a general notational convention the subscript \boldsymbol{c} shall always mean "complexification". Since G has a faithful matrix representation, we can regard G as a subgroup of a connected group G_{c} with Lie algebra \mathfrak{g}_{c}. Let K_{c}, T_{c} denote the analytic subgroups of G_{c} corresponding to $\mathfrak{f}_{\boldsymbol{c}}, \mathrm{t}_{\boldsymbol{c}}$.

Let Φ be the set of nonzero roots of $\left(g_{c}, \mathrm{t}_{c}\right)$, and let Φ_{c} and Φ_{n} be the set of compact and noncompact roots, respectively; thus $\Phi=\Phi_{c} \cup \Phi_{n}$, and if $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ is the Cartan decomposition corresponding to K, we have

$$
\mathfrak{f}_{c}=\mathrm{t}_{c}+\sum_{\alpha \in \Phi_{c}} \mathfrak{g}_{c}^{\alpha} \text { and } \mathfrak{p}_{c}=\sum_{\alpha \in \Phi_{n}} \mathfrak{g}_{c}^{\alpha}
$$

where $\mathfrak{g}_{c}^{\alpha}$ denotes the complex root space for a root α. If $\alpha \in \Phi$, we denote by H_{α} the unique element of $\sqrt{-1} t$ such that

$$
2(\mu, \alpha) /(\alpha, \alpha)=\left\langle\mu, H_{\alpha}\right\rangle \quad \text { for all } \quad \mu \in \sqrt{-1} t^{*}
$$

where $\sqrt{-1} t^{*}$ is the real vector space of all linear functions on t_{c} which assume purely imaginary values on t , and (,) is the inner product on $\sqrt{-1} \mathrm{t}^{*}$ induced by the Killing form of \mathfrak{g}_{c}. For each $\alpha \in \Phi$, we choose a root vector $X_{\alpha} \in \mathfrak{g}_{c}$ such that $\left[X_{\alpha}, X_{-\alpha}\right]=H_{\alpha}$, and such that the complex conjugation of g_{c} with respect to \mathfrak{g} permutes X_{α} and $X_{-\alpha}$, whenever $\alpha \in \Phi_{n}$. Note that $\left\langle\alpha, H_{\alpha}\right\rangle=2, B\left(X_{\alpha}, X_{-\alpha}\right)$ $=2 /(\alpha, \alpha)\left(B()=\right.$, Killing form of $\left.\mathfrak{g}_{c}\right)$ for all $\alpha \in \Phi$, and that $X_{\alpha}+X_{-\alpha}, \sqrt{-1}\left(X_{\alpha}\right.$ $\left.-X_{-\alpha}\right)$ are in \mathfrak{g} if $\alpha \in \Phi_{n}$.

By our assumption on G / K, there exists an ordering of the root system Φ, such that the sum of two noncompact positive roots is never a root. We fix such an ordering once and for all, and let Φ^{+}be the resulting set of positive roots. We write Φ_{c}^{+}for $\Phi_{c} \cap \Phi^{+}$and Φ_{n}^{+}for $\Phi_{n} \cap \Phi^{+}$. The choice of Φ^{+}determines a splitting

$$
\mathfrak{p}_{c}=\mathfrak{p}^{+}+\mathfrak{p}^{-} \quad \text { with } \quad \mathfrak{p}^{+}=\sum_{\alpha \in \Phi_{n}^{+}} \mathfrak{g}_{c}^{\alpha} \quad \text { and } \quad \mathfrak{p}^{-}=\sum_{\alpha \in \Phi_{n}^{+}} \mathfrak{g}_{c}^{-\alpha} .
$$

Both \mathfrak{p}^{+}and \mathfrak{p}^{-}are $\operatorname{Ad}\left(K_{\boldsymbol{c}}\right)$-invariant, abelian subalgebras of $\mathfrak{g}_{\boldsymbol{c}}$ which are complex conjugate to each other. Let P^{+}and P^{-}be the corresponding analytic subgroups of G_{c}. Then K_{c} normalizes $P^{ \pm}$and $K_{c} \cdot P^{ \pm}$is a parabolic subgroup of G_{c}. The G-orbit of the identity coset in $G_{c} / K_{c} \cdot P^{-}$is open and can be identified with G / K, since $G \cap K_{c} \cdot P^{-}=K$. Thus the imbedding $G / K \subset G_{c} / K_{c} \cdot P^{-}$induces an invariant complex structure on G / K.
2.1. Harish-Chandra realization of G / K (see [9], [31]). The map $\mathfrak{p}^{+} \times K_{\text {c }}$ $\times \mathfrak{p}^{-} \rightarrow G_{\boldsymbol{c}}$, given by $(x, k, y) \rightarrow \exp x \cdot k \cdot \exp y$, is a holomorphic diffeomorphism onto a dense open subset $\Omega=P^{+} \cdot K_{c} \cdot P^{-}$of G_{c}, which contains G. Therefore an element $g \in \Omega$ can be written in a unique way as

$$
\begin{equation*}
g=\pi_{+}(g) \cdot \pi_{0}(g) \cdot \pi_{-}(g), \quad \pi_{0}(g) \in K_{c}, \pi_{ \pm}(g) \in P^{ \pm} \tag{2.2}
\end{equation*}
$$

It is known that the map $\zeta: \Omega \rightarrow \mathfrak{p}^{+}$, given by $\zeta(g)=\log \pi_{+}(g)$, induces a holomorphic diffeomorphism of G / K onto $\zeta(G)=\mathscr{D}$, and that \mathscr{D} is a bounded domain in \mathfrak{p}^{+}. This is the Harish-Chandra realization of G / K as a bounded domain. We will make the following identification:

$$
G / K=\mathscr{D} \subset \mathfrak{p}^{+} \subset G_{c} / K_{\boldsymbol{c}} \cdot P^{-} .
$$

Note that the action of G on \mathscr{D} is given by

$$
\begin{equation*}
g \cdot z=\zeta(g \exp z), \quad g \in G, \quad z \in \mathscr{D} . \tag{2.3}
\end{equation*}
$$

2.4. Automorphic factor (see [21]). For a holomorphic representation τ of K_{c} on a finite dimensional complex vector space E, we define the (canonical) automorphic factor of type $\tau, J_{\tau}: G \times \mathscr{D} \rightarrow G L(E)$, by

$$
\begin{equation*}
J_{\tau}(g, z)=\tau\left(\pi_{0}(g \exp z)\right), \quad g \in G, z \in \mathscr{D} \tag{2.5}
\end{equation*}
$$

where π_{0} is as in (2.2). It is then easily verified that J_{τ} has the following properties:

$$
\begin{align*}
& J_{\tau}(g, z) \text { is } C^{\infty} \text { in } g \in G \text { and holomorphic in } z \in \mathscr{D} \tag{2.6a}\\
& J_{\tau}\left(g_{1} g_{2}, z\right)=J_{\tau}\left(g_{1}, g_{2} \cdot z\right) J_{\tau}\left(g_{2}, z\right) \text { for } g_{1}, g_{2} \in G, z \in \mathscr{D} ; \tag{2.6b}\\
& J_{\tau}(k, z)=\tau(k) \text { for } k \in K, z \in \mathscr{D} \text {. } \tag{2.6c}
\end{align*}
$$

The formula (2.6b) will be referred to as the cocycle formula. We note that the definition of $g \cdot z$ and $J_{\tau}(g, z)$ can naturally be extended to any pair $(g, z), g \in G_{\boldsymbol{c}}$, $z \in \mathfrak{p}^{+}$such that $g \exp z \in \Omega=P^{+} K_{\boldsymbol{c}} P^{-}$, and that the cocycle formula (2.6b) is valid for $g_{1}, g_{2} \in G_{c}, z \in \mathfrak{p}^{+}$such that both $g_{2} \exp z$ and $g_{1} g_{2} \exp z$ are in Ω. In particular, for a fixed $g \in G, J_{\tau}(g, \cdot)$ can be defined and is holomorphic on $\left\{z \in \mathfrak{p}^{+} ; g \exp z \in \Omega\right\}$ which is an open subset of \mathfrak{p}^{+}containing $\overline{\mathscr{D}}$, the closure of
\mathscr{D} in \mathfrak{p}^{+}. Note also that

$$
\begin{array}{lll}
J_{\tau}(k, z)=\tau(k) & \text { for } & k \in K_{\boldsymbol{c}}, z \in \mathfrak{p}^{+}, \\
J_{\tau}(p, z)=I & \text { for } & p \in P^{+}, z \in \mathfrak{p}^{+}, \tag{2.7b}
\end{array}
$$

where I denotes the identity transformation of E.
2.8. Description of the root system Φ (see [9], [23]). Two linearly independent roots α, β are called strongly orthogonal if neither $\alpha+\beta$ nor $\alpha-\beta$ is a root. We choose a maximal strongly orthogonal set

$$
\begin{equation*}
\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{r}\right\}, \quad \gamma_{1}>\gamma_{2}>\cdots>\gamma_{r}, \quad r=\operatorname{rank} \mathscr{D} \tag{2.9}
\end{equation*}
$$

of Φ_{n}^{+}as follows. Let γ_{1} be the highest root of Φ (we know that γ_{1} belongs to Φ_{n}^{+}) and for each j, γ_{j+1} be the highest positive noncompact root that is strongly orthogonal to each of $\gamma_{1}, \ldots, \gamma_{j}$. We write H_{j}, X_{j}, X_{-j} for $H_{\gamma_{j}}, X_{\gamma_{j}}, X_{-\gamma_{j}}$ Let

$$
\begin{equation*}
\mathfrak{a}=\sum_{j=1}^{r_{j}} \boldsymbol{R}\left(X_{j}+X_{-j}\right) . \tag{2.10}
\end{equation*}
$$

This is a maximal abelian subspace of \mathfrak{p}. Let $\mathfrak{t}^{-}=\sum_{j=1}^{r} \boldsymbol{R} H_{j}$ and let π denote restriction of roots from t_{d} to t^{-}. Identifying each element of $\gamma_{1}, \ldots, \gamma_{r}$ with its π image, we put

$$
\begin{align*}
& C_{0}=\left\{\alpha \in \Phi_{c}^{+} ; \pi(\alpha)=0\right\} ; \\
& C_{j}=\left\{\alpha \in \Phi_{c}^{+} ; \pi(\alpha)=\frac{1}{2} \gamma_{j}\right\} \quad \text { for } \quad 1 \leq j \leq r ; \\
& N_{j}=\left\{\alpha \in \Phi_{n}^{+} ; \pi(\alpha)=\frac{1}{2} \gamma_{j}\right\} \quad \text { for } \quad 1 \leq j \leq r ; \tag{2.11}\\
& C_{j k}=\left\{\alpha \in \Phi_{c}^{+} ; \pi(\alpha)=\frac{1}{2}\left(\gamma_{j}-\gamma_{k}\right)\right\} \quad \text { for } 1 \leq j<k \leq r ; \\
& N_{j k}=\left\{\alpha \in \Phi_{n}^{+} ; \pi(\alpha)=\frac{1}{2}\left(\gamma_{j}+\gamma_{k}\right)\right\} \quad \text { for } 1 \leq j<k \leq r .
\end{align*}
$$

Then, by results of Harish-Chandra [9] and Moore [23], we have (since our construction of $\left\{\gamma_{1}, \ldots, \gamma_{r}\right\}$ differs from that of Harish-Chandra, their results should be modified slightly; cf. Takeuchi [27] in this connection):

$$
\begin{equation*}
\Phi^{+}=C_{0} \cup \underset{1 \leq j \leq r}{\cup}\left(C_{j} \cup N_{j}\right) \cup \underset{1 \leq j<k \leq r}{\cup}\left(C_{j k} \cup N_{j k}\right) \cup\left\{\gamma_{1}, \ldots, \gamma_{r}\right\} . \tag{2.12a}
\end{equation*}
$$

(2.12b) $\left\{\begin{array}{l}\text { The number of roots in } C_{j k} \text { (resp. } C_{j} \text {) is equal to that in } N_{j k} \text { (resp. } N_{j} \text {) } \\ \text { and is independent of } j, k, 1 \leq j<k \leq r \text { (resp. } j, 1 \leq j \leq r) ; \text { we call } \\ \text { this number } u \text { (resp. } v \text {). Moreover, if } r>1 \text { then } u>0(v \text { may be } 0) .\end{array}\right.$
(2.12c) Nonzero π images of compact simple roots for Φ^{+}are

$$
\begin{cases}\left\{\frac{1}{2}\left(\gamma_{1}-\gamma_{2}\right), \ldots, \frac{1}{2}\left(\gamma_{r-1}-\gamma_{r}\right)\right\} & \text { if } \quad v=0 \\ \left\{\frac{1}{2}\left(\gamma_{1}-\gamma_{2}\right), \ldots, \frac{1}{2}\left(\gamma_{r-1}-\gamma_{r}\right), \frac{1}{2} \gamma_{r}\right\} & \text { if } \quad v \neq 0\end{cases}
$$

(2.12d) The γ_{j} all have the same length.
2.13. Cayley transforms (see [31], [32]). For each $1 \leq i \leq r$, we define an element $c_{i} \in G_{\boldsymbol{e}}$, which is called the (partial) Cayley transform, by

$$
\begin{equation*}
c_{i}=\prod_{1 \leq j \leq i} \exp \frac{\pi}{4}\left(X_{-j}-X_{j}\right) \tag{2.14}
\end{equation*}
$$

It verifies

$$
\begin{array}{ll}
\operatorname{Ad}\left(c_{i}\right) H_{j}=X_{j}+X_{-j}, \quad \operatorname{Ad}\left(c_{i}\right)\left(X_{j}+X_{-j}\right)=-H_{j} & \text { for } \quad 1 \leq j \leq i ; \\
\operatorname{Ad}\left(c_{i}\right) H_{j}=H_{j}, \quad \operatorname{Ad}\left(c_{i}\right)\left(X_{j}+X_{-j}\right)=X_{j}+X_{-j} & \text { for } \quad i<j \leq r \tag{2.15}
\end{array}
$$

Moreover

$$
\begin{equation*}
G \cdot c_{i} \subset P^{+} \cdot K_{c} \cdot P^{-} \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{c}_{i}=c_{i}^{-1} \tag{2.17}
\end{equation*}
$$

where the bar denotes the complex conjugation of G_{c} with respect to G. An explicit computation in $S L(2, \boldsymbol{C})$ plus the commutativity of X_{j} and $X_{ \pm k}$ for $j \neq k$ shows that

$$
\begin{align*}
& c_{i}=\exp \left(-\sum_{j=1}^{i} X_{j}\right) \cdot \exp \left(\log \sqrt{2} \sum_{j=1}^{i} H_{j}\right) \cdot \exp \left(\sum_{j=1}^{i} X_{-j}\right) . \tag{2.18}\\
& \quad \exp \left(\sum_{j=1}^{i} x_{j}\left(X_{j}+X_{-j}\right)\right) \\
& \quad=\exp \left(\sum_{j=1}^{i}\left(\tanh x_{j}\right) X_{j}\right) \cdot \exp \left(-\sum_{j=1}^{i} \log \left(\cosh x_{j}\right) H_{j}\right) \tag{2.19}
\end{align*}
$$

$$
\cdot \exp \left(\sum_{j=1}^{i}\left(\tanh x_{j}\right) X_{-j}\right)
$$

2.20 Maximal parabolic subgroups (see [31], [32], [1]). For each i, $1 \leq i \leq r$, let ' $C_{0}^{(i)}$ denote the set of positive roots which are of the form $\alpha-\beta$ with $\alpha, \beta \in C_{j k}, 1 \leq j<k \leq i$, and set $C_{0}^{(i)}=C_{0}-^{\prime} C_{0}^{(i)}$ where $C_{j k}, C_{0}$ are as in (2.11) (it is clear that ' $C_{0}^{(i)} \subset C_{0}$). Using the notation in (2.11), we define

$$
\begin{gather*}
\Phi_{i}= \pm C_{0}^{(i)} \cup \underset{i+1 \leq j \leq r}{\cup}\left(\pm C_{j} \cup \pm N_{j}\right) \cup \underset{i+1 \leq j<k \leq r}{\cup}\left(\pm C_{j k} \cup \pm N_{j k}\right) \tag{2.21a}\\
\cup\left\{ \pm \gamma_{i+1}, \ldots, \pm \gamma_{r}\right\},
\end{gather*}
$$

$$
\begin{equation*}
' \Phi_{i}= \pm^{\prime} C_{o}^{(i)} \cup \underset{1 \leq j<k \leq i}{\cup}\left(\pm C_{j k}\right) \tag{2.21b}
\end{equation*}
$$

Then (2.12a) implies

$$
\left\{\alpha \in \Phi ;\left\langle\alpha, H_{1}+\cdots+H_{i}\right\rangle=0\right\}=\Phi_{i} \cup^{\prime} \Phi_{i} .
$$

Thus if we set $\mathfrak{h}_{i}=\boldsymbol{R}\left(H_{1}+\cdots+H_{i}\right)$ and let $Z_{g_{c}}\left(\mathfrak{h}_{i}\right)$ denote the centralizer of \mathfrak{h}_{i} in \mathfrak{g}_{c}, we have

$$
Z_{g_{c}}\left(\mathfrak{h}_{i}\right)=\mathrm{t}_{c}+\sum_{\alpha \in \Phi_{i}} \mathfrak{g}_{c}^{\alpha}+\sum_{\alpha \epsilon^{\prime} \Phi_{i}} \mathfrak{g}_{c}^{\alpha} .
$$

Let $\mathfrak{g}_{i, c}$ (resp. ' $\mathfrak{g}_{i, c}$) be the subspace of $\mathfrak{g}_{\boldsymbol{c}}$ generated by the H_{α} and the X_{α} for $\alpha \in \Phi_{i}$ (resp. ' Φ_{i}) with the convention that $g_{i, c}\left(\right.$ resp. $\left.{ }^{\prime} \mathfrak{g}_{i, c}\right)=\{0\}$ in case Φ_{i} (resp. ${ }^{\prime} \Phi_{i}$) is empty. As follows from (2.12a) and the definition of ${ }^{\prime} C_{0}^{(i)}$ and $C_{0}^{(i)}$, no roots of Φ_{i} and of ' Φ_{i} add up to a root, whence Φ_{i} and ' Φ_{i} are closed systems, i.e., if $\alpha, \beta \in \Phi_{i}\left(\right.$ resp. ' $\left.\Phi_{i}\right)$ and $\alpha+\beta \in \Phi$, then $\alpha+\beta \in \Phi_{i}\left(\right.$ resp. ' $\left.\Phi_{i}\right)$; moreover $\Phi_{i}=-\Phi_{i}$, ' $\Phi_{i}=-{ }^{\prime} \Phi_{i}$. Hence $\mathfrak{g}_{i, c}$ and ' $\mathfrak{g}_{i, c}$ are semi-simple subalgebras of \mathfrak{g}_{c}, which are contained in $Z_{8_{c}}\left(\mathfrak{h}_{i}\right)$. Furthermore, since no roots of Φ_{i} and of ' Φ_{i} add up to a root, $\mathfrak{g}_{i, c}$ and ' $\mathfrak{g}_{i, c}$ are ideals in $Z_{8_{c}}\left(\mathfrak{h}_{i}\right)$, and $Z_{8_{c}}\left(\mathfrak{h}_{i}\right)$ decomposes as an orthogonal (relative to the Killing form for \mathfrak{g}_{c}) direct sum

$$
\begin{equation*}
Z_{g_{c}}\left(\mathfrak{h}_{i}\right)=\mathfrak{g}_{i, c} \oplus{ }^{\prime} \mathfrak{g}_{i, c} \oplus \mathfrak{i}_{i, c} \oplus \mathfrak{h}_{i, \mathrm{c}} \quad \text { with } \quad \mathfrak{i}_{i, c} \subset \mathfrak{t}_{c} . \tag{2.22}
\end{equation*}
$$

Now (2.15) implies

$$
\begin{equation*}
\operatorname{Ad}\left(c_{i}\right)\left(\sum_{j=1}^{i} H_{j}\right)=\sum_{j=1}^{i}\left(X_{j}+X_{-j}\right) \tag{2.23a}
\end{equation*}
$$

Thus if we set $\mathfrak{a}_{i}=\boldsymbol{R} \sum_{j=1}^{i}\left(X_{j}+X_{-j}\right)$, then

$$
\begin{equation*}
\operatorname{Ad}\left(c_{i}\right) \mathfrak{b}_{i}=\mathfrak{a}_{i} \tag{3.23b}
\end{equation*}
$$

Noting that $\operatorname{Ad}\left(c_{i}\right)$ acts trivially both on $\mathfrak{g}_{i, c}$ and $\mathfrak{i}_{i, e}$, we see from (2.22) and (2.23b) that

$$
Z_{g_{c}}\left(\mathfrak{a}_{i}\right)=\mathfrak{g}_{i, c} \oplus \operatorname{Ad}\left(c_{i}\right)^{\prime} \mathfrak{g}_{i, c} \oplus \mathfrak{i}_{i, c} \oplus \mathfrak{a}_{i, c}
$$

$\left(Z_{g_{c}}\left(\mathfrak{a}_{i}\right)=\right.$ centralizer of \mathfrak{a}_{i} in $\left.\mathfrak{g}_{c}\right)$. Each direct summand of this decomposition, being invariant under the complex conjugation with respect to \mathfrak{g} (invariance of $\operatorname{Ad}\left(c_{i}\right)^{\prime} \mathfrak{g}_{i, c}$ follows from (2.17), since, in view of (2.15), $Z_{\theta_{c}}\left(\mathfrak{h}_{i}\right)$ and hence ${ }^{\prime} \mathfrak{g}_{i, c}$ is preserved by $\operatorname{Ad}\left(c_{i}^{-2}\right)$), arises as the complexification of a real subalgebra of \mathfrak{g}. Hence if we put $\mathfrak{g}_{i}=\mathfrak{g}_{i, e} \cap \mathfrak{g}, \mathfrak{g}_{i}^{\prime}=\operatorname{Ad}\left(c_{i}\right)^{\prime} \mathfrak{g}_{i, \boldsymbol{c}} \cap \mathfrak{g}$ and $\mathfrak{i}_{i}=\mathfrak{i}_{i, \boldsymbol{e}} \cap \mathfrak{g}$, then

$$
Z_{\mathfrak{g}}\left(\mathfrak{a}_{\mathfrak{i}}\right)=\mathfrak{g}_{i} \oplus \mathfrak{g}_{i}^{\prime} \oplus \mathfrak{i}_{i} \oplus \mathfrak{a}_{i}
$$

Let

(2.24a) \mathfrak{n}_{i} : sum of the negative eigenspaces of ad $\left(\sum_{j=1}^{i}\left(X_{j}+X_{-j}\right)\right)$ on \mathfrak{g},
(2.24b) $\quad P_{i}$: normalizer of \mathfrak{n}_{i} in G.

Then P_{i} is a parabolic subgroup of G and we have the semidirect sum

$$
\text { Lie algebra of } P_{i}=\left(\mathfrak{g}_{i} \oplus \mathfrak{g}_{i}^{\prime} \oplus \mathfrak{i}_{i} \oplus \mathfrak{a}_{i}\right)+\mathfrak{n}_{i}
$$

Let $G_{i}, G_{i}^{\prime}, I_{i}, A_{i}, N_{i}$ denote the analytic subgroups of G corresponding, respectively, to $\mathfrak{g}_{i}, \mathfrak{g}_{i}^{\prime}, \mathfrak{i}_{i}, \mathfrak{a}_{i}, \mathfrak{n}_{i}$. Letting \mathfrak{a} be as in (2.10), put $F=\exp \sqrt{-1} \mathfrak{a} \cap K$; F is a finite subgroup normalizing G_{i}, G_{i}^{\prime}, and I_{i} commutes with it. Now let $M_{i}=F I_{i} G_{i} G_{i}^{\prime}$. Then M_{i} is a closed subgroup of G and we have a Langlands decomposition

$$
\begin{equation*}
P_{i}=M_{i} A_{i} N_{i} \tag{2.25}
\end{equation*}
$$

(for Langlands decomposition of a parabolic subgroup, see Warner [30]). In our situation it is known (cf. Knapp and Okamoto [15], p. 386) that the finite group F is generated by the elements

$$
\exp \pi\left(X_{j}-X_{-j}\right)=\exp \pi \sqrt{-1} H_{j}, \quad 1 \leq j \leq r .
$$

Let F_{i} be the subgroup of F generated by $\left\{\exp \pi \sqrt{-1} H_{j} ; 1 \leq j \leq i\right\}$. Then it is clear that F_{i} commutes with G_{i}. Furthermore, since $\sqrt{-1} H_{j} \in \mathfrak{g}_{i}$ for $i+1 \leq j \leq r$, it follows that

$$
\begin{equation*}
M_{i}=F_{i} I_{i} G_{i} G_{i}^{\prime} . \tag{2.26}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\text { the Cayley transform } c_{i} \text { centralizes } F_{i}, I_{i} \text { and } G_{i} \text {. } \tag{2.27}
\end{equation*}
$$

The group P_{i} is a maximal parabolic subgroup of G, and every maximal parabolic subgroup of G is conjugate to one of the groups $P_{i}(1 \leq i \leq r)$.
2.28 Boundary orbits, boundary components (see [31], [32]). The formula (2.18) shows that $c_{i} \in P^{+} \cdot K_{\boldsymbol{c}} \cdot P^{-}$so that $\zeta\left(c_{i}\right) \in \mathfrak{p}^{+}$where ζ is as in 2.1. Put $o_{i}=c_{i} \cdot o$ in the notation of (2.3), and let $\mathscr{B}_{i}=G \cdot o_{i}$ (the orbit of o_{i} under G). Then

$$
\overline{\mathscr{D}}-\mathscr{D}=\underset{1 \leq i \leq r}{\bigcup} \mathscr{B}_{i} \quad \text { (disjoint union) }
$$

and \mathscr{B}_{r} is the Silov boundary.
With \mathfrak{g}_{i}, G_{i} being as in 2.20 , put $\mathfrak{f}_{i}=\mathfrak{g}_{i} \cap \mathfrak{f}, \mathfrak{p}_{i}=\mathfrak{g}_{i} \cap \mathfrak{p}, \mathfrak{p}_{i}^{ \pm}=\mathfrak{g}_{i, \boldsymbol{c}} \cap \mathfrak{p}^{ \pm}$, and let K_{i} denote the analytic subgroup of G_{i} with Lie algebra \mathfrak{f}_{i}. Then $\mathfrak{g}_{i}=\mathfrak{f}_{i}+\mathfrak{p}_{i}$ is a Cartan decomposition; moreover we have the direct sum decomposition

$$
\mathfrak{g}_{i, c}=\mathfrak{f}_{i, c}+\mathfrak{p}_{i}^{+}+\mathfrak{p}_{i}^{-},
$$

and so the space G_{i} / K_{i} is hermitian symmetric. It is known that the hermitian symmetric space G_{i} / K_{i} is irreducible. Now let $\mathscr{D}_{i}=G_{i} \cdot o, \mathscr{C}_{i}=G_{i} \cdot o_{i}$. Then $\mathscr{D}_{i} \cong G_{i} / K_{i}$ and, since $g \cdot o_{i}=o_{i}+g \cdot o$ for $g \in G_{i}$ by (2.27), we have

$$
\mathscr{C}_{i}=c_{i} \cdot \mathscr{D}_{i}=o_{i}+\mathscr{D}_{i} .
$$

Furthermore

$$
\mathscr{B}_{i}=\cup_{k \in K}^{\cup} k \cdot \mathscr{C}_{i} .
$$

The transforms of the \mathscr{C}_{i} 's by elements of G are the boundary components of \mathscr{D}. We note that $\mathfrak{g}_{r} \subset \mathfrak{f}$ by definition; hence

$$
\begin{equation*}
G_{r}=K_{r} \subset K, \quad \mathscr{C}_{r}=\left\{o_{r}\right\}, \quad \text { and } \quad \mathscr{B}_{r}=K \cdot o_{r} \tag{2.29}
\end{equation*}
$$

Note also that G_{i} is noncompact if $i \neq r$.
It is known that the parabolic subgroup $P_{i}\left(=F_{i} I_{i} G_{i} G_{i}^{\prime} A_{i} N_{i}\right)$ in 2.20 is the normalizer of the boundary component \mathscr{C}_{i}, i.e.,

$$
\begin{equation*}
P_{i}=\left\{g \in G ; g \cdot \mathscr{C}_{i}=\mathscr{C}_{i}\right\} . \tag{2.30}
\end{equation*}
$$

Moreover,

$$
\begin{equation*}
F_{i} I_{i} G_{i}^{\prime} A_{i} N_{i} \text { (this is a group) acts trivially on } \mathscr{C}_{i} . \tag{2.31}
\end{equation*}
$$

Proof of (2.31). We first check that N_{i} acts trivially on \mathscr{C}_{i}. Since N_{i} is normalized by G_{i}, and since G_{i} acts transitively on \mathscr{C}_{i}, it suffices to show that $n \cdot o_{i}=o_{i}$ or that $c_{i}^{-1} n c_{i} \cdot o=o$ for all $n \in N_{i}$; in turn, for this, it will be enough to show that $\operatorname{Ad}\left(c_{i}^{-1}\right) \mathfrak{n}_{i} \subset \mathfrak{f}_{\boldsymbol{c}}+\mathfrak{p}^{-}$, because $K_{\boldsymbol{c}} P^{-}$is the isotropy subgroup of G_{c} at o. By (2.23) and the definition (2.24a) of $\mathfrak{n}_{i}, \operatorname{Ad}\left(c_{i}^{-1}\right) \mathfrak{n}_{i}$ is contained in sum of the negative eigenspaces of ad $\left(H_{1}+\cdots+H_{i}\right)$ on \mathfrak{g}_{c}. But, in view of (2.12a), all these eigenspaces are in $\mathfrak{f}_{\mathrm{c}}+\mathfrak{p}^{-}$, so N_{i} centralizes \mathscr{C}_{i}. Next we check that $G_{i}^{\prime} A_{i}$ acts trivially on \mathscr{C}_{i}. Since $G_{i}^{\prime} A_{i}$ commutes with G_{i} it suffices, by the same reason as above, to show that $\operatorname{Ad}\left(c_{i}^{-1}\right)\left(\mathfrak{g}_{i}^{\prime}+\mathfrak{a}_{i}\right) \subset \mathfrak{F}_{c}+\mathfrak{p}^{-}$. But this is clear because $\operatorname{Ad}\left(c_{i}^{-1}\right) \mathfrak{g}_{i}^{\prime} \subset{ }^{\prime} \mathfrak{g}_{i, c} \subset \mathfrak{f}_{c}$ and $\operatorname{Ad}\left(c_{i}^{-1}\right) \mathfrak{a}_{i}=\mathfrak{h}_{i} \subset \mathfrak{f}_{c}$. Finally as for $F_{i} I_{i}$, one needs only to note that it is contained in K and commutes with c_{i} and G_{i}.

