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1. Introduction

Let Q> be the open unit disc in C and let & be its boundary. Then the

group G = 517(1, 1) of all two-by-two complex matrices of the form (r -]

with |α| 2—|ft | 2 = l acts transitively both on Qt and ^ by linear fractional
transformations

The discrete series representations of G can be realized on Hubert spaces of
holomorphic (or anti-holomorphic) functions on ,̂ while the principal con-
tinuous series representations can be realized on L2(^). Every member of the
principal continuous series representations of G is irreducible except one, say F,
which is given by

where j(g~l, u) denotes the complex Jacobian of the holomorphic map z-*g~l z

at u(j(g-\ u) = (Eu + a)-2 if ̂ =(5 J))

The so-called holomorphic discrete series representations of G are para-
metrized by the integers n>2, and the n-th representation Tn is realized on the

Hubert space

Hn = jholomorphic functions /on Qι\ \ |/(z)|2(l - \z\2)n~2dxdy < ool

with group action

(Tn(g)f)(z) = j(g~ι, zY'2f(g-ι - z), /e HΛ9 g e G, z e ®.

Note that in the case n = 1 we have Hl = {0}. However, one can associate to the
integer n = 1 a representation of G that is similar in appearance to those above.
Indeed, if we let H\&) be the Hardy space for 0, i.e.,
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H2(@) = <holomorphic functions /on ζ&\ sup \ \f(ru)\2du < co>
( 0<r<l Ja )

(dw = Lebesgue measure on &\ then #2(^)^{0} and the action 7\ given by

defines an irreducible unitary representation of G on H2(^). This representation

does not belong to the holomorphic discrete series of G but is, in a sense, a limit
of the holomorphic discrete series, and is of special interest due to the fact that
it is unitarily equivalent to a proper subrepresentation of the "exceptional"
representation (K, L2(^)) above. The realization of (7\, H2($)} as the sub-
representation of (7, L2(^)) arises from the well-known imbedding of H2(@)

into L2(^) given by taking boundary values.
The possibility of such a realization of irreducible components of reducible

continuous series representations was investigated by Knapp and Okamoto [15]
in more generality, namely, in the context of a linear simple Lie group that acts
on a hermitian symmetric space. (In this connection see also Knapp and Wallach

[16] and Midorikawa [22].) On the other hand, for a simply connected real

semi-simple Lie group G whose associated symmetric space G/K is hermitian,
Harish-Chandra ([7], [8], [9]) constructed a certain class of (not necessarily
unitary) representations that includes the holomorphic discrete series. These
representations can be realized on the spaces of holomorphic sections of holo-

morphic vector bundles over G/K arising from finite dimensional irreducible

representations of K (or on the spaces of holomorphic vector valued functions on
G/K by trivializing vector bundles). Both Rossi and Vergne [25] and Wallach
([28], [29]) have studied the unitarizability of these representations and obtained
complete results for the case of line bundles. In that specialized context (case of
line bundles), it is also shown in [25] that those representations which are indexed
by certain "integral or half-integral points" can be realized on Hardy type Hubert
spaces associated with various boundary orbits of G/K (in the unbounded reali-
zation as a Siegel domain of type II), and that they are naturally imbedded (in
terms of appropriate boundary values) in certain continuous series representa-
tions. As noted in [25], the representation which corresponds to the maximal

(codimension one) boundary of G/K is a member of the limits of holomorphic

discrete series in the sense of Knapp and Okamoto [15]. Although Knapp and
Okamoto constructed their representations on Hubert spaces of holomorphic
sections of holomorphic line bundles over G/T (T being a compact Cartan sub-

group), it turns out that those representations can also be realized on vector
valued Hardy type spaces associated with the maximal boundary of G/K.

Now in view of the above results of Knapp-Okamoto and Rossi- Vergne, it
is natural to pose the following questions :
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(1) In general (vector bundle) case, can one construct, corresponding to

each boundary orbit of G/K, Hardy type Hubert spaces on which G acts by
unitary transformation?

(2) Supposing it is possible, are they imbedded in certain continuous series
representations?

One of the main purposes of this paper is to give affirmative answers to these
questions in the case where G is a connected simple Lie group that admits a

faithful matrix representation (and whose quotient G/K by a maximal compact
subgroup K carries a hermitian symmetric structure). Our construction is

based on the bounded domain realization of G/K. We also consider the (opera-
tor valued) reproducing kernel functions for these Hardy type Hubert spaces and
intertwining operators associated with the kernel functions.

Here is a more detailed description of the contents of this paper. In the

following it is convenient to use the notion of vector bundle, though we do not

use in the text.

In section 2 we review some known facts that are needed in this paper, in a

manner which is convenient for our later use. For a group G of above type, let

Of be the Harish-Chandra realization of the corresponding hermitian symmetric

space G/K as a bounded domain in p+ (cf. 2.1). The action of G on 2 extends

smoothly to ^, the closure of Of in p+, and the topological boundary & — $>

breaks into r (r = rankG/X) G-orbits, say ^Ί,..., 0Γ, where &t^&i+i (!</
<r— 1); thus 3Sr is the Silov boundary of .̂ Each boundary J^ decomposes,

in a G-equivariant manner, into complex submanifolds of p+, called boundary

components of @ or holomorphic arc components of ,̂ which are themselves
isomorphic to a bounded symmetric domain of r a n k r — / . For each / = !,..., r,

there is a naturally associated point 0 f e ̂  and a holomorphic arc component
<&i of 381 containing oh and it is known that every holomorphic arc component

of &ι is of the form /e ,̂ keK. Further, there exists, for each l< ϊ<r , a

semi-simple subgroup Gf of G with #. = 0^0,-; thus if we let Kt be the isotropy

subgroup of Gi at oi9 then V^GJKi. Let P, = {0 eG; g ^ = #4} and St =
{#eG; g Oi — Oi}. Then P, is a maximal parabolic subgroup of G, and we have

a Langlands decomposition P^M^Λ^ such that if we put L^Mjf lS j then
S^L^NI. Each boundary S§i = G\8i has a natural quasi-invariant measure άμ

so that

f(u)dμ(u)=( f(kgr0i)dkdgi
?i JKxGi

for any integrable / on &i9 where dk, dgt are Haar measures on K, Gt.

In Section 3 we define, for each 1 < i < r, a certain subset ^(G) c ^' — 11*

(t = Lie algebra of a compact Cartan subgroup T of G) consisting of highest
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weights of irreducible representations of K. (To each member of .̂ (G), we shall

associate a Hardy type space and an irreducible unitary representation of G in

Section 4.) It turns out that in the case i = 1 the defining condition of ^Ί(G) is

equivalent to the condition imposed by Knapp and Okamoto [15]. Our defini-

tion of &i(G) is given in such a way that each member of .̂ (G) is expressed

explicitly in terms of fundamental highest weights; cf. (3.8).

In Section 4 we construct, corresponding to each member of « "̂i(G), unitary
representations of G. Fix ϊ, 1 < ί < r, and λ e (̂G). Let τλ be the irreducible
unitary representation of K on Eλ with highest weight A, and let eλ be a nonzero
highest weight vector. If we let Eλ be the linear span of {τλ(/c)eλ; fceKJ, then
for each v e α f (α—Lie algebra of At) we obtain (cf. (4.9), (4.10)) irreducible
representations σλ>v and 'σλ)V of Si on Eλ,

 fσλ>v being unitary, and the unitarily

induced representation t/λ)V = Ind s. t G 'σΛ > v is realized on the Hubert space L2(G,
σλ >v) of L2 sections (relative to the quasi-invariant measure άμ on )̂ of the
G-homogeneous vector bundle over the boundary ^—G/S,. associated with the
representation σλ>v of St. (In the case v = 0, we write σλ, Uλ instead of σλ>0,

Uλ)0.) Next we introduce a Hardy type Hubert space H2(&, λ) of £λ-valued
holomorphic functions on & (cf. (4.16), (4.35)), which is imbedded in L2(G, σA)
by taking appropriate boundary values. H2(β, λ) is naturally identified with a

space H2(G, τλ) of holomorphic sections of the holomorphic vector bundle over
G/K associated with the representation τλ of K (the vector bundle being holo-

morphically trivial). We then show (Theorem 4.49) that H2(&, λ) is nonzero
and the action Tλ of G on H2(@, λ) given by

(Tλ(g)F) (z) = Jλ(g~\ z)-^F(g-^ - z), F e H2(2>, λ\ g e G, z E ®

( Jλ = automorphic factor of type τA; cf. 2.4) defines an irreducible unitary rep-
resentation of G on R2(β, A), and that the imbedding H2(@9 A)q:L2(G, σλ)

commutes with the action of G.
In Section 5 we first construct, corresponding to each λ e ^/(G), an irreduci-

ble unitary representation μλ of Mt and form the continuous series representations

Vλ>v = IndMMfWit G (μλ ® *v^v ® 1)> v e of .λ>v

We then show (Proposition 5.9) that the FΛ j V is unitarily equivalent to a subrep-

resentation (l/A>v, L
2(G, σ λ j V; p^)) of the representation (ί/λ>v, L

2(G, σλjV)) in
Section 4; here L2(G, σλ>v; pΓ) is a subspace of L2(G, σλ>v) consisting of those

sections that are holomorphic on every holomorphic arc component of .̂
Finally, we show (Theorem 5.13) that the representation Tλ of G on H2(&, λ) is
unitarily equivalent to a proper subrepresentation of Vλ (=t/

Aj0) and hence Vλ is

reducible.
In Section 6 we discuss the reproducing kernel function Kλ of H2(β, λ) and
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derive (Proposition 6.4) an explicit formula for Kλ. We then specialize to the
case where τλ (λe (̂G)) are one dimensional representations of K. In this
situation there exists at most one, say, ωie^ffl) for each l<ί<r; cf. (6.16).
(If we take a suitable covering G° of G, then for each 1 < i < r there exists a unique
λe^^G0) with dim£A=l. But G° is not necessarily a linear group.) In the
case i = r, H2(&9 ωr) turns out to be the usual Hardy space for the bounded
symmetric domain ^ (cf. (6.17)), and hence the kernel function corresponding to
ωr is the Cauchy-Szego kernel function of ̂ . For kernel functions corresponding
to these ωf, l<ί<r, we find more explicit formulas; cf. Proposition 6.22. The
formula for the Cauchy-Szegό kernel function was first derived by Koranyi [17,
Proposition 5.7] by translating the results (due mostly to Gindikin [3]) on Siegel
domains of type II to bounded symmetric domains by the Cayley transform (due
to Koranyi and Wolf [18]); for the classical domains it was first found by Hua
[12].

In Section 7 we give (Theorem 7.4) an integral operator 3?λ: L2(G, σλ)
-»#2(G, τλ) (here we identify L2(G, σλ) (resp. H2(G9 τλ)) with a certain subspace
of the space of E% (resp. Eλ) valued functions on G) which is regarded as
the orthogonal projection operator if we identify H2(G, τλ) with a subspace of
L2(G, σλ), and also show that on the subspace L2(G, σΛ; p7), 2Pλ is given by

geG,φe L2(G, σλ pγ)

where β is a positive constant. Intertwining operators that take such a form as
above were considered by Okamoto [24] and Knapp and Wallach [16] in other
contexts, e.g. intertwining maps from non-unitary principal series representations
to (limits of) discrete series representations. We note that in the special case
λ = ωr in the notation of Section 6, &λ corresponds to the integral operator
associated with the Cauchy-Szegδ kernel function (cf. the remark at the end of
this paper).

For the groups associated with classical hermitian symmetric spaces of tube
type, i.e., for Sp(n, K), U(n, n) and 0*(4w) Gross and Kunze have produced, in
their study of the primary decompositions of metapletic representations ([5], [6]),
some irreducible unitary representations with highest weights which are not in
discrete series. (The representations that we shall construct have this property;

cf. Lemma 4.52.) In a similar way Kashiwara and Vergne [14] have obtained

series of such representations for U(p, q) and the metapletic group Mp(n, R), a
two-sheeted covering of Sp(n, R). In these papers, however, it is not discussed
whether some of those representations have realizations in Hardy type spaces
or whether they are imbedded in continuous series representations. For the
conformal group 17(2, 2), related topics were considered by Jacobsen and Vergne
[13], and by Gross, Holman and Kunze [4]. In particular, in [4] some vector-
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valued Hardy spaces for the corresponding Siegel domain (an unbounded realiza-

tion of G/K, G= (7(2, 2)) are introduced.

The author would like to express his thanks to Professor K. Okamoto for

his constant advice and encouragement and to Professor M. Takeuchi for several

helpful suggestions.

2. Notations and preliminaries

Let G be a connected simple Lie group with a faithful matrix representation

and K a maximal compact subgroup of G. We assume that G/K admits an

invariant complex structure. Then K has one dimensional center, and one may

choose a compact Cartan subgroup T of G with TaK. We denote the Lie

algebras of G, K, T by g, ϊ, t, and their complexifications by gc, tc, tc; as a general

notational convention the subscript c shall always mean "complexification".

Since G has a faithful matrix representation, we can regard G as a subgroup of

a connected group Gc with Lie algebra gc. Let Kc, Tc denote the analytic

subgroups of Gc corresponding to !c, tc.

Let Φ be the set of nonzero roots of (gc, tc), and let Φc and Φn be the set of

compact and noncompact roots, respectively; thus Φ = Φ C U Φ Π , and if g = t + p

is the Cartan decomposition corresponding to K, we have

ϊc = tc + ΣαeΦc 9c and pc = ΣαeΦM 9ί

where g£ denotes the complex root space for a root α. If α e Φ, we denote by

Ha the unique element of ̂  — \ t such that

2(μ, α)/(α, α) = <μ, Hβ> for all μ E V - 11*

where ^ — \ t* is the real vector space of all linear functions on tc which assume

purely imaginary values on t, and ( , ) is the inner product on ^/ — 11* induced by

the Killing form of gc. For each α e Φ, we choose a root vector XΛ e gc such

that [XΆ, X_Λ]=Ha, and such that the complex conjugation of gc with respect to

g permutes XΛ and X_Λ, whenever αeΦ π . Note that <α, //α> = 2, B(XX, X-Λ)

= 2/(α, α) (β( , ) = KiUing form of gc) for all αeΦ, and that Xα + X_α, J^(Xa

— X-a) are in g if α e Φn.

By our assumption on G/K, there exists an ordering of the root system Φ,

such that the sum of two noncompact positive roots is never a root. We fix such

an ordering once and for all, and let Φ+ be the resulting set of positive roots.

We write Φ+ for Φc Π Φ+ and Φ+ for Φn n Φ+. The choice of Φ+ determines a
splitting

Pc = P+ + P~ with p+ - ΣαeΦί 9c and p- = ΣαeΦ/t 9Γα
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Both p+ and p~ are Ad (KJ-invariant, abelian subalgebras of gc which are com-

plex conjugate to each other. Let P+ and P~ be the corresponding analytic
subgroups of Gc. Then Ke normalizes P± and Kc P* is a parabolic subgroup of

Gc. The G-orbit of the identity coset in GJKC P~ is open and can be identified
with G/K, since G{\KC P- = K. Thus the imbedding G/KcGJKc p- induces
an invariant complex structure on G/K.

2.1. Harish-Chandra realization of G/K (see [9], [31]). The map p+ x Ke

xp~->Gc, given by (x, k, j;)->exp:x /c expy, is a holomorphic diίfeomorphism
onto a dense open subset Ω = P+ Ke P~ of Gc, which contains G. Therefore an
element g e Ω can be written in a unique way as

(2.2) g = π+(g) - π0(0) π_(0), π0fo) e Kc, π±(g) e P±.

It is known that the map ζ: Ω-+p+, given by £(0) = logπ+(0), induces a holomor-
phic diffeomorphism of G/K onto ζ(G) = ̂ , and that ^ is a bounded domain in
p+. This is the Harish-Chandra realization of G/K as a bounded domain. We
will make the following identification :

G/K = & cp+ c GJKC-P-.

Note that the action of G on ̂  is given by

(2.3) # z = ζ(0 exp z), g e G, z e 0.

2.4. Automorphic factor (see [21]). For a holomorphic representation τ of
Kc on a finite dimensional complex vector space E, we define the (canonical)
automorphic factor of type τ, Jτ: G x ^->GL(£), by

(2.5) Jt(0, z) = τ(π0(0 exp z)), 0 e G, z e 0,

where π0 is as in (2.2). It is then easily verified that Jτ has the following
properties :

(2.6a) Jτ(g, z) is C°° in geG and holomorphic in

(2.6b) Λ(0ι02, )̂ = Λ(^ι, 02 2)Λ(025 )̂ for gί9 g2 e G, z e 2

(2.6c) Jτ(/c, z) = τ(fe) for feeK, ze^.

