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Introduction

The aim of the present paper is to extend the results in the paper ‘A finite-
difference method on a Riemann surface” [10] to the higher dimensional case.

In Chapter I, we establish orthogonal decomposition theorems concerning
difference forms on an n-dimensional polyhedron (2<n<oo) which give an
analogue to de Rham-Kodaira’s theory on a Riemannian manifold (cf. Kodaira
[8] and de Rham [14]). Here our definition of a polyhedron differs from the
ordinary one based on a triangulation and is based on a polyangulation of an
n-dimensional manifold (see §1.1). A p-difference (p-th order difference form;
0<p=<n)ona pblyhedron is defined as a function on a p-chain which takes a
complex value at each oriented p-simplex (see §2.1). In order to set the definition
of a conjugate difference form which answers our purpose, we introduce the con-
cepts of a conjugate polyhedron and of a complex polyhedron (see §1.3). A
theory of harmonic difference forms on the complex polyhedron which is analogous
to the theory of differential forms on a Riemannian manifold, is then established
(cf. Mizumoto [10] and [11] in the 2- and 3-dimensional cases). Eckmann [6]
treated a boundary value problem of a harmonic difference form on a polyhedron
(Komplex). Our method, which makes an effective use of a conjugate difference
on a conjugate polyhedron, is different from his.

In Chapter II, we shall concern ourselves with the problem of approximating
a harmonic p-th order differential form on a Riemannian manifold by harmonic
p-th order difference forms. We define a sequence {K;}%, of normal subdi-
visions of a normal complex polyhedron K, (see §1.6) and a Riemannian mani-
fold M based on K, (see §1.7). Then we shall discuss the norm convergence of
smooth extensions of harmonic difference forms on K, i=0, 1, 2,..., to a
harmonic differential on M (see Theorems 5.1, 5.2, 5.3 and 5.4, and cf. §5.2 for the
definition of smooth extension). In our present method, the harmonicity of the
limit differential form of smooth extensions of harmonic difference forms and that
of their conjugate difference forms are simultaneously shown. Our method is
based on the fact that the smooth extensions of a harmonic difference form and its
conjugate difference form are closed differential forms, so that their limit differ-
ential forms in the Hilbert space of differential forms are a pair of closed and
conjugate closed ones, and thus a pair of harmonic and conjugate harmonic ones.
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The method of orthogonal projection of difference forms and differential forms
is also effectively used.

Dodziuk [5] obtained a finite-difference approximation theorem of somewhat
different type. It seems that his method is closely related rather to the finite
element method than to our method.

Chapter I. Theory of difference forms on a polyhedron

§1. Topological foundations

1. Polyangulation. Let E" be the n-dimensional euclidean space (n=2).
By a euclidean 0-simplex e we mean a pointon E*. A euclidean p-simplex eP
(1<p=n) is inductively defined as a bounded closed simply-connected domain
on a p-dimensional plane or on a p-dimensional spherical surface in E* (a bounded
closed simply-connected domain in E” itself if p=n), surrounded by a finite
number of euclidean (p— 1)-simplices ef~1,..., ef~1 (v=2), where we assume that
if ef~1nef~t#g (i#j) then ef~1nef~! consists of common simplices of both
boundaries of e/~! and e?~!. Each r-simplex e" (0<r=<p) which is a composing
element of the p-simplex e?, is called an r-face of e? and is called a proper r-face
when r<p. A O-face €° is also called a vertex of the p-simplex e?. Then p-
simplex e? is its own unique p-face.

Let M be an n-dimensional orientable manifold (n=2)."> By a p-simplex
sP (0Zp<n) on M we mean a pair of a euclidean p-simplex e? and a one-to-one
bicontinuous mapping ¢ of e? into M. We shall write s?=[e?, ¢] (0=<p=n).
The image of e? under ¢ is called the carrier of s?, and is denoted by |s?|; that
is, ¢(e?)=|s?|. We will use the same terminologies ‘‘r-face” and ‘‘vertex” for
those of each p-simplex s? on the manifold M. We say that a point x of M
belongs to s? when x € |s?| (0<p=<n).

A collection K of simplices on M is called a polyangulation of M or a poly-
hedron?® if it satisfies the following conditions:

(i) Each point x on M belongs to at least one simplex in K;

(ii) Each face s" (0<r<p) of a simplex s? of K is an element of K;

(iii) If s?, s"e K and sPNs"#@, then sPNs" is a finite collection of sim-
plices each of which is a common face of both s? and s";

(iv) No O-simplex is a vertex of an infinite number of simplices of K.