Let S_{i} denote the isotropy subgroup of G at o_{i}. Then, since $S_{i} \subset P_{i},(2.25)$, (2.26), (2.30) and (2.31) imply

$$
\begin{equation*}
S_{i}=F_{i} I_{i} K_{i} G_{i}^{\prime} A_{i} N_{i} . \tag{2.32}
\end{equation*}
$$

2.33. Normalization of measures. We fix $i, 1 \leq i \leq r$. Let $\mathrm{t}_{i}=\mathrm{g}_{i} \cap \mathrm{t}$; this is a Cartan subalgebra of \mathfrak{g}_{i}. If we put $\mathrm{t}_{i}^{-}=\sum_{j=i+1}^{r} \boldsymbol{R} H_{j}$ and $\mathfrak{t}_{i}^{+}=\left\{H \in \mathrm{t}_{i}\right.$; $\left\langle\gamma_{j}, H\right\rangle=0$ for all $\left.i+1 \leq j \leq r\right\}$, then $\mathrm{t}_{i}=\mathrm{t}_{i}^{+}+\sqrt{-1} \mathrm{t}_{\boldsymbol{i}}^{-}$. The root subsystem Φ_{i}
defined by (2.21a) can be naturally identified (by restriction) with the root system of $\left(\mathfrak{g}_{i, e}, \mathrm{t}_{i, 0}\right)$. In Φ_{i}, Φ^{+}induces the system of positive roots

$$
\begin{equation*}
\Phi_{i}^{+}=\Phi_{i} \cap \Phi^{+} \tag{2.34}
\end{equation*}
$$

Now assume $1 \leq i \leq r-1$; thus G_{i} is noncompact. Letting $\mathfrak{a}, \mathfrak{p}_{i}$ be as in (2.10) and in 2.28, we set $\mathfrak{a}_{(i)}=\mathfrak{a} \cap \mathfrak{p}_{i}$. Then

$$
\begin{equation*}
\mathfrak{a}_{(i)}=\sum_{j=i+1}^{r_{j}} \boldsymbol{R}\left(X_{j}+X_{-j}\right) \tag{2.35a}
\end{equation*}
$$

and $\mathfrak{a}_{(i)}$ is a maximal abelian subspace of \mathfrak{p}_{i}. If c_{r} is the (full) Cayley transform for \mathfrak{g} given by (2.14), then (2.15) implies

$$
\operatorname{Ad}\left(c_{r}\right) \mathrm{t}_{i}^{-}=\mathfrak{a}_{(i)} \quad \text { and } \quad \operatorname{Ad}\left(c_{r}\right) \mathrm{t}_{i}^{+}=\mathrm{t}_{i}^{+}
$$

Therefore $\operatorname{Ad}\left(c_{r}\right) \mathrm{t}_{i, \boldsymbol{c}}=\left(\mathrm{t}_{i}^{+}+\mathfrak{a}_{(i)}\right)_{c}$ and its dual map ${ }^{t} \operatorname{Ad}\left(c_{r}\right)$ sends the $\left(\mathrm{t}_{i}^{+}+\mathfrak{a}_{(i)}\right)_{\text {c }}$ root system of $\mathfrak{g}_{i, c}$ to the $\mathrm{t}_{i, \mathrm{c}}$ root system Φ_{i} of $\mathfrak{g}_{i, 0}$. Let Σ_{i} be the restriction to $\mathfrak{a}_{(i)}$ of the elements in ${ }^{t} \operatorname{Ad}\left(c_{r}^{-1}\right) \Phi_{i}$; hence Σ_{i} is the restricted root system of \mathfrak{g}_{i} with respect to $a_{(i)}$. Via $\operatorname{Ad}\left(c_{r}\right), \Phi_{i}^{+}$induces a system of positive roots Σ_{i}^{+}in Σ_{i}. We denote by $\mathfrak{a}_{(i)}^{+}$the corresponding positive Weyl chamber in $\mathfrak{a}_{(i)}$. Then (cf. Moore [23]) we have

$$
\begin{equation*}
\mathfrak{a}_{(i)}^{+}=\left\{\sum_{j=i+1}^{r} x_{j}\left(X_{j}+X_{-j}\right) \in \mathfrak{a}_{(i)} ; x_{i+1}>x_{i+2}>\cdots>x_{r}>0\right\} . \tag{2.35b}
\end{equation*}
$$

Let $A_{(i)}$ be the analytic subgroup of G_{i} corresponding to $\mathfrak{a}_{(i)}$ and let $A_{(i)}^{+}=\exp \mathfrak{a}_{(i)}^{+}$. We define a function D_{i} on $A_{(i)}^{+}$by

$$
D_{i}(\exp X)=\prod_{\alpha \in \Sigma_{i}^{+}}(\sinh \alpha(X))^{m(\alpha)}, \quad X \in \mathfrak{a}_{i}^{+}
$$

where $m(\alpha)$ is the multiplicity of α, i.e., the number of roots in ${ }^{t} \operatorname{Ad}\left(c_{r}^{-1}\right) \Phi_{i}$ which restrict to α. If $X=\sum_{j=i+1}^{r} x_{j}\left(X_{j}+X_{-j}\right) \in \mathfrak{a}_{(i)}^{+}$, then one finds from (2.12ab), (2.21a) and (2.15) that

$D_{i}(\exp X)$

$$
\begin{align*}
& =\prod_{i+1 \leq j \leq r}\left(\sinh 2 x_{j}\right)\left(\sinh x_{j}\right)^{2 v} \cdot \prod_{i+1 \leq j<k \leq r}\left\{\sinh \left(x_{j}+x_{k}\right) \sinh \left(x_{j}-x_{k}\right)\right\}^{u} \tag{2.36}\\
& =2^{r-i} \prod_{i+1 \leq j \leq r}\left(\sinh x_{j}\right)^{2 v+1}\left(\cosh x_{j}\right) \cdot \prod_{i+1 \leq j<k \leq r}\left\{\left(\cosh x_{j}\right)^{2}-\left(\cosh x_{k}\right)^{2}\right\}^{u}
\end{align*}
$$

where u, v are the constants in (2.12b). For any point $X=\sum_{j=i+1}^{r} x_{j}\left(X_{j}+X_{-j}\right)$ $\in \mathfrak{a}_{(i)}$, we regard $\left(x_{i+1}, x_{i+2}, \ldots, x_{r}\right)$ as the coordinates of X and denote by $d X$ the measure $d x_{i+1} \cdots d x_{r}$ on $\mathfrak{a}_{(i)}$. Let $d a$ be the Haar measure on $A_{(i)}$ which corresponds to $d X$ under the exponential mapping. We normalize the Haar measure on K_{i} to have total mass one. Then (cf. Helgason [11], pp. 381-382) there exists a unique determination of the Haar measure on G_{i} such that

$$
\begin{equation*}
\int_{G_{i}} f\left(g_{i}\right) d g_{i}=\int_{K_{i} \times A_{(i)}^{+} \times K_{i}} f\left(k_{1} a k_{2}\right) D_{i}(a) d k_{1} d a d k_{2} \tag{2.37}
\end{equation*}
$$

for all $f \in C_{c}\left(G_{i}\right)$ (continuous with compact support). In the case $i=r, G_{r}=K_{r}$ $\subset K$ (cf. (2.29)), so we normalize the Haar measure on G_{r} so that $\int_{G_{r}} d g_{r}=1$.

Now return to the general case $1 \leq i \leq r$ and let $\mathfrak{a}_{i}, \mathfrak{n}_{i}, P_{i}, S_{i}$, be as in 2.20. Define $\rho_{i} \in \mathfrak{a}_{i}^{*}$ (=dual space of \mathfrak{a}_{i}) by

$$
\begin{equation*}
\rho_{i}(H)=\frac{1}{2} \operatorname{trace}\left(\left.\operatorname{ad}(H)\right|_{\mathfrak{n}_{\mathfrak{i}}}\right), \quad H \in \mathfrak{a}_{i} \tag{2.38}
\end{equation*}
$$

and, using this ρ_{i}, define a function ρ on G as follows. Since P_{i} is a parabolic subgroup, each $g \in G$ can be uniquely written in the form $g=k m a n$ where $k \in K$, $m \in M_{i} \cap \exp \mathfrak{p}, a \in A_{i}, n \in N_{i}$ (cf. Warner [30], p. 78); so put $\rho(g)=e^{-2 \rho_{i}}(a)$. Then
(2.39) ρ is a C^{∞} rho-function (cf. [30], Appendix 1) on G for the subgroup P_{i},
i.e., ρ is a strictly positive C^{∞} function on G satisfying $\rho(e)=1$ ($e=$ identity element of $G), \rho(g p)=\Delta_{P_{i}}(p) \Delta_{G}(p)^{-1} \rho(g), g \in G, p \in P_{i}$ where $\Delta_{G}, \Delta_{P_{i}}$ are the modular functions of G, P_{i}. In fact in the present case $\Delta_{G} \equiv 1$ since G is simple, and it is easy to verify that

$$
\begin{equation*}
\rho(p)=\Delta_{P_{i}}(p) \text { for } p \in P_{i} \text { and } \rho(g p)=\rho(g) \rho(p) \text { for } g \in G, p \in P_{i} . \tag{2.40}
\end{equation*}
$$

Moreover, we see without difficulty that

$$
\begin{equation*}
\Delta_{P_{i}}(s)=\Delta_{s_{i}}(s) \quad \text { for all } \quad s \in S_{i} \tag{2.41}
\end{equation*}
$$

and so the ρ is a rho-function also for the subgroup S_{i}.
For further normalization of measures we need the following well-known measure theoretic result. Let W be a locally compact group countable at infinity, and suppose X and Y are closed subgroups such that $X \cdot Y$ is open in W, the complement of $X \cdot Y$ in W has Haar measure zero, and $X \cap Y$ is compact. Then (cf. Bourbaki [2], p. 66) we have:

The left Haar measures of W, X, and Y may be normalized in such a way that for any integrable or non-negative Borel function f on W

$$
\begin{align*}
& \int_{W} f(w) d w=\int_{X \times Y} f(x y) \frac{\Delta_{W}(y)}{\Delta_{Y}(y)} d x d y \tag{2.42}\\
& \Delta_{Y} \text { are the modular functions on } W \text { and } Y, \text { respectively. }
\end{align*}
$$

Now let $d k$ denote the Haar measure on K such that $\int_{K} d k=1$. Then, since
$G=K \cdot P_{i}, K \cap P_{i}$ is compact, and since $\Delta_{G} \equiv 1$, (2.40) and (2.42) imply that the left Haar measures on G and P_{i} can be normalized so that

$$
\begin{equation*}
\int_{G} f(g) d g=\int_{K \times P_{i}} f(k p) \rho(p)^{-1} d k d p \tag{2.43}
\end{equation*}
$$

for any integrable f. Similarly, since $P_{i}=G_{i} \cdot S_{i}$, and $G_{i} \cap S_{i}\left(=K_{i}\right)$ is compact, (2.41) and (2.42) ensure that we can normalize the left Haar measure on S_{i} such that

$$
\begin{equation*}
\int_{P_{i}} f(p) d p=\int_{G_{i} \times S_{i}} f\left(g_{i} s\right) d g_{i} d s \tag{2.44}
\end{equation*}
$$

for any integrable f on P_{i}. As $\rho\left(g_{i} s\right)=\rho\left(g_{i}\right) \rho(s)=\rho(s)$ for $g_{i} \in G_{i}$ and $s \in S_{i}$, (2.43) and (2.44) then lead to

$$
\begin{equation*}
\int_{G} f(g) d g=\int_{K \times G_{i} \times S_{i}} f\left(k g_{i} s\right) \rho(s)^{-1} d k d g_{i} d s \tag{2.45}
\end{equation*}
$$

for any integrable f on G.
As noted before, the ρ is a rho-function also for the subgroup S_{i}. Let $d \mu$ denote the quasi-invariant measure on $\mathscr{B}_{i}=G / S_{i}$ associated to this rho-function (cf. [30], Appendix 1), which is defined by the formula

$$
\begin{equation*}
\int_{G} f(g) \rho(g) d g=\int_{G / S_{i}} d \mu(\dot{g}) \int_{S_{i}} f(g s) d s, \quad \dot{g}=g S_{i} \tag{2.46}
\end{equation*}
$$

for all $f \in C_{c}(G)$. Then we observe that

$$
\begin{equation*}
\int_{\boldsymbol{x}_{i}} F(u) d \mu(u)=\int_{K \times G_{i}} F\left(k g_{i} \cdot o_{i}\right) d k d g_{i} \tag{2.47}
\end{equation*}
$$

for any integrable F on \mathscr{B}_{i}. Indeed if we set $\dot{f}(\dot{g})=\int_{S_{i}} f(g s) d s\left(\dot{g}=g \cdot o_{i}\right)$ for $f \in C_{c}(G)$, then

$$
\begin{align*}
\int_{\mathscr{P}_{i}} f^{\prime}(u) d \mu(u) & =\int_{\mathscr{P}_{i}} d \mu(\dot{g}) \int_{S_{i}} f(g s) d s \\
& =\int_{G} f(g) \rho(g) d g \\
& =\int_{K \times G_{i} \times S_{i}} f\left(k g_{i} s\right) \rho\left(k g_{i} s\right) \rho(s)^{-1} d k d g_{i} d s \tag{2.45}\\
& =\int_{K \times G_{i}} f\left(k g_{i} \cdot o_{i}\right) d k d g_{i}
\end{align*}
$$

for any $f \in C_{c}(G)$. Since the assignment $f \rightarrow f$ is a surjection of $C_{c}(G)$ onto $C_{c}\left(\mathscr{B}_{i}\right)$,
(2.47) follows.

3. Definition of $\mathscr{F}_{i}(G)$

In this section we define, for each $1 \leq i \leq r$, a subset $\mathscr{F}_{i}(G) \subset \sqrt{-1} t^{*}$; in the next section we shall associate to each member of $\mathscr{F}_{i}(G)$ a Hardy type space and an irreducible unitary representation of G.

As in 2.33 we identify the root subsystem Φ_{i} with the root system of $\left(\mathfrak{g}_{i, c}, \mathrm{t}_{i, c}\right)$. Similarly the root subsystem ' Φ_{i} defined by (2.21b) can be identified with the root system of ' $\mathrm{g}_{\mathrm{i}, \mathrm{e}}$ with respect to the Cartan subalgebra ${ }^{\prime} \mathrm{t}_{\mathrm{i}, \mathrm{c}}=$ $' \mathfrak{g}_{i, e} \cap \mathrm{t}_{\mathrm{c}}$, and Φ^{+}induces the system of positive roots ${ }^{\prime} \Phi_{i}^{+}={ }^{\prime} \Phi_{i} \cap \Phi^{+}$in ${ }^{\prime} \Phi_{i}$. We let $\left\{\alpha_{1}, \ldots, \alpha_{l}\right\}$ be an enumaration of the set of simple roots for Φ^{+}such that
(3.1a) $\quad\left\{\begin{array}{l}\alpha_{1} \text { is the unique noncompact simple root for } \Phi^{+} \text {and, for each } \\ 1 \leq i \leq r-1,\left\{\alpha_{1}\right.\end{array}\right.$ $\left\{1 \leq i \leq r-1,\left\{\alpha_{1}, \ldots, \alpha_{l i}\right\}\right.$ is the set of simple roots for Φ_{i}^{+},
and such that
(3.1b) for each $2 \leq i \leq r,\left\{\alpha_{l_{i}+1}, \ldots, \alpha_{l}\right\}$ is the set of simple roots for ' Φ_{i}^{+};
this can be done because the simple roots for Φ_{i}^{+}(resp. ' Φ_{i}^{+}) are the simple roots for Φ^{+}that are in Φ_{i}^{+}(resp. ' Φ_{i}^{+}) and α_{1} is the lowest root in Φ_{n}^{+}, and because $\Phi_{i}^{+} \subset \Phi_{i-1}^{+}, ' \Phi_{i}^{+} \supset^{\prime} \Phi_{i-1}^{+}$for $2 \leq i \leq r$. In what follows, we shall find it convenient to put $l_{1}^{\prime}=l$. Note that, in case $r>1$, we have

$$
\begin{equation*}
1 \leq l_{r}^{\prime} \leq l_{r-1}, l_{1}<l_{1}^{\prime}=l, \text { and } l_{i}<l_{i}^{\prime} \leq l_{i-1} \text { for each } 2 \leq i \leq r-1 \tag{3.2}
\end{equation*}
$$

this follows from (2.12c). We denote by $\left\{\lambda_{1}, \ldots, \lambda_{l}\right\}$ the set of fundamental highest weights, i.e., λ_{j} is the weight such that $2\left(\lambda_{j}, \alpha_{k}\right) /\left(\alpha_{k}, \alpha_{k}\right)=\delta_{j k}$ for $1 \leq k \leq l$.
3.3. Lemma. Let H_{1}, \ldots, H_{r} be as in 2.8 .
(1) $\left\langle\lambda_{1}, H_{k}\right\rangle=1$ for all $1 \leq k \leq r$.
(2) Fix $i, 1 \leq i \leq r$, and $j, 1 \leq j \leq l_{i}^{\prime}$. Then for $1 \leq k \leq i,\left\langle\lambda_{j}, H_{k}\right\rangle$ is a strictly positive integer independent of k.
(3) Fix $i, 2 \leq i \leq r$, and $j, l_{i-1}+1 \leq j \leq l$. Then $\left\langle\lambda_{j}, H_{k}\right\rangle=0$ for all $i \leq k \leq r$.
(4) Fix $i, 2 \leq i \leq r$. Then $\left.\left\langle\lambda_{j}, H_{1}\right\rangle\right\rangle\left\langle\lambda_{j}, H_{i}\right\rangle$ for all $l_{i}^{\prime}+1 \leq j \leq l$.

Proof. (1) Let $\left\{\gamma_{1}, \ldots, \gamma_{r}\right\}$ be the strongly orthogonal noncompact positive root system as in (2.9). Since g_{c} is simple, \mathfrak{f}_{c} acts irreducibly on \mathfrak{p}^{+}, so every $\gamma_{k}, 1 \leq k \leq r$, can be written in the form $\gamma_{k}=\alpha_{1}+\sum_{j=2}^{l} n_{j} \alpha_{j}$ where n_{j} are nonnegative integers and α_{1}, α_{j} are as in (3.1). Therefore

$$
\left\langle\lambda_{1}, H_{k}\right\rangle=\frac{2\left(\lambda_{1}, \gamma_{k}\right)}{\left(\gamma_{k}, \gamma_{k}\right)}=\frac{2\left(\lambda_{1}, \alpha_{1}\right)}{\left(\gamma_{k}, \gamma_{k}\right)}=\frac{\left(\alpha_{1}, \alpha_{1}\right)}{\left(\gamma_{k}, \gamma_{k}\right)} .
$$

Since γ_{1} and α_{1} are, respectively, the highest and lowest weights of the irreducible \mathfrak{f}_{c}-module \mathfrak{p}^{+}, we have $\left(\alpha_{1}, \alpha_{1}\right)=\left(\gamma_{1}, \gamma_{1}\right)$. On the other hand ($\left.\gamma_{1}, \gamma_{1}\right)=\left(\gamma_{k}, \gamma_{k}\right)$ for all $1 \leq k \leq r$ by (2.12 d). Thus (1) follows.
(2) In view of (2.22) t_{c} admits the orthogonal direct sum decomposition

$$
\mathrm{t}_{c}=\mathrm{t}_{i, e} \oplus \mathrm{t}_{i, c} \oplus \mathfrak{i}_{i, c} \oplus \mathfrak{h}_{i, c} .
$$

If $1 \leq k, k^{\prime} \leq i$, then it is readily seen that $H_{k}-H_{k^{\prime}}$ is orthogonal to the subspaces $\mathfrak{t}_{i, c}, \mathfrak{i}_{i, c}$ and $\mathfrak{h}_{i, e}$, so $H_{k}-H_{k^{\prime}} \in \in_{i, c}$. Thus (3.1b) implies that if $1 \leq k, k^{\prime} \leq i$ then $\left\langle\lambda_{j}, H_{k}-H_{k^{\prime}}\right\rangle=0$, i.e., $\left\langle\lambda_{j}, H_{k}\right\rangle=\left\langle\lambda_{j}, H_{k^{\prime}}\right\rangle$ for every $1 \leq j \leq l_{i}^{\prime}$.

Now $\left\langle\lambda_{j}, H_{k}\right\rangle$ is a nonnegative integer for each pair of indices j, k because λ_{j} is a highest weight. Therefore to complete the proof of (2), it suffices to show that $\left\langle\lambda_{j}, H_{1}\right\rangle>0$ for every $1 \leq j \leq l$. But this is clear since γ_{1} can be written as integral linear combinations $\gamma_{1}=\sum_{j=1}^{l} n_{j} \alpha_{j}$ with all $n_{j}>0$ (the root system Φ is irreducible and γ_{1} is the highest root).
(3) If $i \leq k \leq r, \gamma_{k} \in \Phi_{i-1}$. Hence we can write $\gamma_{k}=\sum_{j=1}^{t_{i-1}} n_{j} \alpha_{j}$ with n_{j} nonnegative integers, which implies (3).
(4) Recall (3.2) that $l_{i}^{\prime} \leq l_{i-1}$. By parts (2) and (3) of the present lemma we may assume $l_{i}^{\prime}<l_{i-1}$ and it suffices to show that $\left.\left\langle\lambda_{j}, H_{1}\right\rangle\right\rangle\left\langle\lambda_{j}, H_{i}\right\rangle$ for $l_{i}^{\prime}+1 \leq j \leq l_{i-1}$. Since \mathfrak{p}^{+}is an irreducible $\mathfrak{f}_{\mathrm{c}}$-module with γ_{1} the highest weight, we have $\gamma_{i}=\gamma_{1}-\sum_{j=2}^{l} n_{j} \alpha_{j}$ with $n_{j} \geq 0$. Hence, and because γ_{1}, γ_{i} have the same length, it is enough to show

$$
\begin{equation*}
n_{j}>0 \quad \text { for } \quad l_{i}^{\prime}+1 \leq j \leq l_{i-1} . \tag{3.4}
\end{equation*}
$$

Take any $j_{0}, l_{i}^{\prime}+1 \leq j_{0} \leq l_{i-1}$. Then $\alpha_{j_{0}} \in^{\prime} C_{0}^{(i)}-C_{0}^{(i-1)}$ by the definition (2.21) of $\Phi_{i},{ }^{\prime} \Phi_{i}$. Thus there exist an integer $k(1 \leq k<i)$ and two roots $\beta, \beta^{\prime} \in C_{k i}$ such that $\alpha_{j_{0}}=\beta-\beta^{\prime}$. Now

$$
\left(\gamma_{i}, \beta\right)=\left(\gamma_{i}, \frac{1}{2}\left(\gamma_{k}-\gamma_{i}\right)\right)=-\frac{1}{2}\left(\gamma_{i}, \gamma_{i}\right)<0,
$$

so $\gamma_{i}+\beta$ is a root. Since $\gamma_{1}-\left(\gamma_{i}+\beta\right)=\sum_{j=2}^{l} n_{j} \alpha_{j}-\alpha_{j o}-\beta^{\prime}$ and γ_{1} is the highest root, we must have $n_{j_{0}}>0$. This establishes (3.4), and (4) follows.

For each $1 \leq i \leq r$ and $1 \leq j \leq l$, let

$$
\begin{align*}
& p_{i}=\frac{1}{2} u(i-1)+u(r-i)+v+1 \quad(u, v \text { being as in }(2.12 \mathrm{~b})) \tag{3.5}\\
& k_{j}=\left\langle\lambda_{j}, H_{1}\right\rangle . \tag{3.6}
\end{align*}
$$

Then p_{i} is an integer or a half-integer and, according to Lemma 3.3, k_{j} is a positive integer for every $1 \leq j \leq l$ and in particular $k_{1}=1$. With G, T being as in Section 2, define

$$
\begin{equation*}
\mathscr{L}(G)=\left\{\lambda \in \sqrt{-1} \mathrm{t}^{*} ; e^{\lambda} \text { is well defined on } T\right\} . \tag{3.7}
\end{equation*}
$$

Now, for each $1 \leq i \leq r$, we define

$$
\begin{align*}
& \mathscr{F}_{i}=\left\{\sum_{j=1}^{l_{i}^{\prime}} m_{j} \lambda_{j} \in \sqrt{-1} \mathrm{t}^{*} ; \begin{array}{l}
m_{1} \in \boldsymbol{R}, m_{j} \in \boldsymbol{Z}^{+}\left(2 \leq j \leq l_{i}^{\prime}\right), \\
m_{1}+\sum_{j=2}^{l_{i}^{\prime}} k_{j} m_{j}=-p_{i}
\end{array}\right\}, \tag{3.8a}\\
& \mathscr{F}_{i}(G)=\mathscr{F}_{i} \cap \mathscr{L}(G),
\end{align*}
$$

where $\boldsymbol{Z}^{+}=\{0,1,2, \ldots\}$. Corresponding to each element of $\mathscr{F}_{i}(G)$, we shall construct an irreducible unitary representation of G in the next section. The motivation for the definition (3.8) will become clear during the course of our construction of the representation. But we note here that if $\lambda \in \mathscr{F}_{i}(2 \leq i \leq r)$ then λ vanishes on the Cartan subalgebra ' $\mathrm{t}_{i, \mathrm{c}}$ of ' $\mathrm{g}_{i, \mathrm{c}}$; this is evident from (3.1b). Let

$$
\begin{equation*}
\delta=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha . \tag{3.9}
\end{equation*}
$$

Then we can rephrase the definition (3.8a) as follows:
3.10. Proposition. Let $\lambda \in \sqrt{-1} \mathrm{t}^{*}$ be such that $2(\lambda, \alpha) /(\alpha, \alpha)$ is a nonnegative integer for every compact positive root α of $\left(g_{c}, t_{c}\right)$. Then λ is in \mathscr{F}_{i} if and only if:
(1) $\left\langle\lambda, H_{1}\right\rangle=\left\langle\lambda, H_{i}\right\rangle$;
(2) $\left\langle\lambda+\delta, H_{1}+\cdots+H_{i}\right\rangle=0$.

Proof. By assumption, λ can be written in the form $\lambda=\sum_{j=1}^{l} m_{j} \lambda_{j}$ with $m_{1} \in \boldsymbol{R}, m_{j} \in \boldsymbol{Z}^{+}(2 \leq j \leq l)$. Then Lemma 3.3 (2) implies

$$
\left\langle\lambda, H_{1}\right\rangle-\left\langle\lambda, H_{i}\right\rangle=\sum_{j=l_{i}^{\prime}+1}^{l} m_{j}\left(\left\langle\lambda_{j}, H_{1}\right\rangle-\left\langle\lambda_{j}, H_{i}\right\rangle\right) .
$$

Since $m_{j} \geq 0$, it then follows from Lemma 3.3 (4) that

$$
\begin{equation*}
\left\langle\lambda, H_{1}\right\rangle=\left\langle\lambda, H_{i}\right\rangle \Longleftrightarrow m_{j}=0 \text { for } l_{i}^{\prime}+1 \leq j \leq l . \tag{3.11}
\end{equation*}
$$

Under the above equivalent conditions we have

$$
\begin{align*}
& \left\langle\lambda, H_{1}+\cdots+H_{i}\right\rangle \\
& \quad=\sum_{j=1}^{l_{i}^{\prime}} \sum_{k=1}^{i} m_{j}\left\langle\lambda_{j}, H_{k}\right\rangle \tag{3.12}
\end{align*}
$$

$$
=i\left(m_{1}+\sum_{j=2}^{l_{i}^{\prime}} m_{j} k_{j}\right) \quad \text { (by Lemma } 3.3 \text { and (3.6)). }
$$

On the other hand if we let $\pi(\delta)$ denote the restriction of δ to t^{-}as in 2.8 , then by (2.12ab)

$$
\begin{align*}
& 2 \pi(\delta)=\sum_{1 \leq j \leq r} \gamma_{j}+u \sum_{1 \leq j<k \leq r} \frac{1}{2}\left(\gamma_{j}+\gamma_{k}\right)+u \sum_{1 \leq j<k \leq r} \frac{1}{2}\left(\gamma_{j}-\gamma_{k}\right) \\
&+2 v \sum_{1 \leq j \leq r} \frac{1}{2} \gamma_{j} \tag{3.13}
\end{align*}
$$

$$
=\sum_{1 \leq j \leq r}(1+v+u(r-j)) \gamma_{j} .
$$

Thus, and since $\left\langle\gamma_{j}, H_{k}\right\rangle=2 \delta_{j k}$, we get

$$
\begin{align*}
\left\langle\delta, H_{1}+\cdots+H_{i}\right\rangle & =\sum_{1 \leq j \leq i}(1+v+u(r-j)) \\
& =i\left(1+v+u r-\frac{1}{2} u(i+1)\right) \tag{3.14}\\
& =i p_{i} .
\end{align*}
$$

The assertion of the proposition now follows from (3.11), (3.12) and (3.14).
Note. In the extreme case $i=1$, the two conditions in Proposition 3.10 reduce to the single condition $\left\langle\lambda+\delta, H_{1}\right\rangle=0$, and so this is the case which was considered by Knapp and Okamoto [15].

Let

$$
\begin{equation*}
\Phi_{i, c}^{+}=\Phi_{i} \cap \Phi_{c}^{+}, \quad \Phi_{i, n}^{+}=\Phi_{i} \cap \Phi_{n}^{+} ; \tag{3.15}
\end{equation*}
$$

they can be identified with the set of compact and noncompact positive roots of $\left(\mathfrak{g}_{i, c}, \mathrm{t}_{i, c}\right)$, respectively.

The following lemma will be needed in Section 4 below.
3.16. Lemma. Suppose $r>1$ and fix $i, 1 \leq i \leq r-1$, and $\lambda \in \mathscr{F}_{i}$. Then $\left\langle\lambda+\delta, H_{\alpha}\right\rangle<0$ for all $\alpha \in \Phi_{i, n}^{+}$.

Proof. Recall the direct sum decomposition $\mathfrak{g}_{i, \boldsymbol{c}}=\mathfrak{f}_{i, \boldsymbol{c}}+\mathfrak{p}_{i}^{+}+\mathfrak{p}_{i}^{-}$in 2.28. Since the hermitian symmetric space G_{i} / K_{i} is irreducible, \mathfrak{f}_{c} acts irreducibly on \mathfrak{p}_{i}^{+}. Note that the set of weights of this representation is naturally identified with $\Phi_{i, n}^{+}$with γ_{i+1} the highest weight. Hence if $\alpha \in \Phi_{i, n}^{+}, \alpha$ can be written as $\alpha=\gamma_{i+1}-\sum n_{j} \alpha_{j}$ where n_{j} are nonnegative integers and α_{j} are simple roots for $\Phi_{i, c}^{+}$. Since $\left\langle\delta, H_{\alpha}\right\rangle=1$ for any simple root α of Φ^{+}and since $\left\langle\lambda, H_{\alpha}\right\rangle \geq 0$ for all $\alpha \in \Phi_{c}^{+}$, it then follows that the condition $\left\langle\lambda+\delta, H_{\alpha}\right\rangle<0$ for every $\alpha \in \Phi_{i, n}^{+}$is equivalent to the single condition $\left\langle\lambda+\delta, H_{i+1}\right\rangle<0$. Now (3.13) implies

$$
\left\langle\delta, H_{i+1}\right\rangle=1+v+u(r-i-1)=p_{i}-\frac{1}{2} u(i+1) .
$$

On the other hand, since $\lambda=\sum_{j=1}^{l_{i}^{\prime}} m_{j} \lambda_{j}$ with $m_{1}+\sum_{j=2}^{l_{i}^{\prime}} m_{j} k_{j}=-p_{i}$, using Lemma 3.3 one finds that

$$
\begin{aligned}
\left\langle\lambda, H_{i+1}\right\rangle & =m_{1}+\sum_{j=2}^{l_{i}^{\prime}} m_{j}\left\langle\lambda_{j}, H_{i+1}\right\rangle \\
& =m_{1}+\sum_{j=2}^{l_{i+1}^{\prime}} m_{j} k_{j}+\sum_{j=l_{i+1}+1}^{l_{i}^{\prime}} m_{j}\left\langle\lambda_{j}, H_{i+1}\right\rangle \\
& =-p_{i}-\sum_{j=l_{i+1}+1}^{l_{i}^{i}} m_{j}\left(\left\langle\lambda_{j}, H_{1}\right\rangle-\left\langle\lambda_{j}, H_{i+1}\right\rangle\right) \\
& \leq-p_{i} .
\end{aligned}
$$

Hence, and because of the fact that $u>0$ if $r>1$ (cf. (2.12b)), it follows that

$$
\left\langle\lambda+\delta, H_{i+1}\right\rangle \leq-\frac{1}{2} u(i+1)<0 .
$$

This completes the proof.
We close this section with some comments on whether the set $\mathscr{F}_{i}(G)$ is nonempty or not. If the number p_{i} in (3.5) is an integer and if moreover G_{c} is simply connected, then $\mathscr{F}_{i}(G)=\mathscr{F}_{i}$ and hence $\mathscr{F}_{i}(G) \neq \varnothing$ ($\varnothing=$ the empty set) for all $1 \leq i \leq r$. On the other hand if $i(1 \leq i \leq r)$ is odd then, by its definition, p_{i} is an integer for every simple Lie algebra \mathfrak{g} (whose associated symmetric space is hermitian symmetric). Also if, for a given \mathfrak{g}, the integer u in (2.12b) is even, then p_{i} is again an integer for every $1 \leq i \leq r$. But when, for a given \mathfrak{g}, u is odd (this is the case when \mathfrak{g} is $\mathfrak{s p}(n, \boldsymbol{R})$ or $\mathfrak{s o}(2 n+1,2)$; see the Table below) and if moreover $i(1 \leq i \leq r)$ is even, then we must take, corresponding to \mathfrak{g}, a non-linear Lie group G to ensure that $\mathscr{F}_{i}(G) \neq \varnothing$.

In any case, for a linear group G, if we let G° be a two-sheeted covering of the linear universal covering of G (covering group \tilde{G} of G is called the linear universal covering of G if \widetilde{G} is again linear and if \widetilde{G}_{c} is simply connected), then $\mathscr{F}_{i}\left(G^{\circ}\right)=\mathscr{F}_{i}$ and hence $\mathscr{F}_{i}\left(G^{\circ}\right) \neq \varnothing$ for all $1 \leq i \leq r$. But in this paper we will mainly be concerned with linear groups.

Table

g	r	u		$\begin{gathered} p_{i}=\frac{1}{2} u(i-1)+u(r-i)+v+1 \\ (1 \leq i \leq r) \end{gathered}$
$\mathfrak{s u}(p, q)(p \geq q \geq 1)$	q	2	$p-q$	$p+q-i$
$\mathfrak{s o}^{*}(4 n)$	n	4	0	$4 n-2 i-1$
$\mathfrak{s o}^{*}(4 n+2)$	n	4	2	$4 n-2 i+1$
$\mathfrak{s p}(n, \boldsymbol{R})$	n	1	0	$n-\frac{i}{2}+\frac{1}{2}$
$\mathfrak{s p}(n, 2)(n \geq 3)$	2	$n-2$	0	$p_{1}=n-1, p_{2}=\frac{n}{2}$
$\mathrm{e}_{6(-14)}$	2	6	4	$p_{1}=11, p_{2}=8$
$\mathrm{e}_{7(-25)}$	3	8	0	$p_{1}=17, p_{2}=13, p_{3}=9$

4. Construction of representations

We retain the notation of Sections 2, 3 and fix $i, 1 \leq i \leq r$, and $\lambda \in \mathscr{F}_{i}(G)$. Since λ is Φ_{c}^{+}-dominant, i.e., λ satisfies $(\lambda, \alpha) \geq 0$ for all $\alpha \in \Phi_{c}^{+}$, and since $\lambda \in \mathscr{L}(G)$ (notation of (3.7)), there exists an irreducible holomorphic representation τ_{λ} of K_{c} on E_{λ} (say) with highest weight λ. We endow E_{λ} with a hermitian structure such that the action of $\tau_{\lambda}(K)$ becomes unitary. Let $\boldsymbol{e}_{\lambda} \in E_{\lambda}$ be a highest weight vector of norm one. Letting $K_{i, c}$ be the analytic subgroup of K_{c} with Lie algebra $\mathfrak{f}_{i, e}$, we denote

$$
\begin{cases}\tilde{\lambda}: & \text { restriction of } \lambda \text { to } \mathrm{t}_{i, c}, \tag{4.1}\\ E_{\lambda}: & \text { linear span of }\left\{\tau_{\lambda}(k) \boldsymbol{e}_{\lambda} ; k \in K_{i, \mathrm{c}}\right\}, \\ \tau_{\lambda}: & \text { restriction of } \tau_{\lambda}\left(K_{i, \mathrm{c}}\right) \text { to } E_{\lambda}\end{cases}
$$

4.2. Lemma. The representation τ_{λ} of $K_{i, c}$ on E_{λ} is irreducible. The highest weight of τ_{λ} on the Cartan subalgebra $\mathrm{t}_{i, c}$ of $\mathfrak{f}_{i, c}$, with the relative ordering, is $\tilde{\lambda}$ and \boldsymbol{e}_{λ} is a highest weight vector.