The formula (2.6b) will be referred to as the cocycle formula. We note that the

definition of g - z and Jτ(g, z) can naturally be extended to any pair (g, z), g E Gc,

zep + such that gGxpzeΩ = P+KcP~, and that the cocycle formula (2.6b) is

valid for gί9 g2 e Gc, z e p+ such that both g2 exp z and g^g2 exp z are in Ω. In
particular, for a fixed 0 e G, Jτ(0, ) can be defined and is holomorphic on
{zep+; gexpzeΩ} which is an open subset of p+ containing ,̂ the closure of
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^ in p+. Note also that

(2.7a) Jτ(fc, z) = τ(fc) for kεKc, ze p+,

(2.7b) Jτ(p, z) = / for p e P+, z e p+,

where I denotes the identity transformation of £.

2.8. Description of the root system Φ (see [9], [23]). Two linearly inde-
pendent roots α, β are called strongly orthogonal if neither a + β nor a — β is a

root. We choose a maximal strongly orthogonal set

(2.9) {7lf y2,..., 7r}, 7! > y2 > > yr, r = rank^

of Φ+ as follows. Let γ1 be the highest root of Φ (we know that y^ belongs to
Φ+) and for each j, γj+ί be the highest positive noncompact root that is strongly

orthogonal to each of 7ι,..., 7,-. We write HJ9 XJ9 X.j for H7J9 Xyj9 X-yj. Let

(2.10) α =Σ5-ι*PO + *-;)•

This is a maximal abelian subspace of p. Let t~ = Σj=ιRHj and let π denote
restriction of roots from tβ to t~. Identifying each element of 7 !,..., yr with its

π image, we put

C0 ={αeΦJ;π(α) = 0};

for ! < 7 < r ;

(2.11) Nj = α e Φ : ; π ( α ) = --7 J for

CJk = α e Φ J ; π ( α ) = (y. - 7.) for

for

Then, by results of Harish-Chandra [9] and Moore [23], we have (since our

construction of {y1?..., 7r} differs from that of Harish-Chandra, their results
should be modified slightly; cf. Takeuchi [27] in this connection):

(2.12a) Φ+ = C0 U W (Cy U N )̂ U U (CJh U ΛΓ7k) U {7iv.,7r}.

I The number of roots in Cjk (resp. Cj) is equal to that in Njk (resp. Nj)
and is independent of j, k, l<j<k<r (resp. j9 l<j<r); we call
this number u (resp. ι?). Moreover, if r>l then u>Q (v may be 0).
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(2.12c) Nonzero π images of compact simple roots for Φ+ are

ι-7r)} if ι> = 0

if f? * 0.

(2.12d) The yy all have the same length.

2.13. Cayley transforms (see [31], [32]). For each l<i<r, we define an
element c{ e GC9 which is called the (partial) Cayley transform, by

(2.14) Ci

It verifies

Ad (cjHj = Xj + X-p Ad (cύ(Xj + X-j) = -Hj for l£j£ i;

Aά(Ci)Hj = Hj, M(ct)(Xj + X-j) = Xj + X _ j for i < j <: r.

Moreover

(2.16) G.CicP+ Ke P-,

and

(2.17) -Cl = cϊ1

where the bar denotes the complex conjugation of Gc with respect to G. An
explicit computation in SL(2, C) plus the commutativity of Xj and X±k for

shows that

= exp (Σ}=ι (tanh xj)Xj) exp (- Σ}=ι log (cosh Xj)Hj)

(2.18)

(2.19)

2.20 Maximal parabolic subgroups (see [31], [32], [1]). For each i,

r, let 'Cty denote the set of positive roots which are of the form α— β

with α, β e Cjk, I<j<k<i9 and set C&° = C0 - 'C^} where C ,̂ C0 are as in (2.1 1)

(it is clear that 'C^cCo). Using the notation in (2.11), we define

(2.21a) Φ|= ±CS° U W (±C; U ±N,) U U (±C,fc U ±
i+l^j<k^r

u {±7i+ι,..., ±yr}>
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(2.21V) 'Φ; =

Then (2.12a) implies

{αeΦ;<α, #!+•••+#,>=()} = *, U 'Φ,.

Thus if we set ί^K^H ----- h#f) and let Zg^) denote the centralizer of I), in

gc, we have

Let QiiC (resp. 'gί)C) be the subspace of gc generated by the HΛ and the Xα for
αeΦ; (resp. 'Φf) with the convention that gί>c (resp. 'gίfβ) = {0} in case Φ; (resp.
'Φf) is empty. As follows from (2.12a) and the definition of 'C\p and C#\ no

roots of Φt and of 'Φf add up to a root, whence Φt and 'Φt are closed systems, i.e.,
if α, β E Φt (resp. 'Φf) and α + β e Φ, then α + jδ e Φf (resp. 'Φ^ moreover Φf = - Φί?

'Φ^—'Φi. Hence g / c and 'g^,. are semi-simple subalgebras of gc, which are
contained in Zg^ί^). Furthermore, since no roots of Φt and of 'Φt add up to a

root, gf c and 7g ί jC are ideals in Zg^), and Zg^ί)^ decomposes as an orthogonal

(relative to the Killing form for gc) direct sum

(2.22) Zfl^j) = gi>c Θ 'gί>c Θ tί)C ® ί)ίjC with t/>β c tc.

Now (2.15) implies

(2.23a) Ad(C<)(Σ}=ι^/) = Σ}=ι (̂  + -̂,0 -

Thus if we set α i=JRΣ5=ι(^j + -Xr-j)» then

(3.23b) A

Noting that Ad(c f) acts trivially both on gί)C and i/jC, we see from (2.22) and

(2.23b) that

Zββ(<*i) = 9ί,c θ Ad (ctfQi,, ® ιίiC ® α/}C

(Z0β(αί) = centralizer of αf in gc). Each direct summand of this decomposition,

being invariant under the complex conjugation with respect to g (invariance of
Ad(cf)'gί>c follows from (2.17), since, in view of (2.15), Zg^) and hence 'gί)C is
preserved by Ad (c]~2)), arises as the complexification of a real subalgebra of g.

Hence if we put 9, = gίfβ n g, g', = Ad (cj)'gίiβ n g and ti = t i f e n g, then

Z9(af) = g, 0 g; © i, © a,.

Let

(2.24a) Hi', sum of the negative eigenspaces of ad(Σj=ι (Xj + X-j)) on g,
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(2.24b) PI : normalizer of nt in G.

Then Pi is a parabolic subgroup of G and we have the semidirect sum

Lie algebra of Pt = (& ® g'f ® tf 0 αf) + TV

Let Gf, G , Jf, AI, NI denote the analytic subgroups of G corresponding, respec-

tively, to gf, g , v αf, TV Letting α be as in (2.10), put F = expλ/^Tα n X;
F is a finite subgroup normalizing Gf, G , and It commutes with it. Now let
Mi = FIίGiG

f

i. Then MI is a closed subgroup of G and we have a Langlands

decomposition

(2.25) Pi = MiAiNi

(for Langlands decomposition of a parabolic subgroup, see Warner [30]). In
our situation it is known (cf. Knapp and Okamoto [15], p. 386) that the finite
group F is generated by the elements

exp π(Xj - X_j) = expπ^/~^ΪHp 1 < j < r.

Let Ft be the subgroup of F generated by {exp π^J — 1 #/ l<j<i}. Then it is

clear that Ft commutes with Gt. Furthermore, since ^J — 1 Hj e gf for i + 1 < j < r,

it follows that

(2.26) Mi = FJfifi'i.

We note that

(2.27) the Cayley transform c{ centralizes Fh 7f and G^.

The group Pt is a maximal parabolic subgroup of G, and every maximal parabolic
subgroup of G is conjugate to one of the groups Pt (1 < ί < r).

2.28 Boundary orbits, boundary components (see [31], [32]). The for-
mula (2.18) shows that ct e P+ Kc - P~ so that £(cf) e p+ where ζ is as in 2.1. Put
0. = c r0 in the notation of (2.3), and let ^i = G'θi (the orbit of of under G).

Then

Of — Qf = \J &i (disjoint union)

and @r is the Silov boundary.

With &, GI being as in 2.20, put !; = & Π f, pf = & Π p, Pr =9i,c Π p111, and let Kt

denote the analytic subgroup of Gt with Lie algebra f f. Then 9. = ̂  + ̂ . is a

Cartan decomposition; moreover we have the direct sum decomposition
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and so the space GJKi is hermitian symmetric. It is known that the hermitian
symmetric space GJKt is irreducible. Now let ^f = Gro, ^ = 6 .̂ Then
^ι = Gi/Ki and, since g o^o^g o for g e GL by (2.27), we have

Furthermore

keK

The transforms of the ̂ 's by elements of G are the boundary components of @.
We note that grcιϊ by definition; hence

(2.29) Gr = Kra K9 V, = {or}9 and ar = K - <v

Note also that Gf is noncompact if i / r.
It is known that the parabolic subgroup P; ( = FiIiGiG

f

iAiNi) in 2.20 is the
normalizer of the boundary component #f, i.e.,

(2.30) P, = {0 e G;0 ?, = »,}.

Moreover,

(2.31) FJiG'iAiNi (this is a group) acts trivially on #f.

PROOF OF (2.31). We first check that Nt acts trivially on ̂  Since Nj is
normalized by Gί? and since Gt acts transitively on ̂  it suffices to show that
n.0. = 0. or that cJ1nci o = o for all n E N t ' 9 in turn, for this, it will be enough to
show that Adίcj ^njc^+p", because KCP~ is the isotropy subgroup of Gc at o.
By (2.23) and the definition (2.24a) of nf, Adίcf1)^ is contained in sum of the
negative eigenspaces of ad (Hί -\ ----- \-Ht) on gc. But, in view of (2.12a), all these
eigenspaces are in !c + p~, so Nt centralizes ^t. Next we check that G'^ acts
trivially on # 't. Since G'tAt commutes with Gt it suffices, by the same reason as
above, to show that Adίcϊ^Xgί + α^c^+p-. But this is clear because
Ad(c71)g/

ίc:'g.ccιlc and Ad(c71)αί=ί)ίclc. Finally as for Ftli9 one needs only
to note that it is contained in K and commutes with cf and Gf.

Let Si denote the isotropy subgroup of G at o£. Then, since 5fC:Pt., (2.25),
(2.26), (2.30) and (2.31) imply

(2.32) St = F^Kfi'^N,.

2.33. Normalization of measures. We fix i, l<ί<r. Let t^gjOt; this

is a Cartan subalgebra of gf. If we put t7 = Σ5«=ι+ιΛffy anc* tJ = {H6t,;

<y;, H>=0 for all i + l<7<r}, then t^tf + ̂ ^tj-. The root subsystem Φf



Unitary representations and kernel functions 87

defined by (2.21a) can be naturally identified (by restriction) with the root
system of (gί>c, tίjC). In Φh Φ

+ induces the system of positive roots

(2.34) Φf = Φί Π Φ+.

Now assume l< i<r— 1; thus Gf is noncompact. Letting α, pf be as in
(2.10) and in 2.28, we set α(0 = α n pf. Then

(2.35a) a(i) = Σrj=i+ιR(Xj + X-j)

and α(ί) is a maximal abelian subspace of pt. If cr is the (full) Cayley transform
for g given by (2.14), then (2.15) implies

Ad(cr)tr = α(0 and Ad(c r)tt=tt.

Therefore Ad(cr)tί}C = (tJ~ + α(ί))c and its dual map 'Adfo) sends the (tf + α(ί))c

root system of gί)C to the tίjC root system Φt of g/>c. Let It be the restriction to
α(ί) of the elements in ίAd(c71)Φi; hence Σt is the restricted root system of gf

with respect to α(ί). Via Ad (cr), ΦJ" induces a system of positive roots Σ^ in
Σi. We denote by α^} the corresponding positive Weyl chamber in α(0. Then
(cf. Moore [23]) we have

(2.35b) αfo = {Σ5-ι+ι*/*j + ̂ -j)eα(ί); xί+1 > xi+2 >•••> xr > 0}.

Let A(i) be the analytic subgroup of Gf corresponding to α(ί) and let A^ =exp α^0.
We define a function Dt on Afa by

D.ίexp X) = Π«ιf (sinh α(X))-(α>, X e αfo

where m(α) is the multiplicity of α, i.e., the number of roots in 'Ad (c71)Φί which
restrict to α. If Z=Σ5= ί + 1Xy(XJ + X_ J )eα£), then one finds from (2.12ab),
(2.21a) and (2.15) that

DfapX)

(2.36) = Π (sinh 2x/) (sinh X:)2y - Π {sinh(x, + xk) sinh(x: - xk)}tt

i+l^j^r i+l£j<k£r

= 2Γ-f Π (sinhx.O^+Hcoshx,). Π {(cosh x y)
2 - (cosh xfc)

2}tt

where u, v are the constants in (2.12b). For any point X=Σr

j!ai+1xj(Xj + X-j)

e α(0, we regard (xί+1, x i + 2 >---> ^r) as the coordinates of X and denote by dX the
measure dxi+1 dxr on α(ί). Let da be the Haar measure on A(ΐ) which corre-
sponds to dX under the exponential mapping. We normalize the Haar measure
on Kt to have total mass one. Then (cf. Helgason [11], pp. 381-382) there exists
a unique determination of the Haar measure on Gf such that
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(2.37) f(βύdgt= f(k1ak2)Dt(a)dk1dadk2
JGi JKiXAfaxKi

for all feCc(Gi) (continuous with compact support). In the case z' = r, Gr = Kr

<=K (cf. (2.29)), so we normalize the Haar measure on Gr so that \ dgr=l.
JGr

Now return to the general case 1 < i < r and let αί? nh Pi9 Sί9 be as in 2.20.
Define pf e αf ( = dual space of αf) by

(2.38) Pi(H) = -1 trace (ad (H) |Π|), H e α,

and, using this ph define a function p on G as follows. Since Pt is a parabolic
subgroup, each g e G can be uniquely written in the form g = kman where k e K,
m e M f Π e x p p , aεAh neNt (cf. Warner [30], p. 78); so put p(g) = e~2pi(a).
Then

(2.39) p is a C°° rho-function (cf. [30], Appendix 1) on G for the subgroup Pί?

i.e., p is a strictly positive C°° function on G satisfying p(e) = l (e= identity
element of G), ρ(gp) = ΔP.(p)ΔG(pΓlρ(g\ geG, pEP{ where JG, ΔPi are the
modular functions of G, Pf. In fact in the present case ΔG=\ since G is simple,
and it is easy to verify that

(2.40) p(p) = ΔP.(p) for peP f and p(gp) = ρ(g)ρ(p) for gεC

Moreover, we see without difficulty that

(2.41) APi(s) = ASi(s) for all seSi9

and so the p is a rho-function also for the subgroup S^
For further normalization of measures we need the following well-known

measure theoretic result. Let W be a locally compact group countable at infinity,
and suppose X and Y are closed subgroups such that X Y is open in W, the
complement of X Y in W has Haar measure zero, and X Π Y is compact. Then
(cf. Bourbaki [2], p. 66) we have:

' The left Haar measures of W, X, and Y may be normalized in such a
way that for any integrable or non-negative Borel function / on W

(2 42) ( Γ Γ A ( v )
\ f(w)dw = \ f(xy) A f \ dxdy

, where Aw, ΔΎ are the modular functions on W and Y, respectively.