It is known that any differentiable manifold M is polyangulable (triangulable)
(cf. Munkres [12]). A manifold M on which a polyangulation is defined, is called
a polyangulated manifold. If for each n-simplex s"=[e", ¢] of a polyhedron

1) Throughout the present paper, the dimension 7 of a manifold M will be fixed.
2) Throughout the present paper, the terminology ‘“polyhedron” will be used in this sense.
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K the euclidean n-simplex e” is a cube, then K is called a cubic polyhedron.
If M is closed (open resp.), then K is said to be closed (open resp.).

Let Q be a compact bordered closed subdomain of M whose boundary
consists of (n—1)-faces of a polyangulation K. Then the polyhedron L defined
as the collection of p-simplices (p=0,..., n) of K having their carrier on Q is
called a compact bordered polyhedron. By |L| we denote the carrier of L: |[L|=Q.
The collection 0L of p-simplices (p=0,..., n—1) of L having their carrier on 092
is called the boundary of L.

Let Land L, be two polyhedra. If every n-simplex of Lis an n-simplex of
L,, then Lis called a subpolyhedron of L, and L, is said to contain L.

2. Homology. On a polyhedron K we can define a homology in the same
manner as in the case of a triangulated polyhedron. An orientation of each
p-simplex (0= p<n) can be easily defined. An oriented p-simplex is denoted by
the same notation s? as a p-simplex.

For a fixed dimension p (0<p<n) a free Abelian group C,(K) is defined
by the following conditions:

(i) All oriented p-simplices are generators of C,(K);

(i) Each element c? of C,(K) can be represented in the form of finite sum

c? = Yast,
i

where the coefficients a; are integers. Each element of C,(K) is called a p-chain.
The boundary 0 of a p-simplex s? (1< p=<n) is defined by

(1.1) P =Y &1 (v=2if p=1;v22if 2< p<n),

i=1

where s{71,..., s571 are (p—1)-faces of s? with the orientation induced by the
orientation of s?. If a (p—1)-simplex s?~! is a (p—1)-face of s with the orien-
tation induced by the orientation of s?, then we write s»P~!<ds?. The boundary
of a p-chain c?=3; a;s? (1< p<n) is defined by

oc? = 3 a;0s%.

A p-chain whose boundary is zero, is called a cycle. We assume that every
0-chain is a cycle. Since we can easily see that

(1.2) 00s? =0
for each p-simplex s? (2<p=n), we have

(1.3) d6cP = Ya00s? = 0
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for each p-chain c?=73; a;s?.
Provided any confusion does not occur, for the present case of polyhedron
we shall use the same usual terminologies of homology.

3. Complex polyhedron. Let K and K* be two open or closed poly-
angulations of a common manifold M. The polyhedron K* (K resp.) is called
a conjugate polyhedron of K (K* resp.), if they satisfy the following conditions:

(i) For each p (0<p=n) and for each p-simplex s? of K there exists one
and only one g-simplex s? of K* (p+q=n)? such that the intersection |s?|N
|s?] is only one point which is an interior point of both |s?| and |s?], and the
p-simplex s? is disjoint from the other g-simplex of K* than the g-simplex s4;
the simplex s? (s? resp.) is said to be conjugate to the simplex s? (s? resp.) and
it is denoted by *sP (xs? resp.).

(i) For a p-simplex s? of K and an r-simplex s" of K*, if |s?|n |s"|#¢
then the conjugate simplex s (xs" resp.) is a g-face ((n—r)-face resp.) of s
(s? resp.) and thus it follows that p+r=n.

We shall introduce an orientation to the conjugate simplex *s? of an oriented
p-simplex s? (0= p=<n) in such a way that

(1.4) SP X #sP =1,

where the symbol s? x xsP expresses the intersection number of s» and *s? (cf.
p. 411 of [2] for the definition).

LemMmA 1.1
(i) was? = w(as) = (= Dyrase;
(ii) sP~1c0s? if and only if xsP<d(—1)PxsP~1 (1<p<n).