Proof. Let τ_{λ} also denote the differential of τ_{λ}. To prove the lemma, it is enough to show that if β is a positive compact root of $\left(g_{i, e}, t_{i, c}\right)$ with X_{β} as root vector then $\tau_{\lambda}\left(X_{\beta}\right) e_{\lambda}=0$. But this follows from the fact that the positive compact roots of $\left(\mathfrak{g}_{i, e}, \mathrm{t}_{i, c}\right)$ are the restrictions to $\mathrm{t}_{i, c}$ of the members of $\Phi_{i} \cap \Phi_{c}^{+}$and if X_{α} is a root vector of $\alpha \in \Phi_{i} \cap \Phi_{c}^{+}, X_{\alpha}$ is also a root vector of the restriction to $t_{i, c}$ of α.

Recall (2.25) the Langlands decomposition $P_{i}=M_{i} A_{i} N_{i}$ and the isotropy subgroup S_{i} of G at o_{i}. Let $L_{i}=M_{i} \cap S_{i}$. Then it follows from (2.26) and (2.32) that

$$
S_{i}=L_{i} A_{i} N_{i} \quad \text { and } \quad L_{i}=F_{i} I_{i} K_{i} G_{i}^{\prime}
$$

If c_{i} is the Cayley transform given by (2.14) then, since $S_{i}=G \cap c_{i} K_{\mathbf{c}} P^{-} c_{i}^{-1}$,

$$
\begin{equation*}
c_{i}^{-1} S_{i} c_{i} \subset K_{c} P^{-} . \tag{4.3}
\end{equation*}
$$

Thus, and because the representation τ_{λ} of $K_{\boldsymbol{c}}$ on E_{λ} is uniquely extended to that of $K_{c} P^{-}$which is trivial on P^{-}, we can define a representation $\tau_{\lambda}^{(i)}$ of S_{i} on E_{λ} by

$$
\begin{equation*}
\tau_{\lambda}^{(i)}(s)=\tau_{\lambda}\left(c_{i}^{-1} s c_{i}\right), \quad s \in S_{i} . \tag{4.4}
\end{equation*}
$$

We denote by P_{λ} the orthogonal projection operator of E_{λ} onto E_{λ}, and by $E_{\bar{\lambda}}^{\frac{1}{\lambda}}$ the orthogonal complement of $E_{\bar{\lambda}}$ in E_{λ}.
4.5. Lemma. (1) The action of $\tau_{\lambda}^{(i)}\left(L_{i}\right)$ on E_{λ} is unitary and leaves the subspaces $E_{\lambda}, E_{\bar{\lambda}}^{1}$ invariant. Moreover $\left.\tau_{\lambda}^{(i)}\right|_{K_{i}}=\left.\tau_{\lambda}\right|_{K_{i}}$.
(2) $\left.\tau_{\lambda}^{(i)}(a)\right|_{E_{\lambda}}=e^{\rho_{i}}(a) I$ for all $a \in A_{i}$, and $E_{\bar{\lambda}}^{1}$ is stable under $\tau_{\lambda}^{(i)}\left(A_{i}\right)$; here $\rho_{i} \in \mathfrak{a}_{i}^{*}$ is as in (2.38) and I denotes the identity transformation of $E_{\bar{\lambda}}$.
(3) $\left.P_{\bar{\lambda}} \tau_{\lambda}^{(i)}(n)\right|_{E_{\lambda}}=I$ for all $n \in N_{i}$, and $E_{\bar{\lambda}}^{\perp}$ is stable under $\tau_{\lambda}^{(i)}\left(N_{i}\right)$.

Proof. (1) The last assertion of (1) is obvious since c_{i} commutes with K_{i}. It is easily verified that c_{i} also commutes with subgroups F_{i} and I_{i}. As $F_{i} I_{i} \subset T$, it then follows that the action of $\tau_{\lambda}^{(i)}\left(F_{i} I_{i}\right)$ is unitary and leaves the subspaces $E_{\bar{\lambda}}, E_{\bar{\lambda}}^{\perp}$ invariant. Now, by definition, $\operatorname{Ad}\left(c_{i}^{-1}\right) \mathfrak{g}_{i}^{\prime} \subset \mathcal{g}_{i, \mathrm{c}} \subset \mathfrak{f}_{c} ;$ cf. 2.20. But taking into account (3.1b) and the definition (3.8) of $\mathscr{F}_{i}(G)$, one sees that λ vanishes on the Cartan subalgebra ${ }^{\prime} \mathrm{t}_{i, c}$ of ${ }^{\prime} \mathfrak{g}_{i, c}$; therefore $\tau_{\lambda}^{(i)}$ is trivial on G_{i}^{\prime}. As $L_{i}=F_{i} I_{i} K_{i} G_{i}^{\prime}$, the assertions of (1) are now evident.
(2) If $a \in A_{i}$ then $c_{i}^{-1} a c_{i} \in \exp \sqrt{-1} t$ by (2.23). Hence, and because of the fact that the subspaces $E_{\bar{\lambda}}$ and $E_{\bar{\lambda}}^{\frac{1}{\lambda}}$ are spanned by weight vectors for τ_{λ}, it is clear that both E_{λ} and $E_{\bar{\lambda}}^{\perp}$ are stable under $\tau_{\lambda}^{(i)}(a)$. According to (1) and Lemma 4.2, $\left.\tau_{\lambda}^{(i)}\left(K_{i}\right)\right|_{E_{\lambda}}$ is irreducible. Since A_{i} commutes with K_{i}, it follows that $\left.\tau_{\lambda}^{(i)}(a)\right|_{E_{\lambda}}$ ($a \in A_{i}$) are scalar operators. Thus to prove (2), it suffices to calculate the effect of $\tau_{\lambda}^{(i)}(a)$ to the highest weight vector \boldsymbol{e}_{λ}. Now

$$
\tau_{\lambda}^{(i)}(a) \boldsymbol{e}_{\lambda}=\tau_{\lambda}\left(c_{i}^{-1} a c_{i}\right) \boldsymbol{e}_{\lambda}=e^{\left\langle\lambda, \operatorname{Ad}\left(c_{i}^{1}\right)(\log a)\right\rangle} \boldsymbol{e}_{\lambda}
$$

Hence the assertion of (2) amounts to the identity

$$
\begin{equation*}
\left\langle\rho_{i}, X\right\rangle=\left\langle\lambda, \operatorname{Ad}\left(c_{i}^{-1}\right) X\right\rangle \quad \text { for } \quad X \in \mathfrak{a}_{i} . \tag{4.6}
\end{equation*}
$$

Recall (2.23a) that $\operatorname{Ad}\left(c_{i}\right)\left(\sum_{j=1}^{i} H_{j}\right)=\sum_{j=1}^{i}\left(X_{j}+X_{-j}\right)$, and that $\mathfrak{n}_{i, \mathrm{c}}$ is sum
of the negative eigenspaces of $\operatorname{ad}\left(\sum_{j=1}^{i}\left(X_{j}+X_{-j}\right)\right)$ on \mathfrak{g}_{c}. Thus $\operatorname{Ad}\left(c_{i}^{-1}\right) \mathfrak{n}_{i, c}$ is sum of the negative eigenspaces of $\operatorname{ad}\left(\sum_{j=1}^{i} H_{j}\right)$ on $\mathfrak{g}_{\boldsymbol{c}}$. Therefore, if we put $H=\operatorname{Ad}\left(c_{i}^{-1}\right) X$ for $X \in \mathfrak{a}_{i}$, one finds

$$
\begin{aligned}
\left\langle\rho_{i}, X\right\rangle & =\frac{1}{2} \operatorname{trace}\left(\left.\operatorname{ad}(X)\right|_{\mathfrak{n}_{i, e}}\right) \\
& =\frac{1}{2} \operatorname{trace}\left(\left.\operatorname{ad}(H)\right|_{{\operatorname{Ad}\left(c_{i}-\right)_{n_{i}}, \mathrm{e}}}\right) \\
& =-\langle\delta, H\rangle \quad(\delta \text { is as in }(3.9)) \\
& \left.=\langle\lambda, H\rangle \quad \text { by Proposition } 3.10 \text { and the fact that } \operatorname{dim} \mathfrak{a}_{i}=1\right),
\end{aligned}
$$

which establishes (4.6), and completes the proof of (2).
(3) Let τ_{λ} (resp. $\tau_{\lambda}^{(i)}$) also denote the corresponding representation of $\mathfrak{f}_{c}+\mathfrak{p}^{-}$ (resp. the Lie algebra of S_{i}) on E_{λ}. To prove (3), it is sufficient to show that $\tau_{\lambda}^{(i)}\left(\mathfrak{n}_{i}\right) E_{\lambda} \subset E_{\bar{\lambda}}^{\frac{1}{\lambda}}$; in turn, for this, it will be enough to show that $\tau_{\lambda}(X) E_{\lambda} \subset E_{\bar{\lambda}}^{\frac{1}{\lambda}}$ for all $X \in \operatorname{Ad}\left(c_{i}^{-1}\right) \mathfrak{n}_{i, c}$. As observed in the proof of (2), $\operatorname{Ad}\left(c_{i}^{-1}\right) \mathfrak{n}_{i, c}$ is sum of the negative eigenspaces of $\operatorname{ad}\left(\sum_{j=1}^{i} H_{j}\right)$ on $\mathrm{g}_{c}^{\text {. }}$. Thus if we let

$$
\begin{aligned}
& \Phi_{c}^{-}(i)=\left\{\alpha \in \Phi_{c} ;\left\langle\alpha, H_{1}+\cdots+H_{i}\right\rangle<0\right\}, \\
& \Phi_{n}^{-}(i)=\left\{\alpha \in \Phi_{n} ;\left\langle\alpha, H_{1}+\cdots+H_{i}\right\rangle<0\right\},
\end{aligned}
$$

then

$$
\begin{equation*}
\operatorname{Ad}\left(c_{i}^{-1}\right) \mathfrak{n}_{i, c}=\sum_{\alpha \in \Phi \bar{n}(i) \cup \Phi_{\bar{c}}(i)} \mathfrak{g}_{c}^{\alpha} . \tag{4.7}
\end{equation*}
$$

Further, by (2.12a),

$$
\begin{align*}
& \Phi_{c}^{-}(i)=\underset{1 \leq j \leq i}{\cup}\left(-C_{j}\right) \cup \underset{1 \leq j \leq i<k \leq r}{\cup}\left(-C_{j k}\right) \\
& \Phi_{n}^{-}(i)= \tag{4.8}\\
& 1 \leq j \leq i
\end{align*}\left(-N_{j}\right) \cup \underset{1 \leq j<k \leq i}{\cup}\left(-N_{j k}\right) \cup \underset{1 \leq j \leq i<k \leq r}{\cup}\left(-N_{j k}\right) .
$$

Now let $E_{\lambda}=\Sigma E^{\mu}$ be the orthogonal direct sum decomposition of E_{λ} into weight spaces for the representation τ_{λ}; the weights μ are all of the form $\mu=\lambda-\sum_{\alpha \in \Phi_{ \pm}} n_{\alpha} \alpha$ with n_{α} nonnegative integers. Then $E_{\bar{\lambda}}=\Sigma E^{\mu}$, the sum taken over the weights μ of the form $\mu=\lambda-\sum_{\alpha \in \Phi_{i, c}^{+}} n_{\alpha} \alpha$. As $\Phi_{i, c}^{+}=C_{0}^{(i)} \cup \underset{i+1 \leq j \leq r}{\cup} C_{j} \cup \underset{i+1 \leq j<k \leq r}{\cup} C_{j k}$ by definition, it then follows from (4.8) and (2.12ab) that if $\alpha \in \Phi_{c}^{-}(i)$ then $E^{\mu+\alpha} \cap E_{\lambda}$ $=\{0\}$ for any weight μ for τ_{λ}; therefore we conclude that $\tau_{\lambda}(X) E_{\lambda} \subset E_{\bar{\lambda}}^{\perp}$ for all $X \in \sum_{\alpha \in \Phi \bar{c}(i)} \mathfrak{g}_{c}^{\alpha}$. On the other hand $\tau_{\lambda}(X) E_{\lambda}=\{0\}$ for all $X \in \sum_{\alpha \in \Phi_{\bar{n}}(i)} \mathfrak{g}_{c}^{\alpha}$; this follows from the fact that $\Phi_{n}^{-}(i) \subset\left(-\Phi_{n}^{+}\right)$, and that $\tau_{\lambda}\left(\mathfrak{p}^{-}\right)$acts trivially on E_{λ}. The assertion of (3) now follows from (4.7).

Because of Lemmas 4.2 and 4.5 (1), we may define an irreducible unitary representation ' $\tau_{\lambda}^{(i)}$ of L_{i} on E_{λ} by setting

$$
\begin{equation*}
' \tau_{\lambda}^{(i)}(l)=\left.\tau_{\lambda}^{(i)}(l)\right|_{E_{\tilde{\lambda}}}, \quad l \in L_{i} . \tag{4.9}
\end{equation*}
$$

Now we define, for each $v \in \mathfrak{a}_{i}^{*}$, representations ' $\sigma_{\lambda, v}$ and $\sigma_{\lambda, v}$ of $S_{i}=L_{i} A_{i} N_{i}$ on E_{λ} by

$$
\begin{align*}
& \prime \sigma_{\lambda, v}(l a n)=e^{\sqrt{-1} v}(a)^{\prime} \tau_{\lambda}^{(i)}(l), \tag{4.10a}\\
& \sigma_{\lambda, v}(\text { lan })=e^{\rho_{i}+\sqrt{-1 v}}(a)^{\prime} \tau_{\lambda}^{(i)}(l), \quad \text { lan } \in L_{i} A_{i} N_{i} \tag{4.10b}
\end{align*}
$$

where $\rho_{i} \in \mathfrak{a}_{i}^{*}$ is as in (2.38). Note that ' $\sigma_{\lambda, v}$ is irreducible and unitary (with respect to the inner product induced from that of E_{λ}).

We consider the unitarily induced representation

$$
\begin{equation*}
U_{\lambda, v}=\operatorname{Ind}_{S_{i} \uparrow G} \sigma_{\lambda, v} \tag{4.11a}
\end{equation*}
$$

Let us write down this representation more explicitly. Let ρ be the rho-function on G for the subgroup S_{i}, which was defined in 2.33 , and let $d \mu$ be the corresponding quasi-invariant measure on G / S_{i} defined by the formula (2.46). Then (cf. Warner [30], p. 374) the representation space of $U_{\lambda, v}$ may be regarded as

$$
L^{2}\left(G, \sigma_{\lambda, v}\right)=\left\{\begin{array}{l}
\text { all Borel measurable } f: G \rightarrow E_{\lambda} \text { such that } \tag{4.11b}\\
\text { (1) } f(g s)=\rho(s)^{1 / 2} \sigma_{\lambda, v}(s)^{-1} f(g) \text { for } g \in G, s \in S_{i}, \\
(2)\|f\|^{2}=\int_{G / S_{i}} \rho(g)^{-1}|f(g)|^{2} d \mu(\dot{g})<\infty
\end{array}\right.
$$

where we identify functions which are equal almost everywhere on G. (In connection with condition (2), note that the integral is constant on left S_{i} cosets and hence defines a function on G / S_{i}. Note too that condition (1) can also be written as $f(g s)=\sigma_{\lambda, v}(s)^{-1} f(g)$ because $\rho(s)=e^{-2 \rho_{i}}(a)$ if $s=$ lan.) $L^{2}\left(G, \sigma_{\lambda, v}\right)$ is a Hilbert space with inner product

$$
\left(f, f^{\prime}\right)=\int_{G / s_{i}} \rho(g)^{-1}\left(f(g), f^{\prime}(g)\right) d \mu(\dot{g})
$$

and $U_{\lambda, v}$ acts on $L^{2}\left(G, \sigma_{\lambda, v}\right)$ by left translation: $U_{\lambda, v}(g) f\left(g^{\prime}\right)=f\left(g^{-1} g^{\prime}\right)$. For every $v \in \mathfrak{a}_{i}^{*}, U_{\lambda, v}$ is a continuous unitary representation of G. But our main concern in this paper is with the case $\nu=0$. We write $\sigma_{\lambda}, U_{\lambda}, L^{2}\left(G, \sigma_{\lambda}\right)$ for $\sigma_{\lambda, 0}$, $U_{\lambda, 0}, L^{2}\left(G, \sigma_{\lambda, 0}\right)$.

Let the normalization of measures on K and G_{i} be as in 2.33.
4.12. Lemma. Fix $v \in \mathfrak{a}_{i}^{*}$. Then for all $f \in L^{2}\left(G, \sigma_{\lambda, v}\right)$,

$$
\|f\|^{2}=\int_{K \times G_{i}}\left|f\left(k g_{i}\right)\right|^{2} d k d g_{i}
$$

Proof. For a given $f \in L^{2}\left(G, \sigma_{\lambda, v}\right)$, we may define a real valued function F on $\mathscr{B}_{i}=G / S_{i}$ by $F\left(g \cdot o_{i}\right)=\rho(g)^{-1}|f(g)|^{2}, g \in G$. If $k \in K$ and $g_{i} \in G_{i}$, then $\rho\left(k g_{i}\right)$ $=1$ by definition of the function ρ, so $F\left(k g_{i} \cdot o_{i}\right)=\left|f\left(k g_{i}\right)\right|^{2}$. Thus, using the formula (2.47), we get

$$
\begin{aligned}
\|f\|^{2}=\int_{\boldsymbol{s}_{i}} F(u) d \mu(u) & =\int_{K \times G_{i}} F\left(k g_{i} \cdot o_{i}\right) d k d g_{i} \\
& =\int_{K \times G_{i}}\left|f\left(k g_{i}\right)\right|^{2} d k d g_{i}
\end{aligned}
$$

for all $f \in L^{2}\left(G, \sigma_{\lambda, v}\right)$.
Let $\mathcal{O}\left(\mathscr{D}, E_{\lambda}\right)$ be the space of all E_{λ}-valued holomorphic functions on \mathscr{D} and let $\mathcal{O}\left(\mathscr{D}, E_{\lambda}\right) \subset \mathcal{O}\left(\mathscr{D}, E_{\lambda}\right)$ be the subspace of functions having a holomorphic extention to a neighborhood of the closure of \mathscr{D} in \mathfrak{p}^{+}. We denote

$$
J_{\lambda}: \text { automorphic factor of type } \tau_{\lambda}
$$

(cf. (2.5)). In view of (2.6a) we may define, for each $g \in G$, an action $T_{\lambda}(g)$ on $\mathcal{O}\left(\mathscr{D}, E_{\lambda}\right)$ by

$$
\begin{equation*}
\left(T_{\lambda}(g) F\right)(z)=J_{\lambda}\left(g^{-1}, z\right)^{-1} F\left(g^{-1} \cdot z\right), \quad F \in \mathcal{O}\left(\mathscr{D}, E_{\lambda}\right), \quad z \in \mathscr{D} . \tag{4.13}
\end{equation*}
$$

Then it follows from (2.6b) that $T_{\lambda}\left(g_{1} g_{2}\right)=T_{\lambda}\left(g_{1}\right) T_{\lambda}\left(g_{2}\right)$ for $g_{1}, g_{2} \in G$. Furthermore, according to the remark after (2.6), the subspace $\mathcal{O}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$ is stable under $T_{\lambda}(g), g \in G$.

For $F \in \mathcal{O}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$, we define $\tilde{F}: G \rightarrow E_{\lambda}$ by

$$
\begin{equation*}
\widetilde{F}(g)=P_{\lambda} J_{\lambda}\left(g c_{i}, o\right)^{-1} F\left(g \cdot o_{i}\right), \quad g \in G \tag{4.14}
\end{equation*}
$$

($P_{\bar{\lambda}}$ is the orthogonal projection of E_{λ} onto E_{λ} and c_{i} is the Cayley transform). For the representation σ_{λ} (the case $\nu=0$ in (4.10b)) of S_{i} on E_{λ}, we put

$$
C^{\infty}\left(G, \sigma_{\lambda}\right)=\left\{f \in C^{\infty}\left(G, E_{\lambda}\right) ; f(g s)=\sigma_{\lambda}(s)^{-1} f(g), g \in G, s \in S_{i}\right\}
$$

Then G naturally acts on $C^{\infty}\left(G, \sigma_{\lambda}\right)$ by left translation.
The key step in the construction of representations on Hardy type Hilbert spaces is the following lemma.
4.15. Lemma. If $F \in \mathcal{O}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$, then the function \tilde{F} defined by (4.14) lies in $C^{\infty}\left(G, \sigma_{\lambda}\right)$. Moreover the mapping $F \rightarrow \widetilde{F}$ is equivariant with respect to the action of G.

Proof. Let $F \in \mathcal{O}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$; then clearly $\tilde{F} \in C^{\infty}\left(G, E_{\bar{\lambda}}\right)$. If $g \in G$ and lan $\in S_{i}=L_{i} A_{i} N_{i}$ then, since c_{i}^{-1} lanc $_{i} \in K_{c} P^{-}$(cf. (4.3)), we get

$$
\begin{aligned}
J_{\lambda}\left(\text { glanc }_{i}, o\right)^{-1} & =J_{\lambda}\left(g c_{i} c_{i}^{-1} l a n c_{i}, o\right)^{-1} \\
& =J_{\lambda}\left(c_{i}^{-1} \operatorname{lanc}_{i}, o\right)^{-1} J_{\lambda}\left(g c_{i}, o\right)^{-1}
\end{aligned}
$$

(by the cocycle formula (2.6b))

$$
=\tau_{\lambda}^{(i)}(l a n)^{-1} J_{\lambda}\left(g c_{i}, o\right)^{-1}
$$

(by (2.7a) and the definition (4.4)).
Thus, using Lemma 4.5 and recalling that S_{i} is the isotropy subgroup at o_{i}, we have

$$
\begin{aligned}
\tilde{F}(g l a n) & =P_{\lambda} \tau_{\lambda}^{(i)}(l a n)^{-1} J_{\lambda}\left(g c_{i}, o\right)^{-1} F\left(g l a n \cdot o_{i}\right) \\
& =e^{-\rho_{i}}(a)^{\prime} \tau_{\lambda}^{(i)}(l)^{-1} P_{\lambda} J_{\lambda}\left(g c_{i}, o\right)^{-1} F\left(g \cdot o_{i}\right) \\
& =\sigma_{\lambda}(l a n)^{-1} \widetilde{F}(g),
\end{aligned}
$$

and so $\tilde{F} \in C^{\infty}\left(G, \sigma_{\lambda}\right)$. The G-equivariance of the mapping $F \rightarrow \widetilde{F}$ follows from the cocycle formula (2.6b).

Keeping in mind Lemmas 4.12 and 4.15 , we define a seminorm $\left\|\|_{\lambda}\right.$ on $\mathcal{O}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$ by setting

$$
\|F\|_{\lambda}^{2}=\int_{K \times G_{i}}\left|P_{\hat{\lambda}} J_{\lambda}\left(k g_{i} c_{i}, o\right)^{-1} F\left(k g_{i} \cdot o_{i}\right)\right|^{2} d k d g_{i}, \quad F \in \mathcal{O}\left(\overline{\mathscr{D}}, E_{\lambda}\right) .
$$

Now let

$$
\begin{equation*}
\mathcal{O}^{2}\left(\overline{\mathscr{D}}, E_{\lambda}\right)=\left\{F \in \mathcal{O}\left(\overline{\mathscr{D}}, E_{\lambda}\right) ;\|F\|_{\lambda}<\infty\right\} . \tag{4.16}
\end{equation*}
$$

We will later show that the above seminorm is actually a norm (Corollary 4.34), and that $\mathcal{O}^{2}\left(\overline{\mathscr{D}}, E_{\lambda}\right) \neq\{0\}$ for all $\lambda \in \mathscr{F}_{i}(G)$ (Corollary 4.39). Since U_{λ} is unitary on $L^{2}\left(G, \sigma_{\lambda}\right)$, Lemmas $4.12,4.15$ and the definition of the seminorm imply
$\left\{\begin{array}{l}\text { the action } T_{\lambda} \text { of } G \text { on } \mathcal{O}\left(\mathscr{D}, E_{\lambda}\right) \text { leaves the subspace } \mathscr{O}^{2}\left(\overline{\mathscr{D}}, E_{\lambda}\right) \text { invariant } \\ \text { and preserves the seminorm. }\end{array}\right.$
Moreover, if $F \in \mathcal{O}^{2}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$ then the function \tilde{F} defined by (4.14) belongs to $L^{2}\left(G, \sigma_{\lambda}\right)$. Let \mathscr{I}_{λ} denote the mapping $F \rightarrow \tilde{F}$ of $\mathcal{O}^{2}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$ into $L^{2}\left(G, \sigma_{\lambda}\right)$. Then by Lemma 4.15,
(4.18) $\left\{\begin{array}{l}\mathscr{I}_{\lambda}: \mathcal{O}^{2}\left(\overline{\mathscr{D}}, E_{\lambda}\right) \rightarrow L^{2}\left(G, \sigma_{\lambda}\right) \text { is equivariant with respect to the action } \\ \text { of } G .\end{array}\right.$

If $X \in \mathfrak{g}_{c}, X=X_{1}+\sqrt{-1} X_{2}\left(X_{1}, X_{2} \in \mathfrak{g}\right)$, and if f is a differentiable function on G, define functions $r(X) f$ and $l(X) f$ on G by

$$
\begin{align*}
& (r(X) f)(g)=\left.\frac{d}{d t}\left(f\left(g \exp t X_{1}\right)+\sqrt{-1} f\left(g \exp t X_{2}\right)\right)\right|_{t=0} \\
& (l(X) f)(g)=\left.\frac{d}{d t}\left(f\left(\exp \left(-t X_{1}\right) g\right)+\sqrt{-1} f\left(\exp \left(-t X_{2}\right) g\right)\right)\right|_{t=0} \tag{4.19}
\end{align*}
$$

As in 2.28 we put $\mathfrak{p}_{\boldsymbol{i}}^{-}=\mathfrak{g}_{i, \boldsymbol{c}} \cap \mathfrak{p}^{-}$.
The following lemma will be used in Section 5.
4.20. Lemma. Let $F \in \mathcal{O}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$, and define $\tilde{F}: G \rightarrow E_{\bar{\lambda}}$ by (4.14). Then $r(X) \widetilde{F}=0$ for all $X \in \mathfrak{p}_{i}^{-}$.

Proof. For $F \in \mathcal{O}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$ and $g \in G$, let us put ${ }^{\prime} F(g)=F\left(g \cdot o_{i}\right)$ and $J(g)$ $=J_{\lambda}\left(g c_{i}, o\right)$. Then, for $X \in \mathfrak{g}_{o}$,

$$
\begin{equation*}
(r(X) \widetilde{F})(g)=-P_{\lambda} J(g)^{-1}(r(X) J)(g) J(g)^{-1} F(g)+P_{\chi} J(g)^{-1}\left(r(X)^{\prime} F\right)(g) \tag{4.21}
\end{equation*}
$$

Let $\pi: G \rightarrow \mathscr{D}=G / K$ be the canonical projection. Then π restricts to the canonical projection of G_{i} onto $\mathscr{D}_{i}=G_{i} / K_{i}$. Hence if $X \in \mathfrak{g}_{i, c}, d \pi_{e} X$ ($e=$ identity of G) may be identified with a complex tangent vector of \mathscr{D}_{i} at o.

Now fix $g \in G$ and define $\gamma: \mathscr{D}_{i} \rightarrow g \cdot \mathscr{C}_{i}$ by $\gamma(z)=g c_{i} \cdot z ; \gamma$ is a holomorphic diffeomorphism of \mathscr{D}_{i} onto the boundary component $g \cdot \mathscr{C}_{i}$ containing $g \cdot o_{i}$. Then, since c_{i} commutes with G_{i}, it follows that

$$
\left(r(X)^{\prime} F\right)(g)=\left[\left(d \gamma_{o}{ }^{\circ} d \pi_{e} X\right) F\right]\left(g \cdot o_{i}\right) \quad \text { for all } \quad X \in \mathfrak{g}_{i, c} .
$$

But if $X \in \mathfrak{p}_{i}^{-}$it is not difficult to show that $d \pi_{e} X$ is an antiholomorphic tangent vector of \mathscr{D}_{i} at o, hence $d \gamma_{o} \circ d \pi_{e} X$ is that of $g \cdot \mathscr{C}_{i}$ at $g \cdot o_{i}$. Since F restricted to the boundary component $g \cdot \mathscr{C}_{i}$ is holomorphic, we conclude

$$
\begin{equation*}
\left(r(X)^{\prime} F\right)(g)=0 \quad \text { for all } \quad X \in \mathfrak{p}_{i}^{-} \tag{4.22}
\end{equation*}
$$

On the other hand, since c_{i} commutes with G_{i}, by the same argument as the one in the proof of Lemma 5.7 of [1] one finds that

$$
\begin{equation*}
r(X) J=0 \quad \text { for all } \quad X \in \mathfrak{p}_{i}^{-} \tag{4.23}
\end{equation*}
$$

and our assertion follows from (4.21)-(4.23).
Now let $A_{(i)}^{+}, D_{i}, d a$ be as in 2.33, and π_{0} be as in (2.2).
4.24. Proposition. Let $\lambda \in \mathscr{F}_{i}(G)$ and, for each $\boldsymbol{e} \in E_{\lambda}$, let $\mathbf{1}_{\boldsymbol{e}}$ denote the constant function $\mathbf{1}_{\mathbf{e}}(z)=\boldsymbol{e}, z \in \overline{\mathscr{D}}$. Then we have

$$
\left\|\mathbf{1}_{\boldsymbol{e}}\right\|_{\lambda}^{2}= \begin{cases}\beta_{i}^{2} d(\lambda)^{-1}|\boldsymbol{e}|^{2} \int_{A_{i i}^{+}} \chi_{\lambda}\left(\pi_{0}(a)^{-2}\right) D_{i}(a) d a & \text { if } i \neq r \\ \beta_{r}^{2} d(\lambda)^{-1} d(\tilde{\lambda})|\boldsymbol{e}|^{2} & \text { if } i=r\end{cases}
$$

where $\chi_{\bar{\lambda}}$ denotes the character of $\tau_{\lambda}, d(\lambda)($ resp. $d(\tilde{\lambda}))$ the degree of $\tau_{\lambda}\left(\right.$ resp. $\left.\tau_{\lambda}\right)$, and $\beta_{i}=(\sqrt{2})^{i p_{i}}$ with p_{i} as in (3.5).

The proof requires the following lemma.
4.25. Lemma. (1) $J_{\lambda}\left(g, o_{i}\right)=J_{\lambda}(g, o)$ for all $g \in G_{i}$.
(2) $\left.J_{\lambda}\left(c_{i}, o\right)\right|_{E_{\lambda}}=\beta_{i}^{-1} I$ and $E_{\lambda}^{\frac{1}{\lambda}}$ is stable under $J_{\lambda}\left(c_{i}, o\right)$.