Now let dk denote the Haar measure on K such that \ dk = l. Then, since
JK
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G = K-Pt, Kr\Pt is compact, and since ΛG = \, (2.40) and (2.42) imply that the
left Haar measures on G and Pt can be normalized so that

(2.43) f(g)dg =
JG

for any integrable /. Similarly, since P—G^S^ and Gt n St ( = Kt) is compact,
(2.41) and (2.42) ensure that we can normalize the left Haar measure on St such
that

(2.44) \ f(p)dp=\
JPi J G i X S i

for any integrable / on Pt. As p(gis) = p(gi)p(s) = p(s) for 0 j 6 G £ and seSi9

(2.43) and (2.44) then lead to

(2.45) ( f(g)dg = ( /(kg
JG J x x G f X S i

for any integrable / on G.
As noted before, the p is a rho-function also for the subgroup S^ Let dμ

denote the quasi-invariant measure on ^S~GISi associated to this rho-function
(cf. [30], Appendix 1), which is defined by the formula

(2.46) ( f(g)p(g)dg = \ dμ(g}\ f(gs)ds, g = gSt
JG JG/Si JSi

for all fe CC(G). Then we observe that

(2.47) ( F(u)dμ(u) = ( F(kgroi)dkdgi

for any integrable F on &t. Indeed if we set f ( g ) = \ f(gs)ds (g = g oj) for

fe CC(G), then

f(u)dμ(u) = \ dμ(g)( f(gs)ds
i J&i JSi

= \ f(g)p(g}dg
JG

= ( f(kg&p(kgdp(sTidkdg<is (by (2.45))
J x x G i X S i

for any fe CC(G). Since the assignment /->/ is a surjection of CC(G) onto
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(2.47) follows.

3. Definition of ^-(G)

In this section we define, for each !</<r, a subset «^r

ί(G)cιλ/— It*; in the
next section we shall associate to each member of (̂G) a Hardy type space and

an irreducible unitary representation of G.
As in 2.33 we identify the root subsystem Φt with the root system of

(9i,o tι>) Similarly the root subsystem 'Φf defined by (2.21b) can be identified
with the root system of 'gί>c with respect to the Cartan subalgebra \c =
'&> cntc, and Φ+ induces the system of positive roots 'ΦJ" = 'Φf Π Φ+ in 'Φ^ We
let {αl5..., α,} be an enumaration of the set of simple roots for Φ+ such that

j α! is the unique noncompact simple root for Φ+ and, for each
I l<i<r-l, {αl5..., a,,} is the set of simple roots for Φ^,

and such that

(3.1b) for each 2<ί<r, {αΓi + 1,..., αf} is the set of simple roots for 'Φf;

this can be done because the simple roots for Φt (resp. 'ΦJ") are the simple roots
for Φ+ that are in Φ^ (resp. 'ΦJ") and oί1 is the lowest root in Φ+, and because
φtcφt_ l 5 'φtzD'φJij for 2<i<r. In what follows, we shall find it convenient

to put /i = /. Note that, in case r > 1, we have

(3.2) 1 < /; < /,_!, /! < /; = /, and /f < /J < /,_! for each 2 < i < r - 1;

this follows from (2.12c). We denote by [λl9...9 λt} the set of fundamental
highest weights, i.e., λj is the weight such that 2(λj9 αΛ)/(αfc, ctk) = δjk for l<fc<ί.

3.3. LEMMA. Let #15..., Hr be as in 2.8.
(1) <A1,H fc> = l / o r α / / l < / c < r .
(2) Fix i, l<ϊ<r, and j9 1 <;</;. Then for l<fc<ί, <Ay, #fe> is a

strictly positive integer independent of k.
(3) Fix ί, 2<i<r, αnJ 7, li.1 4- !<;</. T/i^n <λy, Hfc>=0 /or α//

ϊ</c<r.

(4) Fix i,2<i<r. Then <Λ, , H1>><AJ, #f> /or α// /J + l < j

PROOF. (1) Let {yι,. .»7r} t>e tne strongly orthogonal noncompact posi-
tive root system as in (2.9). Since gβ is simple, fc acts irreducibly on p+, so
every yfc, l<fc<r, can be written in the form yjk = α1 + Σ}=2nJ αJ where nj are
nonnegative integers and α1? α7 are as in (3.1). Therefore



Unitary representations and kernel functions 91

Since y t and α x are, respectively, the highest and lowest weights of the irreducible
lc-module p+, we have (oq, α1) = (y1, yt). On the other hand (y l5 7ι) = (yfe, yk) for
all 1 < k< r by (2.12d). Thus (1) follows.

(2) In view of (2.22) tc admits the orthogonal direct sum decomposition

tc = tlfβ Θ \c e tlpβ Θ !>,...

If 1<&, /c'<ί, then it is readily seen that Hk — Hk. is orthogonal to the subspaces
t/,o li,c

 an<l ί)i,o so Hk — HkΈ'tic. Thus (3.1b) implies that if l<fc, k'^i then
<λ;, Hk-Hk.y = 09 i.e., <A7, #,> = α;, Hfc,> for every l<j</;.

Now <Ay, #Λ> is a nonnegative integer for each pair of indices j9 k because
λj is a highest weight. Therefore to complete the proof of (2), it suffices to show
that </Lj, Hly>0 for every l<j<l. But this is clear since γί can be written as
integral linear combinations 7ι = Σi=ι nΛ with all Πy>0 (the root system Φ is
irreducible and y t is the highest root).

(3) If ι</c<r, ykeΦi.ί. Hence we can write yk=Σ,ji=ι nfij wi^h HJ
nonnegative integers, which implies (3).

(4) Recall (3.2) that /; <//_!• By parts (2) and (3) of the present lemma
we may assume Γi<li.ί and it suffices to show that <Aj, //1>></1J , Hty for
/5 + l^j^/i-ι Since p+ is an irreducible ϊc-module with y1 the highest weight,
we have ^=71 — Σ}=2nΛ witn ^ >0. Hence, and because y l s yt have the same
length, it is enough to show

(3.4) n y > 0 for /; 4- 1 < j < / f _! .

Take any jo* //, + l^./o^/ ί-1. Then α^e'C^-'C^ by the definition (2.21)
of Φt , 'Φ;. Thus there exist an integer k(l<k<ΐ) and two roots β, βf e Ckί such

Now

Vι) < 0,

so yt + β is a root. Since y1—(yί + β):=JΣj=2nj<Xj — 0ίj0'-β' and 7ι is the highest
root, we must have njo>0. This establishes (3.4), and (4) follows. |

For each 1 < i < r and 1 < j < /, let

(3.5) Pi = ~-u(i - 1) 4- u(r - i) + t; 4- 1 (M, r being as in (2.12b))

(3.6) fc^α^Hi).
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Then Pi is an integer or a half-integer and, according to Lemma 3.3, kj is a posi-

tive integer for every l<j<l and in particular fe1 = l. With G, T being as in

Section 2, define

(3.7) ^(G) = {λ e 7^T t* eA is well defined on T} .

Now, for each 1 < i < r, we define

, _
(3.8a) ^ = Ά.mjλj e^-l t*;

(3.8b) ^(G

where Z+ = {0, 1, 2,...}. Corresponding to each element of (̂G), we shall

construct an irreducible unitary representation of G in the next section. The

motivation for the definition (3.8) will become clear during the course of our

construction of the representation. But we note here that if λ e ̂ i (2<i< r) then

λ vanishes on the Cartan subalgebra \c of 'gίjC; this is evident from (3.1b). Let

(3.9) δ = Σ αeΦ+

Then we can rephrase the definition (3.8a) as follows:

3.10. PROPOSITION. Let λe^/ — It* be such that 2(λ, α)/(α, α) is a non-
negative integer for every compact positive root α of (cjc, tc). Then λ is in &Ί

if and only if:

(1) αfl1> = <A,fl<>;

(2) α + δ , f f 1 + - + H l > = 0 .

PROOF. By assumption, λ can be written in the form /l=Σ}=ι m.A/
m x e R, nijG Z+ (2<j< ΐ). Then Lemma 3.3 (2) implies

I> ~ <λP

Since m^^O, it then follows from Lemma 3.3 (4) that

(3.1 1) α, #!> = < ,̂ #f> <=Φ my = 0 for /5 + 1 < j

Under the above equivalent conditions we have

(3.12)
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= i(mι + ΣyL2 Wjkj) (by Lemma 3.3 and (3.6)) .

On the other hand if we let π(δ) denote the restriction of δ to t~ as in 2.8, then by
(2.12ab)

2π(δ) = Σ yj + u Σ \(yj + yk) + u Σ \(ΊJ - yk)l£j<> l<Lj<k£r^ J I<,j<k<r2 J

(3.13) +2υ Σ ~Ύ

Thus, and since ζyj9 Hky=2δjk9 we get

+ υ + u(r - j )

(3.14) = i/l + v + ur - ±-u(ί +

The assertion of the proposition now follows from (3.11), (3.12) and (3.14).

NOTE. In the extreme case i = l, the two conditions in Proposition 3.10
reduce to the single condition <A + 5, #!> = (), and so this is the case which was
considered by Knapp and Okamoto [15].

Let

(3.15) *£c = * i n ΦJ, Φί, = Φ ι n Φί;

they can be identified with the set of compact and noncompact positive roots of

(βi,c> tliβ), respectively.
The following lemma will be needed in Section 4 below.

3.16. LEMMA. Suppose r>l and fix i, l < i < r — 1, and λe^Ί. Then

or all

PROOF. Recall the direct sum decomposition 9i,c = ϊ/>c + pί" + PΓ m 2.28.
Since the hermitian symmetric space GJKi is irreducible, ϊc acts irreducibly
on pt. Note that the set of weights of this representation is naturally identified

with Φ£M with y i + 1 the highest weight. Hence if αeΦ£Π, α can be written as

α = yί+1 — ΣWΛ where nj are nonnegative integers and α,- are simple roots
for ΦJ~jC. Since <<5, Hα> = 1 for any simple root α of Φ+ and since <λ, Hα> >0 for
all αeΦ+, it then follows that the condition <l + (5, #α><0 for every α e Φ t Π is

equivalent to the single condition <Λ + (5, Hί+1><0. Now (3.13) implies
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<δ, Hί+1> = 1 + t> + n(r - i - 1) = ft - -i-tι(i + 1).

On the other hand, since λ = Σ' L j m/λy with H^ + ΣyL2 nijkj= -pί9 using Lemma

3.3 one finds that

= mi + m c;

= - PI - Σ}LIUl+1

< - ft.
Hence, and because of the fact that u >0 if r > 1 (cf. (2.12b)), it follows that

<A + 5, #ί+1> £ - i«(i + 1) < 0.

This completes the proof. I

We close this section with some comments on whether the set ^i(G) is non-
empty or not. If the number pt in (3.5) is an integer and if moreover Ge is simply

connected, then (̂0) = ̂  and hence J^(G)^0 (0 = the empty set) for all
1 < ί < r. On the other hand if / (1 < i < r) is odd then, by its definition, pt is an

integer for every simple Lie algebra g (whose associated symmetric space is
hermitian symmetric). Also if, for a given g, the integer u in (2.12b) is even, then
pt is again an integer for every 1 < / < r. But when, for a given g, u is odd (this

is the case when g is sp(n, R) or so(2/t + l, 2); see the Table below) and if more-
over i (l<ϊ<r) is even, then we must take, corresponding to g, a non-linear Lie

group G to ensure that ^(0)^0.
In any case, for a linear group G, if we let G° be a two-sheeted covering of

the linear universal covering of G (covering group G of G is called the linear

universal covering of G if G is again linear and if Gc is simply connected), then
J5 .(G°) = J^. and hence J2r

/(G°)^0 for all l < ΐ < r . But in this paper we will

mainly be concerned with linear groups.
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Table

r u v zλ =-^-w(r

5u(p,β)(p;>«;>l)

so*(4n)

s

«
•
e

e

o*(4n + 2)

p(n, K)

o(n, 2)(n>3)

6<-14)

7(-25)

q
n

n

n

2

2

3

2

4

4

1

n-2

6

8

P-«
0

2

0

0

4

0

p + q-ί

4n-2i-l

4n-2ϊ + l

-IH
J>ι = »-l,Λ-f

-j ^ Q

Pi = 17, p2 = 13, p3 = 9

4. Construction of representations

We retain the notation of Sections 2, 3 and fix i, 1 < i < r, and
Since λ is ΦJ-dominant, i.e., λ satisfies (λ, α)>0 for all α e ΦJ, and since λ e.
(notation of (3.7)), there exists an irreducible holomorphic representation τλ of
Kc on Eλ (say) with highest weight λ. We endow Eλ with a hermitian structure
such that the action of τλ(K) becomes unitary. Let eλ e Eλ be a highest weight
vector of norm one. Letting KitC be the analytic subgroup of Kc with Lie algebra

Iί>β, we denote

(4.1)

restriction of λ to tί>5

linear span of {τΛ(/c)eA /c 6 KitC},

restriction of τλ(KitC) to £ .̂

4.2. LEMMA. The representation τ% of KitC on Eλ is irreducible. The

highest weight of τ% on the Cartan subalgebra ti>c of !ί>c, with the relative
ordering, is 1 and eλ is a highest weight vector.

PROOF. Let τ^ also denote the differential of τ^. To prove the lemma, it

is enough to show that if β is a positive compact root of (gίjC, tί}C) with Xβ as root
vector then τχ(Xβ)eλ = Q. But this follows from the fact that the positive compact

roots of (gί>c, t/>c) are the restrictions to tί>c of the members of Φf n ΦJ and if Xa

is a root vector of α e Φt n ΦJ, XΛ is also a root vector of the restriction to tί>c of

α. '
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Recall (2.25) the Langlands decomposition P—M^Ni and the isotropy

subgroup Si of G at ot. Let L^M, n St. Then it follows from (2.26) and (2.32)

that

i and

If Cι is the Cayley transform given by (2.14) then, since S, = G Π

(4.3) cΓ'SΛ

Thus, and because the representation τλ of Kc on £A is uniquely extended to that
of KCP~ which is trivial on P~, we can define a representation τ^} of 5f on £λ by

(4.4)

We denote by Pj the orthogonal projection operator of Eλ onto Ej, and by
the orthogonal complement of E% in £Λ.

4.5. LEMMA. (1) The action of τ^(L^) on Eλ is unitary and leaves the

subspaces Eχ9 E^ invariant. Moreover τ(λί^\κi

 = τλ\κί

(2) τ(j\ά)\El = ePi(ά)I for all aεAh and E\ is stable under τ(

λ

i}(A^\ here
p f eα* is as in (2.38) and I denotes the identity transformation of E%.

(3) PAl\n)\Eλ = I f o r all neNi9 and E\ is stable under τ

PROOF. (1) The last assertion of (1) is obvious since ci commutes with
Kt. It is easily verified that ci also commutes with subgroups Fi and It. As

Fi/fCiT, it then follows that the action of τ^Fj/j) is unitary and leaves the sub-
spaces Eλ, E% invariant. Now, by definition, Ad(c71)g'ίc:/gίjβcιϊβ; cf. 2.20.

But taking into account (3.1b) and the definition (3.8) of (̂G), one sees that λ

vanishes on the Cartan subalgebra fti>c of '&>c; therefore τ^ is trivial on G'f.
As L^FiljKfί'i, the assertions of (1) are now evident.

(2) If a e Ai then c\ ̂ ac{ e exp ^/ — 1 1 by (2.23). Hence, and because of the
fact that the subspaces E% and E% are spanned by weight vectors for τΛ, it is clear
that both E% and Ef are stable under τ^(a). According to (1) and Lemma 4.2,
τψ(K^\Ej, is irreducible. Since At commutes with Kt, it follows that τ(

λ°(a)\E}.
(a e A^ are scalar operators. Thus to prove (2), it suffices to calculate the effect
of τ(

λ

i}(a) to the highest weight vector eλ. Now

τli)(α)eΛ = τλ(c^ac^λ = e<λ M («r )(i. .»βjl.

Hence the assertion of (2) amounts to the identity

(4.6) <Pί, X> = α,Ad(cΓ1)^> for ΛTeα,.

Recall (2.23a) that M(ct)(Σj=1HJ)=Σij=ι(Xj+X-j), and that nί;0 is sum
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of the negative eigenspaces of ad(Σ)=ιOO + ̂ -;)) on &>• Thus Ad^1)^ is
sum of the negative eigenspaces of ad(Σ} =ι#/) on gc. Therefore, if we put
H = Ad (c^)X for X e α,, one finds

< A ,X>=i trace (ad (JQInJ

= | trace (ad (H)|Ad(cΓ1)nίc)

= - <(5, #> (δ is as in (3.9))

= <λ, //> (by Proposition 3.10 and the fact that dim αf = 1) ,

which establishes (4.6), and completes the proof of (2).