Proor. (i) This follows immediately from the relation
§P X *sP = (—1)P9%sP x sP

(cf. pp. 412-413 of [2]).
(ii) If follows from the definition (ii) of the conjugate polyhedron that

|sP~1| < |0s?] if and only if |[xsP| <= |OxsP~!|.

Hence s»~! < 0s? if and only if #s? =d(—1)"*sP~1 for some r. Then the equation
SP X O(—1)rxsP™1 = (—1)P0sP x (—1)"*sP~1

(cf. Satz II of p. 413 of [2]) implies that

SP X #sP = (—1)PsP~1 x (—1)r#sP~L,

1) Throughout the present paper, the pair p and g will always express the non-negative integers
with p+g=n for the dimension n of M.
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Then by (1.4) we have (—1)?**=1. Hence we may take r=p.

The pair of K and K* is called a complex polyangulation of M or a complex
polyhedron, and it is denoted by K=(K, K*)>. A manifold M on which a
complex polyangulation is defined is called a complex-polyangulated manifold.
If M is open or closed, then K=(K, K*) is said to be open or closed respectively.
If both polyhedra K and K* are cubic, then K is said to be cubic.

By a p-chain (0<p=<n) of a complex polyhedron K, we mean a formal sum
y=c,+c¢, of a p-chain ¢; of K and a p-chain ¢, of K*. The boundary 0y is
defined by dy=0c,+0dc,. Each p-chain y=c,+c¢, with dc;=0 and dc,=0 is
called a cycle. A p-cycle y=c, +c¢, is said to be homologous to zero and we write
y~0, if both ¢, and ¢, are homologous to zero.

4, Compact bordered complex polyhedron. Let K=(K, K*) be an open
or closed complex polyhedron. Let L be a compact bordered subpolyhedron of
K. Let L* and L*® be the collections of p-simplices (p=0,..., n) of K* having
their carrier on

U |*s° and \U |*s°| respectively.
s%eL—-0L s%eL
Let us suppose that |L*3| is not vacuous and is connected. Then the polyhedra
L*s and L*® are the maximal and minimal compact bordered subpolyhedra of
K* respectively under the condition |L*S|<|L| <= |L*®|.

Now we shall define a new compact bordered polyhedron L* such that
L**<L* and |L¥*|=|L|. For each p-simplex s? of 0L (0<p=<n-—1) the con-
jugate half g-simplex %s? of s? is defined by the conditions:

(i) [%s?|=|xs?| 0 |L[;

(ii) *sP has the orientation induced by that of #s?.

By L* we denote the polyhedron defined as the collection of all p-simplices (p=
0,..., n) which are p-faces of n-simplices of L*s and conjugate half n-simplices of
0-simplices of L. The polyhedron L* is called a conjugate polyhedron of L
and the pair L=(L, L*) is called a compact bordered complex polyhedron.
If the original K is cubic, then L is said to be cubic. The carrier |L| of L is
defined by |L|=|L|=|L¥*|.

Let L=(L, L*) and L,={L,, L}¥> be two complex polyhedra. If Lis a
subpolyhedron of L,, then L is called a complex subpolyhedron of L,.

We can see that 0L={dL, OL*) defines a finite collection of (n—1)-
dimensional closed complex polyhedra. 0L is called the boundary of L.

Let s» (0Sp<n—1) be an arbitrary p-simplex of the boundary dL={0L,
OL*). Since 0L is a finite collection of (n—1)-dimensional complex polyhedra,
we can consider a conjugate (g —1)-simplex of s? on 0L, which is denoted by
*sP(OL).



16 Hisao Mizumoro

LemMA 1.2. For each p-simplex s? (0<p=<n—1) of 0L the (q—1)-simplex
*sP(OL) is the unique (q—1)-face of the g-simplex (—1)P¥s? contained in OL*:

(1.5) xsP(OL) e o(—1)P¥s?  for each sPedL.
Proor. The inclusion relation
|#sP(L)| < |0%sP| (sPedL)

follows from the relations |¥sP|=|*sP|N|L| and |*sP(OL)|=|*s?|Nn|0L|. Let
sP*1 be a (p+1)-simplex such that sP=dsP*! and |s?*!|n|L—0L|#@. Then, by
(ii) of Lemma 1.1 we have an inclusion relation

(1.6) *gPT1 < O(—1)PF1%sP,
We can easily verify the relation
sPH1 x #sP(OL) = sP+1 x ssPtl,
Then by (1.6) we have the inclusion relation
(= 1D)*sP(OL) = 0(—1)P*1xsP
when we note the position of two (g — 1)-simplices *s?*! and *s?(0L).