Proof. (1) As it follows from (2.18), $\pi_{0}\left(g c_{i}\right)=\pi_{0}(g) \pi_{0}\left(c_{i}\right)$ for all $g \in G_{i}$. Thus $J_{\lambda}\left(g c_{i}, o\right)=J_{\lambda}(g, o) J_{\lambda}\left(c_{i}, o\right)$, while $J_{\lambda}\left(g c_{i}, o\right)=J_{\lambda}\left(g, o_{i}\right) J_{\lambda}\left(c_{i}, o\right)$ by the cocycle formula, so (1) follows.
(2) Since $J_{\lambda}\left(c_{i}, o\right)=\tau_{\lambda}\left(\pi_{0}\left(c_{i}\right)\right)$ by definition, and since $\pi_{0}\left(c_{i}\right)=\exp (\log \sqrt{2}$. $\left.\sum_{j=1}^{i} H_{j}\right) \in \exp \sqrt{-1} \mathrm{t}$ by (2.18), it is clear that both $E_{\bar{\lambda}}$ and $E_{\frac{1}{\lambda}}^{1}$ are stable under $J_{\lambda}\left(c_{i}, o\right)$. As c_{i} commutes with G_{i}, it follows that $\pi_{0}(g) \pi_{0}\left(c_{i}\right)=\pi_{0}\left(c_{i}\right) \pi_{0}(g)$ for all $g \in G_{i}$; in particular $\pi_{0}\left(c_{i}\right)$ commutes with K_{i}. Since $\left.\tau_{\lambda}\left(K_{i}\right)\right|_{E_{\lambda}}$ is irreducible by Lemma 4.2, it then follows that $\left.J_{\lambda}\left(c_{i}, o\right)\right|_{E_{\lambda}}$ is a scalar operator. But, using Proposition 3.10 and (3.14), we obtain

$$
\begin{aligned}
J_{\lambda}\left(c_{i}, o\right) \boldsymbol{e}_{\lambda} & =\tau_{\lambda}\left(\exp \left(\log \sqrt{2} \sum_{j=1}^{i} H_{j}\right)\right) \boldsymbol{e}_{\lambda}=(\sqrt{2})^{\left\langle\lambda, H_{1}+\cdots+H_{i}\right\rangle} \boldsymbol{e}_{\lambda} \\
& =(\sqrt{2})^{-i p_{i}} \boldsymbol{e}_{\lambda}
\end{aligned}
$$

where \boldsymbol{e}_{λ} is the highest weight vector for τ_{λ}. Thus (2) follows.
Proof of Proposition 4.24. For each $\boldsymbol{e} \in E_{\lambda}$, define $\phi_{\boldsymbol{e}}: G \rightarrow E_{\lambda}$ by $\phi_{\boldsymbol{e}}(g)$ $=P_{\lambda} J_{\lambda}\left(g c_{i}, o\right)^{-1} \boldsymbol{e}$. Then by definition of the seminorm,

$$
\left\|\mathbf{1}_{\mathbf{e}}\right\|_{\lambda}^{2}=\int_{K \times G_{i}}\left|\phi_{e}\left(k g_{i}\right)\right|^{2} d k d g_{i} .
$$

We first suppose $i \neq r$. Then, applying the integration formula (2.37), we get

$$
\left\|\mathbf{1}_{e}\right\|_{\lambda}^{2}=\int_{K \times K_{i} \times A_{i}+\times K_{i}}\left|\phi_{e}\left(k k_{1} a k_{2}\right)\right|^{2} D_{i}(a) d k d k_{1} d a d k_{2} .
$$

Since $\phi_{\boldsymbol{e}} \in C^{\infty}\left(G, \sigma_{\lambda}\right)$ by Lemma 4.15, it follows that

$$
\left|\phi_{e}\left(k k_{1} a k_{2}\right)\right|=\left|\sigma_{\lambda}\left(k_{2}\right)^{-1} \phi_{e}\left(k k_{1} a\right)\right|=\left|\phi_{\mathbf{e}}\left(k k_{1} a\right)\right|
$$

because $K_{i} \subset L_{i}$ and $\sigma_{\lambda}\left(k_{2}\right)$ is unitary. Thus, noting that $K_{i} \subset K$ and using the invariance of Haar measure on K, we obtain

$$
\begin{align*}
\left\|\mathbf{1}_{e}\right\|_{\lambda}^{2} & =\int_{K \times A_{(i)}^{+}}\left|\phi_{e}(k a)\right|^{2} D_{i}(a) d k d a \\
& =\int_{K \times A_{(i)}^{+}}\left|P_{\lambda} J_{\lambda}\left(k a c_{i}, o\right)^{-1} \boldsymbol{e}\right|^{2} D_{i}(a) d k d a \tag{4.26}\\
& =\beta_{i}^{2} \int_{K \times A_{(i)}^{+}}\left|P_{\lambda} J_{\lambda}(a, o)^{-1} \tau_{\lambda}(k)^{-1} \boldsymbol{e}\right|^{2} D_{i}(a) d k d a
\end{align*}
$$

where $\beta_{i}^{2}=2^{i p_{i}}$, and in the last step we have used Lemma 4.25 and the cocycle formula. Because of Lemma 4.2, we can choose an orthonormal basis $\boldsymbol{e}_{1}=\boldsymbol{e}_{\lambda}$, $\boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{d(\lambda)}$ of weight vectors for τ_{λ} in such a way that $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{d(\lambda)}$ are in E_{λ}. Let $\boldsymbol{e}=\sum_{i=1}^{d(\lambda)} x_{i} \boldsymbol{e}_{i}, x_{i} \in \boldsymbol{C}$, and write for $k \in K, \tau_{\lambda}(k) \boldsymbol{e}_{i}=\sum_{j=1}^{d(\lambda)} \tau_{j i}(k) \boldsymbol{e}_{j}$. Then, since $\tau_{\lambda}(k)^{-1} \boldsymbol{e}_{i}=\sum_{j=1}^{d(\lambda)} \overline{\tau_{i j}(k)} \boldsymbol{e}_{j}$, we obtain from (4.26)

$$
\begin{aligned}
\left\|\mathbf{1}_{e}\right\|_{\lambda}^{2} & =\beta_{i}^{2} \int_{K \times A_{(i)}^{+}}\left|\sum_{1 \leq i, j \leq d(\lambda)} x_{i} \overline{\tau_{i j}(k)} P_{\lambda} J_{\lambda}(a, o)^{-1} \boldsymbol{e}_{j}\right|^{2} D_{i}(a) d k d a \\
& =\beta_{i}^{2} d(\lambda)^{-1}\left(\sum_{i=1}^{d(\lambda)}\left|x_{i}\right|^{2}\right) \int_{A_{(i)}^{+}}\left|\sum_{j=1}^{d(\lambda)} P_{\lambda} J_{\lambda}(a, o)^{-1} \boldsymbol{e}_{j}\right|^{2} D_{i}(a) d a
\end{aligned}
$$

the second equality following from Schur orthogonality relations for τ_{λ}. Now $J_{\lambda}(a, o)=\tau_{\lambda}\left(\pi_{0}(a)\right)$ by definition, and, in view of (2.19), $\pi_{0}(a) \in \exp \sqrt{-1} \mathrm{t}_{i}$. Thus $J_{\lambda}(a, o)$ is diagonal relative to the basis $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{d(\lambda)}$, so we conclude that

$$
\left\|\mathbf{1}_{e}\right\|_{\lambda}^{2}=\beta_{i}^{2} d(\lambda)^{-1}|\boldsymbol{e}|^{2} \int_{A_{(i)}^{+}} \chi_{\bar{\lambda}}\left(\pi_{0}(a)^{-2}\right) D_{i}(a) d a
$$

Next let $i=r$. Then $G_{r}=K_{r} \subset K$ by (2.29), so using the invariance of Haar measure and arguing as above, one finds that

$$
\begin{aligned}
\left\|\mathbf{1}_{\boldsymbol{e}}\right\|_{\lambda}^{2} & =\int_{K}\left|\phi_{e}(k)\right|^{2} d k=\int_{K}\left|P_{\lambda} J_{\lambda}\left(k c_{r}, o\right)^{-1} \boldsymbol{e}\right|^{2} d k \\
& =\beta_{r}^{2} \int_{K}\left|P_{\lambda} \tau_{\lambda}(k)^{-1} \boldsymbol{e}\right|^{2} d k=\beta_{r}^{2} d(\tilde{\lambda}) d(\lambda)^{-1}|\boldsymbol{e}|^{2}
\end{aligned}
$$

This completes the proof of the proposition.
4.27. Corollary. Let \boldsymbol{e}_{λ} be a highest weight vector of τ_{λ} with $\left|\boldsymbol{e}_{\lambda}\right|=1$, and let $\mathbf{1}_{\lambda}$ denote the constant function $\mathbf{1}_{\lambda}(z)=\boldsymbol{e}_{\lambda}, z \in \overline{\mathscr{D}}$. Then

$$
\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{2}= \begin{cases}\beta_{i}^{2} d(\lambda)^{-1} \int_{A_{i)}^{+}} \chi_{\lambda}\left(\pi_{0}(a)^{-2}\right) D_{i}(a) d a & \text { if } i \neq r \\ \beta_{r}^{2} d(\tilde{\lambda}) d(\lambda)^{-1} & \text { if } i=r\end{cases}
$$

Furthermore $\left\|\mathbf{1}_{\mathbf{e}}\right\|_{\lambda}=\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}|\boldsymbol{e}|$ for all $\boldsymbol{e} \in E_{\lambda}$.
We note that if $\mathbf{1}_{\lambda}$ is as in the preceding corollary, then

$$
\begin{equation*}
\left\|\mathbf{1}_{\lambda}\right\|_{\lambda} \neq 0 . \tag{4.28}
\end{equation*}
$$

Indeed, if we define a function ϕ on $K \times G_{i}$ by $\phi\left(k, g_{i}\right)=\left|P_{\lambda} J_{\lambda}\left(k g_{i} c_{i}, o\right)^{-1} \boldsymbol{e}_{\lambda}\right|^{2}$, then ϕ is continuous and $\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{2}=\int_{K \times G_{i}} \phi\left(k, g_{i}\right) d k d g_{i} . \quad$ As $\phi(e, e)=\beta_{i}^{2} \neq 0$ by Lemma $4.25(2)$, it follows that $\left\|\mathbf{1}_{\lambda}\right\|_{\lambda} \neq 0$.
4.29. Lemma. $\|F\|_{\lambda} \geq\left\|\boldsymbol{1}_{\lambda}\right\|_{\lambda}|F(o)|$ for all $F \in \mathcal{O}^{2}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$.

Proof. It is known that K contains the group T^{1} of rotation $z \rightarrow e^{i \theta} z$ ($z \in \mathfrak{p}^{+}, 0 \leq \theta<2 \pi$) as a central subgroup; cf. Korányi and Wolf [18], p. 269. Let $d t$ denote the Haar measure on T^{1} such that $\int_{T^{1}} d t=1$. We first note that if $F \in \mathcal{O}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$, then

$$
\begin{equation*}
F(o)=\int_{T^{1}} F(t \cdot z) d t \quad \text { for all } \quad z \in \overline{\mathscr{D}} \tag{4.30}
\end{equation*}
$$

because the restriction of F to the complex line spanned by z is an E_{λ}-valued holomorphic function of one complex variable.

Now, for $F \in \mathcal{O}^{2}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$, we have

$$
\begin{aligned}
\|F\|_{\lambda}^{2} & =\int_{K \times G_{i}}\left|P_{\lambda} J_{\lambda}\left(k g_{i} c_{i}, o\right)^{-1} F\left(k g_{i} \cdot o_{i}\right)\right|^{2} d k d g_{i} \\
& =\int_{K \times G_{i}}\left[\int_{T^{1}}\left|P_{\lambda} J_{\lambda}\left(t k g_{i} c_{i}, o\right)^{-1} F\left(t k g_{i} \cdot o_{i}\right)\right|^{2} d t\right] d k d g_{i} \\
& =\int_{K \times G_{i}}\left[\int_{T^{1}}\left|P_{\lambda} J_{\lambda}\left(k g_{i} c_{i}, o\right)^{-1} F\left(t k g_{i} \cdot o_{i}\right)\right|^{2} d t\right] d k d g_{i}
\end{aligned}
$$

(since T^{1} is a central subgroup of K)
$\geq \int_{K \times G_{i}}\left|\int_{T^{1}} P_{\lambda} J_{\lambda}\left(k g_{i} c_{i}, o\right)^{-1} F\left(t k g_{i} \cdot o_{i}\right) d t\right|^{2} d k d g_{i}$
$=\int_{K \times G_{i}}\left|P_{\lambda} J_{\lambda}\left(k g_{i} c_{i}, o\right)^{-1} F(o)\right|^{2} d k d g_{i}$
$=\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{2}|F(o)|^{2} \quad$ (by Corollary 4.27).
4.31. Corollary. $\mathcal{O}^{2}\left(\overline{\mathscr{D}}, E_{\lambda}\right) \neq\{0\}$ if and only if $\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}<\infty$.

Proof. If $\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}<\infty$, then $\mathbf{1}_{\lambda} \in \mathcal{O}^{2}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$. Conversely, if $F \in \mathcal{O}^{2}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$ and $F \neq 0$, then there exists a $g \in G$ such that $F(g \cdot o) \neq 0$. Thus, using (4.17) and Lemma 4.29, we get

$$
\|F\|_{\lambda}=\left\|T_{\lambda}\left(g^{-1}\right) F\right\|_{\lambda} \geq\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}\left|\left(T_{\lambda}\left(g^{-1}\right) F\right)(o)\right|=\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}\left|J_{\lambda}(g, o)^{-1} F(g \cdot o)\right| .
$$

Since $\|F\|_{\lambda}<\infty$ and $\left|J_{\lambda}(g, o)^{-1} F(g \cdot o)\right| \neq 0$, it then follows that $\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}<\infty$.
4.32. Corollary. For any compact subset X of \mathscr{D}, there exists a constant $C_{X}<\infty$ such that

$$
\begin{equation*}
|F(z)| \leq C_{X}\|F\|_{\lambda} \tag{4.33a}
\end{equation*}
$$

for all $F \in \mathcal{O}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$ and all $z \in X$.
Proof. Let \mathfrak{a} be the maximal abelian subspace of \mathfrak{p} as in (2.10) and let $A=\exp \mathrm{a}$. Then we know that $G=K A K$. Since $K \cdot o=o$, there then exists, for a given compact subset X of \mathscr{D}, a compact subset Y of A such that $X \subset K Y \cdot o$. Put $C_{X}=\sup _{a \in Y}\left|J_{\lambda}(a, o)\right| \cdot\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{-1}$ where $\left|J_{\lambda}(a, o)\right|$ denotes the Hilbert-Schmidt norm of $J_{\lambda}(a, o)$. If $z \in X$ then $z=k a \cdot o$ for some $k \in K$ and $a \in Y$, and we have

$$
\begin{aligned}
|F(z)| & =\left|J_{\lambda}(k a, o)\left(T_{\lambda}(k a)^{-1} F\right)(o)\right| \\
& =\left|\tau_{\lambda}(k) J_{\lambda}(a, o)\left(T_{\lambda}(k a)^{-1} F\right)(o)\right| \\
& =\left|J_{\lambda}(a, o)\left(T_{\lambda}(k a)^{-1} F\right)(o)\right| \\
& \leq\left|J_{\lambda}(a, o)\right| \cdot\left|\left(T_{\lambda}(k a)^{-1} F\right)(o)\right| \\
& \leq \sup _{a \in Y}\left|J_{\lambda}(a, o)\right| \cdot\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{-1} \cdot\left\|T_{\lambda}(k a)^{-1} F\right\|_{\lambda} \quad \text { (by Lemma 4.29) } \\
& =C_{X}\|F\|_{\lambda} \quad \quad \text { (by (4.17)) }
\end{aligned}
$$

for all $F \in \mathcal{O}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$.
Corollary 4.32 implies
4.34. Corollary. Let $F \in \mathcal{O}^{2}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$; if $\|F\|_{\lambda}=0$, then $F \equiv 0$. Consequently the seminorm $\left\|\|_{\lambda}\right.$ on $\mathcal{O}^{2}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$ is a norm.

We denote
(4.35) $\quad H^{2}(\mathscr{D}, \lambda)$: the completion of $\mathscr{O}^{2}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$ in the norm $\left\|\|_{\lambda}\right.$.
$H^{2}(\mathscr{D}, \lambda)$ is a Hilbert space, whose inner product is given on the dense subspace $\mathcal{O}^{2}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$ by

$$
\begin{align*}
& \left(F, F^{\prime}\right) \\
& \quad=\int_{K \times G_{i}}\left(P_{\lambda} J_{\lambda}\left(k g_{i} c_{i}, o\right)^{-1} F\left(k g_{i} \cdot o_{i}\right), P_{\lambda} J_{\lambda}\left(k g_{i} c_{i}, o\right)^{-1} F^{\prime}\left(k g_{i} \cdot o_{i}\right)\right) d k d g_{i} . \tag{4.36}
\end{align*}
$$

From Corollary 4.32 one easily proves in the standard way that $H^{2}(\mathscr{D}, \lambda)$ can be identified with a subspace of $\mathcal{O}\left(\mathscr{D}, E_{\lambda}\right)$. Note that
(4.33b) the inequality (4.33a) is valid for every $F \in H^{2}(\mathscr{D}, \lambda)$.

We also note that the mapping \mathscr{I}_{λ} in (4.18) extends uniquely to a G-equivariant isometric isomorphism, again denoted by \mathscr{I}_{λ}, of $H^{2}(\mathscr{D}, \lambda)$ onto a closed subspace of $L^{2}\left(G, \sigma_{\lambda}\right)$. Hence, and because $\left(U_{\lambda}, L^{2}\left(G, \sigma_{\lambda}\right)\right)$ is a unitary representation of G, we conclude that

$$
\left\{\begin{array}{l}
T_{\lambda} \text { defines a unitary representation of } G \text { on } H^{2}(\mathscr{D}, \lambda) \text { and the mapping } \tag{4.37}\\
\mathscr{I}_{\lambda} \text { is an isometric intertwining operator from } H^{2}(\mathscr{D}, \lambda) \text { into } L^{2}\left(G, \sigma_{\lambda}\right) .
\end{array}\right.
$$

Of course, (4.37) is insignificant unless $H^{2}(\mathscr{D}, \lambda)$ is nonzero. For that, we will prove
4.38. Proposition. $\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}<\infty$ for all $\lambda \in \mathscr{F}_{i}(G)$.

This proposition, together with Corollaries 4.31 and 4.27, immediately implies
4.39. Corollary. For any $\lambda \in \mathscr{F}_{i}(G), H^{2}(\mathscr{D}, \lambda) \neq\{0\}$ and all constant functions $\mathbf{1}_{\boldsymbol{e}}\left(\boldsymbol{e} \in E_{\lambda}\right)$ belong to $H^{2}(\mathscr{D}, \lambda)$.

Note. Because of Corollary 4.27, in order to prove Proposition 4.38 we may assume $i \neq r$ and it suffices to show that

$$
\begin{equation*}
\text { the integral } \int_{A_{(i)}^{+}} \chi_{\bar{x}}\left(\pi_{0}(a)^{-2}\right) D_{i}(a) d a \text { is finite. } \tag{4.40}
\end{equation*}
$$

Such an integral occurs in Harish-Chandra's work [9] on holomorphic discrete series. There he gives a criterion for the finiteness of the integral and also calculates its value explicitly. Using his criterion one may verify (4.40). Our integral in question, however, looks slightly different from Harish-Chandra's; so for the sake of completeness we directly establish (4.40) following the lines of Harish-Chandra's computation.

We start the proof of Proposition 4.38 with a lemma. Recall the systems of positive roots Φ^{+}and Φ_{i}^{+}in Section 2 and define $\delta=\frac{1}{2} \sum_{\alpha \in \Phi^{+}} \alpha, \delta_{i}=\frac{1}{2} \sum_{\alpha \in \Phi_{i}} \alpha$. Similarly define $\delta_{i, c}, \delta_{i, n}$ using $\Phi_{i, c}^{+}, \Phi_{i, n}^{+}$in (3.15); so that $\delta_{i}=\delta_{i, c}+\delta_{i, n}$.

4.41. Lemma. $\left.\delta\right|_{t_{i, c}}=\left.\delta_{i}\right|_{t_{i, c}}$ for all $1 \leq i \leq r$.

Proof. Let $\left\{\gamma_{1}, \ldots, \gamma_{r}\right\}, C_{j}, N_{j}, C_{j k}, N_{j k}$ be as in (2.9), (2.11). For each γ_{j}, let s_{j} denote the Weyl reflection corresponding to γ_{j}. If $\alpha \in C_{j}$, then $\left\langle\alpha, H_{j}\right\rangle=1$; hence $-s_{j}(\alpha)=\left\langle\alpha, H_{j}\right\rangle \gamma_{j}-\alpha=\gamma_{j}-\alpha$, so $\gamma_{j}-\alpha$ is a root which is clearly in N_{j}. Conversely if $\beta \in N_{j}$, then $\left\langle\beta, H_{j}\right\rangle=1$; therefore $-s_{j}(\beta)=\gamma_{j}-\beta$ is a root, which belongs to C_{j}. Consequently, for each $1 \leq j \leq r$, the mapping $C_{j} \rightarrow N_{j}$ given by $\alpha \rightarrow \gamma_{j}-\alpha$ is bijective. Thus if $\alpha \in C_{j}$ with $1 \leq j \leq i$, then $-s_{j}(\alpha) \in N_{j}$ and $\alpha+$ $\left.\left(-s_{j}(\alpha)\right)\right|_{t_{i, 0}}=\left.\gamma_{j}\right|_{t, 0}=0$ (the second equality following from its definition of $\mathrm{t}_{i, 0}$).

Hence by grouping the summands in pairs, we see that

$$
\left.\sum_{\alpha \in C_{j} \cup N_{j}} \alpha\right|_{t_{i, c}}=0 \quad \text { for every } \quad 1 \leq j \leq i .
$$

Similarly, for $1 \leq j<k \leq r$, the mapping $C_{j k} \rightarrow N_{j k}$ given by $\alpha \rightarrow-s_{j}(\alpha)=\gamma_{j}-\alpha$ is bijective, and so one finds as above that

$$
\sum_{\left.a \in C_{j k} \cup N_{j k} \alpha\right|_{t_{i, c}}=0 \quad \text { provided } \quad 1 \leq j<k \leq i \quad \text { or } \quad 1 \leq j \leq i<k \leq r . ~ . ~}^{1 \leq m} .
$$

Now, in view of (2.12a), (2.21a) and (2.34),

$$
\begin{aligned}
\Phi^{+}-\Phi_{i}^{+}={ }^{\prime} C_{0}^{(i)} \cup \underset{1 \leq j \leq i}{\cup}\left(C_{j} \cup N_{j}\right) \cup \underset{1 \leq j<k \leq i}{\cup}\left(C_{j k} \cup N_{j k}\right) \\
\cup \underset{1 \leq j \leq i<k \leq r}{\cup}\left(C_{j k} \cup N_{j k}\right) \cup\left\{\gamma_{1}, \ldots, \gamma_{1}\right\} .
\end{aligned}
$$

Thus we conclude that

$$
\left.\sum_{\alpha \in \Phi^{+}-\Phi_{i}^{+}} \alpha\right|_{t_{i, c}}=0
$$

and hence that

$$
\left.\sum_{\alpha \in \Phi^{+}} \alpha\right|_{t_{i, c}}=\left.\sum_{\alpha \in \Phi_{i}^{+}} \alpha\right|_{t_{i, c}},
$$

which implies the lemma.
Proof of Proposition 4.38. As noted after Corollary 4.39, it is sufficient to show that

$$
\int_{A_{(i)}^{+}} \chi_{\bar{z}}\left(\pi_{0}(a)^{-2}\right) D_{i}(a) d a<\infty \quad(1 \leq i \leq r-1) .
$$

Let $X=\sum_{j=i+1}^{r} x_{j}\left(X_{j}+X_{-j}\right) \in \mathfrak{a}_{(i)}^{+} \quad$ and put $\quad H(X)=2 \sum_{j=i+1}^{r} \log \left(\cosh x_{j}\right) H_{j}$. Then, since $\pi_{0}(\exp X)=\exp \left(-\sum_{j=i+1}^{r} \log \left(\cosh x_{j}\right) H_{j}\right)$ by (2.19), it follows from our normalization of the measure $d a$ that

$$
\begin{equation*}
\int_{A_{i t}^{+}} \chi_{\lambda}\left(\pi_{0}(a)^{-2}\right) D_{i}(a) d a=\int_{A_{i)}^{+}} \chi_{\lambda}(\exp H(X)) D_{i}(\exp X) d X \tag{4.42}
\end{equation*}
$$

Here, according to (2.36),

$$
\begin{align*}
& D_{i}(\exp X)=2^{r-i} \prod_{i+1 \leq j \leq r}\left(\sinh x_{j}\right)^{2 v+1}\left(\cosh x_{j}\right) \tag{4.43}\\
& \prod_{i+1 \leq j<k \leq r}\left\{\left(\cosh x_{j}\right)^{2}-\left(\cosh x_{k}\right)^{2}\right\}^{u} .
\end{align*}
$$

If we define, for $H \in t_{i, e}$,

$$
\Delta(\exp H)=\prod_{\alpha \in \Phi_{i, c}^{+}-C_{0}^{(i)}\left\{e^{\alpha(H) / 2}-e^{-\alpha(H) / 2}\right\}}
$$

($C_{o}^{(i)}$ is as in (2.21a)), then using (2.12ab) we get

$$
\Delta(\exp H(X))=\prod_{i+1 \leq j \leq r}\left\{\frac{\left(\sinh x_{j}\right)^{2}}{\cosh x_{j}}\right\}^{v} \prod_{i+1 \leq j<k \leq r}\left\{\frac{\left(\cosh x_{j}\right)^{2}-\left(\cosh x_{k}\right)^{2}}{\cosh x_{j} \cosh x_{k}}\right\}^{u}
$$

This combined with (4.43) gives

$$
D_{i}(\exp X)=2^{r-i} \Delta(\exp H(X)) \prod_{i+1 \leq j \leq r}\left(\sinh x_{j}\right)\left(\cosh x_{j}\right)^{1+v+u(r-i-1)} .
$$

But

$$
1+v+u(r-i-1)=\left\langle 2 \delta_{i, n}, H_{j}\right\rangle-1 \quad \text { for all } \quad i+1 \leq j \leq r
$$

In fact, by (2.12b), (2.21a) and (3.15),

$$
\begin{aligned}
\left\langle 2 \delta_{i, n}, H_{j}\right\rangle & =\left\langle\sum_{i+1 \leq j \leq r} \gamma_{j}+u \sum_{i+1 \leq j<k \leq r} \frac{1}{2}\left(\gamma_{j}+\gamma_{k}\right)+v \sum_{i+1 \leq j \leq r} \frac{1}{2} \gamma_{j}, H_{j}\right\rangle \\
& =\left(1+\frac{1}{2} u(r-i-1)+\frac{1}{2} v\right)\left\langle\sum_{i+1 \leq j \leq r} \gamma_{j}, H_{j}\right\rangle \\
& =2+u(r-i-1)+v .
\end{aligned}
$$

Hence

$$
\begin{equation*}
D_{i}(\exp X)=2^{r-i} \Delta(\exp H(X)) \prod_{i+1 \leq j \leq r} \sinh x_{j}\left(\cosh x_{j}\right)^{\left\langle 2 \delta_{i, n}, H_{j}\right\rangle-1} \tag{4.44}
\end{equation*}
$$

On the other hand, using the same argument as in the proof of Lemma 25 of Harish-Chandra [9], one derives from Weyl's character formula the identity

$$
\chi_{\bar{x}}(\exp H) \Delta(\exp H)
$$

$$
\begin{equation*}
=\left\{w_{0} \prod_{\alpha \in C_{0}^{(i)}}\left\langle\delta_{0}, H_{\alpha}\right\rangle\right\}^{-1} \sum_{s \in W_{i}} \varepsilon(s)\left\{\prod_{\alpha \in C_{0}^{(i)}}\left\langle\lambda+\delta_{i, c}, s H_{\alpha}\right\rangle\right\} e^{\left\langle\lambda+\delta_{i, c}, s H\right\rangle} \tag{4.45}
\end{equation*}
$$

for all $H \in \sum_{j=i+1}^{r} \boldsymbol{C} H_{j}$; here W_{i} denotes the Weyl group of $\left(\mathfrak{f}_{i, e}, \mathrm{t}_{i, e}\right)$, w_{0} the order of the subgroup of W_{i} generated by Weyl reflections corresponding to the roots in $C_{0}^{(i)}, \varepsilon(s)$ the sign of s, and $\delta_{0}=\frac{1}{2} \sum_{\alpha \in C_{0}^{(i)}} \alpha$.

Now, since $\mathfrak{f}_{i, c}$ normalizes \mathfrak{p}_{i}^{+}, each element of W_{i} permutes the members of $\Phi_{i, n}^{+}$and leaves $2 \delta_{i, n}$ invariant. Thus if we put, for each $s \in W_{i}$,

$$
C(\lambda, s)=2^{r-i} \varepsilon(s)\left\{w_{0} \prod_{\alpha \in C_{0}^{(i)}}\left\langle\delta_{0}, H_{\alpha}\right\rangle\right\}^{-1} \prod_{\alpha \in C_{0}^{(i)}}\left\langle\lambda+\delta_{i, c}, s H_{\alpha}\right\rangle,
$$

then, since $\delta_{i}=\delta_{i, c}+\delta_{i, n}$, it follows from (4.44) and (4.45) that

$$
\begin{align*}
& \chi_{\bar{\lambda}}(\exp H(X)) D_{i}(\exp X) \tag{4.46}\\
& \quad=\sum_{s \in W_{i}} C(\lambda, s) \prod_{i+1 \leq j \leq r} \sinh x_{j}\left(\cosh x_{j}\right)^{\left.2<\lambda+\delta_{i}, s H_{j}\right\rangle-1} .
\end{align*}
$$

If we make the change of variables $y_{j}=\left(\cosh x_{j}\right)^{-1}$ then, in view of $(2.35 \mathrm{~b}), \mathfrak{a}_{(i)}^{+}$ corresponds to the region $\left\{\sum_{j=i+1}^{r} y_{j}\left(X_{j}+X_{-j}\right) ; 0<y_{i+1}<y_{i+2}<\cdots<y_{r}<1\right\}$. We denote this region by \mathfrak{b} and put $d y=d y_{i+1} \cdots d y_{r}$. Then we conclude from (4.42) and (4.46) that

$$
\begin{equation*}
\int_{A_{i i}^{+}} \chi_{\hat{\lambda}}\left(\pi_{0}(a)^{-2}\right) D_{i}(a) d a=\sum_{s \in W_{i}} C(\lambda, s) \int_{\mathfrak{b}} \prod_{i+1 \leq j \leq r} y_{j}^{-2\left\langle\lambda+\delta_{i}, s H_{j}\right\rangle-1} d y . \tag{4.47}
\end{equation*}
$$

Now Lemma 4.41 implies $\left\langle\lambda+\delta_{i}, s H_{j}\right\rangle=\left\langle\lambda+\delta, s H_{j}\right\rangle$ for all $s \in W_{i}$ and $i+1 \leq j$ $\leq r$, while, according to Lemma 3.16, $\left\langle\lambda+\delta, H_{\alpha}\right\rangle<0$ for every $\alpha \in \Phi_{i, n}^{+}$. Since $\Phi_{i, n}^{+}$is invariant under each $s \in W_{i}$, it then follows that $\left\langle\lambda+\delta_{i}, s H_{j}\right\rangle<0$ for all $s \in W_{i}$ and $i+1 \leq j \leq r$. From this it is now clear that the right-hand side of (4.47) is finite, thus finishing the proof of the proposition.

Finally we observe that

$$
\begin{equation*}
\text { the representation }\left(T_{\lambda}, H^{2}(\mathscr{D}, \lambda)\right) \text { is irreducible. } \tag{4.48}
\end{equation*}
$$

In fact the proof in Kunze [19] can be modified slightly to cover this case. Alternatively, one may proceed by a standard method as follows. Let \mathfrak{G} be a nonzero closed invariant subspace of $H^{2}(\mathscr{D}, \lambda)$. Take a function $F \in \mathfrak{G}$ such that $F(o) \neq 0$ and let T^{1} be the central subgroup of K as in the proof of Lemma 4.29. Then, for $t \in T^{1}$, the function $z \rightarrow \tau_{\lambda}(t)\left(T_{\lambda}(t)^{-1} F\right)(z)$ again lies in \mathfrak{G} because $\tau_{\lambda}(t)$ is a scalar operator. Hence the function $\int_{T^{1}} \tau_{\lambda}(t)\left(T_{\lambda}(t)^{-1} F\right) d t$, being the limit of a sum in \mathfrak{G}, also belongs to \mathfrak{G}. Since $\tau_{\lambda}(t)\left(T_{\lambda}(t)^{-1} F\right)(z)=F(t \cdot z)$ and since $\int_{T^{1}} F(t \cdot z) d t=F(o)$ (cf. (4.30)), we then see that the constant function $z \rightarrow F(o)$ belongs to \mathfrak{G}; hence $\mathbf{1}_{\lambda} \in \mathfrak{G}$. If the orthogonal complement \mathfrak{G}^{\perp} of \mathfrak{H} is nonzero, the above argument shows that $\mathbf{1}_{\lambda}$ is also in \mathfrak{S}^{\perp}, which is a contradiction; this gives (4.48).

The results obtained above can be summarized as follows:
4.49. Theorem. For any $\lambda \in \mathscr{F}_{i}(G)(1 \leq i \leq r), H^{2}(\mathscr{D}, \lambda)$ is nonzero and $\left(T_{\lambda}, H^{2}(\mathscr{D}, \lambda)\right)$ is an irreducible unitary representation of G. Furthermore $\left(T_{\lambda}, H^{2}(\mathscr{D}, \lambda)\right)$ is unitarily equivalent to a subrepresentation of $\left(U_{\lambda}, L^{2}\left(G, \sigma_{\lambda}\right)\right)$.

For later use, we mention here other realization of $\left(T_{\lambda}, H^{2}(\mathscr{D}, \lambda)\right)$. Let

$$
\mathcal{O}\left(G, \tau_{\lambda}\right)=\left\{\begin{array}{ll}
f \in C^{\infty}\left(G, E_{\lambda}\right) ; & f(g k)=\tau_{\lambda}(k)^{-1} f(g), \quad g \in G, \quad k \in K, \\
& r(X) f=0 \text { for all } X \in \mathfrak{p}^{-}
\end{array}\right\}
$$

where $r(X)$ is as in (4.19). For $F \in \mathcal{O}\left(\mathscr{D}, E_{\lambda}\right)$, define a function $\mathscr{J}_{\lambda} F: G \rightarrow E_{\lambda}$ by

$$
\begin{equation*}
\mathscr{J}_{\lambda} F(g)=J_{\lambda}(g, o)^{-1} F(g \cdot o), \quad g \in G . \tag{4.50}
\end{equation*}
$$

Then (cf. Baily and Borel [1], p. 493) $\mathscr{J}_{\lambda} F$ lies in $\mathcal{O}\left(G, \tau_{\lambda}\right)$ and the resulting mapping $\mathscr{J}_{\lambda}: \mathcal{O}\left(\mathscr{D}, E_{\lambda}\right) \rightarrow \mathcal{O}\left(G, \tau_{\lambda}\right)$ is bijective. We put

$$
\begin{equation*}
H^{2}\left(G, \tau_{\lambda}\right)=\mathscr{J}_{\lambda}\left(H^{2}(\mathscr{D}, \lambda)\right) \tag{4.51a}
\end{equation*}
$$

One can define an inner product on $H^{2}\left(G, \tau_{\lambda}\right)$ so that $\mathscr{J}_{\lambda}\left(\right.$ restricted to $\left.H^{2}(\mathscr{D}, \lambda)\right)$ is a unitary isomorphism. Via $\mathscr{J}_{\lambda},\left(T_{\lambda}, H^{2}(\mathscr{D}, \lambda)\right)$ may be transported to a unitary representation of G on $H^{2}\left(G, \tau_{\lambda}\right)$. We observe that the transport of T_{λ} to $H^{2}\left(G, \tau_{\lambda}\right)$ is given by left translation:

$$
\begin{equation*}
\left(T_{\lambda}(g) f\right)\left(g^{\prime}\right)=f\left(g^{-1} g^{\prime}\right), \quad g, g^{\prime} \in G, f \in H^{2}\left(G, \tau_{\lambda}\right) \tag{4.51b}
\end{equation*}
$$

The following lemma will be needed in Section 5. For $X \in \mathfrak{g}_{\boldsymbol{c}}$, we define $l(X)$ as in (4.19).
4.52. Lemma. Letting $\mathbf{1}_{\lambda}$ be the constant function as in Corollary 4.27, put $\psi_{\lambda}=\mathscr{J}_{\lambda}\left(\mathbf{1}_{\lambda}\right)$. Then ψ_{λ} is K-finite of type τ_{λ}. Moreover ψ_{λ} satisfies $l(H) \psi_{\lambda}$ $=\langle\lambda, H\rangle \psi_{\lambda}$ for $H \in \mathrm{t}_{c}$ and $l\left(X_{\alpha}\right) \psi_{\lambda}=0$ for all positive roots α of $\left(\mathrm{g}_{c}, \mathrm{t}_{\mathrm{c}}\right)$.