(3) Let τλ (resp. τ (

λ

l ) ) also denote the corresponding representation of ϊc + p~

(resp. the Lie algebra of St) on Eλ. To prove (3), it is sufficient to show that

T^Ot^E^czEj; in turn, for this, it will be enough to show that τλ(X)Eλc:Eχ for

all X e Ad (c]"1)̂ . As observed in the proof of (2), Adfcj"1)^ is sum of the

negative eigenspaces of ad (Σj =ι#/) on 9c Thus if we let

Φ-(0 = {αeΦc; <α, H, + -+#,> < 0},

Φ;(ί) = {αeΦM; <α, ̂  +-+ H,> < 0},

then

(4.7) AdCcr1)^ = Σ«6Φή(ouΦc(oflί

Further, by (2.12a),

(4.8) *;(/) = U (- Nj) U W (- NJt) U W (- TV,.,)
l<j<k<i l<,j£i<k<r

U {-7ι,.. , -7,}.

Now let £A=Σ^ be the orthogonal direct sum decomposition of Eλ into weight

spaces for the representation τΛ; the weights μ are all of the form μ = λ— ΣαeΦίnαα

with nα nonnegative integers. Then E%=ΣEμ> the sum taken over the weights μ

of the form μ = /l-ΣαeΦ+ "«α. AS Φί~c = Co ί }U W C, U W C/fc by
l'c ' i+l<7<r i+l^j<fc<r

definition, it then follows from (4.8) and (2.12ab) that if α e Φ~(/) then £^+α n Eλ

= {0} for any weight μ for τλ; therefore we conclude that τλ(X)Eλ<=Eχ for all

*eΣαeΦc-(i)9cα. On the other hand τλ(X)Eλ = {0} for all Xe ΣαeΦn(o9cα; this
follows from the fact that Φ~(j) c(-Φ+), and that τA(p~) acts trivially on Eλ.

The assertion of (3) now follows from (4.7).
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Because of Lemmas 4.2 and 4.5 (1), we may define an irreducible unitary

representation 'τj^ of Lf on E% by setting

(4.9) 'τjftO = τi'>(i)|w, /eL,.

Now we define, for each v e α f , representations 'σλtV and σA)V of Si = LiAiNi on

E, by

(4.10a) '

(4. lOb) σ

where pteaf is as in (2.38). Note that 'σλfV is irreducible and unitary (with

respect to the inner product induced from that of Eλ).
We consider the unitarily induced representation

(4.1 la) Uλ,v = lndSί,G'σλ,v.

Let us write down this representation more explicitly. Let p be the rho-function
on G for the subgroup Si9 which was defined in 2.33, and let dμ be the correspond-
ing quasi-invariant measure on G/Sf defined by the formula (2.46). Then (cf.

Warner [30], p. 374) the representation space of UλtV may be regarded as

(4.1 Ib)

' all Borel measurable /: G-+E% such that

(1) f ( g s ) = p(s)1/2 rσλtjs)-lf(9) for g e G, s e Sίf

(2) i i / n 2 = (
)

< «>
G/Si

where we identify functions which are equal almost everywhere on G. (In

connection with condition (2), note that the integral is constant on left 5, cosets
and hence defines a function on G/Sj. Note too that condition (1) can also be
written as f ( g s ) = σλtV(s)~1f(g) because ρ(s) — e~2pi(ά) if s = /αn.) L2(G, σλ>v) is
a Hubert space with inner product

and UλίV acts on L2(G, σΛ>v) by left translation: UλtV(g)f(g')=f(g-lgf). For
every v e α f , C/A>V is a continuous unitary representation of G. But our main
concern in this paper is with the case v = 0. We write σA, Uλ9 L2(G, σλ) for σλ>0,

I7λ>0, L
2(G, σA>0).

Let the normalization of measures on K and Gf be as in 2.33.

4.12. LEMMA. Fix v e of. 77ιen for all fe L2(G, σλ>v),
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l l/ l l 2 = ( \f(kgd\2dkdgt.J K x G i

PROOF. For a given/eL2(G, σA)V), we may define a real valued function F
on #, = 0/5, by F(gΌί) = p(g)-l\f(g)\\ g eG. If keK and ^eG,, then />(%,)
= 1 by definition of the function p, so F(kgi-oi) = \f(kgi)\2. Thus, using the
formula (2.47), we get

l l / l l 2 = ί F(ιι)dAi(u) = ( F(kgt

forall/eL2(G, σA>v).

Let 0( ,̂ Eλ) be the space of all Eλ- valued holomorphic functions on 2
and let Φ(β, EA)cι0(^, Eλ) be the subspace of functions having a holomorphic

extention to a neighborhood of the closure of 2 in p+. We denote

Jλ : automorphic factor of type τΛ

(cf. (2.5)). In view of (2.6a) we may define, for each g e G, an action Tλ(g) on

, JBA) by

(4.13)

Then it follows from (2.6b) that Tλ(gίg2)=Tλ(gί)Tλ(g2) for #15 ^2 e G. Further-
more, according to the remark after (2.6), the subspace Θ(β, Eλ) is stable under

Tλ(g),geG.
For F^Θ(β, Eλ\ we define F: G-+EZ by

(4.14) F(g) = PλJλ(gci9 o)-iF(g - o,), ^ e G

(P^ is the orthogonal projection of Eλ onto E% and cf is the Cayley transform).
For the representation σλ (the case v = 0 in (4.1 Ob)) of St on E%, we put

C«(G, σA) = {/e C«(G, fiύ; /(is) = σλ(sY*f(g\ geG,se St} .

Then G naturally acts on C°°(G, σA) by left translation.
The key step in the construction of representations on Hardy type Hubert

spaces is the following lemma.

4.15. LEMMA. If FeΘ(&, Eλ), then the function F defined by (4.14)

lies in C°°(G, σλ). Moreover the mapping F-+F is equivariant with respect to

the action of G.
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PROOF. Let FeΘ(®9 EA); then clearly FeC°°(G, Eλ\ I f g e G and Ian

eS^LiAiNi then, since c^lanc^K^- (cf. (4.3)), we get

Jλ(glancί9 o)~l = J λ(g erf1 lane i9 o)~l

= Jλ(cτllanci9 όΓlJλ(gci9 o)'1

(by the cocycle formula (2.6b))

= τP(lanr*Jλ(gc* oTl

(by (2.7a) and the definition (4.4)) .

Thus, using Lemma 4.5 and recalling that St is the isotropy subgroup at ot, we

have

F(glan) = P^(lan)~lJ λ(θ^ o)

= σλ(lanΓ1F(g)9

and so FeC°°(G, σλ}. The G-equivariance of the mapping F-+F follows from

the cocycle formula (2.6b). I

Keeping in mind Lemmas 4.12 and 4.15, we define a seminorm || ||λ on

, Eλ) by setting

\\F\\l = \PιJι(kgtCi9 o)-^F(kgi oύ\2dkdgi9

Now let

(4.16)

We will later show that the above seminorm is actually a norm (Corollary 4.34),

and that Θ\®, Eλ)^{Q} for all λe^G) (Corollary 4.39). Since Uλ is unitary
on L2(G, σA), Lemmas 4.12, 4.15 and the definition of the seminorm imply

(4.17) {
the action Tλ of G on Θ(β, Eλ) leaves the subspace 0\3>, Eλ) invariant

and preserves the seminorm.

Moreover, if ¥^Θ2(β, Eλ) then the function F defined by (4.14) belongs to

L2(G, σA). Let Jλ denote the mapping F-^F of G2(β, Eλ) into L2(G, σλ).

Then by Lemma 4.15,

(4.18) {
e/λ: Θ2(β, £A)^L2(G, σA) is equivariant with respect to the action

of G.
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If X e gc, X = X1 + ^/ — 1X2 ( X ί 9 X2ε 9)5 and if / is a differentiable function
on G, define functions r(X)f and l(X)f on G by

(r(X)f) to) = ~ ( f ( g exp tX^ + ^ϊf(g exp tX2))\t=09

(4.19)

As in 2.28 we put PΓ = gί>c n p~.
The following lemma will be used in Section 5.

4.20. LEMMA. Let Fe0(^,EA), and define F:G-+Eλ by (4.14). Then
r(X)F = Qfor all Xεpγ.

PROOF. For Fe0(J, £Λ) and 0eG, let us put 'F(g) = F(g oύ and
= Jλ(gch o). Then, for X e gc,

(4.21) (r(*)F) to) = - PjJ(gΓl(r(X)J) (g}J(g)^ 'F(g) + PλJ(gΓ\r(X) >F) (g) .

Let π: G-+@ = G/K be the canonical projection. Then π restricts to the canoni-
cal projection of Gf onto ^—GJKi. Hence if X egί>c, ί/πeX (e = identity of G)
may be identified with a complex tangent vector of Qfi at o.

Now fix geG and define 7: Qfi-^g <βi by γ(z) = gCi z; γ is a holomorphic
diffeomorphism of ^f onto the boundary component g ^ containing g of.
Then, since q commutes with Gί? it follows that

(r(X) T) to) = t(dy0odπeX)Fl (g - o,) for all X e g,c.

But if X e p7 it is not difficult to show that dπeX is an antiholomorphic tangent
vector of ̂  at o, hence dy0°dπeX is that of g - <% { at g ot. Since F restricted to
the boundary component g - (^i is holomorphic, we conclude

(4.22) (r(X)'F)to) = 0 for all ZepT.

On the other hand, since ci commutes with Gί? by the same argument as the one
in the proof of Lemma 5.7 of [1] one finds that

(4.23) r(X)J = 0 for all Xepj,

and our assertion follows from (4.21)-(4.23). |

Now let Aft), Di9 da be as in 2.33, and π0 be as in (2.2).

4.24. PROPOSITION. Let λe&^G) and, for each eeEλ, let lβ denote the
constant function lβ(z) = e, ze&. Then we have
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χ,(n0(ar2)Di(a)da if

w/iere iι denotes the character of τ& d(λ) (resp. d(lj) the degree of τλ (resp.

and β. = (^2γpt with p, as in (3.5).

The proof requires the following lemma.

4.25. LEMMA. (1) Jλ(g, o^ = Jλ(g, o) for all g e Gf.
(2) Jλ(ci9 ό)\Ej. = β"ϊll and E^ is stable under Jλ(ch o).

PROOF. (1) As it follows from (2.18), nQ(gcί) = π0(g)π0(ci) for all ^eG f .
Thus Jλ(gch o) = Jλ(g, o)Jλ(ci9 o\ while Jλ(gch o) = Jλ(g, θi)Jλ(ch o) by the cocycle
formula, so (1) follows.

(2) Since Jλ(ch o) = τλ(π0(cι)) by definition, and since π0(cί) = exp(log%/2

Σj=ι#/)eexp V"1^* fcy (2 18)' it is clear that both Eι and £f are stable under
Jλ(ct> °)- As cf commutes with Gί5 it follows that π0(^)π0(cί) = n0(c^πQ(g) for all
geGii in particular π0(Ci) commutes with Kt. Since TA(Ki)|£;[ is irreducible by

Lemma 4.2, it then follows that Jλ(ci9 O)\EI is a scalar operator. But, using
Proposition 3.10 and (3.14), we obtain

Jλ(Cί, o)eλ = τΛ(exp(log VΓΣj ̂ ^βΛ =

where eλ is the highest weight vector for τλ. Thus (2) follows. |

PROOF OF PROPOSITION 4.24. For each ee£λ, define φe\ G-*Eλ by φe(g)
= PχJλ(gCi, o)~ίe. Then by definition of the seminorm,

IH.II5 = (
J

\Φ.(kgύ\2dkdgt.
i

We first suppose iΦr. Then, applying the integration formula (2.37), we get

Since φm e C°°(G, σλ) by Lemma 4.15, it follows that

\φe(kkiak2)\ = |o"A(fc2)~1Φβ(^ια)l = l (

because XfcLj and σλ(fc2) is unitary. Thus, noting that KtaK and using the
invariance of Haar measure on K, we obtain
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IU.II1 = ί + .\Φ.(ka)\*D{ά)dkda
JK*A

(4.26) = \ |P,JA(fcαc(, o)-'«
'^(D

where β\ = 2'^, and in the last step we have used Lemma 4.25 and the cocycle
formula. Because of Lemma 4.2, we can choose an orthonormal basis β1=eλ,
β2» > ed(λ) of weight vectors for τλ in such a way that βl9..., ed(j[) are in E%. Let

, and write for λ eK, τλ(/c)ef= Σj=Aι>τji(^)βy Then, since
X = Σ y LV τi/k)e/, we obtain from (4.26)

111.112 = M +J χ x A ( i )

the second equality following from Schur orthogonality relations for τλ. Now

Jλ(α, o) = τλ(π0(a)) by definition, and, in view of (2.19), π0(α)eexp ̂  — It;. Thus
JΛ(α, ό) is diagonal relative to the basis βl5..., ed(λ), so we conclude that

IllJIί = fi

Next let i = r. Then Gr — Kr<=.K by (2.29), so using the invariance of Haar
measure and arguing as above, one finds that

This completes the proof of the proposition. I

4.27. COROLLARY. Let eλ be a highest weight vector ofτλ with |eΛ| = l, and

let lλ denote the constant function !A(z)=eΛ, ze@. Then

if i
111*112=

if i = r.

Furthermore 111^=111^1*1 for alleεEλ.

We note that if lλ is as in the preceding corollary, then
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(4.28)

Indeed, if we define a function φ on X x G f by φ(k, gϊ)=\PχJ \(kgtci9 o)~1βA|2,

then φ is continuous and | | lA | | j[=\ φ(k, g^dkdgt. As φ(e,e) = βl^Q by
J X x G i

Lemma 4.25(2), it follows that

4.29. LEMMA. \\F\\λ>\\lλ\\λ\F(o)\for all F e&2(&, Eλ).

PROOF. It is known that K contains the group T1 of rotation z-+eiθz
(zep+, 0<0<2π) as a central subgroup; cf. Koranyi and Wolf [18], p. 269.

Let dt denote the Haar measure on T1 such that \ dt=l. We first note that if

, £A), then

all(4.30) F(o)=( F(t-z)dt for
Jτi

because the restriction of F to the complex line spanned by z is an Ervalued
holomorphic function of one complex variable.

Now, for Feθ2(S>, £A), we have

\\ \PiJakgf* oT1 F(tkgt>oύ\*di\dkdgtKxGtLJT1 J

(since T1 is a central subgroup of K)

>{ If PJJί(kg^oΓίF(tkgl oύdt2dkdglJ X x G i I JΓ1

= f IPaJ^giCi, o)-^F(o)\'1dkdgl (by (4.30))
j K x G i

= \\lλ\\l\F(o)\* (by Corollary 4.27). |

4.31. COROLLARY. Θ2(&9 JEλ)^{0} if and only if ||lA||λ<oo.

PROOF. If ||lA | |A<oo, then Iλe02(<$, £A). Conversely, if FεΘ2(<2>, Eλ)
and Fτ*0, then there exists a g e G such that F(g o)=£0. Thus, using (4.17) and
Lemma 4.29, we get

Since ||F||A< oo and \Jλ(g, o)~1F(g o)\ ^0, it then follows that ||1A||A< oo.
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4.32. COROLLARY. For any compact subset X of &, there exists a constant
Cx<co such that

(4.33a) |F(z)| < Cx\\F\\λ

for all F e Θ(β, Eλ) and all zeX.

PROOF. Let α be the maximal abelian subspace of p as in (2.10) and let
^4 = expα. Then we know that G = KAK. Since KΌ = O, there then exists,
for a given compact subset X of ,̂ a compact subset Y of A such that XciKY-o.
Put Cx = sup \Jλ(a, 0)| HlJl1 where \Jλ(a, ό)\ denotes the Hubert-Schmidt norm

αeF
of Jλ(a9 o). If z e X then z = ka - o for some k e K and a e 7, and we have

= \τλ(k)Jλ(a,o)(Tλ(karlF)(ό)\

< sup \Jλ(a, o)| UlJl 1 - 1| T^ka^Fh (by Lemma 4.29)
αeY

= Cx\\F\\λ (by (4.17))

for all F e^, Eλ). I

Corollary 4.32 implies

4.34. COROLLARY. Let Fε&2(&, EA); ΐ/ ||F||λ = 0, ί/iβn F = 0. Conse-

quently the seminorm \\ \\λ on Θ\Q) ', £λ) is α norm.

We denote

(4.35) #2(^, A): the completion of Θ2(@, Eλ) in the norm || ||λ.