A p-simplex or a p-chain (0Sp=<n) is said to be in the interior of L=
(L, L*), if its carrier is in the interior of |L|.

5. Subdivision of a polyhedron. Here we shall make some agreement.
We shall denote subsets of N={1,..., n} by I,, J, L,,..., etc. The subscripts r, s
and t of I,, J, and L, respectively show numbers of elements of the subsets. By
the small letters iy,..., i,; ji5..» Jss L15--.5 I, With subscripts we denote elements of
the subsets I,, J; and L, respectively, i.e. I,={iy,..., i,}, Jy={j1,-.-» Js} and L,=
{l{s..., I,}. Here we shall agree that i, <---<i, j;<:-<j; and ly<--<l. If
a family {L, M,,..., N,} of subsets of I, is a decomposition of I,, i.e. I,=L,U
M,U---UN,and L, M,,..., N, are mutually disjoint, then we write I,=L,+ M,+
-+ N,. For each I,cN, the complement of I, in N is denoted by J,: N=1I,+
J,. If a p-simplex is denoted by e} ; ... whose meaning is subsequently defined,
then the subscripts I,, L, M,,... will show mutually disjoint subsets of N. We
should note that I, L M,--- does not mean a product set of I,, L, M,,....

Let K=(K, K*) be a cubic complex polyhedron and let s"=[e", ¢] be an
n-simplex of K. We may assume that the euclidean n-simplex e” is the unit cube

(1.7) er={0<x,<1 (ieN)}.

We denote each p-face (0= p=<n) of e} by
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(1.8) ef,,={0=x;,=1 (iel), x;=1(ieL), x;,=0 (ieJ,— L)}
0=r=<g.
We write
SII’,,L, = [e’;,,L,a é].

We agree that the p-simplex s7 ; has the orientation induced by the orientation
of the p-dimensional space O-x;,---x; .
The euclidean n-simplex e} is divided into 2” cubes

i = {0S xS T Gel), T =xs1Gel, )} Osrsn
by the n hyperplanes {x,=1/2} (i=1,..., n). Then a subdivision of the n-simplex
s" into 2" new simplices

k87,1, = [het1,_,» @]

is defined. Further the subdivision of the n-simplex s* induces subdivision of
each p-face of s (1<p<n-—1). We denote each p-simplex (0<p=n) of the
subdivision of the euclidean n-simplex e% by

IIA

1 .. 1 .
het - LM, = {0 =x; = > (iel), =X =1 (iel,-),

x;=1 (ieLy, x; = é— (ie M,), x; =0 (for other i of N)}

(O§T§P,0§S§‘L0§t§4_s),
and we write

BT, 1, LoM; = [hefrl,,_,.LsM,a é].

We agree that the p-simplex bsj; _ ;. has the orientation induced by the ori-
entation of the p-dimensional space O-x;---x;, where Ip=I_,+TI,_,={i,,..., ip}
We carry out this procedure for all n-simplices of K so that if a p-simplex s?
(1£p<n-—1)isacommon p-face of two n-simplices s” and ¢” then the subdivision
of s" and ¢ induces a common subdivision of the p-face s?, if necessary, by a
suitable choice of each mapping ¢. Then we have a new cubic polyhedron K,
which is called the subdivision of the polyhedron K. Since the complex
polyhedron K=<{K, K*) is cubic, the conjugate polyhedron K¥ of K, is also
cubic and thus so is the complex polyhedron K,=<{K,, K¥>. The complex
polyhedron K, =<{K,, K¥) is called the subdivision of K, where we should note
that K¥ is not a subdivision of K*.
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Let s"=[e", @] be an arbitrary n-simplex in the interior of the conjugate
polyhedron K* and let us assume that the euclidean n-simplex e" is the unit
cube e} of (1.7). We denote e} and its 3" —1 adjacent euclidean n-simplices of
ey by

et ={—15x,20(iel),12x,22 (icl),
0sx, 21 (iel,_,_)} OLr£n0Zt<n—r).
Especially e} 1,1,=ek. Then each euclidean p-simplex
ety = {—1S%,50 (iel), 1 £x,22 (iel),
0<x;<1 (iel,.,_), x; =1 (ieLy), x; = 0 (for other i of N)}
O=sr=sp 0=stsp-r,0=s5s=9)

is a p-face of one of these 3" n-simplices. We may assume that the mapping
¢ of s"=[e%, ¢] can be extended to a one-to-one bicontinuous mapping of the
above 3" euclidean n-simplices into the basic manifold M, and the 3" n-simplices