Proof. The first assertion is obvious. As for the second, define a function $\tilde{\psi}_{\lambda}: \Omega \rightarrow E_{\lambda}$ by $\tilde{\psi}_{\lambda}(\omega)=J_{\lambda}(\omega, o)^{-1} \boldsymbol{e}_{\lambda}$ where $\Omega=P^{+} K_{\bullet} P^{-}$and \boldsymbol{e}_{λ} is the highest weight vector for τ_{λ}. Then ψ_{λ} is the restriction of $\tilde{\psi}_{\lambda}$ to G. As Ω is open in $G_{\boldsymbol{c}}$, we can define, for $X \in \mathfrak{g}_{\boldsymbol{c}}, l(X) \tilde{\psi}_{\lambda}$ as in (4.19). Since $\tilde{\psi}_{\lambda}$ is clearly holomorphic, it then follows that $l(X) \tilde{\psi}_{\lambda}(\omega)=\left.\frac{d}{d t} \tilde{\psi}_{\lambda}(\exp (-t X) \omega)\right|_{t=0}$ for $\omega \in \Omega, X \in \mathfrak{g}_{c}$. Since \boldsymbol{e}_{λ} is the highest weight vector for τ_{λ}, these observations, together with (2.7), imply the second assertion of the lemma.

5. Imbedding in continuous series

We again fix $i, 1 \leq i \leq r$, and $\lambda \in \mathscr{F}_{i}(G)$. In this section we construct an irreducible unitary representation μ_{λ} of M_{i} and show that the representation $\left(T_{\lambda}\right.$, $H^{2}(\mathscr{D}, \lambda)$), which was constructed in Section 4, is unitarily equivalent to a proper subrepresentation of the induced representation $V_{\lambda}=\operatorname{Ind}_{M_{i} A_{i} N_{i} \uparrow G}\left(\mu_{\lambda} \otimes 1 \otimes 1\right)$ and hence V_{λ} is reducible.

With $\tilde{\lambda}, E_{\chi}$ being as in (4.1), let

$$
L^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)=\left\{F: \mathscr{C}_{i} \rightarrow E_{\tilde{\lambda}} ; \begin{array}{l}
F \text { Borel measurable, } \tag{5.1a}\\
\|F\|_{\lambda}^{2}=\int_{G_{i}}\left|J_{\lambda}\left(g_{i} c_{i}, o\right)^{-1} F\left(g_{i} \cdot o_{i}\right)\right|^{2} d g_{i}<\infty
\end{array}\right\},
$$

and let

$$
\begin{equation*}
H^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)=L^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right) \cap \mathcal{O}\left(\mathscr{C}_{i}, E_{\bar{\lambda}}\right) \tag{5.1b}
\end{equation*}
$$

where \mathscr{C}_{i} is the boundary component containing o_{i} and $\mathcal{O}\left(\mathscr{C}_{i}, E_{\bar{\chi}}\right)$ denotes the
space of all $E_{\boldsymbol{\lambda}}$-valued holomorphic functions on \mathscr{C}_{i}. Then $L^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)$ (functions which are equal almost everywhere being identified) is a Hilbert space with inner product

$$
\left(F, F^{\prime}\right)=\int_{G_{i}}\left(J_{\lambda}\left(g_{i} c_{i}, o\right)^{-1} F\left(g_{i} \cdot o_{i}\right), J_{\lambda}\left(g_{i} c_{i}, o\right)^{-1} F^{\prime}\left(g_{i} \cdot o_{i}\right)\right) d g_{i} .
$$

Given $F \in L^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)$ and $g \in G_{i}$, define $T_{\lambda}(g) F: \mathscr{C}_{i} \rightarrow E_{\lambda}$ by

$$
\begin{equation*}
\left(T_{\lambda}(g) F\right)(z)=J_{\lambda}\left(g^{-1}, z\right)^{-1} F\left(g^{-1} \cdot z\right), \quad z \in \mathscr{C}_{i} . \tag{5.2}
\end{equation*}
$$

Then, as follows from $4.25(1)$ and the definition of $E_{\lambda}, T_{\lambda}(g) F$ takes values in $E_{\bar{\lambda}}$, and it is easily seen that T_{χ} defines a unitary representation of G_{i} on $L^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)$ and $H^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)$ is an invariant subspace. Therefore, arguing as in Section 4, one finds that the norm convergence in $H^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)$ implies uniform convergence on every compact subset of \mathscr{C}_{i} and hence $H^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)$ is a closed subspace of $L^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)$.

5.3. Lemma. $\quad H^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right) \neq\{0\}$.

Proof. Let $\mathbf{1}_{\lambda}$ be the constant function on $\overline{\mathscr{D}}$ as in Corollary 4.27. The restriction of $\mathbf{1}_{\lambda}$ to \mathscr{C}_{i}, which we denote again by $\mathbf{1}_{\lambda}$, clearly lies in $\mathcal{O}\left(\mathscr{C}_{i}, E_{\bar{\lambda}}\right)$. Therefore, to prove the lemma, it suffices to show that $\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}<\infty$. If $i \neq r$ then, using the integration formula (2.37) and carrying over the similar computation as in the proof of Proposition 4.24, we get

$$
\begin{aligned}
\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{2} & =\int_{K_{i} \times A_{(i)}^{+} \times K_{i}}\left|J_{\lambda}\left(k_{1} a k_{2} c_{i}, o\right)^{-1} \boldsymbol{e}_{\lambda}\right|^{2} D_{i}(a) d k_{1} d a d k_{2} \\
& =\beta_{i}^{2} \int_{K_{i} \times A_{(i)}^{+}}\left|J_{\lambda}(a, o)^{-1} \tau_{\lambda}\left(k_{1}\right)^{-1} \boldsymbol{e}_{\lambda}\right|^{2} D_{i}(a) d k_{1} d a \\
& =\beta_{i}^{2} d(\tilde{\lambda})^{-1} \int_{A_{(i)}^{+}} \chi_{\lambda}\left(\pi_{0}(a)^{-2}\right) D_{i}(a) d a \\
& =d(\lambda) d(\tilde{\lambda})^{-1}\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{2} \quad \quad \text { by Corollary 4.27) } .
\end{aligned}
$$

Likewise, also in the case $i=r$, we obtain $\left\|\mathbf{1}_{\lambda}\right\|_{\bar{\lambda}}^{2}=d(\lambda) d(\tilde{\lambda})^{-1}\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{2}$. Since $\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}$ $<\infty$ by Proposition 4.38, the lemma follows.

Let ${ }^{\prime} \tau_{\lambda}^{(i)}$ be the irreducible unitary representation of L_{i} on E_{λ} defined by (4.9) and form the unitarily induced representation $\tilde{\mu}_{\lambda}=\operatorname{Ind}_{L_{i} \uparrow M_{i}}{ }^{\prime} \tau_{\lambda}^{(i)}$. We denote by $L^{2}\left(M_{i},{ }^{\prime} \tau_{\lambda}^{(i)}\right)$ the representation space of $\tilde{\mu}_{\lambda}$. Since $M_{i}=F_{i} I_{i} G_{i}^{\prime} G_{i}$, and since $F_{i} I_{i} G_{i}^{\prime}$ acts trivially on $\mathscr{C}_{i}=M_{i} / L_{i}=G_{i} / K_{i}$ (cf. 2.28), M_{i} preserves every $G_{i}-$ invariant measure on $\mathscr{C}_{\boldsymbol{i}}$. Thus we may take

$$
L^{2}\left(M_{i},{ }^{\prime} \tau_{\lambda}^{(i)}\right)=\left\{\begin{array}{c}
f \text { Borel measurable, } \tag{5.4a}\\
f: M_{i} \rightarrow E_{\lambda} ; \\
f(m l)={ }^{\prime} \tau_{\lambda}^{(i)}(l)^{-1} f(m), m \in M_{i}, l \in L_{i}, \\
\int_{G_{i}}\left|f\left(g_{i}\right)\right|^{2} d g_{i}<\infty
\end{array}\right\}
$$

and $\tilde{\mu}_{\lambda}$ acts by left translation. We also define

$$
\begin{align*}
& H^{2}\left(M_{i},{ }^{\prime} \tau_{\lambda}^{(i)}\right) \\
& \quad=L^{2}\left(M_{i}, \tau_{\lambda}^{(i)}\right) \cap\left\{f \in C^{\infty}\left(M_{i}, E_{\bar{\lambda}}\right) ; r(X) f=0 \text { for all } X \in \mathfrak{p}_{i}^{-}\right\} \tag{5.4b}
\end{align*}
$$

where $\mathfrak{p}_{i}^{-}=\mathfrak{g}_{i, \boldsymbol{c}} \cap \mathfrak{p}^{-}$, and $r(X) f$ is defined similarly as in (4.19). Then it is clear that the subspace $H^{2}\left(M_{i},{ }^{\prime} \tau_{\lambda}^{(i)}\right)$ is invariant under the representation $\tilde{\mu}_{\lambda}$.

Now, for $F \in L^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)$, define $\mathscr{J}_{\lambda} F: M_{i} \rightarrow E_{\tilde{\lambda}}$ by

$$
\begin{equation*}
\mathscr{J}_{\lambda} F(m)=J_{\lambda}\left(m c_{i}, o\right)^{-1} F\left(m \cdot o_{i}\right), \quad m \in M_{i} . \tag{5.5}
\end{equation*}
$$

(Since $M_{i}=F_{i} I_{i} G_{i}^{\prime} G_{i}$, Lemmas 4.5 (1) and 4.25 ensure that $\mathscr{J}_{\lambda} F$ actually takes values in E_{λ}.) Then, for $m \in M_{i}$ and $l \in L_{i}$, we have

$$
\begin{aligned}
\mathscr{J}_{\lambda} F(m l) & =J_{\lambda}\left(m l c_{i}, o\right)^{-1} F\left(m l \cdot o_{i}\right) \\
& =J_{\lambda}\left(m c_{i} c_{i}^{-1} l c_{i}, o\right)^{-1} F\left(m \cdot o_{i}\right) \\
& =J_{\lambda}\left(c_{i}^{-1} l c_{i}, o\right)^{-1} J_{\lambda}\left(m c_{i}, o\right)^{-1} F\left(m \cdot o_{i}\right) \\
& =\tau_{\lambda}^{(i)}(l)^{-1} \mathscr{J}_{\lambda} F(m),
\end{aligned}
$$

and so it follows that $\mathscr{J}_{\lambda} F \in L^{2}\left(M_{i},{ }^{\prime} \tau_{\lambda}^{(i)}\right)$. Therefore one finds without difficulty that the mapping $\mathscr{J}_{\lambda}: L^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right) \rightarrow L^{2}\left(M_{i}, \tau_{\lambda}^{(i)}\right)$ is a surjective isometry.
5.6. Lemma. The subspace $H^{2}\left(M_{i},{ }^{\prime} \tau_{\lambda}^{(i)}\right)$ of $L^{2}\left(M_{i},{ }^{\prime} \tau_{\lambda}^{(i)}\right)$ is closed, nonzero and corresponds to the subspace $H^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)$ under the unitary isomorphism $\mathscr{J}_{\lambda}: L^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right) \rightarrow L^{2}\left(M_{i}, \tau_{\lambda}^{(i)}\right)$.

Proof. In view of Lemma 5.3, it suffices to show that $F \in C^{\infty}\left(\mathscr{C}_{i}, E_{\bar{\lambda}}\right)$ is holomorphic if and only if $r(X) \mathscr{J}_{\bar{\lambda}} F=0$ for all $X \in \mathfrak{p}_{i}^{-}\left(\mathscr{J}_{\lambda} F\right.$ stands for the function defined by (5.5)). But this follows from an argument similar to that used in proving Lemma 4.20.
5.7. Lemma. The restriction of the representation $\tilde{\mu}_{\lambda}$ to the subspace $H^{2}\left(M_{i}, \tau_{\lambda}^{(i)}\right)$ is irreducible.

Proof. By means of the unitary isomorphism $\mathscr{J}_{\lambda}: L^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right) \rightarrow L^{2}\left(M_{i},{ }^{\prime} \tau_{\lambda}^{(i)}\right)$, $\tilde{\mu}_{\lambda}$ may be transported to a unitary representation of M_{i} on $L^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)$. It is easy to see that the transport of $\tilde{\mu}_{\lambda}$ to $L^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)$ is given by

$$
\left(\tilde{\mu}_{\lambda}(m) F\right)(z)=J_{\lambda}\left(m^{-1}, z\right)^{-1} F\left(m^{-1} \cdot z\right), \quad F \in L^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right), m \in M_{i}, z \in \mathscr{C}_{i} .
$$

Now to prove the lemma it is enough to show that the representation ($\tilde{\mu}_{\lambda}$, $\left.H^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)\right)$ of M_{i} is irreducible on the subgroup G_{i}. But this follows as in the proof of (4.48).

Let μ_{λ} denote the restriction of $\tilde{\mu}_{\lambda}$ to $H^{2}\left(M_{i}, \tau_{\lambda}^{(i)}\right)$. Then by the above lemma μ_{λ} is an irreducible unitary representation of M_{i}. For each $v \in \mathfrak{a}_{i}^{*}$, we define an irreducible unitary representation $\mu_{\lambda} \otimes e^{\sqrt{-1} v} \otimes 1$ of $P_{i}=M_{i} A_{i} N_{i}$ on $H^{2}\left(M_{i}, \tau_{\lambda}^{(i)}\right)$ by

$$
\left(\mu_{\lambda} \otimes e^{\sqrt{-1 v}} \otimes 1\right)(\text { man })=\mu_{\lambda}(m) e^{\sqrt{-1} v}(a), \quad \text { man } \in M_{i} A_{i} N_{i}
$$

and form the continuous series representation

$$
V_{\lambda, v}=\operatorname{Ind}_{M_{i} A_{i} N_{i} \uparrow G}\left(\mu_{\lambda} \otimes e^{\sqrt{-1} v} \otimes 1\right)
$$

Let $\mathfrak{H}_{\lambda, v}$ denote the representation space of $V_{\lambda, v}$. Then, in view of (2.39) and (2.43), we may take

$$
\mathfrak{S}_{\lambda, v}=\left\{\begin{array}{ll}
& \Psi \text { Borel measurable, } \\
\Psi: G \rightarrow H^{2}\left(M_{i}, \tau_{\lambda}^{(i)}\right) ; & \Psi(g m a n)=\left\{e^{\rho_{i}+\sqrt{-1} v}(a) \mu_{\lambda}(m)\right\}^{-1} \Psi(g), \\
& \|\Psi\|^{2}=\int_{K}\|\Psi(k)\|^{2} d k<\infty
\end{array}\right\}
$$

Next we show that the representation ($V_{\lambda, v}, \mathfrak{G}_{\lambda, v}$) is unitarily equivalent to a subrepresentation of $\left(U_{\lambda, v}, L^{2}\left(G, \sigma_{\lambda, v}\right)\right)$ defined by (4.11). For this purpose we consider the space

$$
\begin{align*}
& C_{2}^{\infty}\left(G, \sigma_{\lambda, v} ; \mathfrak{p}_{i}^{-}\right) \\
& \quad=L^{2}\left(G, \sigma_{\lambda, v}\right) \cap\left\{f \in C^{\infty}\left(G, E_{\bar{\lambda}}\right) ; r(X) f=0 \text { for all } X \in \mathfrak{p}_{\bar{i}}^{-}\right\} . \tag{5.8}
\end{align*}
$$

The closure of $C_{2}^{\infty}\left(G, \sigma_{\lambda, v} ; \mathfrak{p}_{i}^{-}\right)$in $L^{2}\left(G, \sigma_{\lambda, v}\right)$, which we denote by $L^{2}\left(G, \sigma_{\lambda, v} ; \mathfrak{p}_{i}^{-}\right)$, is clearly a closed, $U_{\lambda, v}$-stable subspace.
5.9. Proposition. For every $v \in \mathfrak{a}_{i}^{*}$, the representation $\left(V_{\lambda, v}, \mathfrak{H}_{\lambda, v}\right)$ of G is unitarily equivalent to $\left(U_{\lambda, v}, L^{2}\left(G, \sigma_{\lambda, v} ; \mathfrak{p}_{i}^{-}\right)\right)$.

Proof. For $f \in C_{2}^{\infty}\left(G, \sigma_{\lambda, v} ; \mathfrak{p}_{i}^{-}\right)$and $g \in G$, define $f_{g}: M_{i} \rightarrow E_{\lambda}$ by $f_{g}(m)$ $=f(g m)$. It is easily checked that $f_{g} \in H^{2}\left(M_{i},{ }^{\prime} \tau_{\lambda}^{(i)}\right)$. Next define $\Psi_{f}: G \rightarrow$ $H^{2}\left(M_{i},{ }^{\prime} \tau_{\lambda}^{(i)}\right)$ by $\Psi_{f}(g)=f_{g}$. Then we claim:

$$
\begin{equation*}
\Psi_{f} \in \mathfrak{F}_{\lambda, v} \quad \text { and } \quad\left\|\Psi_{f}\right\|=\|f\| . \tag{5.10}
\end{equation*}
$$

Indeed if $\operatorname{man} \in M_{i} A_{i} N_{i}$ then, for $m_{1} \in M_{i}$,

$$
\begin{aligned}
& \Psi_{f}(g m a n)\left(m_{1}\right)=f\left(\operatorname{gmanm}_{1}\right)=f\left(g m m_{1} a m_{1}^{-1} n m_{1}\right) \\
&=e^{-\rho_{i}-\sqrt{-1 v}}(a) f_{g}\left(m m_{1}\right) \\
&=e^{-\rho_{i}-\sqrt{-1} v}(a)\left(\mu_{\lambda}(m)^{-1} f_{g}\right)\left(m_{1}\right) \\
&=\left[e_{1}^{-1} n m_{1} \in N_{i}\right) \\
&-\rho_{i}-\sqrt{-1 v} \\
&\left.a) \mu_{\lambda}(m)^{-1} \Psi_{f}(g)\right]\left(m_{1}\right) .
\end{aligned}
$$

Moreover

$$
\begin{aligned}
\left\|\Psi_{f}\right\|^{2}=\int_{K}\left\|\Psi_{f}(k)\right\|^{2} d k & =\int_{K}\left\{\int_{G_{i}}\left|f_{k}\left(g_{i}\right)\right|^{2} d g_{i}\right\} d k \\
& =\int_{K \times G_{i}}\left|f\left(k g_{i}\right)\right|^{2} d k d g_{i}=\|f\|^{2} .
\end{aligned}
$$

This implies the claim (5.10).
In view of (5.10), one can define an isometry \mathscr{R} of $L^{2}\left(G, \sigma_{\lambda, v} ; \mathfrak{p}_{\boldsymbol{i}}^{-}\right)$into $\mathfrak{S}_{\lambda, v}$, satisfying $\mathscr{R}(f)=\Psi_{f}$ for $f \in C_{2}^{\infty}\left(G, \sigma_{\lambda, v} ; \mathfrak{p}_{\boldsymbol{i}}^{-}\right)$. Since it is obvious that \mathscr{R} intertwines $U_{\lambda, v}$ and $V_{\lambda, v}$, the proof of the proposition will be complete when it is established that \mathscr{R} is surjective. For $\phi \in C_{c}^{\infty}(G)$ and $h \in H^{2}\left(M_{i},{ }^{\prime} \tau_{\lambda}^{(i)}\right)$, define $F_{\phi, h}: G \rightarrow H^{2}\left(M_{i},{ }^{\prime} \tau_{\lambda}^{(i)}\right)$ by

$$
F_{\phi, h}(g)=\int_{P_{i}} \rho(p)^{-1 / 2} \phi(g p)\left[\left(\mu_{\lambda} \otimes e^{\sqrt{-1} v} \otimes 1\right)(p)\right] h d p, \quad g \in G
$$

(ρ is the rho-function in (2.39)), and further define $f_{\phi, h}: G \rightarrow E_{\lambda}$ by $f_{\phi, h}(g)$ $=\left(F_{\phi, h}(g)\right)(e)\left(e=\right.$ identity of $\left.M_{i}\right)$. We are going to show that

$$
\begin{equation*}
f_{\phi, h} \in C_{2}^{\infty}\left(G, \sigma_{\lambda, v} ; \mathfrak{p}_{i}^{-}\right) \quad \text { and } \quad \mathscr{R}\left(f_{\phi, h}\right)=F_{\phi, h} . \tag{5.11}
\end{equation*}
$$

Since $F_{\phi, h}\left(\phi \in C_{c}^{\infty}(G), h \in H^{2}\left(M_{i},{ }^{\prime} \tau_{\lambda}^{(i)}\right)\right)$ span a dense subspace of $\mathfrak{S}_{\lambda, v}$ (cf. Warner [30], p. 371), this will imply that $\mathscr{R}: L^{2}\left(G, \sigma_{\lambda, v} ; \mathfrak{p}_{\boldsymbol{i}}^{-}\right) \rightarrow \mathfrak{G}_{\lambda, v}$ is surjective and, in view of our earlier remark, thus serve to complete the proof of the proposition.

First observe that if $\operatorname{lan} \in S_{i}=L_{i} A_{i} N_{i}$, then

$$
\begin{aligned}
f_{\phi, h}(\text { glan }) & =\left[e^{-\rho_{i}-\sqrt{-1} v}(a) \mu_{\lambda}(l)^{-1} F_{\phi, h}(g)\right](e) \\
& =e^{-\rho_{i}-\sqrt{-1} v}(a)^{\prime} \tau_{\lambda}^{(i)}(l)^{-1}\left[\left(F_{\phi, h}(g)\right)(e)\right] \\
& =\sigma_{\lambda, v}(l a n)^{-1} f_{\phi, h}(g)
\end{aligned}
$$

for $g \in G$. Since convergence in $H^{2}\left(M_{i},{ }^{\prime} \tau_{\lambda}^{(i)}\right)$ implies uniform convergence on every compact subset of M_{i}, we have, for $m \in M_{i}$,

$$
\left(F_{\phi, h}(g)\right)(m)=\int_{P_{i}} \rho(p)^{-1 / 2} \phi(g p)\left[\left(\mu_{\lambda} \otimes e^{\sqrt{-1 v}} \otimes 1\right)(p) h\right](m) d p
$$

which in particular implies $f_{\phi, h} \in C^{\infty}\left(G, E_{\lambda}\right)$. Now

$$
\begin{equation*}
f_{\phi, h}(g m)=\left(\mu_{\lambda}(m)^{-1} F_{\phi, h}(g)\right)(e)=\left(F_{\phi, h}(g)\right)(m) \tag{5.12}
\end{equation*}
$$

for $g \in G, m \in M_{i}$. Thus, and since $r(X)\left(F_{\phi, h}(g)\right)=0$ for $X \in \mathfrak{p}_{i}^{-}$, it follows that $r(X) f_{\phi, h}=0$ for all $X \in \mathfrak{p}_{\boldsymbol{i}}^{-}$. Furthermore

$$
\begin{aligned}
\int_{K \times G_{i}}\left|f_{\phi, h}\left(k g_{i}\right)\right|^{2} d k d g_{i} & =\int_{K \times G_{i}}\left|\left(F_{\phi, h}(k)\right)\left(g_{i}\right)\right|^{2} d k d g_{i} \\
& =\int_{K}\left\|F_{\phi, h}(k)\right\|^{2} d k<\infty
\end{aligned}
$$

These observations show that $f_{\phi, h} \in C_{2}^{\infty}\left(G, \sigma_{\lambda, v} ; \mathfrak{p}_{i}^{-}\right)$. Also (5.12) implies $\mathscr{R}\left(f_{\phi, h}\right)$ $=F_{\phi, n}$. This establishes (5.11) and completes the proof.

We write $V_{\lambda}, \mathfrak{S}_{\lambda}$ for $V_{\lambda, 0}, \mathfrak{G}_{\lambda, 0}$ (the case $v=0$). According to Harish-Chandra's irreducibility criterion [10, Lemma 3, p. 145] of the representations induced from a parabolic subgroup of G, the representations $V_{\lambda_{,}, v}=\operatorname{Ind}_{M_{i} A_{i} N_{i} \uparrow G}\left(\mu_{\lambda} \otimes e^{\sqrt{-1} v} \otimes 1\right)$ are irreducible for all $\nu \neq 0$, at least for the case that the representation μ_{λ} of M_{i} is square-integrable (this is the case when $i=1$; cf. Knapp and Okamoto [15]). However, for the exceptional case $V_{\lambda}\left(=V_{\lambda, 0}\right)$, we have
5.13. Theorem. The representation $\left(T_{\lambda}, H^{2}(\mathscr{D}, \lambda)\right)$ which was constructed in Section 4 is unitarily equivalent to a proper subrepresentation of $\left(V_{\lambda}, \mathfrak{S}_{\lambda}\right)$, and consequently $\left(V_{\lambda}, \mathfrak{H}_{\lambda}\right)$ is reducible.

In order to prove this theorem we need some notation and a lemma. Letting $\mathfrak{g}_{i}^{\prime}$ be as in 2.20, put $\mathfrak{f}_{i}^{\prime}=\mathfrak{g}_{i}^{\prime} \cap \mathfrak{f}, \mathfrak{p}_{i}^{\prime}=\mathfrak{g}_{i}^{\prime} \cap \mathfrak{p}$. Then $\mathfrak{g}_{i}^{\prime}=\mathfrak{f}_{i}^{\prime}+\mathfrak{p}_{i}^{\prime}$ is a Cartan decomposition and we have a corresponding decomposition of the complexification $\mathfrak{g}_{i, c}^{\prime}=\mathfrak{f}_{i, c}^{\prime}+\mathfrak{p}_{i, c}^{\prime}$. Let K_{i}^{\prime} be the analytic subgroup of G_{i}^{\prime} with Lie algebra $\mathfrak{f}_{i}^{\prime}$ and let $K_{M_{i}}=K \cap M_{i}$. Then, since $K_{i}^{\prime}=G_{i}^{\prime} \cap K$, (2.26) implies $K_{M_{i}}=F_{i} I_{i} K_{i} K_{i}^{\prime}$.
5.14. Lemma. Let B_{i} be the analytic subgroup of T with Lie algebra $\sqrt{-1} \boldsymbol{R}\left(H_{1}+\cdots+H_{i}\right)$. Then B_{i} is isomorphic to a circle group. Furthermore B_{i} commutes with $K_{M_{i}}$.

Proof. As is easily seen, $\operatorname{Ad}\left(\exp \left(2 \pi \sqrt{-1}\left(H_{1}+\cdots+H_{i}\right)\right)\right)$ operates on g_{o} as the identity, whence the first assertion follows. As for the second assertion, it suffices to show that B_{i} commutes with K_{i}^{\prime} since B_{i} commutes with $F_{i} I_{i} K_{i}$. For this it will be enough to show that $H_{1}+\cdots+H_{i}$ commutes with $\mathfrak{f}_{i, c}^{\prime}$. Since $\mathfrak{g}_{i, c}^{\prime}=\operatorname{Ad}\left(c_{i}\right) \mathfrak{g}_{i, c}$ by definition, $\mathfrak{g}_{i, c}^{\prime}$ is spanned by vectors $\operatorname{Ad}\left(c_{i}\right) X_{\alpha}, \operatorname{Ad}\left(c_{i}\right) H_{\alpha}$ with $\alpha \in^{\prime} \Phi_{i}= \pm^{\prime} C_{0}^{(i)} \cup \underset{1 \leq j<k \leq i}{\bigcup}\left(\pm C_{j k}\right)$; cf. 2.20. If $\alpha \in \pm^{\prime} C_{0}^{(i)}$ then $\operatorname{Ad}\left(c_{i}\right) X_{\alpha}$
$=X_{\alpha}, \operatorname{Ad}\left(c_{i}\right) H_{\alpha}=H_{\alpha}$ because every root in C_{0} is strongly orthogonal to all γ_{j} $(1 \leq j \leq r)$; cf. Moore [23]. If α is a root in ' Φ_{i} with $\pi(\alpha)=\frac{1}{2}\left(\gamma_{j}-\gamma_{k}\right)(1 \leq j, k \leq i$, $j \neq k$), then using the formula $\left[X_{-\alpha},\left[X_{\alpha}, X_{\beta}\right]\right]=q(1-p) X_{\beta}$ on p. 143 of [11] (p, q are integers so that $\beta+n \alpha, p \leq n \leq q$, is the α-series containing β) we obtain from (2.18) that

$$
\begin{aligned}
\operatorname{Ad}\left(c_{i}\right) X_{\alpha}= & \frac{1}{2}\left(X_{\alpha}-\left[X_{k},\left[X_{-j}, X_{\alpha}\right]\right]+\left[X_{-j}, X_{\alpha}\right]-\left[X_{k}, X_{\alpha}\right]\right), \\
\operatorname{Ad}\left(c_{i}\right) H_{\alpha}= & H_{\alpha}-\frac{1}{2}\left(\left\langle\gamma_{j}, H_{\alpha}\right\rangle H_{j}+\left\langle\gamma_{k}, H_{\alpha}\right\rangle H_{k}\right) \\
& +\frac{1}{2}\left\langle\gamma_{j}, H_{\alpha}\right\rangle\left(X_{j}+X_{-j}\right)+\frac{1}{2}\left\langle\gamma_{k}, H_{\alpha}\right\rangle\left(X_{k}+X_{-k}\right) .
\end{aligned}
$$

Here $X_{\alpha}-\left[X_{k},\left[X_{-j}, X_{\alpha}\right]\right], H_{\alpha}-\frac{1}{2}\left(\left\langle\gamma_{j}, H_{\alpha}\right\rangle H_{j}+\left\langle\gamma_{k}, H_{\alpha}\right\rangle H_{k}\right) \in \mathfrak{F}_{i, c}^{\prime}$, and $\left[X_{-j}\right.$, $\left.X_{\alpha}\right]-\left[X_{k}, X_{\alpha}\right],\left\langle\gamma_{j}, H_{\alpha}\right\rangle\left(X_{j}+X_{-j}\right)+\left\langle\gamma_{k}, H_{\alpha}\right\rangle\left(X_{k}+X_{-k}\right) \in \mathfrak{p}_{i, c}^{\prime} . \quad$ Thus, and since $\mathfrak{g}_{i, c}^{\prime}=\mathfrak{f}_{i, c}^{\prime}+\mathfrak{p}_{i, c}^{\prime}$ (vector space direct sum), $\mathfrak{f}_{i, \mathrm{c}}^{\prime}$ is spanned by vectors

$$
\left.\begin{array}{l}
X_{\alpha}, H_{\alpha} \quad \text { with } \quad \alpha \in \pm \prime^{\prime} C_{0}^{(i)}, \\
X_{\alpha}-\left[X_{k},\left[X_{-j}, X_{\alpha}\right]\right] \\
H_{\alpha}-\frac{1}{2}\left(\left\langle\gamma_{j}, H_{\alpha}\right\rangle H_{j}+\left\langle\gamma_{k}, H_{\alpha}\right\rangle H_{k}\right)
\end{array}\right\} \text { with } \pi(\alpha)=\frac{1}{2}\left(\gamma_{j}-\gamma_{k}\right), 1 \leq j, k \leq i, j \neq k
$$

As $H_{1}+\cdots+H_{i}$ clearly commutes with these vectors, we conclude that $H_{1}+\cdots$ $+H_{i}$ commutes with $\mathfrak{F}_{i, \boldsymbol{c}}^{\prime}$. This completes the proof of the lemma.

Proof of Theorem 5.13. In order to prove that ($T_{\lambda}, H^{2}(\mathscr{D}, \lambda)$) is unitarily equivalent to a subrepresentation of $\left(V_{\lambda}, \mathfrak{F}_{\lambda}\right)$, it is enough, in view of Proposition 5.9 , to show that the range of the mapping \mathscr{I}_{λ} in (4.37) is contained in $L^{2}\left(G, \sigma_{\lambda}\right.$; $\left.\mathfrak{p}_{i}^{-}\right)$. But this follows from Lemma 4.20 and the definition of $L^{2}\left(G, \sigma_{\lambda} ; \mathfrak{p}_{i}^{-}\right)$.

We have yet to show that ($T_{\lambda}, H^{2}(\mathscr{D}, \lambda)$) is not unitarily equivalent to (V_{λ}, \mathfrak{H}_{λ}). Let B_{i} be as in Lemma 5.14. The argument that follows is adapted from Knapp and Okamoto [15] who study the case $i=1$, and consists of examining the restrictions to B_{i} of T_{λ} and V_{λ} to see that they are different. Since B_{i} is isomorphic to a circle group, we can think of its character group as the integers. In an obvious sense, the integers extend in two directions from 0 . Hence the proof of the theorem will be complete if we verify the following two statements.

The restriction $\left.V_{\lambda}\right|_{B_{i}}$ contains infinitely many characters of B_{i} in both directions with positive multiplicity.
(5.16) In positive direction, the restriction $\left.T_{\lambda}\right|_{B_{i}}$ contains no character of B_{i}.

The proofs of above statements are practically identical with the proofs of Lemmas 7.2 and 7.3 in [15], so we will just sketch their main outlines.

Let $K_{M_{i}}=K \cap M_{i}$ as before. Then, since $G=K M_{i} A_{i} N_{i}$ and $K \cap M_{i} A_{i} N_{i}$ $=K_{M_{i}}$, one can prove (5.15) by the same argument as the one in the proof of Lemma 7.2 of [15], if we can show that
(5.17) $\quad B_{i} K_{M_{i}}$ is a compact group and $B_{i} \cap K_{M_{i}}$ is a finite cyclic group.

But the first assertion of (5.17) is an immediate consequence of Lemma 5.14. As for the second assertion of (5.17), one only needs to note that $H_{1}+\cdots+H_{i}$ does not commute with \mathfrak{a}_{i} and hence that the Lie algebra of $B_{i} \cap K_{M_{i}}$ is 0 . This verifies (5.17) and hence (5.15) follows.