, A) is a Hubert space, whose inner product is given on the dense subspace

, £ J by

(F, F')
(4.36)

From Corollary 4.32 one easily proves in the standard way that H2(&, λ) can be

identified with a subspace of Θ(β, £λ). Note that

(4.33b) the inequality (4.33a) is valid for every F e E2(β, λ).
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We also note that the mapping J λ in (4.18) extends uniquely to a G-equivariant
isometric isomorphism, again denoted by JΓ

Λ, of H2(&, λ) onto a closed sub-
space of L2(G, σA). Hence, and because (Uλ9 L2(G, σλ)) is a unitary representa-

tion of G, we conclude that

ί Tλ defines a unitary representation of G on E2(β, λ) and the mapping

I J ' λ is an isometric intertwining operator from H2(@9 λ) into L2(G, σΛ).

Of course, (4.37) is insignificant unless H2(@9 λ) is nonzero. For that, we
will prove

4.38. PROPOSITION. \\lλ\\λ < oo for all λε&^G).

This proposition, together with Corollaries 4.31 and 4.27, immediately
implies

4.39. COROLLARY. For any AeJ^(G), E2(β, A)^{0} and all constant
functions lβ (eeEλ) belong to H2(&9 λ).

NOTE. Because of Corollary 4.27, in order to prove Proposition 4.38 we
may assume i φ r and it suffices to show that

(4.40) the integral \ yj(π0(tf)-2)D/0)dα is finite.
•"<*>

Such an integral occurs in Harish-Chandra's work [9] on holomorphic discrete
series. There he gives a criterion for the finiteness of the integral and also cal-
culates its value explicitly. Using his criterion one may verify (4.40). Our
integral in question, however, looks slightly different from Harish-Chandra's; so
for the sake of completeness we directly establish (4.40) following the lines of
Harish-Chandra's computation.

We start the proof of Proposition 4.38 with a lemma. Recall the systems of

positive roots Φ+ and Φf in Section 2 and define <5 = -yΣαeΦ+α» ^i:="^~ΣαeΦί

+ α

Similarly define δifC9 δitn using Φ£c, Φ£M in (3.15); so that <5f = <5ί>c + (5U.

4.41. LEMMA. 3^.^ = 0^.^ for all l<ί<r.

PROOF. Let {yl5..., yr}9 CJ9 NJ9 Cjk9 Njk be as in (2.9), (2.11). For each yj9

let Sj denote the Weyl reflection corresponding to y7 . If α e CJ9 then <α, #,-> = 1
hence — s/α) = <α, H^JJ — oc = yj — α, so y,- — α is a root which is clearly in Nj.
Conversely if βeNj9 then </?, #,-> = !; therefore —Sj(β) = γj — β is a root, which
belongs to C,-. Consequently, for each I<j<r9 the mapping Cj-*Nj given by
α->y; — a is bijective. Thus if a e C y with l<j<ί, then —Sj(u)eNj and α +
( — 5/α))|t.jβ = 7J.|ti>β = 0 (the second equality following from its definition of tί>c).
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Hence by grouping the summands in pairs, we see that

Σα6CjUNj α l t ι , β = 0 for every 1 < j < i.

Similarly, for l<j<k<r, the mapping Cjk-+Njk given by α-> —s/α) = 7j —α is
bijective, and so one finds as above that

Σαec, k uΛr, k α|t ί > c = ° provided 1 < j < k < i or 1 < j < i < k < r.

Now, in view of (2.12a), (2.21a) and (2.34),

U

Thus we conclude that

Σαε<l

and hence that

which implies the lemma.

PROOF OF PROPOSITION 4.38. As noted after Corollary 4.39, it is sufficient
to show that

f α < o o ( l < ί < r - l ) .

Let X = Σ5=<+ !*/*; + *-./) eαfo and put H(Z) = 2Σ5=i+ι log (cosh xj)Hj.
Then, since π0(exp3Γ) = exp(-Σ5=ί+ι log (cosh x^Hy) by (2.19), it follows from
our normalization of the measure da that

(4.42)

Here, according to (2.36),

Z)f(exp X) = 2r-f Π (sinh x7)
2ϋ+ '(cosh *,-)

(4.43)
Π {(cosh Xj)

2- (cosh xfc
i+lίj<ϋr

If we define, for H e tiιβ,
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(C£ί} is as in (2.21 a)), then using (2.12ab) we get

= Π Π
i+ί<j<k<r( COS X j COSH Xk

This combined with (4.43) gives

Df(exp X) = 2r-*A(exp H(X)) Π (sinh x,)(cosh x )i+«>+«0-ί-i).
i+i<^r '

But

1 + i? + u(r - ί - 1) = <2<5iilp #,-> - 1 for all ΐ + 1 < j < r.

In fact, by (2.12b), (2.21a) and (3.15),

+ v Σ 7;,#;>

u(r - i - 1) + -

= 2 + w(r - i - 1) + υ.

Hence

(4.44) £).(eχp X) = 2'-ίzl(exp H(X)) Π sinh x,(cosh x )

On the other hand, using the same argument as in the proof of Lemma 25 of
Harish-Chandra [9], one derives from WeyΓs character formula the identity

(4.45)
= {w0 Π

αeCj0 **ΪF, αeCj,0

for all HεΣrj=i+\£Hj\ here 1̂  denotes the Weyl group of (ft>, tίjC), w0 the
order of the subgroup of W{ generated by Weyl reflections corresponding to the

roots in C£°, ε(s) the sign of s, and <50 = γΣαecSί)α

Now, since lίfC normalizes pt, each element of Wt permutes the members of
Φ^n and leaves 2δi>n invariant. Thus if we put, for each s e Wi9

) = 2'-'β(s){w0 Π <δQ9H^}^ Π <λ + δl
«eCi'> «βcS°

then, since <5ΐ = <5/jC + (5ί>n, it follows from (4.44) and (4.45) that

;α(exp#PO)A(exp*)
(4.46)

= Σ C(λ,s) Π
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If we make the change of variables yj = (coshxj)~ί then, in view of (2.35b), α^}

corresponds to the region (Σ,1j=ι+ιyj(Xj + X-j)lO<yi+ι<yι+2< — <yr<l}
We denote this region by b and put dy = dyi+ί'-dyr. Then we conclude from
(4.42) and (4.46) that

(4.47) ( xtMaT^D^da = Σ C(λ, s)\ Π y
Jx+ seWi Jb i+l^y^r

Now Lemma 4.41 implies (λ + δi9 sHjy = (λ + δ, sH^ for all se Wt and z + l< j

<r, while, according to Lemma 3.16, (λ + δ, #α><0 for every oceΦ^n. Since
Φtπ is invariant under each se Wb it then follows that (λ + δb s//y><0 for all
5 e Wt and i -f- 1 < 7 < r. From this it is now clear that the right-hand side of
(4.47) is finite, thus finishing the proof of the proposition. |

Finally we observe that

(4.48) the representation (TA, H2(β, λ)) is irreducible.

In fact the proof in Kunze [19] can be modified slightly to cover this case. Al-
ternatively, one may proceed by a standard method as follows. Let § be a non-
zero closed invariant subspace of H2(β, λ). Take a function Fe§ such that
F(0)τ^0 and let T1 be the central subgroup of K as in the proof of Lemma 4.29.
Then, for ίeT1, the function z-^τλ(t)(Tλ(t)~ίF)(z) again lies in § because τλ(t)

is a scalar operator. Hence the function \ τλ(t)(Tλ(i)~lF)dt9 being the limit of
Jr1

a sum in §, also belongs to §. Since τλ(i)(Tλ(t)~1F)(z) = F(t z) and since

\ F(t-z)dt = F(o) (cf. (4.30)), we then see that the constant function z-»F(o)

belongs to §; hence lλe§. If the orthogonal complement δ1 of § is nonzero,
the above argument shows that 1A is also in δ1, which is a contradiction; this
gives (4.48).

The results obtained above can be summarized as follows :

4.49. THEOREM. For any λε^^G) (l<i<r), H2(&, λ) is nonzero and
(Tλ, H

2(&9 λj) is an irreducible unitary representation of G. Furthermore
, λj) is unitarily equivalent to a subrepresentation of (Uλ, L2(G, σλj).

For later use, we mention here other realization of (Tλ, H2(β, λ)). Let

f(gk) = τλ(^)~1f(9)^ 0 e G, k £ K, ]
BΛ;

rpQ/=0 for all Xep~ j

where r(X) is as in (4.19). For FtΘ(β, Eλ), define a function /λF\ G-*Eλ by

(4.50) /λF(g) = Jλ(g, o)-^F(g - o), ^ e G.
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Then (cf. Baily and Borel [1], p. 493) / λ¥ lies in 0(G, τλ) and the resulting

mapping / λ\ Θ(β, Eλ)-*&(G9 τλ) is bijective. We put

(4.51a) H*(G,τj) = S*(H2&>W

One can define an inner product on H2(G, τλ) so that / λ (restricted to H2(&, λ))

is a unitary isomorphism. Via /A, (ΓA, H2(β, λ)) may be transported to a

unitary representation of G on H2(G, τλ). We observe that the transport of Tλ

to H2(G, TA) is given by left translation :

(4.51b) (Tλ(g)f)(gf) =/(<τV), g, g'eG, fεH2(G9 τλ).

The following lemma will be needed in Section 5. For X e gβ, we define l(X)
as in (4.19).

4.52. LEMMA. Letting lλ be the constant function as in Corollary 4.27,

put Ψλ = </λ(lλ) Then ψλ is K-finite of type τλ. Moreover ψλ satisfies l(H)ψλ

= <A, Hyψλfor H eic and l(XΛ)ψλ = Q for all positive roots α o/(gβ, tc).

PROOF. The first assertion is obvious. As for the second, define a function

ψλ\ Ω-+Eλ by ι^A(ω) = JΛ(ω, o)~leλ where Ω = P+KCP~ and eλ is the highest
weight vector for τλ. Then ψλ is the restriction of $λ to G. As Ω is open in

Gc, we can define, for Xe$e, l(X)Ψλ as in (4.19). Since ψλ is clearly holomor-

phic, it then follows that /(JQ$Λ(ω)=— $λ(exp(— tX)ω)\t=0 for ωeΩ,

Since eλ is the highest weight vector for τΛ, these observations, together with (2.7),

imply the second assertion of the lemma. I

5. Imbedding in continuous series

We again fix ι, 1 < i < r, and λ e ̂ (G). In this section we construct an ir-

reducible unitary representation μλ of Mf and show that the representation (Tλ,

H2(β, A)), which was constructed in Section 4, is unitarily equivalent to a proper

subrepresentation of the induced representation Vλ = lnάMiAiN^G(μλ®^®^) and
hence Vλ is reducible.

With λ, Eλ being as in (4.1), let

( F Borel measurable,
F: V^EI; ||JΓ||2 = Γ {J (g ^ .^

λ Jd λ l "

and let

where ^ is the boundary component containing ot and Θ(Ήi9 Ej) denotes the
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space of all Ervalued holomorphic functions on #f. Then L2(<^ί, 1) (functions
which are equal almost everywhere being identified) is a Hubert space with inner
product

(F, F') = \ (Jλ(giCh oTlF(gi . Oil Jλ(giCi, oΓ'F'fo ofidg,
J G i

Given F e L2(^, 1) and g e Gί5 define Tλ(g)F: &i-*Eλ by

(5.2) (Tχto)F) (z) = Jλ(g-\ z)-iF(0-' z), z

Then, as follows from 4.25(1) and the definition of Eλ, Tχ(g)F takes values in
Efo and it is easily seen that T% defines a unitary representation of Gf on L2(tfi9 1)
and H2(tfi9 1) is an invariant subspace. Therefore, arguing as in Section 4, one
finds that the norm convergence in H2(tft, 1) implies uniform convergence on
every compact subset of ^ and hence H2(e^i, λ) is a closed subspace of

L2(^ί? I).

5.3. LEMMA. Ή2^, !)^{0}.

PROOF. Let lλ be the constant function on <% as in Corollary 4.27. The
restriction of lλ to <£h which we denote again by 1A, clearly lies in Θ(Ήb Eχ).
Therefore, to prove the lemma, it suffices to show that ||lA | |^<oo. If i^r then,
using the integration formula (2.37) and carrying over the similar computation as
in the proof of Proposition 4.24, we get

\Jλ(a,

ι \\lλ\\2

λ (by Corollary 4.27) .

Likewise, also in the case ϊ = r, we obtain \\lλ\\l = d(λ)d(λ)'l\\lλ\\2

λ. Since ||lA||λ
< oo by Proposition 4.38, the lemma follows.

Let ;TA

f) be the irreducible unitary representation of Lf on Eλ defined by (4.9)
and form the unitarily induced representation /ZA = IndLίtMi 'τA°. We denote by
L2(Mί? 'τA

ί}) the representation space of μA. Since Af^Fj/iGJGi, and since
Filfl'i acts trivially on V^MJL^GJKi (cf. 2.28), Mt preserves every GΓ

invariant measure on ̂ t. Thus we may take
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(5.4a) L2(Mi9 '•#>) =

/ Borel measurable,

/: Mt -> EI\ f(ml) = /τ^ί)(/)"1/(m), meMi9 /eL ί 9

i
and μλ acts by left translation. We also define

H\Mi9 '#>)
(5.4b)

= L2(Mf, 'τi«) Π {/£ C CM,, F£); r(X)/ = 0 for all X e p

where P7 = gίjC Π p~, and r(X)/ is defined similarly as in (4.19). Then it is clear
that the subspace H2(Mί9 'τ^) is invariant under the representation μλ.

Now, for FeL2(^ί5 ~λ\ define /jF: M^E* by

(5.5) /^(m) = JA(mct, d)' *F(m - 0/), m e M,.

(Since M^Fj/jGJG,, Lemmas 4.5(1) and 4.25 ensure that /^F actually takes
values in Eλ.) Then, for meMt and / e Lt , we have

= Jλ(mlci9 o)

= J άmc&nci, o)-lF(m>

= Jλ(cTllci9 o)-lJλ(mci9 ό)

and so it follows that /%F e L2(Mf, 'τ^). Therefore one finds without difficulty
that the mapping / 1\ L2(^, l)-^L2(Mί? 'τ^£)) is a surjective isometry.

5.6. LEMMA. The subspace H2(Mi9

 rτ(

λ

i}) of L2(Mf,
 fτ[i}) is closed, non-

zero and corresponds to the subspace H2(^b λ) under the unitary isomorphism

PROOF. In view of Lemma 5.3, it suffices to show that F e C00^, Eλ) is
holomorphic if and only if r(X)tf^F = Q for all X ep7 C/iF stands for the func-
tion defined by (5.5)). But this follows from an argument similar to that used in
proving Lemma 4.20. I

5.7. LEMMA. The restriction of the representation μλ to the subspace
H2(Mi, 'τi°) is irreducible.

PROOF. By means of the unitary isomorphism / ^. L2(^i9 λ)-+L2(Mi9 'τ(

λ

l))9

μλ may be transported to a unitary representation of M , on L2(^ί5 λ). It is
easy to see that the transport of μλ to L2(<^7

ί, λ) is given by
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(μλ(m)F)(z) = Jλ(m~\ z)-lF(m~l - z), FeL2(<^, λ\ m eM h

Now to prove the lemma it is enough to show that the representation (μΛ,
H2(^i9 1)) of M; is irreducible on the subgroup Gf. But this follows as in the
proof of (4.48). |

Let μλ denote the restriction of μλ to H2(Mt,
 fτ[i}). Then by the above

lemma μλ is an irreducible unitary representation of Mf. For each v e αf, we

define an irreducible unitary representation μλ®e^~lv®\ of Pf = M^JV,- on

H2(Mh 'τi0) by

(μλ ® e^~iv ® l)(man) = μλ(m)e^~lv(ά), man e M^ Λ^

and form the continuous series representation

^A,V = IndM|X|ΛΓ|TG(μA ® e^ΓTv ® 1).

Let §AjV denote the representation space of VλtV. Then, in view of (2.39) and

(2.43), we may take

Ψ Borel measurable,

Ψ(gman) =

Next we show that the representation (FAjV, §A>V) is unitarily equivalent to
a subrepresentation of (l/A>v, L

2(G, σλjV)) defined by (4.11). For this purpose we

consider the space

,
(5.8)

= L2(G, σΛ>v) Π {/e C°°(G, £^); r(X)/ = 0 for all X e pγ} .

The closure of QP(G, σ Λ j V ; p7) in L2(G, σλ>v), which we denote by L2(G, σΛ ) V; pr),
is clearly a closed, (7AjV-stable subspace.

5.9. PROPOSITION. For every v e α f , ί/z^ representation (FAjV, §AjV) o/ G is

unitarily equivalent to (C/ΛjV, L2(G, σλ>v; p^)).