Sthdnor—e = L€l 1000 @] OSEr=n 0=tsn-r)

are the collection of s" and its 3"—1 adjacent n-simplices of the conjugate poly-
hedron K*. Then each p-simplex

Sttty orile = L0 1ty iLo D]

is a p-face of one of these 3" n-simplices of K*.
We define 3" new euclidean n-simplices

At = {— 4 SXSE (D) T Sxs T Gel),
ysusd Gel)l Osrsmosisn-»n
and euclidean p-simplices
W ttyrn = |~ TSNS L (D), T Sx ST Gel),
L <x g3 (el =3 (ieL), x,= % (for other i of N)}

(O§T§P,O§tép_ra0§s§‘1)-

Then we may assume that each
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hSgritin-r-r = [he'}r’:’n-r-t’ ¢]

is an n-simplex of the conjugate polyhedron K% of the subdivision K;. Each
p-simplex

8,1ty —roeL. = [H€T 10,0 Lo @]

is a p-face of one of these 3" n-simplices. We agree that the p-simplex
“Sf,ltl,,-r-,l., has the orientation induced by the orientation of the p-dimensional
space O-x;,---x;,, where I,=I,+I,+1, ,_,={ij,..., i}

6. Normal coordinates. Let K be a cubic polyhedron and s"=[e", ¢]
be an arbitrary n-simplex of K. We can choose the mapping ¢ so that e" is a
unit cube. Then there exists an affine transformation { of the unit cube e} of
(1.7) onto e": e"=y(e}). To each point P of e" we can assign the coordinates
of the point Y~ !(P) of e%. These coordinates are called the normal coordinates
of (the point P of) e". Let y, be another affine transformation of e} onto e".
Then both normal coordinates assigned by ¢ and y, are said to be equivalent to
each other. We find that a point P on each p-face y/(ef,.,) of " has a normal
coordinates (xy,..., x,) such that x;=1(ieL,) and x;=0 (ieJ,—L,). The
essential class (x;,,..., X;,) is called the normal coordinates of the point P on the
p-face y(ef, ) (induced by the normal coordinates of e").

Let s"=[e", ¢] be an n-simplex of K with normal coordinates assigned on
e". Then we can assign normal coordinates to each point x of s" by giving
the normal coordinates of ¢~!(x) € e" to the point x.

The set of, (I,=N, 0=p=n—1) of points of s” having normal coordinates
(X 150005 Xp,) With x;=1/2 (i€ J,) is called a median p-face of s".

The following lemma can be proved by the method analogous to that in the
case of normal (barycentric) coordinates of triangulation.

LemMA 1.3. For the collection {s"=[e", ¢1} of n-simplices of a cubic
polyhedron K, a set of mappings ¢ can be so chosen that for each common p-face
s (1=p<n—1) of two n-simplices s* and o", the normal coordinates of s? in-
duced by s" and ¢" are equivalent.

A set of normal coordinates chosen in this way is called normal coordinates
of K. A cubic polyhedron K to which such normal coordinates are assigned,
is said to be normal.

Let K=(K, K*) be a cubic complex polyhedron such that K is normal.
If for each common p-face s? € K (1<p=<n-—1) of 24 n-simplices s? (i=1,..., 29),
the carrier |s?| lies on the union of some median g-faces of s? (i=1,...,29), then
K* and K are called a normal conjugate polyhedron of K and a normal complex
polyhedron respectively. Here, if K is compact bordered, then it is moreover
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required that for each p-simplex s?€ 0K (1Sp=<n—1) the carrier |¥s?| lies on
the union of some median g-faces.

A subdivision K; of a normal polyhedron K is called a normal subdivision
of K, if for each p-simplex s?e K, (0S<p<n-—1), the carrier |s?| lies on the
carrier of some p-simplex of K or lies on some median p-face of an n-simplex of
K. We may assume that the normal subdivision K, is normal polyhedron which
has the normal coordinates induced by that of K. Let K¥ be the normal conjugate
polyhedron of the normal subdivision K;. Then the complex polyhedron K, =
{K,, K¥> is called a normal subdivision of K.