Now we turn to the verification of (5.16). First observe that

$$
\begin{equation*}
\left\langle\alpha, H_{1}+\cdots+H_{i}\right\rangle \geq 0 \quad \text { for every positive root } \alpha \text {; } \tag{5.18}
\end{equation*}
$$

this follows from (2.12a). Thus using Lemma 4.52 and (5.18) one can show, just as in the proof of Lemma 7.3 of [15], that the eigenvalues of $T_{\lambda}\left(H_{1}+\cdots+H_{i}\right)$ are all $\leq\left\langle\lambda, H_{1}+\cdots+H_{i}\right\rangle$ on a dense subspace of $H^{2}(\mathscr{D}, \lambda)$. Since $\left\langle\lambda, H_{1}+\cdots\right.$ $\left.+H_{i}\right\rangle=-\left\langle\delta, H_{1}+\cdots+H_{i}\right\rangle=-i p_{i}<0$ by Proposition 3.10 and (3.14), and since $B_{i}=\exp \sqrt{-1} \boldsymbol{R}\left(H_{1}+\cdots+H_{i}\right)$, this implies (5.16) and completes the proof of the theorem.

6. Kernel functions

Retain the setup of Sections 3 and 4. According to Corollary 4.39, every constant function $\mathbf{1}_{\boldsymbol{e}}, \boldsymbol{e} \in E_{\lambda}$, lies in $H^{2}(\mathscr{D}, \lambda)$. Hence, and because of (4.33b), for each point $z \in \mathscr{D}$, the point evaluation

$$
E_{z}: F \longrightarrow F(z), \quad F \in H^{2}(\mathscr{D}, \lambda)
$$

is a continuous linear mapping from $H^{2}(\mathscr{D}, \lambda)$ onto E_{λ}. Therefore E_{z} has the continuous non-singular adjoint $E_{z}^{*}: E_{\lambda} \rightarrow H^{2}(\mathscr{D}, \lambda)$ such that

$$
\begin{equation*}
(F(z), \boldsymbol{e})_{E_{\lambda}}=\left(F, E_{z}^{*} \boldsymbol{e}\right)_{H^{2}(\mathscr{O}, \lambda)} \tag{6.1a}
\end{equation*}
$$

for all $F \in H^{2}(\mathscr{D}, \lambda)$ and $\boldsymbol{e} \in E_{\lambda}$. We define the function $K_{\lambda}: \mathscr{D} \times \mathscr{D} \rightarrow G L\left(E_{\lambda}\right)$ by

$$
\begin{equation*}
K_{\lambda}(z, w)=E_{z} E_{w}^{*}, \quad z, w \in \mathscr{D} . \tag{6.2}
\end{equation*}
$$

Then the formula (6.1a) is rewritten as

$$
\begin{equation*}
(F(z), \boldsymbol{e})_{E_{\lambda}}=\left(F(\cdot), K_{\lambda}(\cdot, z) \boldsymbol{e}\right)_{H^{2}(\Omega, \lambda)} . \tag{6.1b}
\end{equation*}
$$

K_{λ} will be called the reproducing kernel function of $H^{2}(\mathscr{D}, \lambda)$. (For the general theory of operator valued kernel functions and the connection with unitary
representations, see Kunze [20].) It is obvious that

$$
\begin{equation*}
K_{\lambda}(z, w) \text { is holomorphic in } z \text { and } K_{\lambda}(w, z)=K_{\lambda}(z, w)^{*} \tag{6.3a}
\end{equation*}
$$

where $K_{\lambda}(z, w)^{*}$ denotes the Hilbert space adjoint of $K_{\lambda}(z, w)$. Since T_{λ} given by (4.13) defines a unitary representation of G on $H^{2}(\mathscr{D}, \lambda)$, one also obtains

$$
\begin{equation*}
K_{\lambda}(g \cdot z, g \cdot w)=J_{\lambda}(g, z) K_{\lambda}(z, w) J_{\lambda}^{*}(g, w) \tag{6.3b}
\end{equation*}
$$

for all $z, w \in \mathscr{D}$ and all $g \in G\left(J_{\lambda}^{*}(g, w)=\right.$ adjoint of $\left.J_{\lambda}(g, w)\right)$. In fact, since $E_{g \cdot z}=J_{\lambda}(g, z) E_{z} T_{\lambda}\left(g^{-1}\right)$ by definition of T_{λ}, we have

$$
\begin{aligned}
K_{\lambda}(g \cdot z, g \cdot w) & =E_{g \cdot z} E_{g \cdot w}^{*} \\
& =J_{\lambda}(g, z) E_{z} T_{\lambda}\left(g^{-1}\right) T_{\lambda}\left(g^{-1}\right)^{*} E_{w}^{*} J_{\lambda}^{*}(g, w) \\
& =J_{\lambda}(g, z) E_{z} E_{w}^{*} J_{\lambda}^{*}(g, w) \quad\left(T_{\lambda}\left(g^{-1}\right) \text { is unitary }\right) \\
& =J_{\lambda}(g, z) K_{\lambda}(z, w) J_{\lambda}^{*}(g, w) .
\end{aligned}
$$

The following proposition gives a formula for the kernel function K_{λ} in terms of the automorphic factor J_{λ}. Recall that \mathscr{D} is realized as a bounded domain in \mathfrak{p}^{+}; thus if we let $w \rightarrow \bar{w}$ denote the conjugation of $\mathfrak{g}_{\boldsymbol{c}}$ with respect to \mathfrak{g}, then for $w \in \mathscr{D}, \exp \bar{w}$ makes sense and lies in P^{-}.
6.4. Proposition. The reproducing kernel function K_{λ} of $H^{2}(\mathscr{D}, \lambda)$ is given by

$$
\begin{equation*}
K_{\lambda}(z, w)=\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{-2} J_{\lambda}(\exp (-\bar{w}), z)^{-1} \tag{6.5}
\end{equation*}
$$

for $z, w \in \mathscr{D}$, where $\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}$ is as in Corollary 4.27.
It is not difficult to show that the function K_{λ} given by (6.5) satisfies (6.3a) and (6.3b). Then we may prove Proposition 6.4 by showing, as in Satake [26, Proposition 2, p. 86], that the function $K_{\lambda}: \mathscr{D} \times \mathscr{D} \rightarrow G L\left(E_{\lambda}\right)$ satisfying (6.3a) and (6.3b) is unique up to constant factors. Here, however, we derive the formula (6.5) directly from (6.3a) and (6.3b) (some intermediate steps in the proof will be needed later).

Our proof of Proposition 6.4 rests on the following lemmas.
6.6. Lemma. For all $z \in \mathscr{D}$,

$$
K_{\lambda}(z, o)=K_{\lambda}(o, z)=\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{-2} I
$$

where I is the identity transformation of E_{λ}.
Proof. If we take $g=k \in K, z=w=o$ in the formula (6.3b), then

$$
K_{\lambda}(o, o)=\tau_{\lambda}(k) K_{\lambda}(o, o) \tau_{\lambda}(k)^{*} \quad \text { and hence } \quad K_{\lambda}(o, o) \tau_{\lambda}(k)=\tau_{\lambda}(k) K_{\lambda}(o, o)
$$

for all $k \in K$. As τ_{λ} is irreducible, bearing (6.3a) in mind one finds that

$$
\begin{equation*}
K_{\lambda}(o, o)=c I \quad \text { with } \quad c \in \boldsymbol{R} . \tag{6.7}
\end{equation*}
$$

Similarly we get

$$
K_{\lambda}(z, o)=\tau_{\lambda}(k)^{-1} K_{\lambda}(k \cdot z, o) \tau_{\lambda}(k)
$$

for all $z \in \mathscr{D}, k \in K$. Hence, using the same technique as in the proof of Lemma 4.29, we have, for all $z \in \mathscr{D}$,

$$
\begin{aligned}
K_{\lambda}(z, o)= & \int_{K} \tau_{\lambda}(k)^{-1} K_{\lambda}(k \cdot z, o) \tau_{\lambda}(k) d k \\
= & \int_{K} \tau_{\lambda}(t k)^{-1} K_{\lambda}(t k \cdot z, o) \tau_{\lambda}(t k) d k \quad \text { for all } t \in T^{1} \\
& \quad\left(T^{1}\right. \text { is as in the proof of Lemma 4.29) } \\
= & \int_{K} \tau_{\lambda}(k)^{-1} K_{\lambda}(t k \cdot z, o) \tau_{\lambda}(k) d k \quad \text { for all } t \in T^{1} \\
& \left.\quad \text { (since } T^{1} \text { is a central subgroup of } K\right) \\
= & \int_{T^{1} \times K} \tau_{\lambda}(k)^{-1} K_{\lambda}(t k \cdot z, o) \tau_{\lambda}(k) d t d k \\
= & \int_{K} \tau_{\lambda}(k)^{-1} K_{\lambda}(o, o) \tau_{\lambda}(k) d k \quad\left(K_{\lambda}(z, w) \text { is holomorphic in } z\right) \\
& =c I \quad \quad \text { (by }(6.7)) .
\end{aligned}
$$

As $c \in \boldsymbol{R}$, it then follows from (6.3a) that

$$
\begin{equation*}
K_{\lambda}(z, o)=K_{\lambda}(o, z)=c I . \tag{6.8}
\end{equation*}
$$

It remains to show that $c=\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{-2}$. For this, take $\boldsymbol{e}=\boldsymbol{e}_{\lambda}, F=\mathbf{1}_{\lambda}, z=o$ in (6.1b) to get

$$
\begin{aligned}
1 & =\left(\mathbf{1}_{\lambda}(\cdot), K_{\lambda}(\cdot, o) \boldsymbol{e}_{\lambda}\right) \\
& =\left(\mathbf{1}_{\lambda}(\cdot), c \mathbf{1}_{\lambda}(\cdot)\right) \quad(\text { by }(6.8)) \\
& =c\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{2} .
\end{aligned}
$$

Thus $c=\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{-2}$, as desired.
The complex conjugation in $\mathfrak{g}_{\boldsymbol{c}}$ with respect to \mathfrak{g} lifts to an involutive automorphism of the underlying real Lie group of $G_{\boldsymbol{c}}$, which we shall denote by $g \rightarrow$ $\sigma(g)$. In the next lemma it is convenient to denote the anti-automorphism
$g \rightarrow g^{-1}$ of G_{c} by $g \rightarrow \iota(g)$. Recall (2.2) that any element $g \in \Omega=P^{+} K_{c} P^{-}$can be written in a unique way as

$$
g=\pi_{+}(g) \cdot \pi_{0}(g) \cdot \pi_{-}(g), \quad \pi_{0}(g) \in K_{c}, \quad \pi_{ \pm}(g) \in P^{ \pm}
$$

6.9. Lemma. If $g \in \Omega=P^{+} K_{c} P^{-}$, then $\iota \sigma(g) \in \Omega$ and

$$
\iota \sigma \pi_{+}(g)=\pi_{-} \iota \sigma(g), \quad \iota \sigma \pi_{0}(g)=\pi_{0} \iota \sigma(g), \quad \iota \sigma \pi_{-}(g)=\pi_{+} \iota \sigma(g) .
$$

Proof. If $g \in \Omega$, then

$$
\begin{aligned}
\iota \sigma(g) & =\iota \sigma\left(\pi_{+}(g) \cdot \pi_{0}(g) \cdot \pi_{-}(g)\right) \\
& =\iota \sigma \pi_{-}(g) \cdot \iota \sigma \pi_{0}(g) \cdot \iota \sigma \pi_{+}(g) .
\end{aligned}
$$

Since $\sigma\left(P^{ \pm}\right)=P^{\mp}, \sigma\left(K_{c}\right)=K_{c}$, and since $P^{ \pm}, K_{\mathbf{c}}$ are groups, it follows that $\iota \sigma \pi_{ \pm}(g)$ $\in P^{\mp}, \iota \sigma \pi_{0}(g) \in K_{c}$ and hence that $\iota \sigma(g) \in \Omega$. Then the lemma follows from the uniqueness of the factorization

$$
\iota \sigma(g)=\pi_{+} \iota \sigma(g) \cdot \pi_{0} \iota \sigma(g) \cdot \pi_{-} \iota \sigma(g)
$$

6.10. Lemma. Let τ be a holomorphic representation of K_{c} on a finite dimensional Hilbert space E and suppose that τ is unitary on K. Then for $k \in K_{c}$

$$
\tau(k)^{*}=\tau(\sigma(k))^{-1}
$$

where $\tau(k)^{*}$ is the Hilbert space adjoint of $\tau(k)$.
Proof. Let $\dot{\tau}$ denote the corresponding representation of \mathfrak{f}_{c} on E. Given $Z \in \mathfrak{f}_{c}$, write $Z=X+\sqrt{-1} Y$ with $X, Y \in \mathfrak{f}$. Then

$$
\begin{aligned}
\dot{\tau}(Z)^{*} & =(\dot{\tau}(X)+\sqrt{-1} \dot{\tau}(Y))^{*} \\
& =\dot{\tau}(X)^{*}-\sqrt{-1} \dot{\tau}(Y)^{*} \\
& =-\dot{\tau}(X)+\sqrt{-1} \dot{\tau}(Y) \quad(\dot{\tau} \text { is skew-adjoint on } \mathfrak{f}) \\
& =\dot{\tau}(-\bar{Z}),
\end{aligned}
$$

from which the lemma follows.
Proof of Proposition 6.4. Fix $z, w \in \mathscr{D}$ and choose $g \in G$ such that $g \cdot w=o$. Then, using the formula (6.3b) and Lemma 6.6, one obtains

$$
\begin{align*}
K_{\lambda}(z, w) & =\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{-2} J_{\lambda}(g, z)^{-1} J_{\lambda}^{*}\left(g, g^{-1} \cdot o\right)^{-1} \tag{6.11}\\
& =\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{-2} J_{\lambda}(g, z)^{-1} J_{\lambda}^{*}\left(g^{-1}, o\right) .
\end{align*}
$$

Let $g=\pi_{+}(g) \cdot \pi_{0}(g) \cdot \pi_{-}(g)$ be the factorization as in (2.2). Then, since $g \exp z$ $\epsilon \Omega=P^{+} K_{\mathrm{c}} P^{-}$, it is clear that both $\pi_{-}(g) \exp z$ and $\pi_{0}(g) \pi_{-}(g) \exp z$ are in Ω. Therefore, by the remark after (2.6) together with (2.7)

$$
\begin{aligned}
& J_{\lambda}(g, z)^{-1} \\
& \quad=J_{\lambda}\left(\pi_{-}(g), z\right)^{-1} J_{\lambda}\left(\pi_{0}(g), \pi_{-}(g) \cdot z\right)^{-1} J_{\lambda}\left(\pi_{+}(g), \pi_{0}(g) \pi_{-}(g) \cdot z\right)^{-1} \\
& \quad=J_{\lambda}\left(\pi_{-}(g), z\right)^{-1} \tau_{\lambda}\left(\pi_{0}(g)\right)^{-1} .
\end{aligned}
$$

On the other hand, using Lemmas 6.9, 6.10, and noting that $\sigma(g)=g$, one finds

$$
\begin{aligned}
J_{\lambda}^{*}\left(g^{-1}, o\right) & =\tau_{\lambda}\left(\pi_{0}\left(g^{-1}\right)\right)^{*}=\tau_{\lambda}\left(\pi_{0} \iota \sigma(g)\right)^{*} \\
& =\tau_{\lambda}\left(\iota \sigma \pi_{0}(g)\right)^{*}=\tau_{\lambda}\left(\pi_{0}(g)\right) .
\end{aligned}
$$

Thus we get

$$
K_{\lambda}(z, w)=\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{-2} J_{\lambda}\left(\pi_{-}(g), z\right)^{-1}
$$

But, again by Lemma 6.9,

$$
\pi_{-}(g)=\pi_{-} \iota \sigma\left(g^{-1}\right)=\iota \sigma \pi_{+}\left(g^{-1}\right)
$$

while $\pi_{+}\left(g^{-1}\right)=\exp w$ since $w=g^{-1} \cdot o$ (cf. (2.3)); therefore $\pi_{-}(g)=\exp (-\bar{w})$. Hence the proposition is proved.

In view of (6.2), (6.11) and the remark after (2.6), for each fixed $w \in \mathscr{D}$ and $\boldsymbol{e} \in E_{\lambda}$,
(6.12) $\left\{\begin{array}{l}\text { the function } z \rightarrow K_{\lambda}(z, w) \text { is holomorphic on } \overline{\mathscr{D}} \text { and the function } z \rightarrow \\ K_{\lambda}(z, w) \boldsymbol{e} \text { belongs to } \mathcal{O}^{2}\left(\overline{\mathscr{D}}, E_{\lambda}\right)\end{array}\right.$
where $\mathcal{O}^{2}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$ is as in (4.16). Thus if $F \in \mathcal{O}^{2}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$, we see from (6.1b) and (4.36) that

$$
\begin{aligned}
&(F(z), \boldsymbol{e}) \\
&(6.13)=\int_{K \times G_{i}}\left(P_{\lambda} J_{\lambda}\left(k g_{i} c_{i}, o\right)^{-1} F\left(k g_{i} \cdot o_{i}\right), P_{\lambda} J_{\lambda}\left(k g_{i} c_{i}, o\right)^{-1} K_{\lambda}\left(k g_{i} \cdot o_{i}, z\right) \boldsymbol{e}\right) d k d g_{i} \\
&=\left(\int_{K \times G_{i}} K_{\lambda}\left(z, k g_{i} \cdot o_{i}\right) J_{\lambda}^{*}\left(k g_{i} c_{i}, o\right)^{-1} P_{\lambda} J_{\lambda}\left(k g_{i} c_{i}, o\right)^{-1} F\left(k g_{i} \cdot o_{i}\right) d k d g_{i}, \boldsymbol{e}\right)
\end{aligned}
$$

for all $\boldsymbol{e} \in E_{\lambda}$. Define a function $M_{\lambda}: \mathscr{B}_{i} \rightarrow \operatorname{End}\left(E_{\lambda}\right)$ as follows. Given $u \in \mathscr{B}_{i}$, there exist $k \in K$ and $g_{i} \in G_{i}$ such that $u=k g_{i} \cdot o_{i}$; then put

$$
\begin{equation*}
M_{\lambda}(u)=J_{\lambda}^{*}\left(k g_{i} c_{i}, o\right)^{-1} P_{\lambda} J_{\lambda}\left(k g_{i} c_{i}, o\right)^{-1} \tag{6.14}
\end{equation*}
$$

(It is easily checked that M_{λ} is a well defined function on \mathscr{B}_{i}.) Then, from
(6.13), (6.14) and (2.47) we obtain

$$
\begin{equation*}
F(z)=\int_{\mathscr{A}_{i}} K_{\lambda}(z, u) M_{\lambda}(u) F(u) d \mu(u) \quad \text { for all } \quad F \in \mathcal{O}^{2}\left(\overline{\mathscr{D}}, E_{\lambda}\right) \tag{6.15}
\end{equation*}
$$

where $\mathrm{d} \mu$ is the quasi-invariant measure on \mathscr{B}_{i} defined by the formula (2.46).
In the remainder of this section we specialize to the case where $\tau_{\lambda}\left(\lambda \in \mathscr{F}_{i}(G)\right)$ is a one dimensional representation of K, and want to find more explicit formula for the kernel function of $H^{2}(\mathscr{D}, \lambda)$ than the one given by (6.5). It turns out that this kernel function is proportional to a positive power of the Bergman kernel function of \mathscr{D}.

Before proceeding further we note that if we write, for a given $\lambda \in \mathscr{F}_{i}(G)$, $\lambda=\sum_{j=1}^{l_{i}^{\prime}} m_{j} \lambda_{j}$ with $m_{1}+\sum_{j=2}^{l_{i}^{\prime}} k_{j} m_{j}=-p_{i}$ as in (3.8a), then the degree $d(\lambda)$ of τ_{λ} is 1 just when $m_{j}=0$ for $2 \leq j \leq l_{i}^{\prime}$. Thus if $\mathscr{F}_{i} \subset \mathscr{L}(G)$ and hence $\mathscr{F}_{i}(G)=\mathscr{F}_{i}$ (see (3.7) and (3.8) for notation), then there exists a unique $\omega_{i} \in \mathscr{F}_{i}(G)$ with $d\left(\omega_{i}\right)$ $=1$, i.e.,

$$
\begin{equation*}
\omega_{i}=-p_{i} \lambda_{1} . \tag{6.16}
\end{equation*}
$$

We also note that
$\left\{\begin{array}{l}\mathrm{H}^{2}\left(\mathscr{D}, \omega_{r}\right) \text { is the usual Hardy space for the bounded symmetric domain } \\ \left.\mathscr{D}=G / K \text { (provided } \omega_{r} \in \mathscr{L}(G)\right) .\end{array}\right.$ $\mathscr{D}=G / K\left(\right.$ provided $\left.\omega_{r} \in \mathscr{L}(G)\right)$.

Indeed, if we identify the representation space $E_{\omega_{r}}$ of $\tau_{\omega_{r}}$ with complex numbers and if we let $\mathcal{O}(\overline{\mathscr{D}})$ denote the space of all holomorphic functions on $\overline{\mathscr{D}}$, then recalling that $G_{r}=K_{r} \subset K$ (cf. (2.29)), we have for all $f \in \mathcal{O}(\overline{\mathscr{D}})$,

$$
\begin{aligned}
\|f\|_{\omega_{r}}^{2} & =\int_{K \times G_{r}}\left|J_{\omega_{r}}\left(k g_{r} c_{r}, o\right)^{-1} f\left(k g_{r} \cdot o_{r}\right)\right|^{2} d k d g_{r} \\
& =\int_{K}\left|J_{\omega_{r}}\left(k c_{r}, o\right)^{-1} f\left(k \cdot o_{r}\right)\right|^{2} d k \\
& =\beta_{r}^{2} \int_{K}\left|\tau_{\omega_{r}}(k)^{-1} f\left(k \cdot o_{r}\right)\right|^{2} d k \quad \text { (by Lemma 4.25) } \\
& =\beta_{r}^{2} \int_{K}\left|f\left(k \cdot o_{r}\right)\right|^{2} d k
\end{aligned}
$$

Since this is just a Hardy type norm for $\mathcal{O}(\overline{\mathscr{D}}),(6.17)$ follows. Therefore the kernel function of $H^{2}\left(\mathscr{D}, \omega_{r}\right)$ is the Cauchy-Szegö kernel function of the bounded symmetric domain \mathscr{D}. But under the assumption that G is a matrix group, it may happen that $\mathscr{F}_{r}(G)=\varnothing$ as remarked at the end of Section 3; thus in order to treat the case of arbitrary irreducible $\mathscr{D}=G / K$, one must drop the assumption that G is linear. But we assume for the moment that G is a matrix group and
that $\omega_{i} \in \mathscr{L}(G)$ for all $1 \leq i \leq r$; we shall indicate later how to drop this assumption.
We shall denote by \boldsymbol{k}_{i} the kernel function of $H^{2}\left(\mathscr{D}, \omega_{i}\right)$. To make the formula (6.5) more explicit in the present situation, letting δ_{n} be half the sum of positive noncompact roots of $\left(g_{c}, t_{c}\right)$, we define a particular one dimensional representation $\tau_{2 \delta_{n}}$ of K_{c} by

$$
\tau_{2 \delta_{n}}(k)=\operatorname{det}\left(\left.\operatorname{Ad}(k)\right|_{p^{+}}\right), \quad k \in K_{c}
$$

(thus $2 \delta_{n}$ is the weight of $\tau_{2 \delta_{n}}$). We also define a function $\boldsymbol{k}: \mathscr{D} \times \mathscr{D} \rightarrow \boldsymbol{C}$ by

$$
\begin{equation*}
\boldsymbol{k}(z, w)=J_{2 \delta_{n}}(\exp (-\bar{w}), z) \tag{6.18}
\end{equation*}
$$

We first show that this function \boldsymbol{k} is, up to a constant factor, the Bergman kernel function of \mathscr{D}. We begin by recalling the definition of Bergman kernel function; see Helgason [11]. Let

$$
\mathcal{O}^{2}(\mathscr{D})=\left\{\text { holomorphic functions } f: \mathscr{D} \rightarrow \boldsymbol{C} ;\|f\|^{2}=\int_{\mathscr{D}}|f(z)|^{2} d z<\infty\right\}
$$

where $d z$ denotes the Euclidean measure on \mathfrak{p}^{+}. Then $\mathcal{O}^{2}(\mathscr{D})$ is a complete Hilbert space and for each $z \in \mathscr{D}$ the point evaluation $f \rightarrow f(z)$ is a bounded linear functional on $\mathcal{O}^{2}(\mathscr{D})$; so there exists a unique reproducing kernel function of $\mathcal{O}^{2}(\mathscr{D})$. This function is by definition the Bergman kernel of \mathscr{D}. We shall denote this kernel function by \boldsymbol{b}.

The following formula for the Bergman kernel function is perhaps known, but we include a proof, as it is not readily available in the literature.
6.19. Proposition. Let k by the function defined by (6.18). Then the Bergman kernel function \boldsymbol{b} of \mathscr{D} is given by

$$
\boldsymbol{b}(z, w)=\operatorname{vol}(\mathscr{D})^{-1} \boldsymbol{k}(z, w) .
$$

Proof. From the general theory of Bergman kernel, one knows that $\boldsymbol{b}(z, w)$ is holomorphic in $z, \boldsymbol{b}(w, z)=\overline{\boldsymbol{b}(z, w)}$ for all $z, w \in \mathscr{D}$, and that \boldsymbol{b} satisfies

$$
\boldsymbol{b}(g \cdot z, g \cdot w)=j(g, z)^{-1} \boldsymbol{b}(z, w) \overline{j(g, w)^{-1}}
$$

for all $z, w \in \mathscr{D}, g \in G$ where $j(g, z)$ denotes the complex Jacobian of the holomorphic map $z \rightarrow g \cdot z$ at $z \in \mathscr{D}$. In the present situation it is also known (cf. Baily and Borel [1], Lemma 1.9) that

$$
j(g, z)=J_{2 \delta_{n}}(g, z)
$$

Therefore by the same argument as in the proof of Proposition 6.4, we obtain

$$
\boldsymbol{b}(z, w)=\|\mathbf{1}\|^{-2} J_{2 \delta_{n}}(\exp (-\bar{w}), z)
$$

where 1 denotes the constant function $\mathbf{1}(z)=1, z \in \mathscr{D}$. But clearly $\|\mathbf{1}\|^{2}=$
$\operatorname{vol}(\mathscr{D})$, finishing the proof.
Now we turn to the consideration of the kernel function $\boldsymbol{k}_{\boldsymbol{i}}$. Letting n $=\operatorname{dim}_{\boldsymbol{C}} \mathscr{D}, n_{i}=\operatorname{dim}_{\boldsymbol{C}} \mathscr{C}_{\boldsymbol{i}}$ and $d_{i}=\operatorname{dim}_{\boldsymbol{R}} \mathscr{B}_{i}$, we set

$$
\begin{equation*}
q_{i}=\frac{n-n_{i}}{3 n-n_{i}-d_{i}} \tag{6.20}
\end{equation*}
$$

where \mathscr{C}_{i} and \mathscr{B}_{i} are, respectively, the boundary component and the boundary orbit containing o_{i}. (It can be shown that $\frac{1}{2} \leq q_{i}<1$; cf. Remark after Lemma 6.24 below.) As $\mathscr{D} \times \mathscr{D}$ is simply connected, we can uniquely define powers $\boldsymbol{k}(z, w)^{q_{i}}$ of $\boldsymbol{k}(z, w)$ with $\boldsymbol{k}(o, o)^{q_{i}}=1$.

Using the notation of Corollary 4.27 , put

$$
\kappa_{i}= \begin{cases}\beta_{i}^{2} \int_{\left.A_{i}^{\prime}\right)} \tau_{\omega_{i}}\left(\pi_{0}(a)^{-2}\right) D_{i}(a) d a & \text { if } i \neq r \tag{6.21}\\ \beta_{r}^{2} & \text { if } i=r\end{cases}
$$

Then, by the same corollary, $\kappa_{i}=\left\|\mathbf{1}_{\omega_{i}}\right\|_{\omega_{i}}^{2}$ since $d\left(\omega_{i}\right)=1$. Thus $0<\kappa_{i}<\infty$ by (4.28) and Proposition 4.38. Before stating the next proposition, let us notice that $\boldsymbol{k}_{i}(z, w)$, being holomorphic in z and anti-holomorphic in w, is completely determined by its restriction to the diagonal of $\mathscr{D} \times \mathscr{D}$. Note also that every point in \mathscr{D} can be written in the form $k \cdot\left(\sum_{j=1}^{r} t_{j} X_{j}\right)=\operatorname{Ad}(k)\left(\sum_{j=1}^{r} t_{j} X_{j}\right)$ with $k \in K,-1<t_{j}<1$; cf. Korányi and Wolf [18], p. 269.
6.22. Proposition. Let \boldsymbol{k} be the function defined by (6.18) and let q_{i}, κ_{i}, p_{i} be the constants as in (6.20), (6.21), (3.5). Then the reproducing kernel function \boldsymbol{k}_{i} of $H^{2}\left(\mathscr{D}, \omega_{i}\right)$ is given by

$$
\begin{equation*}
\boldsymbol{k}_{i}(z, w)=\kappa_{i}^{-1} \boldsymbol{k}(z, w)^{q_{i}} \tag{6.23a}
\end{equation*}
$$

for all $z, w \in \mathscr{D} . \quad$ Moreover, if $z=k \cdot\left(\sum_{j=1}^{r} t_{j} X_{j}\right)$ with $k \in K,-1<t_{j}<1$, then

$$
\begin{equation*}
\boldsymbol{k}_{i}(z, z)=\kappa_{i}^{-1} \prod_{1 \leq j \leq r}\left(1-t_{j}^{2}\right)^{-p_{i}} \tag{6.23b}
\end{equation*}
$$

Notes. (1) The constant p_{i} in the formula (6.23b) (which is an integer or a half-integer by definition (3.5)) can also be written as $p_{i}=\frac{3 n-d_{r}}{r} q_{i}=$ $\frac{\left(3 n-d_{r}\right)\left(n-n_{i}\right)}{r\left(3 n-n_{i}-d_{i}\right)}$ (see Lemma 6.24 below), in particular $p_{r}=\frac{n}{r}$ since $n_{r}=0$.
(2) In the extreme case $i=r, \boldsymbol{k}_{\boldsymbol{r}}$ is the Cauchy-Szegö kernel function of \mathscr{D} as remarked before. The formula (6.23b) for \boldsymbol{k}_{r} was obtained by Korányi [17, Proposition 5.7] using different methods (note that the constant κ_{i} depends on the normalization of measures).

The proof of Proposition 6.22 rests on the following lemmas. Recall the set of fundamental highest weights, $\left\{\lambda_{1}, \ldots, \lambda_{l}\right\}$, in Section 3.
6.24. Lemma. Letting u, v be the constants as in (2.12b), put $s=u(r-1)$ $+v+2$. Then:
(1) $2 \delta_{n}=s \lambda_{1}$.
(2) For each $i, 1 \leq i \leq r$, we have $p_{i}=s q_{i}$. Moreover $s=\frac{3 n-d_{r}}{r}$, where $n=\operatorname{dim}_{\boldsymbol{C}} \mathscr{D}$ and $d_{r}=\operatorname{dim}_{\boldsymbol{R}} \mathscr{B}_{r}\left(\mathscr{B}_{r}=\right.$ Silov boundary of $\left.\mathscr{D}\right)$.

Proof. Since \mathfrak{F}_{c} normalizes \mathfrak{p}^{+}, its Weyl group permutes the elements of Φ_{n}^{+}and leaves $2 \delta_{n}$ invariant. Therefore $\left(2 \delta_{n}, \alpha\right)=0$ for all $\alpha \in \Phi_{c}$, and it follows from the definition of λ_{1} that $2 \delta_{n}=t \lambda_{1}$ for some $t \in \boldsymbol{R}$. We must show that $t=u(r-1)+v+2$. For this we will calculate the effects of $2 \delta_{n}$ and λ_{1} to the vector H_{1}. According to (2.12ab),

$$
\begin{align*}
2 \pi\left(\delta_{n}\right) & =\sum_{1 \leq j \leq r} \gamma_{j}+u \sum_{1 \leq j<k \leq r} \frac{1}{2}\left(\gamma_{j}+\gamma_{k}\right)+v \sum_{1 \leq j \leq r} \frac{1}{2} \gamma_{j} \tag{6.25}\\
& =\left(1+\frac{1}{2} u(r-1)+\frac{1}{2} v\right) \sum_{1 \leq j \leq r} \gamma_{j},
\end{align*}
$$

so we get

$$
\left\langle 2 \delta_{n}, H_{1}\right\rangle=u(r-1)+v+2 .
$$

On the other hand $\left\langle\lambda_{1}, H_{1}\right\rangle=1$ by Lemma 3.3(1), whence (1) follows.
(2) By definition, $p_{i}=\frac{1}{2} u(i-1)+u(r-i)+v+1$ and $q_{i}=\frac{n-n_{i}}{3 n-n_{i}-d_{i}}$. On the other hand, using (2.12ab), one finds that

$$
\begin{aligned}
& n=\operatorname{dim}_{\boldsymbol{c}} \mathfrak{p}^{+}=\left|\Phi_{n}^{+}\right|=\frac{1}{2} r\{u(r-1)+2 v+2\}, \\
& n_{i}=\operatorname{dim}_{\boldsymbol{c}} \mathfrak{p}_{i}^{+}=\left|\Phi_{i, n}^{+}\right|=\frac{1}{2}(r-i)\{u(r-i-1)+2 v+2\},
\end{aligned}
$$

and

$$
\begin{aligned}
d_{i} & =\operatorname{dim}_{\boldsymbol{R}} G / S_{i}=\operatorname{dim}_{\boldsymbol{R}} G / P_{i}+\operatorname{dim}_{\boldsymbol{R}} P_{i} / S_{i} \\
& =\operatorname{dim}_{\boldsymbol{R}} \mathfrak{n}_{i}+\operatorname{dim}_{\boldsymbol{R}} \mathscr{C}_{\boldsymbol{i}} \quad\left(\mathfrak{n}_{i} \text { is as in }(2.24 \mathrm{a})\right) \\
& =\frac{1}{2} i\{u(i-1)+4 u(r-i)+4 v+2\}+2 n_{i} \\
& =2 n-\frac{1}{2} i\{u(i-1)+2\} .
\end{aligned}
$$

The assertion of (2) then follows from straightforward computation.