PROOF. For /eCJ(G, σA > v; p7) and geG, define fg: Mi-^Eλ by /^(m)

=f(gm). It is easily checked that fgeH2(Mί9 'τ(^\ Next define Ψ f : G^
H2(Mi9

 fτ(») by ψf(g)=fg. Then we claim:

(5.10) ^/e§λ,v and
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Indeed if man e MiAiNi then, for m1 e Mί9

Ψ f(gmari)(m^ = /(gmanm^ =/(^fmm1αmϊ1nm1)

Moreover

\\ψf\\* = ( \\Ψf(kWdk = ( \( \fk(gt)\2dgt\dk
JK JK (JGi )

\f(kgd\ίdkdgl =
J

This implies the claim (5.10).
In view of (5.10), one can define an isometry ^ of L2(G, σA > v; pf) into §λ>v,

satisfying &(f)=Ψf for /eC<!P(G, σλ>v; p7). Since it is obvious that ^ inter-
twines UλtV and Kλ$v, the proof of the proposition will be complete when it is

established that # is surjective. For φ e C*(G) and h e H2(Mt,
 fτ(

λ°), define

f ,,'•#>) by

(p is the rho-function in (2.39)), and further define fφth: G-+E% by fφih(g)

= (Fφ,h(9)}(e) (e = identity of M4). We are going to show that

(5.11) /Ψ, f teC?(G,σA,v;p7) and a(fφj = FΦJt.

Since F^>ft (φ e C?(G), Λ e H2(Mf, 'τi0)) span a dense subspace of §A>V (cf.

Warner [30], p. 371), this will imply that ^: L2(G, σλ)V; PT)~*&λ,v is surjective
and, in view of our earlier remark, thus serve to complete the proof of the
proposition.

First observe that if Ian e S^L^JVj, then

for gf e G. Since convergence in H2(Mί9 'τ^0) implies uniform convergence on

every compact subset of Mi9 we have, for m e Mf,
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= P(PT1/2Φ(9P) [(/*Λ ® e^v ® 1) (p)*] (m)dp,
J P i

which in particular implies fφfh e C°°(G, Ej). Now

(5.12) /^(gm) = (μλ(m)-iFφ,h(g))(e) = (Fφjk(g))(m)

for 0eG, me MI. Thus, and since r(JO(Fw(0)) = 0 for Xep]~, it follows that
r(X)fφ}h = 0 for all X e pί~. Furthermore

\(Fφ>φ>h

oo.

These observations show that fφfheCf(G9 σλ>v; pf). Also (5.12) implies
— Fφ)h. This establishes (5.11) and completes the proof.

We write Vλ9 §λ for Fλ}0, §λ>0 (Λe case v = 0). According to Harish-Chandra's
irreducibility criterion [10, Lemma 3, p. 145] of the representations induced from

a parabolic subgroup of G, the representations yλ>v = lnάM.A.Ni^G(μλ®e^~lv®l)
are irreducible for all v ̂  0, at least for the case that the representation μλ of Mt

is square-integrable (this is the case when i = l; cf. Knapp and Okamoto [15]).
However, for the exceptional case Vλ (= FA<0), we have

5.13. THEOREM. The representation (Tλ, H
2(β, λ)) which was constructed

in Section 4 is unίtarily equivalent to a proper subrepresentation of (Vλ, §λ),

and consequently (Vλ, §λ) is reducible.

In order to prove this theorem we need some notation and a lemma. Letting

gj be as in 2.20, put ϊ = 9 ί f l ϊ , p^gίΠp. Then 95 = ϊί + pί is a Cartan de-
composition and we have a corresponding decomposition of the complexification

9'ί,c = ϊ'i,c + P;,c Let K\ be the analytic subgroup of G with Lie algebra !'f and
let KMi = K Π Mif Then, since K^G^ n K, (2.26) implies Xj^Fί/^KJ.

5.14. LEMMA. Let Bt be the analytic subgroup of T with Lie algebra
^J^ΛR(H^-\ ----- f-Hf). Then Bt is isomorphic to a circle group. Furthermore

BI commutes with KMi.

PROOF. As is easily seen, Ad(exp(2πΛ/-l (H^l hίQ)) operates on gc

as the identity, whence the first assertion follows. As for the second assertion,

it suffices to show that Bt commutes with K\ since J5f commutes with F^iK^

For this it will be enough to show that Hί H \-Hι commutes with !J>C. Since

g'ίiβ = Ad(ci)'aJ>β by definition, gί j C is spanned by vectors Ad(cf)Xα, Ad(cf)Ha

with ae'Φ^i'C^U W (±C,k); cf. 2.20. If ae±'C^ then Ad(c^Xa
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= XX, λά(ci)HQt = HΛ because every root in C0 is strongly orthogonal to all y,-

(1 < j < r) cf . Moore [23] . If α is a root in 'Φf with π(α) = y (y, - yk) (1 < j, k < i,

7/fc), then using the formula [X_α, [XΛ9 XβH = q(l-p)Xβ on p. 143 of [11] (p,
g are integers so that β + na, p<n<q, is the α-series containing β) we obtain from

(2.1 8) that

X_J9 XJ] + IX. p XJ - [Xk, XJ),

Ad (cjH, = HΛ- i«7;, HΛyHj + <yk, Hβ>Hk)

Here Xβ-[Jfk, U_,, XJ], Hα-i«V,, Hα>H, + <7fc, Hα>Hfc) ef j § e, and [*_„

[̂ , ̂ J, <7y, H.XX^ + X.^ + ̂ fc, Hα>(Xfe + X_ k)epί ί C . Thus, and since
ίi,c + Pi,c (vector space direct sum), f ί>c is spanned by vectors

XΛ, HΛ with

with π(α) = ~<7j ~ 7k)» 1 ̂  Λ k ̂  ' » 7 ̂  fe

As //iH ----- h// f clearly commutes with these vectors, we conclude that H^-i —
+ Ht commutes with ! >c. This completes the proof of the lemma. |

PROOF OF THEOREM 5.13. In order to prove that (ΓA, H2(@, A)) is unitarily
equivalent to a subrepresentation of (Vλ9 §A), it is enough, in view of Proposition

5.9, to show that the range of the mapping J λ in (4.37) is contained in L2(G, σA;
p;~). But this follows from Lemma 4.20 and the definition of L2(G, σλ; pj").

We have yet to show that (TA, H2(β>, λ)) is not unitarily equivalent to (FA,
§A). Let Bt be as in Lemma 5.14. The argument that follows is adapted from
Knapp and Okamoto [15] who study the case i = 1, and consists of examining the
restrictions to Bt of Tλ and Vλ to see that they are different. Since Bt is isomor-
phic to a circle group, we can think of its character group as the integers. In an

obvious sense, the integers extend in two directions from 0. Hence the proof of
the theorem will be complete if we verify the following two statements.

j The restriction Vλ\B. contains infinitely many characters of Bt in both
I directions with positive multiplicity.

(5.16) In positive direction, the restriction Tλ\B. contains no character of Bif
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The proofs of above statements are practically identical with the proofs of Lemmas
7.2 and 7.3 in [15], so we will just sketch their main outlines.

Let KM=K[\Mi as before. Then, since G = KMiAίNί and KΓiM^Ni
= KMi, one can prove (5.15) by the same argument as the one in the proof of

Lemma 7.2 of [15], if we can show that

(5.17) BιKM. is a compact group and Bi Π KM. is a finite cyclic group.

But the first assertion of (5.17) is an immediate consequence of Lemma 5.14.
As for the second assertion of (5.17), one only needs to note that Hί-\ ----- \-Ht

does not commute with αf and hence that the Lie algebra of Bt n KM. is 0. This
verifies (5.17) and hence (5.15) follows.

Now we turn to the verification of (5.16). First observe that

(5.18) <α, H1-\ ----- h//i> > 0 for every positive root α;

this follows from (2.12a). Thus using Lemma 4.52 and (5.18) one can show, just

as in the proof of Lemma 7.3 of [15], that the eigenvalues of Tλ(Hί H ----- h#i) are

all<</l, Hί-\ ----- h#;> on a dense subspace of H2(@, λ). Since <λ, /ί1-^-•••

+l/ l>=-<^, Hί + +Hiy=-ipi<Q by Proposition 3.10 and (3.14), and since

#. = exp ̂  — lR(Hί H ----- h#t ), this implies (5.16) and completes the proof of the
theorem.

6. Kernel functions

Retain the setup of Sections 3 and 4. According to Corollary 4.39, every

constant function lβ, eeEλ, lies in H2(@9 λ). Hence, and because of (4.33b),

for each point z e Q>, the point evaluation

Ez : F - > F(z), F e H2(&, λ)

is a continuous linear mapping from H2(@, λ) onto Eλ. Therefore Ez has the

continuous non-singular adjoint E* : Eλ-*H2(β r, λ) such that

(6. la) (F(z), e)Eλ = (F,

for all F e H2(&, λ) and e e Eλ. We define the function Kλ: @ x &-*GL(Eλ) by

(6.2) Kλ(z9 w) = £ZE*, z, we^.

Then the formula (6. la) is rewritten as

(6. lb) (F(z), e)Eλ = (F( - ), Kλ( - ,

Kλ will be called the reproducing kernel function of H2(β, λ). (For the general

theory of operator valued kernel functions and the connection with unitary
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representations, see Kunze [20].) It is obvious that

(6.3a) Kλ(z, w) is holomorphic in z and KA(w, z) = Kλ(z, w)*

where Kλ(z, w)* denotes the Hubert space adjoint of Kλ(z, w). Since Tλ given by
(4.13) defines a unitary representation of G on H2(β^ λ)9 one also obtains

(6.3b) Kλ(g z, 0 w) = JA(0, z)KA(z, wyjfo, w)

for all z, we^ and all gεG (J*(g, w) = adjoint of Jλ(g, w)). In fact, since
Eg.z = Jλ(g, z)EzTλ(g-i) by definition of ΓA, we have

= Jλ(g9 z)E,Tλ(g-i)Tλ(g-ΎE*JΪ(g9 w)

= Jλ(g, z)EJE*JΪ(g9 w) (ΓA(r ') is unitary)

The following proposition gives a formula for the kernel function Kλ in terms
of the automorphic factor Jλ. Recall that Q> is realized as a bounded domain in
p+; thus if we let w->w denote the conjugation of gc with respect to g, then for
w e ̂ , exp w makes sense and lies in P~.

6.4. PROPOSITION. The reproducing kernel function Kλ of E2(β, λ) is
given by

(6.5) XA(z, w) = ||lA||I2JA(exp (- w), z)'1

for z, we^, where ||1A||A ΐs as m Corollary 4.27.

It is not difficult to show that the function Kλ given by (6.5) satisfies (6.3a)
and (6.3b). Then we may prove Proposition 6.4 by showing, as in Satake [26,
Proposition 2, p. 86], that the function Kλ: Of x &-+GL(Eλ) satisfying (6.3a) and
(6.3b) is unique up to constant factors. Here, however, we derive the formula
(6.5) directly from (6.3a) and (6.3b) (some intermediate steps in the proof will be
needed later).

Our proof of Proposition 6.4 rests on the following lemmas.

6.6. LEMMA. For all z e &,

Kλ(z, o) = Kλ(o9 z) = ||lλ||l
2/

where I is the identity transformation of Eλ.

PROOF. If we take g = keK, z = w = o in the formula (6.3b), then
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Kλ(o, o) = τλ(k)Kλ(o, o)τλ(k)* and hence Kλ(o9 ό)τλ(k) = τλ(k)Kλ(o, ό)

for all k E K. As τλ is irreducible, bearing (6.3a) in mind one finds that

(6.7) Kλ(o, o) = cl with ceR.

Similarly we get

for all z e ̂ , k e K. Hence, using the same technique as in the proof of Lemma
4.29, we have, for all z e ̂ ,

Kλ(z, o) = ^τ,(k)^K,(k.z, o)τλ(k)dk

= ( τ/ίfc)-1 K/ffc z, o)τλ(tk)dk for all ί e Γ1

JK

(T1 is as in the proof of Lemma 4.29)

= ( τάky-tKάtk z, o)τλ(k)dk for all ί e Γ1

J K

(since T1 is a central subgroup of K)

'— \)
)~1f^λ(°9 o)τλ(k)dk (Kλ(z9 w) is holomorphic in z)

κ

= cl (by (6.7)).

As c eR, it then follows from (6.3a) that

(6.8) Kλ(z9 o) = Kλ(o, z) = cL

It remains to show that c= ||1A||J2. For this, take e=eλ, F = 1A, z = o in (6.1b) to
get

= (lλ(.),clλ(.)) (by (6.8))

Thus c= ||lλ||j
2, as desired.

The complex conjugation in gc with respect to g lifts to an involutive auto-

morphism of the underlying real Lie group of Gc, which we shall denote by g-+
σ(g). In the next lemma it is convenient to denote the anti-automorphism
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g-+g~l of Gc by g-+c(g). Recall (2.2) that any element geΩ = P+KcP~ can be
written in a unique way as

g = π+(g) - π0(g) π_(g\ π0(g) e Kc, π±(g) e P±.

6.9. LEMMA. If g eΩ = P+KcP~, then cσ(g)eΩ and

cσπ+(g) = π,eσ(g)9 cσπ0(g) = π0cσ(g), cσπ_(g) = π+cσ(g).

PROOF. If g e Ω, then

eσ(g) = ισ(π+(g) - π0(g) - π_(gf))

= eσπ.(g) - cσπ0(g) - cσπ+(g) .

Since σ(P±) = Pτ, σ(Kc) = Kc, and since P±, JCC are groups, it follows that eσπ±(g)
ePT, ίσπ0(g)GKc and hence that ^σ(g)eΩ. Then the lemma follows from the
uniqueness of the factorization

cσ(g) = π+ίσ(g) π0cσ(g) - π_cσ(g) .

6.10. LEMMA. Let τ be a holomorphic representation of Kc on a finite
dimensional Hubert space E and suppose that τ is unitary on K. Then for

τ(fc)* =

where τ(fe)* is the Hubert space adjoint of τ(/c).

PROOF. Let τ denote the corresponding representation of ϊc on E. Given

Z e ϊc, write Z = X+ J^ΛY with X, Y e I Then

τ(Z)* =

= -τpQ + Λ/^TτCY) (τ is skew-adjoint on I)

from which the lemma follows. |

PROOF OF PROPOSITION 6.4. Fix z, we^ and choose geG such that
g w = o. Then, using the formula (6.3b) and Lemma 6.6, one obtains

Kλ(z9 w) = \\lλ&Jλ(g, zΓ^l(g9 g^ -p)-1
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Let # = π+(0) π0(#) π_(#) be the factorization as in (2.2). Then, since g exp z

eΩ = P+KcP~, it is clear that both π_(g)expz and π0(#)π_(#)exρz are in Ω.

Therefore, by the remark after (2.6) together with (2.7)

= /A(π_(<7), zrτ/

On the other hand, using Lemmas 6.9, 6.10, and noting that σ(#) = #, one finds

-/JOT1, o) = τΛπoGΓ1))* = τλ(π0<σ(flr))*

= τλOσπ0(flf))* = τλ(π0(0)) .

Thus we get

XA(z, w) = ||WJA(π_fo), z)'1.

But, again by Lemma 6.9,

π_(0) - π_cσ(g~1) = cσπ+(g~l),

while π+(gf~1) = expw since w = g~1-o (cf. (2.3)); therefore π_(^f) = exp( — vv).

Hence the proposition is proved.

In view of (6.2), (6.11) and the remark after (2.6), for each fixed w e Of and

eeEλ,

(6.12) {
the function z-+Kλ(z, w) is holomorphic on & and the function z-

Kλ(z, w)e belongs to

where Θ2(β, Eλ) is as in (4.16). Thus if FeΘ2(@, Eλ), we see from (6.1b) and

(4.36) that

(F(z), e)

(6.13) = ( (PλJλ(kgiCί, o)^F(k9i - ̂ ), PjJλ(kg^ o)'lKλ(kgi - oi9 z)e)dkd9ί

=(( Kλ(z, kβί o^(kgίCί, oTiPMkgfr, o)-1F(kgί o^dkdg,, β)
\ J x x G i /

for all eeEλ. Define a function Mλ: ^i-^End(Eλ) as follows. Given u

there exist keK and gf , e Gf such that u = kgi oi; then put

(6.14) MA(u) = Jί(fcfl<cί,o)-1PΛJA(fcftcf,o)-1.