7. A Riemannian manifold based on a normal polyhedron. Let M be a
manifold on which a. normal complex polyhedron K=<{K, K*} is defined.
Then we can make M into a Riemannian manifold by the following procedure:

(i) With the notation in 6, we can map each n-simplex s"=[e", ¢] € K onto
the unit cube e} of (1.7) by the mapping (¢oy)~!. By these mappings, local
coordinates in a neighborhood of each point in the interior of each n-simplex
of K are defined.

(ii) If a point x lies on a p-face s? of an n-simplex s7 (0< p<n—1) but does
not lie on any (p—1)-face, then there exist just 2¢ n-simplices s? (i=1,..., 29)
whose common p-face is the simplex s?. Then we can map the union \U%Z,s?
onto a union \U2Z;e? of 27 unit cubes e (i=1,..., 29) on E" which have a common
p-face e? in such a way that s? is mapped onto e? and the normal coordinates of
st (i=1,...,29) are preserved. The point x is mapped into a point PeeP. By
this mapping, local coordinates in a neighborhood of x are defined. The restric-
tion of these local coordinates to each s% is an affine transformation of the local
coordinates defined in (i).

(ili) The transformation between local coordinates defined in (i) or (ii) is
a rotation or a parallel transformation of E" and thus the length is invariant
under the transformation. Hence, by making use of these local coordinates we
can introduce a positive definite metric in M and can make M into a Riemannian
manifold.

The Riemannian manifold M constructed by the above procedure (i), (ii)
and (iii) is called a Riemannian manifold based on a normal complex polyhedron
K.

§2. Difference forms on a polyhedron

1. Difference calculus. Let K=<{K, K*) be an open, closed or compact
bordered complex polyhedron.

By a p-difference (p-th order difference form) ¢? on K (0<p=<n), we mean
a complex valued function ¢? on the collection of oriented and oppositely oriented
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p-simplices of K such that ¢” has a value @?(s?) for each oriented p-simplex s?
and @P(—s?)= — @P(s?).

In the case where K is compact bordered, for every 0-simplex s of dK*,
let s"~! be the (n—1)-simplex of 0K with s°=xs""1(0K) and let s¢ be the O-
simplex in the exterior of K with d(—1)*xs""1=53—s9. Then for every O-
difference ¢° on K we define ¢°(s?) by a relation

2.1 @%(s9) = 2 ¢°(s°) — 9°(s9).

For every p-difference p?(1<p<n) on K and for every conjugate p-simplex
xs7 of s7 € 0K we define @P(*s?) by a relation

(2.2) @P(xs7) = 2 pP(¥s7).
We define ¢, ? +c,y? by
(c10? + cY?) (sP) = ¢ @P(sP) + c¥7(s?) (0= p < n),

where @? and P are p-differences on K, and ¢, and ¢, are complex constants.
The exterior product Pyt of a p-difference ¢P and a g-difference ¥4 (0<
p=n-—1) is defined as an n-difference given by

1
PYysa(sh) = — = P(sP q 14
2.3) P = 3 S (s (es?)
for each n-simplex s" € K, where if s"=%s® then #*s" is replaced by ¥ 1s7, if
sP=%s? or sP € 0K then #s? is replaced by (—1)?9%~1s? or ¥sP respectively, and
v(sP) is the number of O-simplices s® e K—0K* with s®esP. If p=0, then (2.3)
is reduced to

(2.4) OOYn(s™) = @O(xs")Y"(s").

The complex conjugate @? of a p-difference @? (0Sp=<n) is defined by

@P(s7) = @P(sP).
The difference of a p-difference ¢? (0<p=<n-—1) is defined as a (p+1)-
difference AP given by

A (Pp(sp+ l) = sPC%P + lq)P(sp)

for each (p+1)-simplex sP*1eK. If ApP=0, then ¢? is said to be closed.
We assume that every n-difference is closed. If for a p-difference ¢? (1<p<n)
there exists a (p— 1)-difference ?~! such that @?=4yP~1, then ¢P is said to be
exact. We assume that no O-difference is exact. We have

A4¢? = A(4gP) = 0
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for each p-difference @? (0<p=<n—2). Hence, if a p-difference ¢? is exact, then
it is closed.