Remark. From Lemma 6.24(2), it is easily seen that $\frac{1}{2} \leq q_{i}<1$ for each $1 \leq i \leq r$.
6.26. Lemma. $\omega_{i}=-2 q_{i} \delta_{n}$.

Proof. Since $\omega_{i}=-p_{i} \lambda_{1}$ by (6.16), this is an immediate consequence of Lemma 6.24.

Proof of Proposition 6.22. To prove the first assertion, it is enough to show that both functions coincide on the diagonal of $\mathscr{D} \times \mathscr{D}$. Fix $z \in \mathscr{D}$ and choose $g \in G$ so that $z=g \cdot o$. Let us write $J_{i}(g, z)$ in place of $J_{\omega_{i}}(g, z)$. Then, taking into account (6.3b), Lemma 6.6, and the definition (6.21) of κ_{i}, we get

$$
\begin{aligned}
\boldsymbol{k}_{i}(z, z) & =J_{i}(g, o) \boldsymbol{k}_{i}(o, o) \overline{J_{i}(g, o)} \\
& =\kappa_{i}^{-1}\left|J_{i}(g, o)\right|^{2}
\end{aligned}
$$

Let A be the abelian subgroup of G as in the proof of Corollary 4.32. Then, since $G=K A K$, we can write $g=k a k^{\prime}$ with $k, k^{\prime} \in K, a \in A$, and it follows from the cocycle formula that

$$
\left|J_{i}(g, o)\right|=\left|J_{i}(k, a \cdot o)\right|\left|J_{i}(a, o)\right|\left|J_{i}\left(k^{\prime}, o\right)\right|
$$

But, in view of (2.19), $J_{i}(a, o)$ is real, while $\left|J_{i}(k, a \cdot o)\right|=\left|J_{i}\left(k^{\prime}, o\right)\right|=1$, and so one finds

$$
\boldsymbol{k}_{i}(z, z)=\kappa_{i}^{-1} J_{i}(a, o)^{2}
$$

Now by Lemma 6.26,

$$
\begin{equation*}
J_{i}(a, o)=J_{2 \delta_{n}}(a, o)^{-q_{i}} \tag{6.27}
\end{equation*}
$$

Therefore we conclude that

$$
\boldsymbol{k}_{i}(z, z)=\kappa_{i}^{-1} J_{2 \delta_{n}}(a, o)^{-2 q_{i}} .
$$

On the other hand, since $\boldsymbol{k}(g \cdot o, g \cdot o)=J_{2 \delta_{n}}(g, o)^{-1} \overline{J_{2 \delta_{n}}(g, o)^{-1}}$, the same argument as above yields

$$
\boldsymbol{k}(z, z)^{q_{i}}=J_{2 \delta_{n}}(a, o)^{-2 q_{i}}
$$

and the first assertion follows.
Given $a \in A$, write $a=\exp \left(\sum_{j=1}^{r} x_{j}\left(X_{j}+X_{-j}\right)\right)$; then, in view of (2.19), $a \cdot o=\sum_{j=1}^{r}\left(\tanh x_{j}\right) X_{j}$. Thus if $-1<t_{j}<1$, there exists a unique $a \in A$ such that $a \cdot o=\sum_{j=1}^{r} t_{j} X_{j}$. Moreover, as we have already observed,

$$
k_{i}(k a \cdot o, k a \cdot o)=\kappa_{i}^{-1} J_{i}(a, o)^{2} \quad \text { for } \quad k \in K, a \in A
$$

Therefore to prove the second assertion of the proposition it suffices to show that if $a=\exp \left(\sum_{j=1}^{r} x_{j}\left(X_{j}+X_{-j}\right)\right)$, then

$$
J_{i}(a, o)=\prod_{1 \leq j \leq r}\left\{1-\left(\tanh x_{j}\right)^{2}\right\}^{-p_{i} / 2}
$$

or equivalently that

$$
J_{i}(a, o)=\prod_{1 \leq j \leq r}\left(\cosh x_{j}\right)^{p_{i}}
$$

By (6.27) and the definition of the automorphic factor, we have

$$
J_{i}(a, o)=J_{2 \delta_{n}}(a, o)^{-q_{i}}=\tau_{2 \delta_{n}}\left(\pi_{0}(a)\right)^{-q_{i}}
$$

here, according to (2.19), $\pi_{0}(a)=\exp \left(-\sum_{j=1}^{r} \log \left(\cosh x_{j}\right) H_{j}\right)$. But (6.25) implies

$$
\left\langle 2 \delta_{n},-\sum_{j=1}^{r} \log \left(\cosh x_{j}\right) H_{j}\right\rangle=-s \sum_{j=1}^{r} \log \left(\cosh x_{j}\right)
$$

Thus, and since $p_{i}=s q_{i}$ by Lemma 6.24 (2), we obtain

$$
J_{i}(a, o)=\prod_{1 \leq j \leq r}\left(\cosh x_{j}\right)^{p_{i}}
$$

as we wished to show.
Example. To illustrate how one gets a precise formula for the kernel function $\boldsymbol{k}_{\boldsymbol{i}}$ in concrete cases, we consider the case where $G=S U(p, q)(p \geq q \geq 1)$ and $K=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right) ; a \in U(p), d \in U(q),(\operatorname{det} a)(\operatorname{det} d)=1\right\}$. In this case $\operatorname{rank} G / K$ $=q$ and we have $G_{c}=S L(p+q, \boldsymbol{C}), K_{c}=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right) ; a \in G L(p, \boldsymbol{C}), d \in G L(q, \boldsymbol{C})\right.$, $(\operatorname{det} a)(\operatorname{det} d)=1\}$. If g is a $(p+q) \times(p+q)$ complex matrix, we write $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ where the matrix blocks are of the size given by

$$
a \text { is } p \times p, \quad b \text { is } p \times q, \quad c \text { is } q \times p, \quad d \text { is } q \times q .
$$

Then $\mathfrak{g}_{\boldsymbol{c}}=\mathfrak{s l}(p+q, \boldsymbol{C}), \mathfrak{f}_{\boldsymbol{c}}=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right) ;\right.$ trace $a+$ trace $\left.d=0\right\}, \mathfrak{p}_{\boldsymbol{c}}=\left\{\left(\begin{array}{ll}0 & b \\ c & 0\end{array}\right)\right\}$, and we may put $\mathfrak{p}^{+}=\left\{\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right)\right\}, \mathfrak{p}^{-}=\left\{\left(\begin{array}{ll}0 & 0 \\ c & 0\end{array}\right)\right\}$; hence $P^{+}=\left\{\left(\begin{array}{ll}1_{p} & b \\ 0 & 1_{q}\end{array}\right)\right\}, P^{-}=\left\{\left(\begin{array}{ll}1_{p} & 0 \\ c & 1_{q}\end{array}\right)\right\}$. Each $g=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G$ is written uniquely as

$$
g=\left(\begin{array}{cc}
1_{p} & b d^{-1} \\
0 & 1_{q}
\end{array}\right)\left(\begin{array}{cc}
a-b d^{-1} c & 0 \\
0 & d
\end{array}\right)\left(\begin{array}{cc}
1_{p} & 0 \\
d^{-1} c & 1_{q}
\end{array}\right)
$$

so $\zeta(g)=\left(\begin{array}{cc}0 & b d^{-1} \\ 0 & 0\end{array}\right)$ where ζ is as in 2.1. It then follows (cf. Wolf [31]) that the

Harish-Chandra realization of G / K is given by

$$
\mathscr{D}=\zeta(G)=\left\{\left(\begin{array}{ll}
0 & z \\
0 & 0
\end{array}\right) \in \mathfrak{p}^{+} ; 1_{q}-z^{*} z>0\right\},
$$

where z * is the conjugate transpose of z and " >0 " means "is positive definite". Moreover, if we identify \mathfrak{p}^{+}with the space $M_{p, q}(\boldsymbol{C})$ of $p \times q$ complex matrices, then (cf. [31], p. 327) for each $1 \leq i \leq q$
(6.28a) $\quad \mathscr{B}_{i}=\left\{z \in M_{p, q}(\boldsymbol{C}) ; 1_{q}-z^{*} z\right.$ is positive semidefinite

$$
\text { and } \left.\operatorname{rank}\left(1_{q}-z^{*} z\right)=q-i\right\}
$$

and we can put

$$
\mathscr{C}_{i}=\left\{\left(\begin{array}{ll}
1_{i} & 0 \tag{6.28b}\\
0 & z
\end{array}\right) \in M_{p, q}(\boldsymbol{C}) ; 1_{q-i}-z^{*} z>0\right\} .
$$

Now let $\left(\begin{array}{ll}0 & z \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & w \\ 0 & 0\end{array}\right) \in \mathscr{D}$, and put $z^{\prime}=\left(\begin{array}{ll}0 & z \\ 0 & 0\end{array}\right), w^{\prime}=\left(\begin{array}{ll}0 & w \\ 0 & 0\end{array}\right)$. Then, since $\bar{w}^{\prime}=\left(\begin{array}{ll}0 & 0 \\ w^{*} & 0\end{array}\right)$ (bar denoting conjugation of $\mathfrak{s l}(p+q, \boldsymbol{C})$ with respect to $\mathfrak{s u}(p, q)$),

$$
\pi_{0}\left(\exp \left(-\bar{w}^{\prime}\right) \exp z^{\prime}\right)
$$

$$
=K_{c} \text {-component of }\left(\begin{array}{cc}
1_{p} & 0 \\
-w^{*} & 1_{q}
\end{array}\right)\left(\begin{array}{cc}
1_{p} & z \\
0 & 1_{q}
\end{array}\right) \text { in the factorization (2.2) }
$$

$$
=\left(\begin{array}{cc}
1_{p}+z\left(1_{q}-w^{*} z\right)^{-1} w^{*} & 0 \\
0 & 1_{q}-w^{*} z
\end{array}\right) .
$$

But if $k=\left(\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right) \in K_{c}$, then

$$
\tau_{2 \delta_{n}}(k)=\operatorname{det}\left(\left.\operatorname{Ad}(k)\right|_{p^{+}}\right)=(\operatorname{det} a)^{q}(\operatorname{det} d)^{-p}=(\operatorname{det} d)^{-(p+q)} .
$$

Thus

$$
\begin{aligned}
J_{2 \delta_{n}}\left(\exp \left(-\bar{w}^{\prime}\right), z^{\prime}\right) & =\tau_{2 \delta_{n}}\left(\pi_{0}\left(\exp \left(-\bar{w}^{\prime}\right) \exp z^{\prime}\right)\right) \\
& =\operatorname{det}\left(1_{q}-w^{*} z\right)^{-(p+q)} .
\end{aligned}
$$

According to Proposition 6.19, this is the Bergman kernel function of \mathscr{D} up to a constant factor.

Now $\operatorname{dim}_{\boldsymbol{C}} \mathscr{D}=p q$, while by (6.28) $\operatorname{dim}_{\boldsymbol{R}} \mathscr{B}_{i}=2 p q-i^{2}$ and $\operatorname{dim}_{\boldsymbol{C}} \mathscr{C}_{i}=(p-i)$. ($q-i$). Hence, in the present case, the constant q_{i} in (6.20) turns out to be equal
to $\frac{p+q-i}{p+q}$. Therefore we conclude from Proposition 6.22 that, up to a constant factor, the kernel function $\boldsymbol{k}_{\boldsymbol{i}}$ is given (under the identification $\mathscr{D}=\left\{z \in M_{p, q}(\boldsymbol{C})\right.$; $\left.1_{q}-z^{*} z>0\right\}$) by

$$
\boldsymbol{k}_{i}(z, w)=\operatorname{det}\left(1_{q}-w^{*} z\right)^{-(p+q-i)} \quad(1 \leq i \leq q)
$$

for $z, w \in \mathscr{D}$. In the extreme case $i=q, \boldsymbol{k}_{q}$ is the Cauchy-Szegö kernel function of \mathscr{D} and is given by

$$
\boldsymbol{k}_{q}(z, w)=\operatorname{det}\left(1_{q}-w^{*} z\right)^{-p} .
$$

As remarked before, in order to account for all $\boldsymbol{k}_{\boldsymbol{i}}(1 \leq i \leq r)$ in the case of arbitrary irreducible $\mathscr{D}=G / K$, one must drop the requirement that G is linear; this is the case when $\omega_{i}=-p_{i} \lambda_{1}$ with p_{i} a half-integer. We shall briefly indicate that, even in this case, one can define the kernel function \boldsymbol{k}_{i} and its explicit formula is again given by (6.23). For this purpose we take, in place of G, a twosheeted covering G° of the linear universal covering of G; then $\omega_{i} \in \mathscr{F}_{i}\left(G^{\circ}\right)$ for all $1 \leq i \leq r$; cf. the remark at the end of Section 3. G° naturally acts on $\overline{\mathscr{D}} ; g \cdot z$ $=p(g) \cdot z\left(p: G^{\circ} \rightarrow G\right.$ being the covering homomorphism). Let $K^{\circ}, G_{i}^{\circ}, A_{i}^{\circ}, N_{i}^{\circ}$ denote the analytic subgroups of G° corresponding to $\mathfrak{f}, \mathfrak{g}_{i}, \mathfrak{a}_{i}, \mathfrak{n}_{i}$ respectively, and let $M_{i}^{\circ}=p^{-1}\left(M_{i}\right), S_{i}^{\circ}=p^{-1}\left(S_{i}\right), L_{i}^{\circ}=M_{i}^{\circ} \cap S_{i}^{\circ}$. If we define $J_{2 \delta_{n}}^{\circ}: G^{\circ} \times \overline{\mathscr{D}} \rightarrow \boldsymbol{C}$ by $J_{2 \delta_{n}}^{\circ}(g, z)=J_{2 \delta_{n}}(p(g), z)$ then, since p_{i} is a half-integer and since $\omega_{i}=-p_{i} \lambda_{1}$ $=-2 q_{i} \delta_{n}$ by Lemma 6.26, we can uniquely define a continuous function J_{i}° : $G^{\circ} \times \overline{\mathscr{D}} \rightarrow \boldsymbol{C}$ by $J_{i}^{\circ}(g, z)=J_{2 \delta_{n}}^{\circ}(g, z)^{-q_{i}}$ with $J_{i}^{\circ}(e, z)=1\left(e=\right.$ identity of $\left.G^{\circ}\right)$. One can check that J_{i}° satisfies the following conditions:

$$
\left\{\begin{array}{l}
J_{i}^{\circ}(g, z) \text { is } C^{\infty} \text { in } g \in G^{\circ} \text { and holomorphic in } z \in \overline{\mathscr{D}} ; \tag{6.29}\\
J_{i}^{\circ}\left(g_{1} g_{2}, z\right)=J_{i}^{\circ}\left(g_{1}, g_{2} \cdot z\right) J_{i}^{\circ}\left(g_{2}, z\right) \text { for } g_{1}, g_{2} \in G^{\circ}, z \in \overline{\mathscr{D}} \\
J_{i}^{\circ}(k, z)=\tau_{\omega_{i}}(k) \text { for } k \in K^{\circ}, z \in \overline{\mathscr{D}} .
\end{array}\right.
$$

Now let $\mathcal{O}(\mathscr{D})$ denote the space of all holomorphic functions on \mathscr{D} and $\mathcal{O}(\overline{\mathscr{D}}) \subset \mathcal{O}(\mathscr{D})$ the subspace of functions holomorphic on $\overline{\mathscr{D}}$. By (6.29) we can define (in algebraic sense) a representation T_{i} of G° on $\mathcal{O}(\mathscr{D})$ by

$$
\left(T_{i}(g) f\right)(z)=J_{i}^{\circ}\left(g^{-1}, z\right)^{-1} f\left(g^{-1} \cdot z\right), \quad f \in \mathcal{O}(\mathscr{D}), g \in G^{\circ} \quad z \in \mathscr{D} .
$$

Note that the subspace $\mathcal{O}(\overline{\mathscr{D}})$ is stable under the representation T_{i}. Let

$$
\begin{aligned}
& \mathcal{O}^{2}\left(\overline{\mathscr{D}}, \omega_{i}\right) \\
& \quad=\left\{f \in \mathcal{O}(\overline{\mathscr{D}}) ;\|f\|_{i}^{2}=\beta_{i}^{2} \int_{K^{\circ} \times G_{i}^{\circ}}\left|J_{i}^{\circ}\left(k g_{i}, o_{i}\right)^{-1} f\left(k g_{i} \cdot o_{i}\right)\right|^{2} d k d g_{i}<\infty\right\},
\end{aligned}
$$

where β_{i} is as in Proposition 4.24 and $d k, d g_{i}$ are Haar measures on K°, G_{i}°.
6.30. Lemma. $\mathcal{O}^{2}\left(\overline{\mathscr{D}}, \omega_{i}\right)$ is stable under $T_{i}(g)\left(g \in G^{0}\right)$ and $T_{i}(g)$ preserve the seminorm $\left\|\|_{i}\right.$.

Proof. We may define a C^{∞} rho-function ρ° on G° for the subgroup S_{i}° in the same way as in 2.33. Thus, for $g \in G^{\circ}$, write $g=k m a n\left(k \in K^{\circ}, m \in M_{i}^{\circ} \cap\right.$ $\left.\exp \mathfrak{p}, a \in A_{i}^{\circ}, n \in N_{i}^{\circ}\right)$; put $\rho^{\circ}(g)=e^{-2 \rho_{i}}(a)$ with ρ_{i} as in (2.38). Then, just as in (2.45), we can normalize various Haar measures in such a way that

$$
\begin{equation*}
\int_{G^{\circ}} f(g) d g=\int_{K^{0} \times G_{i} \times s_{i}^{0}} f\left(k g_{i}\right) \rho^{\circ}(s)^{-1} d k d g_{i} d s \tag{6.31}
\end{equation*}
$$

for any integrable f.
Now fix $F \in \mathcal{O}^{2}\left(\overline{\mathscr{D}}, \omega_{i}\right)$ and $x \in G^{\circ}$. If we put $\tilde{F}(g)=J_{i}^{\circ}\left(g, o_{i}\right)^{-1} F\left(g \cdot o_{i}\right)$ for $g \in G^{\circ}$, then

$$
\begin{aligned}
\| T_{i}(x) & F \|_{i}^{2} \\
= & \beta_{i}^{2} \int_{K^{\circ} \times G_{i}^{\circ}}\left|J_{i}^{\circ}\left(k g_{i}, o_{i}\right)^{-1} J_{i}^{\circ}\left(x^{-1}, k g_{i} \cdot o_{i}\right)^{-1} F\left(x^{-1} k g_{i} \cdot o_{i}\right)\right|^{2} d k d g_{i} \\
& =\beta_{i}^{2} \int_{K^{\circ} \times G_{i}^{\circ}}\left|J_{i}^{\circ}\left(x^{-1} k g_{i}, o_{i}\right)^{-1} F\left(x^{-1} k g_{i} \cdot o_{i}\right)\right|^{2} d k d g_{i} \\
= & \beta_{i}^{2} \int_{K^{\circ} \times G_{i}^{\circ}}\left|\widetilde{F}\left(x^{-1} k g_{i}\right)\right|^{2} d k d g_{i} .
\end{aligned}
$$

Therefore to prove the lemma it suffices to show that

$$
\begin{equation*}
\int_{K^{\circ} \times G_{i}^{\circ}}\left|\widetilde{F}\left(k g_{i}\right)\right|^{2} d k d g_{i}=\int_{K^{\circ} \times G_{i}^{\circ}}\left|\widetilde{F}\left(x^{-1} k g_{i}\right)\right|^{2} d k d g_{i} \tag{6.32}
\end{equation*}
$$

for all $x \in G^{\circ}$. First we claim:

$$
\begin{equation*}
|\widetilde{F}(g s)|^{2}=\rho^{\circ}(s)|\widetilde{F}(g)|^{2} \quad \text { for all } \quad g \in G^{\circ} \quad \text { and } \quad s \in S_{i}^{\circ} . \tag{6.33}
\end{equation*}
$$

In fact, for $g \in G^{\circ}, s \in S_{i}^{\circ}$,

$$
\begin{aligned}
\tilde{F}(g s) & =J_{i}^{\circ}\left(g s, o_{i}\right)^{-1} F\left(g s \cdot o_{i}\right) \\
& =J_{i}^{\circ}\left(s, o_{i}\right)^{-1} J_{i}^{\circ}\left(g, o_{i}\right)^{-1} F\left(g \cdot o_{i}\right) \\
& =J_{i}^{\circ}\left(s, o_{i}\right)^{-1} \tilde{F}(g)
\end{aligned}
$$

and if we write $s=l a n$ with $l \in L_{i}^{\circ}, a \in A_{i}^{\circ}, n \in N_{i}^{\circ}$, then

$$
J_{i}^{\circ}\left(s, o_{i}\right)=J_{i}^{\circ}\left(l, o_{i}\right) J_{i}^{\circ}\left(a, o_{i}\right) J_{i}^{\circ}\left(n, o_{i}\right)
$$

But it is easy to check that $\left|J_{i}^{\circ}\left(l, o_{i}\right)\right|=\left|J_{i}^{\circ}\left(n, o_{i}\right)\right|=1$, while, by Lemma 4.5(2) together with the fact that $\omega_{i}=-2 q_{i} \delta_{n}$, we have

$$
J_{i}^{0}\left(a, o_{i}\right)=J_{2 \delta_{n}}\left(p(a), o_{i}\right)^{-q_{i}}=J_{2 \delta_{n}}\left(c_{i}^{-1} p(a) c_{i}, o\right)^{-q_{i}}=e^{\rho_{i}}(a)
$$

Therefore

$$
|\widetilde{F}(g s)|^{2}=\left|J_{i}^{\circ}\left(s, o_{i}\right)\right|^{-2}|\tilde{F}(g)|^{2}=e^{-2 \rho_{t}}(a)|\widetilde{F}(g)|^{2}=\rho^{\circ}(s)|\tilde{F}(g)|^{2}
$$

for all $g \in G^{\circ}$ and $s \in S_{i}^{\circ}$, establishing (6.33).
Now put $\dot{\phi}\left(g \cdot o_{i}\right)=\int_{s_{i}} \phi(g s) d s$ for $\phi \in C_{c}\left(G^{\circ}\right)$ and $g \in G^{\circ}$. Then using (6.31) and (6.33) we get

$$
\begin{aligned}
\int_{K^{\circ} \times G_{i}^{0}} & \left|\widetilde{F}\left(k g_{i}\right)\right|^{2} \dot{\phi}\left(k g_{i} \cdot o_{i}\right) d k d g_{i} \\
& =\int_{K^{\circ} \times G_{i}^{\circ} \times S_{i}^{\circ}}\left|\widetilde{F}\left(k g_{i} s\right)\right|^{2} \phi\left(k g_{i} s\right) \rho^{\circ}(s)^{-1} d k d g_{i} d s \\
& =\int_{G^{\circ}}|\widetilde{F}(g)|^{2} \phi(g) d g \\
& =\int_{G^{\circ}}\left|\tilde{F}\left(x^{-1} g\right)\right|^{2} \phi\left(x^{-1} g\right) d g \\
& =\int_{K^{\circ} \times G_{i}^{\circ}}\left|\widetilde{F}\left(x^{-1} k g_{i}\right)\right|^{2} \dot{\phi}\left(x^{-1} k g_{i} \cdot o_{i}\right) d k d g_{i} .
\end{aligned}
$$

Taking the supremum over all $\phi \in C_{c}\left(G^{\circ}\right)$ such that $0 \leq \dot{\phi} \leq 1$, we have the assertion of (6.32) and complete the proof.

From Lemma 6.30, following the same arguments used in Section 4, we deduce:

The completion $H^{2}\left(\mathscr{D}, \omega_{i}\right)$ of $\mathcal{O}\left(\overline{\mathscr{D}}, \omega_{i}\right)$ can be identified with a subspace of $\mathcal{O}(\mathscr{D})$ and is a nonzero Hilbert space with the property that for each $z \in \mathscr{D}$, the linear map $f \rightarrow f(z)$ is continuous from $H^{2}\left(\mathscr{D}, \omega_{i}\right)$ onto C. Furthermore T_{i} defines an irreducible unitary representation of G° on $H^{2}\left(\mathscr{D}, \omega_{i}\right)$.

It follows from (6.34) that the reproducing kernel function \boldsymbol{k}_{i} of $H^{2}\left(\mathscr{D}, \omega_{i}\right)$ exists and satisfies

$$
\begin{equation*}
\boldsymbol{k}_{i}(g \cdot z, g \cdot w)=J_{i}^{\circ}(g, z) \boldsymbol{k}_{i}(z, w) \overline{J_{i}^{\circ}(g, w)} \tag{6.35}
\end{equation*}
$$

for all $g \in G^{\circ}$ and $z, w \in \mathscr{D}$. Once we have the formula (6.35), the proof of Proposition 6.22 goes through without change also in the present situation. Hence we conclude that the kernel function \boldsymbol{k}_{i} of $H^{2}\left(\mathscr{D}, \omega_{i}\right)$ is given by (6.23) for any irreducible \mathscr{D} and $1 \leq i \leq r$.

7. Intertwining operators

Let $\left(U_{\lambda}, L^{2}\left(G, \sigma_{\lambda}\right)\right)$ and $\left(T_{\lambda}, H^{2}(\mathscr{D}, \lambda)\right)$ be the unitary representations of G as in Theorem 4.49. As noted after that theorem, $\left(T_{\lambda}, H^{2}(\mathscr{D}, \lambda)\right)$ is unitarily equivalent to the representation $\left(T_{\lambda}, H^{2}\left(G, \tau_{\lambda}\right)\right)$ defined by (4.51), and so, in view of Theorem 4.49, $H^{2}\left(G, \tau_{\lambda}\right)$ can be identified with a closed subspace of $L^{2}\left(G, \sigma_{\lambda}\right)$.

In this section we construct an integral operator $\mathscr{P}_{\lambda}: L^{2}\left(G, \sigma_{\lambda}\right) \rightarrow H^{2}\left(G, \tau_{\lambda}\right)$ which is regarded as the orthogonal projection operator if we identify $H^{2}\left(G, \tau_{\lambda}\right)$ with a subspace of $L^{2}\left(G, \sigma_{\lambda}\right)$. In view of Proposition 5.9, the restriction of \mathscr{P}_{λ} to the subspace $L^{2}\left(G, \sigma_{\lambda} ; \mathfrak{p}_{i}^{-}\right)$may be more important.

Now, letting $\beta_{i},\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}$ be as in Corollary 4.27, put $\gamma=\beta_{i}\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{-2}$. Given $\phi \in L^{2}\left(G, \sigma_{\lambda}\right)$, we define

$$
\begin{equation*}
\mathscr{P}_{\lambda} \phi(g)=\gamma \int_{K \times G_{i}} \tau_{\lambda}(k) J_{\lambda}\left(g_{i}^{-1}, o\right)^{-1} \phi\left(g k g_{i}\right) d k d g_{i} \tag{7.1a}
\end{equation*}
$$

for all $g \in G$ for which this integral exists.
7.2. Lemma. For any $\phi \in L^{2}\left(G, \sigma_{\lambda}\right)$, the integral defining $\mathscr{P}_{\lambda} \phi(g)$ exists for all $g \in G$. Moreover \mathscr{P}_{λ} is given by an integral operator with a kernel $\gamma J_{\lambda}^{*}\left(g^{-1} k g_{i}, o_{i}\right)^{-1}$, i.e.,

$$
\begin{equation*}
\mathscr{P}_{\lambda} \phi(g)=\gamma \int_{K \times G_{i}} J_{\lambda}^{*}\left(g^{-1} k g_{i}, o_{i}\right)^{-1} \phi\left(k g_{i}\right) d k d g_{i} . \tag{7.1b}
\end{equation*}
$$

Proof. According to Corollary 4.39, the constant function $\mathbf{1}_{\boldsymbol{e}}$ belongs to $H^{2}(\mathscr{D}, \lambda)$ for every $\boldsymbol{e} \in E_{\lambda}$. Hence if we define, for each $\boldsymbol{e} \in E_{\lambda}, \phi_{e}: G \rightarrow E_{\lambda}$ by $\phi_{e}(g)=P_{\lambda} J_{\lambda}\left(g c_{i}, o\right)^{-1} \boldsymbol{e}$, then (4.37) implies $\phi_{e} \in L^{2}\left(G, \sigma_{\lambda}\right)$ since $\phi_{e}=\mathscr{I}_{\lambda}\left(\mathbf{1}_{e}\right)$. On the other hand, if $\phi \in L^{2}\left(G, \sigma_{\lambda}\right)$ then the left translates $U_{\lambda}(g) \phi(g \in G)$ also belong to $L^{2}\left(G, \sigma_{\lambda}\right)$, so $\left(U_{\lambda}\left(g^{-1}\right) \phi, \phi_{e}\right)$ (inner product in $L^{2}\left(G, \sigma_{\lambda}\right)$) exist for all $g \in G$ and $\boldsymbol{e} \in E_{\lambda}$. Now

$$
\begin{aligned}
\left(U_{\lambda}\left(g^{-1}\right) \phi, \phi_{\boldsymbol{e}}\right) & =\int_{K \times G_{i}}\left(\phi\left(g k g_{i}\right), P_{\lambda} J_{\lambda}\left(k g_{i} c_{i}, o\right)^{-1} \boldsymbol{e}\right) d k d g_{i} \\
& =\left(\int_{K \times G_{i}} J_{\lambda}^{*}\left(k g_{i} c_{i}, o\right)^{-1} \phi\left(g k g_{i}\right) d k d g_{i}, \boldsymbol{e}\right) .
\end{aligned}
$$

But, using Lemmas 4.25, 6.9 and 6.10, one finds

$$
\begin{aligned}
\left.J_{\lambda}^{*}\left(k g_{i} c_{i}, o\right)^{-1}\right|_{E_{\lambda}} & =\left.\beta_{i} J_{\lambda}^{*}\left(k, g_{i} \cdot o_{i}\right)^{-1} J_{\lambda}^{*}\left(g_{i}, o_{i}\right)^{-1}\right|_{E_{\lambda}} \\
& =\left.\beta_{i} \tau_{\lambda}^{*}(k)^{-1} J_{\lambda}^{*}\left(g_{i}, o\right)^{-1}\right|_{E_{\lambda}} \\
& =\left.\beta_{i} \tau_{\lambda}(k) J_{\lambda}\left(g_{i}^{-1}, o\right)^{-1}\right|_{E_{\lambda}} .
\end{aligned}
$$

Therefore we obtain

$$
\begin{equation*}
\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{-2}\left(U_{\lambda}\left(g^{-1}\right) \phi, \phi_{\boldsymbol{e}}\right)=\left(\mathscr{P}_{\lambda} \phi(g), \boldsymbol{e}\right) \tag{7.3}
\end{equation*}
$$

for all $\phi \in L^{2}\left(G, \sigma_{\lambda}\right), g \in G, \boldsymbol{e} \in E_{\lambda}$, from which the first assertion of the lemma follows. As for the second assertion, recall that $U_{\lambda}(g)$ is a unitary operator of $L^{2}\left(G, \sigma_{\lambda}\right)$ for every $g \in G$. Thus

$$
\begin{aligned}
\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{-2}\left(U_{\lambda}\left(g^{-1}\right) \phi, \phi_{\boldsymbol{e}}\right) & =\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{-2}\left(\phi, U_{\lambda}(g) \phi_{\boldsymbol{e}}\right) \\
& =\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{-2} \int_{K \times G_{i}}\left(\phi\left(k g_{i}\right), P_{\lambda} J_{\lambda}\left(g^{-1} k g_{i} c_{i}, o\right)^{-1} \boldsymbol{e}\right) d k d g_{i} \\
& =\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{-2} \int_{K \times G_{i}}\left(J_{\lambda}^{*}\left(g^{-1} k g_{i} c_{i}, o\right)^{-1} \phi\left(k g_{i}\right), \boldsymbol{e}\right) d k d g_{i} \\
& =\left(\gamma \int_{K \times G_{i}} J_{\lambda}^{*}\left(g^{-1} k g_{i}, o_{i}\right)^{-1} \phi\left(k g_{i}\right) d k d g_{i}, \boldsymbol{e}\right)
\end{aligned}
$$

for all $\boldsymbol{e} \in E_{\lambda}$. This combined with (7.3) gives the second assertion of the lemma.