(It is easily checked that Mλ is a well defined function on .̂) Then, from
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(6.13), (6.14) and (2.47) we obtain

(6.15) F(z) = ( Kλ(z, u)M λ(ύ)F(ύ)dμ(u) for all Fe02(^, £Λ)

where dμ is the quasi-invariant measure on &{ defined by the formula (2.46).

In the remainder of this section we specialize to the case where τλ (λ e

is a one dimensional representation of K9 and want to find more explicit formula

for the kernel function of H2(β, λ) than the one given by (6.5). It turns out that

this kernel function is proportional to a positive power of the Bergman kernel

function of ̂ .
Before proceeding further we note that if we write, for a given λ e ̂ (G),

λ= Σj=ι mjλj with ml 4- Σy=2 ^jmj— ~Pi as *n (3.8a), then the degree d(λ) of τλ

is 1 just when ra^O for 2< j<rt. Thus if ^cj^G) and hence &ί(G) = &'i
(see (3.7) and (3.8) for notation), then there exists a unique α^-e^^G) with
= 1, i.e.,

(6.16) ωf = — pίλί.

We also note that

, ωr) is the usual Hardy space for the bounded symmetric domain

= G/K (provided ωr e.

Indeed, if we identify the representation space Eωr of τωr with complex numbers
and if we let Θ(@) denote the space of all holomorphic functions on ,̂ then

recalling that G, = Kr^K (cf. (2.29)), we have for all f

*f (kg, - otfdkdg,

(by Lemma 4.25)

Since this is just a Hardy type norm for Θ(@\ (6.17) follows. Therefore the
kernel function of H2(&, ωr) is the Cauchy-Szego kernel function of the bounded
symmetric domain .̂ But under the assumption that G is a matrix group, it
may happen that «^"r(G) = 0 as remarked at the end of Section 3; thus in order
to treat the case of arbitrary irreducible ® = G/K, one must drop the assumption
that G is linear. But we assume for the moment that G is a matrix group and
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that a>i e &(G) for all 1 < i < r; we shall indicate later how to drop this assumption.
We shall denote by IE, the kernel function of H2(3>, ωf). To make the for-

mula (6.5) more explicit in the present situation, letting δn be half the sum of
positive noncompact roots of (gc, tc), we define a particular one dimensional
representation τ2δn of Kc by

)> keKc

(thus 2δn is the weight of τ2δn). We also define a function k: & x ^->C by

(6.18) fe(z, w) = J2Jexp(-vv), z).

We first show that this function k is, up to a constant factor, the Bergman kernel
function of $. We begin by recalling the definition of Bergman kernel function
see Helgason [11]. Let

Φ\&) = {holomorphic functions /: ® -> C; ||/||2 = ( \f(z)\2dz < 00}
J3>

where dz denotes the Euclidean measure on p+. Then &2(@) is a complete
Hubert space and for each ze@ the point evaluation /->/(z) is a bounded linear
functional on Θ2(@)\ so there exists a unique reproducing kernel function of
Φ2(&). This function is by definition the Bergman kernel of S>. We shall
denote this kernel function by 6.

The following formula for the Bergman kernel function is perhaps known,
but we include a proof, as it is not readily available in the literature.

6.19. PROPOSITION. Let k by the function defined by (6.18). Then the
Bergman kernel function b of & is given by

6(z, w) = vol^Γ^z, w).

PROOF. From the general theory of Bergman kernel, one knows that
6(z, w) is holomorphic in z, 6(w, z)=6(z, w) for all z, we^, and that 6 satisfies

b(g z, g w) = j(g, z)~lb(z, vi)j(g, w)"1

for all z, w e ̂ , 0 e G where j(#, z) denotes the complex Jacobian of the holo-
morphic map z->0 z at ze^. In the present situation it is also known (cf.

Baily and Borel [1], Lemma 1.9) that

7(0, z) = J2 J0, z) .

Therefore by the same argument as in the proof of Proposition 6.4, we obtain

6(z,w)=||l||-2J2Jexp(-vv),z)

where 1 denotes the constant function l(z) = l, ze^. But clearly ||1||2 =
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vol (^), finishing the proof. I

Now we turn to the consideration of the kernel function kt. Letting n

= dimc &, ni = dimc

 (^i and ̂  = dimR 38{, we set

(6.20)
*l 3n-ni-di

where ζ€i and ^i are, respectively, the boundary component and the boundary

orbit containing 0t . (It can be shown that -y<<?i<l; cf. Remark after Lemma

6.24 below.) As 2 x ̂  is simply connected, we can uniquely define powers
fc(z, w)9' of fc(z, w) with fc(o, o)qί = 1.

Using the notation of Corollary 4.27, put

if
(6.21)

i
if

Then, by the same corollary, /c f= ||lω.||^. since d(ω^ = \. Thus 0</c i<oo by

(4.28) and Proposition 4.38. Before stating the next proposition, let us notice
that kt(z, w), being holomorphic in z and anti-holomorphic in w, is completely
determined by its restriction to the diagonal of ^x^. Note also that every
point in 2 can be written in the form /c (Σ;=ι tjXj) = Ad(k)(Σrj=ιtjXj) with

k e K, -1 < tj < 1 cf. Koranyi and Wolf [18], p. 269.

6.22. PROPOSITION. Let k be the function defined by (6.18) and let q^
κiy PI be the constants as in (6.20), (6.21), (3.5). Then the reproducing kernel

function k{ of H2(@, ωf) is given by

(6.23a) fci(z, w) = KTlk(z9 w)«'

for all z, we^. Moreover, ι/z = /c (Σy=ιO^) Wίί^ keK, -l<ί;<l, then

(6.23V) kt(z9 z) = KΓ1 Π (1 - Φ^

NOTES. (1) The constant pt in the formula (6.23b) (which is an integer

or a half-integer by definition (3.5)) can also be written as pl =
 n ~ r qi =

(3^-rfr)(/i-^) (see Lemma 6 24 below), in particular pr = — since nr = 0.
r(3n — ni — ai) . r

(2) In the extreme case i = r, fer is the Cauchy-Szegδ kernel function of 2
as remarked before. The formula (6.23b) for kr was obtained by Koranyi [17,
Proposition 5.7] using different methods (note that the constant κ,l depends on
the normalization of measures).
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The proof of Proposition 6.22 rests on the following lemmas. Recall the set
of fundamental highest weights, {A1?..., AJ, in Section 3.

6.24. LEMMA. Letting u, v be the constants as in (2.12b), put s = u(r—l)
+ v + 2. Then:

(1) 2δn= sλt.

(2) For each z, l<ί<r, we have Pi = sqi. Moreover s = ~ - ̂ , where

@ and dr = dimR&r (&r = Silov boundary o

PROOF. Since fc normalizes p+, its Weyl group permutes the elements of
ΦJ and leaves 2δn invariant. Therefore (2δn9 α) = 0 for all αeΦΓ, and it follows
from the definition of λ± that 2δn = tλί for some tεR. We must show that
t = u(r—Γ)+υ + 2. For this we will calculate the effects of 2δn and λί to the

vector Hί. According to (2.12ab),

2π(δn} = Σ yj + u Σ Y (yj + yk) + υ Σ ~jj
\<,j<>r J ί<j<k<r 2, ί<j<r 2

(6.25)

so we get

<2δB, H,y = u(r - 1) + υ + 2.

On the other hand </l1? //!> = ! by Lemma 3.3(1), whence (1) follows.

(2) By definition, p~lru(i-l) + u(r-i) + v+l and qt= . n~Hi . . On
Δ on — n^ — «f

the other hand, using (2.12ab), one finds that

n = dimcp
+ = IΦϊl = ±r{u(r - 1) + 2v + 2} ,

n, = dimc pt = |φ+B | = 1-(Γ - /) {w(r - i - 1) + 2v + 2} ,

and

di = dimΛ G/Sj = dimκ G/Pt + dimΛ Pj/Sj

= dimΛ n, + dim^ #f (nf is as in (2.24a))

= ΐ{u(i - 1) + 4w(r - i) + 4t? + 2} + 2nf

The assertion of (2) then follows from straightforward computation.
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REMARK. From Lemma 6.24(2), it is easily seen that - - <#,•<! for each

6.26. LEMMA. ω( = — 2qtδn.

PROOF. Since ω f = — piλί by (6.16), this is an immediate consequence of

Lemma 6.24. I

PROOF OF PROPOSITION 6.22. To prove the first assertion, it is enough to

show that both functions coincide on the diagonal of ^x^. Fix ze^ and

choose g e G so that z=g - o. Let us write Jf(0, z) in place of Jω<(0, z). Then,
taking into account (6.3b), Lemma 6.6, and the definition (6.21) of κi9 we get

fc,(z, z) = Jt(g, o)ki(o, o)Ji(g, o)

Let A be the abelian subgroup of G as in the proof of Corollary 4.32. Then,
since G = KAK, we can write Q — kak' with fc, k'eK, aeA, and it follows from
the cocycle formula that

\Jtβ, o)\ = I Jf(/c, a o)| |Jf(a, o)\ \Jt(k'9 o)\ .

But, in view of (2.19), Jt(a, o) is real, while |Jf(/c, a ό)\ = \J£k'9 o)| = l, and so
one finds

fci(z, z) = K^Jfa o)2.

Now by Lemma 6.26,

(6.27) Jf(α, o) = J2δΛ(a, o)~^.

Therefore we conclude that

fc^z, z) = κ^J2δn(a9 o)-^

On the other hand, since k(g o, g-o) = J2δn(g9 o)~1J2δn(g, o) l, the same argu-
ment as above yields

k(z9 z)" = J2όn(a, o)-^,

and the first assertion follows.

Given aeA, write α = exp(Σ5=1 x/Jίy + ̂ .y)); then, in view of (2.19),

β ° = Σ$=ι (tanhx pfy. Thus if — l<ίy<l, there exists a unique aeA such that

a o = Σj=ι O^r Moreover, as we have already observed,

a o, ka - o) = tcγ1 J^a, o)2 for k e K, a e A.
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Therefore to prove the second assertion of the proposition it suffices to show that
if α=exp(Σ5=ι*/*; + *-, )), then

{1 - (tanh X;)2}-p</2

l^J^Γ

or equivalently that

Ji(a9 o) = Π (coshx7 )
p<.

By (6.27) and the definition of the automorphic factor, we have

Ji(a, o) = J2δn(a9

here, according to (2.19), π0(α) = exp(-Σ!/=ι log (cosh x/)///). But (6.25)
implies

<2δH9 - Σ5-ι log (cosh Xj)Hj> = - sΣ5-ι log (cosh xy).

Thus, and since pi = sqi by Lemma 6.24(2), we obtain

Jι(a, o) = Π (cosh Xjγ*9

as we wished to show.

EXAMPLE. To illustrate how one gets a precise formula for the kernel
function kt in concrete cases, we consider the case where G = SU(p9 q) (p>q>l)

and £={(o ^);αeί/(jP)> deU(q), (detα)(detί/) = ll. In this case rankG/K

= q and we have Ge = SL(p + q, C), X c = < f ^ ,J; aeGL(p,C\ deGL(q,C)9

(det α) (det d) = 1 j . If ^ is a (p 4- q) x (p + g) complex matrix, we write g = f Λ , j

where the matrix blocks are of the size given by

a is p x p, b is p x q, c is q x p, d is q x q.

Then gc=sI(p + 4, C), !c=|(o ^)ί trace α +trace d = 0|, Pc={(^ 0)}'
 and we

may put p+ = {(^ J)l, p- = {(° S)}; hence P+ = {(̂  J )}, ̂  = {(ίp ? )}•(\υ u / j (\c u / j (\u ι € / j (\c i^ / j

Each ^=(Λ »)e G is written uniquely as

IP bd~l\(a — bd~lc 0 \ / lp 0 \

0 lq ) \ 0 d )\d-1c lqj

so C(^)=f Λ ^n ) where ζ is as in 2.1. It then follows (cf. Wolf [31]) that the
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Harίsh-Chandra realization of G/K is given by

Ό z \

o j e p Λ >0 ,

where z* is the conjugate transpose of z and ">0" means "is positive definite".

Moreover, if we identify p+ with the space Mpfβ(C) of p x q complex matrices,

then (cf. [31], p. 327) for each i<ί<q

(6.28a) ! = {zGMp>q(C)ι lq — z*z is positive semidefinite

and rank (lq — z*z) = q — i}

and we can put

(6.28b)
It 0

Now let (° 5),(0 J)6S, and put z' = (° j), w' = (° j). Then, since

w' =ί * Q ) (bar denoting conjugation of sl(p + ̂ , C) with respect to sιι(p, g)),

^(exp(-w')expz')

= ^-component of
ι o

in the factorization (2.2)

But if fc = Γ then

τ2an(fe) = det(Ad(fc)|p +) = (det α)«(det df* = (det d)~(l>+β).

Thus

^2jexp(-wr), z') = τ2δn(π0(exp(-w')expz'))

= det(lβ- w*z)-^+«>.

According to Proposition 6.19, this is the Bergman kernel function of ^ up to a
constant factor.

Now dimc&=pq, while by (6.28) dimΛ &t = 2pq-i2 and dimc ίf| = Cp— i)
(^f — ϊ') Hence, in the present case, the constant <^ in (6.20) turns out to be equal
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to S-^LΞLL. Therefore we conclude from Proposition 6.22 that, up to a constant

factor, the kernel function kt is given (under the identification ̂  =

l,-z*z>0})by

fc;(z, w) = det(l^ - w*z)-<*+«-ί> (1 < i < q)

for z, we^. In the extreme case ί = q, kq is the Cauchy-Szegδ kernel function
of ^ and is given by

As remarked before, in order to account for all kt (i<ί<r) in the case of
arbitrary irreducible @ = G/K, one must drop the requirement that G is linear;

this is the case when ωt= —p lλl with pi a half-integer. We shall briefly indicate
that, even in this case, one can define the kernel function kt and its explicit for-

mula is again given by (6.23). For this purpose we take, in place of G, a two-

sheeted covering G° of the linear universal covering of G; then ω^ e ^(G0) for all
l< ϊ<r ; cf. the remark at the end of Section 3. G° naturally acts on ̂  # z

= P ( g ) ' z ( P ' - G°-+G being the covering homomorphism). Let K°, G , A°i9 JVJ
denote the analytic subgroups of G° corresponding to !, &, αί? nt respectively, and

let M^jr'CMj), S^p-^Sil Li = MJnSJ. If we define J°2δn\ G°x@->C by

J°2δn(9> z) — J2δn(p(9^ z) then, since pi is a half-integer and since CDi=—piλί

= —2qtdn by Lemma 6.26, we can uniquely define a continuous function J}:
G°x^^C by Jϊ(g, z) = J°2δn(g9 z)~q* with J}(e9 z) = l (β = identity of G°). One
can check that J°t satisfies the following conditions :

(6.29)

, z) is C°° in geG° and holomorphic in

gί9

j°(/c, z) = τ (fc) for k e K°,

Now let Θ(@) denote the space of all holomorphic functions on Q> and

Θ(β} the subspace of functions holomorphic on JL By (6.29) we can
define (in algebraic sense) a representation Tt of G° on θ(@) by

- z), /e ̂ (̂ ), flf e G° z

Note that the subspace Θ(β) is stable under the representation 7]. Let

; 11/11? = ̂  UK^p o^f(kgro^dkd9i < 00
Jκ°χG!

where jSt- is as in Proposition 4.24 and dk, dgt are Haar measures on K°9
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6.30. LEMMA. Θ2(β, ωf) is stable under T^g) (g e G°) and T^g) preserve
the semίnorm \\ ||t .

PROOF. We may define a C°° rho-function p° on G° for the subgroup S] in
the same way as in 2.33. Thus, for #eG°, write g = kman (fceK°, w e M J n

expp, αe^ , n e W - ) ; put p°(g) = e~2pi(a) with pt as in (2.38). Then, just as in

(2.45), we can normalize various Haar measures in such a way that

(6.31) (
JG°

for any integrable/.