Our main result in this section is the following theorem.
7.4. Theorem. Fix any $i, 1 \leq i \leq r$, and $\lambda \in \mathscr{F}_{i}(G)$. Then:
(1) For any $\phi \in L^{2}\left(G, \sigma_{\lambda}\right), \mathscr{P}_{\lambda} \phi$ belongs to $H^{2}\left(G, \tau_{\lambda}\right)$ and the resulting mapping

$$
\mathscr{P}_{\lambda}: \quad L^{2}\left(G, \sigma_{\lambda}\right) \longrightarrow H^{2}\left(G, \tau_{\lambda}\right)
$$

is a surjective G-intertwining operator. Furthermore, if we regard $H^{2}\left(G, \tau_{\lambda}\right)$ as a closed subspace of $L^{2}\left(G, \sigma_{\lambda}\right)$ then \mathscr{P}_{λ} is the orthogonal projection operator onto $H^{2}\left(G, \tau_{\lambda}\right)$.
(2) On the subspace $L^{2}\left(G, \sigma_{\lambda} ; \mathfrak{p}_{i}^{-}\right)$of $L^{2}\left(G, \sigma_{\lambda}\right), \mathscr{P}_{\lambda}$ is given by

$$
\begin{equation*}
\mathscr{P}_{\lambda} \phi(g)=\beta \int_{K} \tau_{\lambda}(k) \phi(g k) d k \tag{7.5}
\end{equation*}
$$

with $\beta=\frac{d(\lambda)}{\beta_{i} d(\tilde{\lambda})}$.
The proof of this theorem requires some preparation. For an E_{λ}-valued Borel function F on the boundary orbit \mathscr{B}_{i}, define (as in (4.14)) $\widetilde{F}: G \rightarrow E_{\lambda}$ by

$$
\begin{equation*}
\tilde{F}(g)=P_{\lambda} J_{\lambda}\left(g c_{i}, o\right)^{-1} F\left(g \cdot o_{i}\right), \quad g \in G \tag{7.6}
\end{equation*}
$$

and let

$$
L^{2}\left(\mathscr{B}_{i}, \lambda\right)=\left\{\text { Borel functions } F: \mathscr{B}_{i} \rightarrow E_{\lambda} ;\|F\|^{2}=\int_{K \times G_{i}} \mid \tilde{F}\left(\left.k g_{i}\right|^{2} d k d g_{i}<\infty\right\} .\right.
$$

Then if $F \in L^{2}\left(\mathscr{B}_{i}, \lambda\right)$, the argument used in proving Lemma 4.15 implies \widetilde{F} $\in L^{2}\left(G, \sigma_{\lambda}\right)$. Given $F, F^{\prime} \in L^{2}\left(\mathscr{B}_{i}, \lambda\right)$, let us say that F and F^{\prime} are equivalent $\left(F \sim F^{\prime}\right)$ if $\left\|F-F^{\prime}\right\|=0$. Now define $L^{2}\left(\mathscr{B}_{i}, \lambda\right)^{\circ}$ as the set of equivalence classes (relative to \sim) of elements in $L^{2}\left(\mathscr{B}_{i}, \lambda\right) . \quad$ Then $L^{2}\left(\mathscr{B}_{i}, \lambda\right)^{\circ}$ is an inner product space. For $\phi \in L^{2}\left(G, \sigma_{\lambda}\right)$ we define a function $\mathscr{L}_{\lambda} \phi: \mathscr{B}_{i} \rightarrow E_{\lambda}$ as follows. Every $u \in \mathscr{B}_{i}$ is represented as $u=k g_{i} \cdot o_{i}, k \in K, g_{i} \in G_{i}$; so put $\mathscr{L}_{\lambda} \phi(u)=J_{\lambda}\left(k g_{i} c_{i}, o\right)$. $\phi\left(k g_{i}\right)$. It is easily verified that $\mathscr{L}_{\lambda} \phi$ is a well defined function on \mathscr{B}_{i} and belongs to $L^{2}\left(\mathscr{R}_{i}, \lambda\right)$. Let $\mathscr{L}_{\lambda}^{0}: L^{2}\left(G, \sigma_{\lambda}\right) \rightarrow L^{2}\left(\mathscr{P}_{i}, \lambda\right)^{\circ}$ be the composition of the mapping $\mathscr{L}_{\lambda}: L^{2}\left(G, \sigma_{\lambda}\right) \rightarrow L^{2}\left(\mathscr{R}_{i}, \lambda\right)$ with the canonical projection of $L^{2}\left(\mathscr{B}_{i}, \lambda\right)$ onto $L^{2}\left(\mathscr{B}_{i}, \lambda\right)^{\circ}$.
7.7. Lemma. $\mathscr{L}_{\lambda}^{\circ}$ is a linear isometry of $L^{2}\left(G, \sigma_{\lambda}\right)$ onto $L^{2}\left(\mathscr{B}_{i}, \lambda\right)^{\circ}$. In particular $L^{2}\left(\mathscr{B}_{i}, \lambda\right)^{\circ}$ is a Hilbert space.

Proof. If $F \in L^{2}\left(\mathscr{B}_{i}, \lambda\right)$ then $\tilde{F} \in L^{2}\left(G, \sigma_{\lambda}\right)$ as remarked before, and it is easily seen that $F \sim \mathscr{L}_{\lambda} \widetilde{F}$. Thus $\mathscr{L}_{\lambda}^{\circ}$ is surjective. The rest of the lemma is obvious.

Given $F \in L^{2}\left(\mathscr{B}_{i}, \lambda\right)$, we define (using the notation in (6.15))

$$
\mathscr{2}_{\lambda} F(z)=\int_{\boldsymbol{x}_{i}} K_{\lambda}(z, u) M_{\lambda}(u) F(u) d \mu(u)
$$

for all $z \in \mathscr{D}$ for which this integral exists.
7.8. Lemma. For any $F \in L^{2}\left(\mathscr{B}_{i}, \lambda\right)$, the integral defining $\mathscr{Q}_{\lambda} F(z)$ exists for all $z \in \mathscr{D}$, and if $F, F^{\prime} \in L^{2}\left(\mathscr{B}_{i}, \lambda\right)$ with $F \sim F^{\prime}$, then $\mathscr{Q}_{\lambda} F=\mathscr{2}_{\lambda} F^{\prime}$.

Proof. According to (6.2) and (6.12), $E_{w} E_{z}^{*} \boldsymbol{e}=K_{\lambda}(w, z) \boldsymbol{e}$ and $E_{z}^{*} \boldsymbol{e} \in$ $\mathcal{O}^{2}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$ for all $z, w \in \mathscr{D}$ and all $\boldsymbol{e} \in E_{\lambda}$. If we set $F_{z, \boldsymbol{e}}=\left.E_{z}^{*} \boldsymbol{e}\right|_{\mathscr{D}_{i}}$, then clearly $F_{z, \boldsymbol{e}} \in L^{2}\left(\mathscr{B}_{i}, \lambda\right)$. Hence if $F \in L^{2}\left(\mathscr{P}_{i}, \lambda\right)$, then ($\left.\widetilde{F}, \tilde{F}_{z, \boldsymbol{e}}\right)$ (inner product in $\left.L^{2}\left(G, \sigma_{\lambda}\right)\right)$ exists for all $z \in \mathscr{D}, \boldsymbol{e} \in E_{\lambda}$ where $\widetilde{F}, \widetilde{F}_{z, e}$ are defined as in (7.6). Now recalling the definition (6.14) of M_{λ}, we have, for all $z \in \mathscr{D}, \boldsymbol{e} \in E_{\lambda}$,

$$
\begin{aligned}
& \left(\widetilde{F}, \widetilde{F}_{z, \boldsymbol{e}}\right) \\
& \quad=\int_{K \times G_{i}}\left(P_{\lambda} J_{\lambda}\left(k g_{i} c_{i}, o\right)^{-1} F\left(k g_{i} \cdot o_{\imath}\right), P_{\lambda} J_{\lambda}\left(k g_{i} c_{i}, o\right)^{-1} K_{\lambda}\left(k g_{i} \cdot o_{i}, z\right) \boldsymbol{e}\right) d k d g_{i} \\
& \quad=\left(\int_{\mathscr{P}_{i}} K_{\lambda}(z, u) M_{\lambda}(u) F(u) d \mu(u), \boldsymbol{e}\right) \\
& \\
& =\left(\mathscr{Q}_{\lambda} F(z), \boldsymbol{e}\right),
\end{aligned}
$$

and from this the first assertion follows at once. Since $F \sim F^{\prime} \Leftrightarrow \tilde{F}=\tilde{F}^{\prime}$ (in $\left.L^{2}\left(G, \sigma_{\lambda}\right)\right)$, the second assertion also follows.

By Lemma 7.8 we may define, for $F^{\circ} \in L^{2}\left(\mathscr{B}_{i}, \lambda\right)^{\circ}$, a function $\mathscr{Q}_{\lambda}^{\circ} F^{\circ}: \mathscr{D} \rightarrow E_{\lambda}$ by setting $\mathscr{2}_{\lambda}^{\circ} F^{\circ}=\mathscr{Q}_{\lambda} F$ where F is any representative of the class F°. In view of (4.37) and Lemma 7.7, $H^{2}(\mathscr{D}, \lambda)$ can be identified with a closed subspace of $L^{2}\left(\mathscr{B}_{i}, \lambda\right)^{\circ}$. Note that this identification is induced by taking boundary values of functions belonging to the dense subspace $\mathcal{O}^{2}\left(\mathscr{\mathscr { D }}, E_{\lambda}\right)$ of $H^{2}(\mathscr{D}, \lambda)$.
7.9. Lemma. For any $F^{\circ} \in L^{2}\left(\mathscr{B}_{i}, \lambda\right)^{\circ}$, the function $\mathscr{2}_{\lambda}^{\circ} F^{\circ}$ belongs to $H^{2}(\mathscr{D}, \lambda)$. Moreover, the mapping $\mathscr{2}_{\lambda}^{\circ}: L^{2}\left(\mathscr{B}_{i}, \lambda\right)^{\circ} \rightarrow H^{2}(\mathscr{D}, \lambda)$ is the orthogonal projection operator onto $H^{2}(\mathscr{D}, \lambda)$ if we regard $H^{2}(\mathscr{D}, \lambda)$ as a closed subspace of $L^{2}\left(\mathscr{B}_{i}, \lambda\right)^{\circ}$.

Proof. According to (6.15), $\mathscr{2}_{\lambda}^{\circ} F=F$ for all $F \in \mathcal{O}^{2}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$. Since $\mathcal{O}^{2}\left(\overline{\mathscr{D}}, E_{\lambda}\right)$ is dense in $H^{2}(\mathscr{D}, \lambda)$, it follows that $\mathscr{2}_{\lambda}^{\circ} F=F$ for all $F \in H^{2}(\mathscr{D}, \lambda)$. On the other hand if $F^{\circ} \in L^{2}\left(\mathscr{B}_{i}, \lambda\right)^{\circ}$ is orthogonal to $H^{2}(\mathscr{D}, \lambda)$ then, since $E_{z}^{*} \boldsymbol{e}$ $\in H^{2}(\mathscr{D}, \lambda)$ for every $\boldsymbol{e} \in E_{\lambda}$, we have

$$
\begin{aligned}
0 & =\left(F^{\circ}, E_{\lambda}^{*} \boldsymbol{e}\right) \\
& =\int_{K \times G_{i}}\left(P_{\lambda} J_{\lambda}\left(k g_{i} c_{i}, o\right)^{-1} F\left(k g_{i} \cdot o_{i}\right), P_{\lambda} J_{\lambda}\left(k g_{i} c_{i}, o\right)^{-1} K_{\lambda}\left(k g_{i} \cdot o_{i}, z\right) \boldsymbol{e}\right) d k d g_{i} \\
& =\left(\int_{\mathscr{刃}_{i}} K_{\lambda}(z, u) M_{\lambda}(u) F(u) d \mu(u), \boldsymbol{e}\right) \quad \\
& =\left(\mathscr{Q}_{\lambda}^{\circ} F^{\circ}(z), \boldsymbol{e}\right)
\end{aligned}
$$

for all $z \in \mathscr{D}$ and $\boldsymbol{e} \in E_{\lambda}$. Thus $\mathscr{Q}_{\lambda}^{\circ} F^{\circ}=0$ and the lemma follows.
With this preparation, we can now prove part (1) of Theorem 7.4.
Proof of Theorem 7.4(1). Consider the following mappings:

$$
L^{2}\left(G, \sigma_{\lambda}\right) \xrightarrow{\mathscr{L}_{i}^{\circ}} L^{2}\left(\mathscr{B}_{i}, \lambda\right)^{\circ} \xrightarrow{2_{i}^{\circ}} H^{2}(\mathscr{D}, \lambda) \xrightarrow{\mathscr{A}} H^{2}\left(G, \dot{\tau_{\lambda}}\right)
$$

where \mathscr{J}_{λ} is the unitary isomorphism defined by (4.50). We are going to prove that $\mathscr{J}_{\lambda}^{\circ} \mathscr{Q}_{\lambda}^{\circ} \circ \mathscr{L}_{\lambda}^{\circ}=\mathscr{P}_{\lambda}$; since the G-equivariance of \mathscr{P}_{λ} is obvious, in view of Lemmas 7.7 and 7.9 this will imply the result. So letting $\phi \in L^{2}\left(G, \sigma_{\lambda}\right)$ and $g \in G$, we calculate

$$
\begin{aligned}
& \left(\mathscr{J}_{\lambda} \circ \mathscr{Q}_{\lambda}^{\circ} \circ \mathscr{L}_{\lambda}^{\circ}(\phi)\right)(g) \\
& \quad=J_{\lambda}(g, o)^{-1}\left(\mathscr{Q}_{\lambda} \circ \mathscr{L}_{\lambda}(\phi)\right)(g \cdot o)
\end{aligned}
$$

$$
\begin{aligned}
& =J_{\lambda}(g, o)^{-1} \int_{\mathscr{\theta}_{i}} K_{\lambda}(g \cdot o, u) M_{\lambda}(u) \mathscr{L}_{\lambda} \phi(u) d \mu(u) \\
& =J_{\lambda}(g, o)^{-1} \int_{K \times G_{i}} K_{\lambda}\left(g \cdot o, k g_{i} \cdot o_{i}\right) M_{\lambda}\left(k g_{i} \cdot o_{i}\right) \mathscr{L}_{\lambda} \phi\left(k g_{i} \cdot o_{i}\right) d k d g_{i} .
\end{aligned}
$$

Now (6.3b), Lemma 6.6 and (6.12) imply

$$
\begin{aligned}
K_{\lambda}\left(g \cdot o, k g_{i} \cdot o_{i}\right) & =J_{\lambda}(g, o) K_{\lambda}\left(o, g^{-1} k g_{i} \cdot o_{i}\right) J_{\lambda}^{*}\left(g, g^{-1} k g_{i} \cdot o_{i}\right) \\
& =\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{-2} J_{\lambda}(g, o) J_{\lambda}^{*}\left(g^{-1}, k g_{i} \cdot o_{i}\right)^{-1},
\end{aligned}
$$

while by definition

$$
\begin{aligned}
M_{\lambda}\left(k g_{i} \cdot o_{i}\right) & =J_{\lambda}^{*}\left(k g_{i} c_{i}, o\right)^{-1} P_{\lambda} J_{\lambda}\left(k g_{i} c_{i}, o\right)^{-1}, \\
\mathscr{L}_{\lambda} \phi\left(k g_{i} \cdot o_{i}\right) & =J_{\lambda}\left(k g_{i} c_{i}, o\right) \phi\left(k g_{i}\right)
\end{aligned}
$$

Therefore, using the cocycle formula and Lemma 7.2, we get

$$
\begin{aligned}
\left(\mathscr{J}_{\lambda^{\circ}} \mathscr{Q}_{\lambda}^{\circ} \circ \mathscr{L}_{\lambda}^{\circ}(\phi)\right)(g) & =\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{-2} \int_{K \times G_{i}} J_{\lambda}^{*}\left(g^{-1} k g_{i} c_{i}, o\right)^{-1} \phi\left(k g_{i}\right) d k d g_{i} \\
& =\gamma \int_{K \times G_{i}} J_{\lambda}^{*}\left(g^{-1} k g_{i}, o_{i}\right)^{-1} \phi\left(k g_{i}\right) d k d g_{i} \\
& =\mathscr{P}_{\lambda} \phi(g)
\end{aligned}
$$

for all $\phi \in L^{2}\left(G, \sigma_{\lambda}\right)$ and $g \in G$. Thus $\mathscr{J}_{\lambda} \circ \mathscr{Q}_{\lambda}^{\circ} \circ \mathscr{L}_{\lambda}^{\circ}=\mathscr{P}_{\lambda}$ as desired.
For part (2) we need some notation and one more lemma. With τ_{λ} being as in Lemma 4.2, we define

$$
L^{2}\left(G_{i}, \tau_{\lambda}\right)=\left\{\begin{array}{c}
f \text { Borel measurable, } \\
f: G_{i} \rightarrow E_{\lambda} ; \\
\left.f(g k)=\tau_{\lambda}(k)^{-1} f(g), g \in G_{i}, k \in K_{i},\right\}, \\
\int_{G_{i}}\left|f\left(g_{i}\right)\right|^{2} d g_{i}<\infty
\end{array}\right\}
$$

and put

$$
H^{2}\left(G_{i}, \tau_{\bar{\lambda}}\right)=L^{2}\left(G_{i}, \tau_{\bar{\lambda}}\right) \cap\left\{f \in C^{\infty}\left(G_{i}, E_{\bar{\lambda}}\right) ; r(X) f=0 \text { for all } X \in \mathfrak{p}_{i}^{-}\right\}
$$

$\left(r(X)\right.$ is defined similarly as in (4.19)). Recall the spaces $L^{2}\left(M_{i},{ }^{\prime} \tau_{\lambda}^{(i)}\right)$ and $H^{2}\left(M_{i},{ }^{\prime} \tau_{\lambda}^{(i)}\right)$ defined in (5.4). Note that each function in $L^{2}\left(M_{i},{ }^{\prime} \tau_{\lambda}^{(i)}\right)$ is determined completely by its restriction to the subgroup G_{i}. Hence, and because $\left.{ }^{\prime} \tau_{\lambda}^{(i)}\right|_{K_{i}}=\tau_{\lambda}$ (cf. Lemma 4.5(1) and (4.9)), it is obvious that $\left\{\begin{array}{l}\text { restricting elements in } L^{2}\left(M_{i},{ }^{\prime} \tau_{\lambda}^{(i)}\right) \text { to } G_{i} \text { sets up a unitary isomor- } \\ \text { phism of } L^{2}\left(M_{i},{ }_{\lambda} \tau_{\lambda}^{(i)}\right) \text { onto } L^{2}\left(G_{i}, \tau_{\bar{\lambda}}\right) \text { and } H^{2}\left(M_{i},{ }^{\prime} \tau_{\lambda}^{(i)}\right) \text { corresponds } \\ \text { to } H^{2}\left(G_{i}, \tau_{\bar{\lambda}}\right) \text { under this mapping. }\end{array}\right.$

Therefore Lemma 5.6 implies that $H^{2}\left(G_{i}, \tau_{\lambda}\right)$ is a nonzero closed subspace of $L^{2}\left(G_{i}, \tau_{\lambda}\right)$.
7.11. Lemma. For $\phi \in L^{2}\left(G_{i}, \tau_{\bar{\chi}}\right)$ and $g \in G_{i}$, set

$$
\mathscr{2}_{\lambda} \phi(g)=\beta_{i}^{2}\left\|\mathbf{1}_{\lambda}\right\| \overline{\bar{\lambda}}^{2} \int_{G_{i}} J_{\lambda}\left(g_{i}^{-1}, o\right)^{-1} \phi\left(g g_{i}\right) d g_{i}
$$

where $\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}$ is as in the proof of Lemma 5.3. Then $\mathscr{2}_{\lambda}$ defines the orthogonal projection operator of $L^{2}\left(G_{i}, \tau_{\bar{\lambda}}\right)$ onto $H^{2}\left(G_{i}, \tau_{\bar{\lambda}}\right)$.

Proof. Let $L^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)$ and $H^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)$ be as in (5.1). For $F \in L^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)$, define (using the same notation as in (5.5)) $\mathscr{J}_{\lambda} F: G_{i} \rightarrow E_{\lambda}$ by $\mathscr{J}_{\lambda} F(g)=$ $J_{\lambda}\left(g c_{i}, o\right)^{-1} F\left(g \cdot o_{i}\right)$. Then, in view of (7.10) and Lemma 5.6, \mathscr{J}_{λ} is a unitary isomorphism of $L^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)$ onto $L^{2}\left(G_{i}, \tau_{\lambda}\right)$, and $H^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)$ corresponds to $H^{2}\left(G_{i}, \tau_{\bar{\lambda}}\right)$ under \mathscr{J}_{λ}. Recall the representation $\left(T_{\bar{\lambda}}, H^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)\right)$ of G_{i} defined by (5.2). Since $T_{\bar{\lambda}}$ is unitary, just as in the case of the kernel function K_{λ} of $H^{2}(\mathscr{D}, \lambda)$ one can prove: $H^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)$ has a reproducing kernel $K_{\bar{\lambda}}: \mathscr{C}_{i} \times \mathscr{C}_{i} \rightarrow G L\left(E_{\bar{\lambda}}\right)$ such that

$$
(F(z), \boldsymbol{e})_{E_{\bar{\lambda}}}=\left(F(\cdot), K_{\bar{\lambda}}(\cdot, z) \boldsymbol{e}\right)_{H^{2}\left(\boldsymbol{\varphi}_{i}, \tilde{\lambda}\right)}
$$

for $F \in H^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right), \boldsymbol{e} \in E_{\bar{\lambda}}, z \in \mathscr{C}_{i}$, and $K_{\tilde{\lambda}}$ satisfies

$$
K_{\bar{\lambda}}(g \cdot z, g \cdot w)=J_{\bar{\lambda}}(g, z) K_{\tilde{\lambda}}(z, w) J_{\hat{\lambda}}^{*}(g, w)
$$

for $g \in G_{i}, z, w \in \mathscr{C}_{i}$ where $J_{\lambda}(g, z)$ denotes the restriction of $J_{\lambda}(g, z)$ to E_{λ}. Moreover

$$
K_{\tilde{\lambda}}\left(z, o_{i}\right)=K_{\tilde{\lambda}}\left(o_{i}, z\right)=\left\|\mathbf{1}_{\lambda}\right\|_{\bar{\lambda}}^{2} I
$$

for all $z \in \mathscr{C}_{i}$.
We define a measure on \mathscr{C}_{i} by

$$
\int_{\mathscr{C}_{i}} f(w) d w=\int_{G_{i}} f\left(g_{i} \cdot o_{i}\right) d g_{i}
$$

for $f \in C_{c}\left(\mathscr{C}_{i}\right)$, and define a function $M_{\bar{\lambda}}: \mathscr{C}_{i} \rightarrow G L\left(E_{\bar{\lambda}}\right)$ by $M_{\bar{\lambda}}(w)=J_{\bar{\lambda}}^{*}\left(g c_{i}, o\right)^{-1}$. $J_{\chi}\left(g c_{i}, o\right)^{-1}$ with $w=g \cdot o_{i}, g \in G_{i}$ (this is well defined). Then by the same argument as in the proof of Lemma 7.9, one finds that the orthogonal projection Q_{λ} of $L^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)$ onto $H^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)$ is given by

$$
Q_{\lambda} F(z)=\int_{\mathscr{\gamma}_{i}} K_{\bar{\lambda}}(z, w) M_{\bar{\lambda}}(w) F(w) d w
$$

for all $F \in L^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right)$.
Now consider the following mappings:

$$
L^{2}\left(G_{i}, \tau_{\bar{\lambda}}\right) \xrightarrow{g_{\bar{\lambda}}^{-1}} L^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right) \xrightarrow{Q_{\bar{\lambda}}} H^{2}\left(\mathscr{C}_{i}, \tilde{\lambda}\right) \xrightarrow{g_{\lambda}} H^{2}\left(G_{i}, \tau_{\lambda}\right) .
$$

To prove the lemma it is enough to show that $\mathscr{J}_{\lambda^{\circ}} Q_{\chi^{\circ}} \mathscr{J}_{\lambda}^{-1}=2_{\lambda}$. If $\phi \in L^{2}\left(G_{i}, \tau_{\lambda}\right)$ and $g \in G_{i}$ then, calculating as in the proof of Theorem 7.4(1), we get

$$
\begin{aligned}
& \left(\mathscr{J}_{\lambda^{\circ}} Q_{\lambda^{\circ}} \mathscr{J}_{\bar{\lambda}}^{-1}(\phi)\right)(g) \\
& \quad=J_{\lambda}\left(g c_{i}, o\right)^{-1} \int_{G_{i}} K_{\lambda}\left(g \cdot o_{i}, g_{i} \cdot o_{i}\right) M_{\lambda}\left(g_{i} \cdot o_{i}\right) J_{\lambda}\left(g_{i} c_{i}, o\right) \phi\left(g_{i}\right) d g_{i} \\
& \quad=\left\|\mathbf{1}_{\lambda}\right\|_{\bar{\lambda}}{ }^{2} J_{\lambda}\left(g c_{i}, o\right)^{-1} J_{\lambda}\left(g, o_{i}\right) \int_{G_{i}} J_{\lambda}^{*}\left(g^{-1} g_{i} c_{i}, o\right)^{-1} \phi\left(g_{i}\right) d g_{i} \\
& \quad=\beta_{i}^{2}\left\|\mathbf{1}_{\lambda}\right\| \bar{\lambda}^{2} \int_{G_{i}} J_{\lambda}^{*}\left(g_{i}, o\right)^{-1} \phi\left(g g_{i}\right) d g_{i}
\end{aligned}
$$

(by Lemma 4.25 and the invariance of measure)
$=\beta_{i}^{2}\left\|\mathbf{1}_{\lambda}\right\| \|_{\bar{\lambda}} \int_{G_{i}} J_{\lambda}\left(g_{i}^{-1}, o\right)^{-1} \phi\left(g g_{i}\right) d g_{i}$
(by Lemmas 6.9 and 6.10)

$$
=\mathscr{2}_{\lambda} \phi(g) .
$$

Thus $\mathscr{J}_{\chi^{0}} Q_{\chi^{0}} \mathscr{J}_{\bar{\lambda}}^{1}=2_{\lambda}$ and the lemma follows.
Proof of Thborem 7.4(2). Since $C_{2}^{\infty}\left(G, \sigma_{\lambda} ; \mathfrak{p}_{i}^{-}\right)$(notation of (5.8)) is dense in $L^{2}\left(G, \sigma_{\lambda} ; \mathfrak{p}_{i}^{-}\right)$, it suffices to show that the formula (7.5) is valid for all $\phi \in C_{2}^{\infty}\left(G, \sigma_{\lambda} ; \mathfrak{p}_{i}^{-}\right)$. For $\phi \in C_{2}^{\infty}\left(G, \sigma_{\lambda} ; \mathfrak{p}_{i}^{-}\right)$and $g \in G$, define $\phi_{g}: G_{i} \rightarrow E_{\lambda}$ by $\phi_{g}\left(g_{i}\right)=\phi\left(g g_{i}\right)$. Then it is not difficult to show that $\phi_{g} \in H^{2}\left(G_{i}, \tau_{\lambda}\right)$. Therefore if $\phi \in C_{2}^{\infty}\left(G, \sigma_{\lambda} ; \mathfrak{p}_{i}^{-}\right)$then, using Lemma 7.11 , we get

$$
\phi(g)=\phi_{g}(e)=2_{\lambda} \phi_{g}(e)=\beta_{i}^{2}\left\|\mathbf{1}_{\lambda}\right\|_{\overline{\bar{\lambda}}} \int_{G_{i}} J_{\lambda}\left(g_{i}^{-1}, o\right)^{-1} \phi\left(g g_{i}\right) d g_{i}
$$

for all $g \in G$. Thus, and since $\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{2}=d(\lambda) d(\tilde{\lambda})^{-1}\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{2}$ (cf. the proof of Lemma 5.3), we obtain

$$
\begin{aligned}
\mathscr{P}_{\lambda} \phi(g) & =\beta_{i}\left\|\mathbf{1}_{\lambda}\right\| \|^{-2} \int_{K \times G_{i}} \tau_{\lambda}(k) J_{\lambda}\left(g_{i}^{-1}, o\right)^{-1} \phi\left(g k g_{i}\right) d k d g_{i} \\
& =\beta_{i}^{-1} d(\tilde{\lambda})^{-1} d(\lambda) \int_{K} \tau_{\lambda}(k) \phi(g k) d k
\end{aligned}
$$

for all $\phi \in C_{2}^{\infty}\left(G, \sigma_{\lambda} ; \mathfrak{p}_{i}^{-}\right)$and $g \in G$. This completes the proof.

Remark. In the extreme case $i=r$, we have $G_{r}=K_{r} \subset K$ (cf. (2.29)) and hence $\mathfrak{p}_{r}^{-}=\{0\}$; therefore $L^{2}\left(G, \sigma_{\lambda}\right)=L^{2}\left(G, \sigma_{\lambda} ; \mathfrak{p}_{r}^{-}\right)$. Thus if $\lambda \in \mathscr{F}_{r}(G)$ then, since $\left\|\mathbf{1}_{\lambda}\right\|_{\lambda}^{2}=\beta_{r}^{2} d(\tilde{\lambda}) d(\lambda)^{-1}$ (cf. Corollary 4.27) and since $\int_{G_{r}} d g_{r}=1$, taking (7.1b) into account we see that the operator $\mathscr{P}_{\lambda}: L^{2}\left(G, \sigma_{\lambda}\right) \rightarrow H^{2}\left(G, \tau_{\lambda}\right)$ defined by (7.1a) is given by

$$
\mathscr{P}_{\lambda} \phi(g)=\beta \int_{K} \tau_{\lambda}(k) \phi(g k) d k=\beta \int_{K} J_{\lambda}^{*}\left(g^{-1} k, o_{r}\right)^{-1} \phi(k) d k
$$

with $\beta=\beta_{r}^{-1} d(\tilde{\lambda})^{-1} d(\lambda)$ (this is consistent with the formula (7.5)). In particular, if $\lambda=\omega_{r}$ (notation of (6.16)) then

$$
\begin{aligned}
H^{2}\left(\mathscr{D}, \omega_{r}\right) & =\text { Hardy space of } \mathscr{D}(\text { cf. }(6.17)), \\
L^{2}\left(\mathscr{B}_{r}, \omega_{r}\right) & =L^{2}\left(\mathscr{B}_{r}, \omega_{r}\right)^{\circ} \\
& =\left\{\text { Borel functions } f: \mathscr{B}_{r} \rightarrow \boldsymbol{C} ; \int_{K}\left|f\left(k \cdot o_{r}\right)\right|^{2} d k<\infty\right\}
\end{aligned}
$$

and, as is clear from our proof of Theorem 7.4(1), $\mathscr{P}_{\omega_{r}}$ corresponds to the integral operator $\mathscr{2}_{\omega_{r}}: L^{2}\left(\mathscr{P}_{r}, \omega_{r}\right) \rightarrow H^{2}\left(\mathscr{D}, \omega_{r}\right)$ associated with the Cauchy-Szegö kernel function.

References

[1] W. L. Baily and A. Borel: Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. 84 (1966), 442-528.
[2] N. Bourbaki: Éléments de mathématique, vol. VI, Intégration, Chapters VII-VIII, Hermann, Paris, 1963.
[3] S. G. Gindikin: Analysis in homogeneous domains, Russian Math. Surveys 19 (1964), 1-89.
[4] K. I. Gross, W. J. Holman, III, and R. A. Kunze: The generalized gamma function, new Hardy spaces, and representations of holomorphic type for the conformal group, Bull. Amer. Math. Soc. 83 (1977), 412-415.
[5] K. I. Gross and R. A. Kunze: Fourier Bessel transforms and holomorphic discrete series, in "Conference on Harmonic Analysis", Lecture Notes in Math., vol. 266, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
[6] -: Bessel functions and representation theory II: holomorphic discrete series and metapletic representations, J. Functional Analysis 25 (1977), 1-49.
[7] Harish-Chandra: Representations of semi-simple Lie groups IV, Amer. J. Math. 77 (1955), 743-777.
[8] -: Representations of semi-simple Lie groups V, Amer. J. Math. 78 (1956), $1-41$.
[9] : Representations of semi-simple Lie groups VI, Amer. J. Math. 78 (1956), 564-628.
[10] -: Harmonic analysis on real reductive groups III: the Mass-Selberg relation and the Plancherel formula, Ann. of Math. 104 (1976), 117-201.
[11] S. Helgason: Differential geometry and symmetric spaces, Academic Press, New York, 1962.
[12] L. K. Hua: Harmonic analysis of functions of several complex variables in the classical domains, Trans. Math. Monographs, vol. 6, Amer. Math. Soc., Providence, 1963.
[13] H. P. Jacobsen and M. Vergne: Wave and Dirac operators, and representations of the conformal group, J. Functional Analysis 24 (1977), 52-106.
[14] M. Kashiwara and M. Vergne: On the Segal-Shale-Weil representations and harmonic polynomials, Inventiones Math. 44 (1978), 1-47.
[15] A. W. Knapp and K. Okamoto: Limits of holomorphic discrete series, J. Functional Analysis 9 (1972), 375-409.
[16] A. W. Knapp and N. R. Wallach: Szegö kernels associated with discrete series, Inventiones Math. 34 (1976), 163-200.
[17] A. Korányi: The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. of Math. 82 (1965), 332-350.
[18] A. Korányi and J. A. Wolf: The realization of hermitian symmetric spaces as generalized half-planes, Ann. of Math. 81 (1965), 265-288.
[19] R. A. Kunze: On the irreducibility of certain multiplier representations, Bull. Amer. Math. Soc. 68 (1962), 93-94.
[20] -: Positive definite operator-valued kernels and unitary representations, in "Proceeding of the Conference on Functional Analysis", Thompson Book Company, Washington, D. C., 1967.
[21] Y. Matsushima and S. Murakami: On vector bundle valued harmonic forms and automorphic forms on symmetric Riemannian manifolds, Ann. of Math. 78 (1963), 365-416.
[22] H. Midorikawa: On certain irreducible representations for the real rank one classical groups, J. Fac. Sci., Univ. of Tokyo 21 (1974), 435-459.
[23] C. C. Moore: Compactifications of symmetric spaces II: the Cartan domains, Amer. J. Math. 86 (1964), 358-378.
[24] K. Okamoto: Harmonic analysis on homogeneous vector bundles, in "Conference on Harmonic Analysis", Lecture Notes in Math., vol. 266, Springer-Verlag, Berlin-Heidel-berg-New York, 1972.
[25] H. Rossi and M. Vergne: Analytic continuation of the holomorphic discrete series of a semi-simple Lie group, Acta Math. 136 (1976), 1-59.
[26] I. Satake: Factors of automorphy and Fock representations, Advances in Math. 7 (1971), 83-110.
[27] M. Takeuchi: Polynomial representations associated with symmetric bounded domains, Osaka J. Math. 10 (1973), 441-475.
[28] N. R. Wallach: On the unitarizability of representations with highest weights, in "NonCommutative Harmonic Analysis", Lecture Notes in Math., vol. 466, Springer-Verlag, Berlin-Heidelberg-New York, 1975.
[29] -: Analytic continuation of the discrete series I, II (to appear).
[30] G. Warner: Harmonic analysis on semi-simple Lie groups I, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
[31] J. A. Wolf: Fine structure of hermitian symmetric spaces, in "Symmetric spaces", M. Dekker, New York, 1972.
[32] J. A. Wolf and A. Korányi: Generalized Cayley transformations of bounded symmetric domains, Amer. J. Math. 87 (1965), 899-934.

> Department of Mathematics, Faculty of Science, Yamaguchi University