Now fix Fe02(£>, ωf) and xeG°. If we put F(g) = J](g, oi)-1F(g-oi) for
g e G°, then

\\TMF\\2

0 \JΪ(kgt, o^Jfc-1, kg, - o^F^kg, -
κ°χc1

. l^ίx-^Λ, ofr ̂  (x-^flf, oύ\2dkdgtK°xGΪ

Therefore to prove the lemma it suffices to show that

(6.32) ί .\F(kgύ\*dkdgt = ( ^(
Jκ°xG° JK°xGi

for all x e G°. First we claim:

(6.33) \F(gs)\2 = p°(s)\F(g)\2 for all ^ feG 0 and

In fact, for gf e G°, s e S?,

and if we write s = Ian with / e L°h aeA°h ne N°h then

But it is easy to check that |JJ(ί, θf)| = |JJ(n, ^1 = 1, while, by Lemma 4.5 (2)
together with the fact that ω f= —2qiδn, we have
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Therefore

\F(gs)\* = |JXsf of)|-2

for all g e G° and s 6 SJ, establishing (6.33).

Now put φ(g - ot) = ( o φ(gs)ds for φ e CC(G°) and g e G°. Then using (6.31)
J Si

and (6.33) we get

= . ,\F(kg,s)\2Φ(kgls)p\s)-1dkdglds
° x ° x

.
K°xG°

Taking the supremum over all φ e CC(G°) such that 0<φ< 1, we have the asser-
tion of (6.32) and complete the proof. |

From Lemma 6.30, following the same arguments used in Section 4, we de-

duce:

' The completion H2(β, ωt) of Θ(β, ωf) can be identified with a sub-

space of Θ(<3>) and is a nonzero Hubert space with the property that for
each z e ̂ , the linear map /->/(z) is continuous from R2(β, ωf) onto

C. Furthermore Tt defines an irreducible unitary representation of G°

on

(6.34) (

It follows from (6.34) that the reproducing kernel function kt of H2(β, ω, )

exists and satisfies

(6.35) kfa - z, g w) = Jϊ(g, 2^(2, w)JJ(flf, w)

for all geG° and z, we^. Once we have the formula (6.35), the proof of

Proposition 6.22 goes through without change also in the present situation.

Hence we conclude that the kernel function kt of H2(β, ω f) is given by (6.23) for

any irreducible Of and 1 < i < r.
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7. Intertwining operators

Let (Uλ, L2(G, <7A)) and (ΓΛ, H2(@, λ)) be the unitary representations of G
as in Theorem 4.49. As noted after that theorem, (Tλ, H2(£>, λj) is unitarily

equivalent to the representation (Γλ, H
2(G, τλj) defined by (4.51), and so, in view

of Theorem 4.49, H2(G, τλ) can be identified with a closed subspace of L2(G, σλ).
In this section we construct an integral operator & λ: L2(G, σA)->H2(G, TΛ)

which is regarded as the orthogonal projection operator if we identify H2(G, τA)
with a subspace of L2(G, σA). In view of Proposition 5.9, the restriction of & ' λ

to the subspace L2(G, σA; p^) may be more important.
Now, letting βi9 \\lλ\\λ be as in Corollary 4.27, put 7 = ft||lλ||j

2. Given
φ e L2(G, σA), we define

(7. la) &λφ(g) = y( τλ(K)Jλ(g^9 o)^φ(gkg^dkdgi
J x x G f

for all g e G for which this integral exists.

7.2. LEMMA. For any φ e L2(G, σA), the integral defining &^(g) exists
for all geG. Moreover 0> λ is given by an integral operator with a kernel

(7. Ib) &λφ(g) = y\
j

PROOF. According to Corollary 4.39, the constant function lβ belongs to
, λ) for every eeEλ. Hence if we define, for each eeEΛ, φe: G->£^ by

φe(g) = PλJλ(gci9 o)~le, then (4.37) implies φβeL2(G, σΛ) since φe = ̂ λ(le). On
the other hand, if φ e L2(G, σA) then the left translates Uλ(g)φ (g e G) also belong
to L2(G, σλ), so (Uλ(g~l)φ, φe) (inner product in L2(G, σλ)) exist for all geG
and e e Eλ. Now

i)φ, φ.) = ί
JK*Gi

fit, o)^φ(gkgί)dkdgι, β)
/JKxGi

But, using Lemmas 4.25, 6.9 and 6.10, one finds

Jf(kgiCi, orι\El = βtJi(k, Θi o
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Therefore we obtain

(7-3) \\lλ\\I2(Uλ(g-l)Φ, Φ.) = (?>Ma\ β)

for all φ e L2(G, σA), g e G, e e £Λ, from which the first assertion of the lemma
follows. As for the second assertion, recall that Uλ(g) is a unitary operator of
L2(G, σΛ) for every g e G. Thus

= II1JI2( C/ίGΓ'^A, orWkgi), e)dkd9lJK*Gi

= (y\ Jl(0-lkgi9 oύ'lφ(kgύdkdgi9 e)
\ jKxGi J

for all e e Eλ. This combined with (7.3) gives the second assertion of the lemma.

Our main result in this section is the following theorem.

7.4. THEOREM. Fix any i, 1 < i < r, an d λ ε &£G). Then :
(1) For any φeL2(G,σλ\ 0>λφ belongs to H2(G,τλ) and the resulting

mapping

&λ: L2(G, σΛ) - > #2(G, τλ)

is a surjective G-intertwining operator. Furthermore, if we regard H2(G9 τλ)

as a closed subspace of L2(G, σA) then «^A is the orthogonal projection operator

onto #2(G, τΛ).
(2) On the subspace L2(G, σλ; p7) of L2(G, σλ\ 2P λ is given by

(7.5) &λΦ(0y=β\ τλ(k)φ(gk)dk
j K

The proof of this theorem requires some preparation. For an £A-valued

Borel function F on the boundary orbit ^ί? define (as in (4.14)) F: G-^Eλ by

(7.6) f(g) = PzJλ(gcί9 o)-*F(g - o^ geG

and let
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, λ) = JBorel functions F: ̂  -> Eλ\ ||F||2 = ( \Έ(k^\2dkάQi < ool.
(. J x x G i )

Then if FeL2(^ί9λ)9 the argument used in proving Lemma 4.15 implies F

e L2(G, σλ). Given F, F' 6 L2(^ί? λ\ let us say that F and F' are equivalent

(F~F') if IIF-FΊI =0. Now define L2(@h λ)° as the set of equivalence classes

(relative to ~) of elements in L2(^ί? λ). Then L2(&i9 λ)° is an inner product

space. For φeL2(G, σλ) we define a function &λφ\ &ί-+Eλ as follows. Every

ue&i is represented as u = kgi>oi9 keK9 g^G^ so put J^λφ(w) == J^fc^C;, o)
φ(kgi). It is easily verified that 3? λφ is a well defined function on ^f and belongs
to L2(^ί5 A). Let j^ : L2(G, σλ)->L2(^ί5 A)° be the composition of the mapping
& λ: L2(G, σλ)->L2(J'ί, A) with the canonical projection of L2(&b λ) onto

7.7. LEMMA. J^ is α linear ίsometry of L2(G, σA) onto L2(@h λ)°. In
particular L2(β^ λ)° is a Hubert space.

PROOF. If FeL2(^ί? λ) then FeL2(G, σλ) as remarked before, and it is
easily seen that F~J?λF. Thus <£°λ is surjective. The rest of the lemma is

obvious. I

Given FeL2(^ί5 A), we define (using the notation in (6.15))

= f
J

for all z e & for which this integral exists.

7.8. LEMMA. For any FeL2(^ί5 λ), the integral defining £λF(z) exists
for all ZE&, and if F, F'eL2(&i9 λ) with F~F', then 3λF = £λF'.

PROOF. According to (6.2) and (6.12), FwF*e = Kλ(w, z)e and E*eε
, Eλ) for all z, we^ and all eeEλ. If we set FZ}β = E£e|^, then clearly

FZtθeL2(0i9λ). Hence if FeL2(^f, A), then (F, Fz>β) (inner product in
L2(G, σλ)) exists for all z e ̂ , β e Fλ where F, Fze are defined as in (7.6). Now
recalling the definition (6.14) of Mλ, we have, for all z e ̂ , e e £λ,

= ( (PJάkβft, o)- lF(kgί o,), PJ^kgfi, orlKλ(kgί oh z)e)dkd9ί
JK*Gi

Kλ(z, u)Mλ(u)F(u)dμ(u), β)
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and from this the first assertion follows at once. Since F~F'oF = F' (in
L2(G, σA)), the second assertion also follows. |

By Lemma 7.8 we may define, for F°eL2(^ί9 λ)°, a function 3°λF°: @-+Eλ

by setting £°λF° = £λF where F is any representative of the class F°. In view of
(4.37) and Lemma 7.7, H2(£>, λ) can be identified with a closed subspace of
L2(&i9 λ)°. Note that this identification is induced by taking boundary values of

functions belonging to the dense subspace Θ2(β, Eλ) of H2(&, λ).

7.9. LEMMA. For any F° εL2(&h λ)°, the function £°λF° belongs to
H2(β, λ). Moreover, the mapping £°λ\ L\@b λ)°-+H2(&, λ) is the orthogonal
projection operator onto H2(&, λ) if we regard H2(β>, λ) as a closed subspace

PROOF. According to (6.15), 3°λF = F for all ΈeΘ2(β, £A). Since

, £A) is dense in H2(&, λ), it follows that 2°λF = F for all FεH2(&9 λ).
On the other hand if F°εL2(&i9 λ)° is orthogonal to H2(&9 λ) then, since E*e

e H2(@9 λ) for every β e EA, we have

0 = (F°, £*β)

G(PλJλ(kgicί9 o)-ίF(kgroil PλJλ(kgίCi, o)'lKλ(kgroi9 z)e)dkd9i

(F is a representative of F°)

Kλ(z9 u)Mλ(u)F(u)dμ(u\ e)

= (J22f°(z), β)

for all z 6 ̂  and e e Eλ. Thus £°λF° = 0 and the lemma follows. |

With this preparation, we can now prove part (1) of Theorem 7.4.

PROOF OF THEOREM 7.4(1). Consider the following mappings:

L2(G, σλ) -̂ U L2(^, A)° -ίU H2(^, A) ̂ U H2(G, τA)

where /A is the unitary isomorphism defined by (4.50). We are going to prove

that </A0^λ°^λ==^z>λ5 since tne G-equivariance of 0>λ is obvious, in view of
Lemmas 7.7 and 7.9 this will imply the result. So letting φ e L2(G, σλ) and

g e G, we calculate
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= Jλ(g, Kλ(g - o, u)Mλ(u)<?λφ(u)dμ(u)

= Jλ(g, o)-1 Kλ(g o, kgi - o
J X x G f

Now (6.3b), Lemma 6.6 and (6.12) imply

= Jλ(g, o)Kλ(o, g'ίkgi oi)J1ξ(g9

while by definition

Mλ(kgt.oύ = J ί ( k f f t c l 9 o)-^PλJ .(kg^ o

&λΦ(kgi - 0;) = Jλ(kgιci9 o)φ(kgi) .

Therefore, using the cocycle formula and Lemma 7.2, we get

Jl(g-lkgfiι, o)
J K x G i

= y Jf(g-lkgi9 oi)-1φ(kgi)dkdgί

= & λ as desired.

~

for all φ e L2(G, σλ) and geG. Thus

For part (2) we need some notation and one more lemma. With τλ being as
in Lemma 4.2, we define

/ Borel measurable,

/: G4 -> Ej f ( g k ) = τλ(K)^f(g\ g e Gf, k e Ki9

JG \f(θύ\2dgt < oo

and put

^ τ,) = L2(Gί? τ,) n {/e C^G,, = 0 for all X e pΓ}

is defined similarly as in (4.19)). Recall the spaces L2(Mί? 'τ^0) and
H2(Mi9 'τi0) defined in (5.4). Note that each function in L2(M£, 'τi°) is deter-
mined completely by its restriction to the subgroup Gt. Hence, and because

'τ(

λV\Kt = τχ (cf. Lemma 4.5(1) and (4.9)), it is obvious that



(7.10)
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restricting elements in L2(Mi9 'τ ̂ ) to Gt sets up a unitary isomor-

phism of L2(Mi9 '4°) onto L2(Gί? τλ} and H2(Mh

 fτ(

λ°) corresponds

to H2(Gt, τλ) under this mapping.

Therefore Lemma 5.6 implies that H2(Gt, τ%) is a nonzero closed subspace of

L2(G19 τ£).

7.11. LEMMA. For φeL2(Gh τλ) and g e Gi9 set

where \\lλ\\χ is as in the proof of Lemma 5.3. Then £% defines the orthogonal

projection operator of L2(Gί5 τ^) onto H2(Gi9 τ^).

PROOF. Let L2(<^, I) and H2(Vi9 λ) be as in (5.1). For FeL2(<^, 1),

define (using the same notation as in (5.5)) ^jf: Gt-->£^ by /ιΐ(Q) —

Jλ(gci9 o)~1F(g Ό^). Then, in view of (7.10) and Lemma 5.6, /% is a unitary

isomorphism of L2(^, 1) onto L2(Gί? τ^), and H2(^ί, I) corresponds to

#2(Gί? τj) under /^. Recall the representation (Γj, H2(^f, I)) of G£ defined

by (5.2). Since Tλ is unitary, just as in the case of the kernel function Kλ of

H2(&, λ) one can prove: H2(tfh λ) has a reproducing kernel Kλ:
 <^ί x ̂

such that

for F e //2(^i, I), e e E~λ, z e ̂ ί? and Kλ satisfies

- z, g - w) = J^(όf, z)XΛ(z, w)J}(flf, w)

for g e Gf, z, w e ̂  where J^( ,̂ z) denotes the restriction of Jλ(g, z) to

Moreover

for all z e if £.

We define a measure on (^i by

\ /(w)dw= \
J^i J

for/e Cc(if j), and define a function Λf^: ^^GL(E^ by

J%(gci9 o)'1 with w = ̂  oί, g f e G t (this is well defined). Then by the same argu-

ment as in the proof of Lemma 7.9, one finds that the orthogonal projection Q%

of L2(^f, λ) onto H2(tfi9 λ) is given by

= (
J

w)Mλ(w)F(w)dw
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Now consider the following mappings :

, 1) -^ &(<#„ 1)

To prove the lemma it is enough to show that /ρQjίo/Jl

l = £jϊ If φe L2(Gt,
and g e Gf then, calculating as in the proof of Theorem 7.4(1), we get

oi9 Q{ -\
JGi

o)-iJXff, oύ (
J

(by Lemma 4.25 and the invariance of measure)

(by Lemmas 6.9 and 6.10)

Thus ifiί
oQ,jίQ

tfJ.l = £]ί and the lemma follows.

PROOF OF THEOREM 7.4(2). Since CfίG, σΛ; p^) (notation of (5.8)) is
dense in L2(G, σλ; pf), it suffices to show that the formula (7.5) is valid for all
0eC?(G, σλ;pr). For φe C?(G, σλ; pD and 0eG, define φg: G^Eλ by
Φg(9i) = Φ(99ί)' Then it is not difficult to show that φgeH2(Gi9 τλ). Therefore
if 0 e CJίG, σλ; pf) then, using Lemma 7.11, we get

Φ(9) = Φg(e) = ̂ ,0 )̂ = ]8f ||lA||ϊ2 { Jλ(g^\ o)^φ(ggί)d9ί
JGi

for all geG. Thus, and since ||lλ||^ = d(>l)J(I)-1||lA||5 (cf. the proof of Lemma
5.3), we obtain

JK*Gi

τλ(k)φ(gk)dk

for all φ G CJ(G, σλ; p^) and g e G. This completes the proof.
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REMARK. In the extreme case ι = r, we have Gr = Kr^K (cf. (2.29)) and

hence PΓ = {0}; therefore L2(G, σA) = L2(G, σA; pr~). Thus if λe^r(G) then,

since \\lλ\\2 = β2d(λ)d(λ)-^ (cf. Corollary 4.27) and since { dgr=l, taking (7.1b)
jGr

into account we see that the operator & λ: L2(G, σλ)-+H2(G, τλ) defined by (7.1a)
is given by

= β( τλ(k)φ(gk)dk = β(
JK J

with β = β~ίdφ~1d(λ) (this is consistent with the formula (7.5)). In particular,
if λ — ωr (notation of (6.16)) then

H2(9, ωr) = Hardy space of 2 (cf. (6.17)),

L2(^r, ωr) = L2(^r, ωr)°

= JBorel functions /: ^Γ -> C; ( |/(/c or)|2d/c < ool

and, as is clear from our proof of Theorem 7.4(1), «^ωr corresponds to the inte-

gral operator £ωr: L
2(^r, ωr)->/ί2(^, ωr) associated with the Cauchy-Szegδ

kernel function.
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