We agree that every p-difference ¢? (1<p<n—1) on a compact bordered
complex polyhedron K= (K, K*) satisfies the conditions

2.5) ApP(¥s™1) = 0
and
(2.6) ApP(xs171) = 0

for each (¢ —1)-simplex 577! € 0K. These assumptions do not mean any essential
restriction.

2. Summation of differences. We define the sum of a p-difference over
a p-chain (0<p=<n). Let c?=3,a;s? be a p-chain of a complex polyhedron K.
The sum of a p-difference @P over the p-chain c? is defined by

S 0" =Tap¥sh).
cP i
The basic duality between a chain and a difference

@.7) S dort=§ ot (p=1,..,m)

dcp

is obvious, where c? is a p-chain and @?~1! is a (p— 1)-difference.

The following two criteria are also obvious:

A p-difference ¢? (0<p<n—1) is closed if and only if S @?=0 for every
cycle cP that is homologous to 0; cp

A p-difference ¢? (0<p<n) is exact if and only if g @P=0 for every
cycle cP. cp

If a p-difference @? (0<p=<n-—1) is closed, then the period of ¢? along a p-
cycle c? is defined by g @P, which depends only on the homology class of c?.

From the basic duality (2 7), de Rham’s duality theorem between the homology
group of p-chains and the cohomology group of p-differences is derived.
Now we shall define the sum of an n-difference over a complex polyhedron
={K, K*). First, let us assume that K is compact bordered or closed.
When by the common notation K we denote the n-chain defined as a sum of
oriented n-simplices contained in K, the sum of an n-difference ¢" over K

8"

is defined as the sum of ¢" over the n-chain K. If K is open, then we can set
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2.8 " = lim "
9 S =lm 3.0
provided that the limit exists, where ¢” is an n-chain of K which approximates K.

3. Conjugate differences. Let ¢? (0= p=<n) be a p-difference on a complex
polyhedron K. Then the conjugate difference P of ¢? is defined as a g-
difference satisfying the condition

*QP(xsP) = @?(s?) (0=p=n)

for each p-simplex sPe K U {*s9| s7€ K}. Then by (i) of Lemma 1.1 we can see
that

2.9 **QP = (—1)Pa¢P
and
(2.10) (pplpq = (— 1)?‘1*.!]‘1*(/)?_

By (2.9), the inverse operator *~! of the operator * for a p-difference is given by
(2.11) * 1 = (—1)Px,

A p-difference P (0<p=<n) is said to be harmonic if ¢? and *@P? are both
closed. By (2.9) and the definition, ¢? and *@? are simultaneously harmonic.
We introduce the operator

(2.12) 8 = (—1)P*"14%

for a p-difference. By (2.12) and (2.11), the operator é for a p-difference has the
expression

(2.13) 0 = (—DrptD s,
By (ii) of Lemma 1.1 it follows that

SgP(s™1) = (= )P~ Axgr(s71) = AwgP((— 1)Pasr1)

T R ORI L C

*SPCO(—1)Pksp—1 sP-1CosP
Hence we see that the operator § has the simple meaning

(2.14) 0pP(sP~1) = p_éa L9P(s7)

for each (p—1)-simplex s?~! in K. By the definition of the operator 6, a p-
difference ¢? (1= p=<n-—1) is harmonic if and only if
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AP = 6P = 0.

§3. The Hilbert space of differences

1. The inner product. Let K=<K, K*) be an open, closed or compact
bordered complex polyhedron. Let ¢? and y? (0<p=<n) be two p-differences
on K. We define the inner product (¢?, Y?) = (¢P, Y?)g of @? and YP by

@ Y7k =S o?@F  (0O<p<n).
K
Then we can easily verify that

(P, YP)k= X w’(sp)lﬂ"(sp)+% 2, @P(sP)YP(sP)
sPeK—0K sPedK
3.1
+ 2 cDP(*S“)l//”(*S“)+—; > @P(xsD)YP(xs9),
K s9e0K

s9eK—-0

where we agree that the sum with respect to an empty set vanishes. By (3.1) we
find that the relations

(xP, %Y?) = (@2, Y7)
and
(o7, '/’p) = (_!//_p, a’)
hold.
The norm ||@P|| =] @P| x of a p-difference ¢? is defined by
lorlx = (97, @P)¥* (0 < p=n).

By I'=T'(K) we denote the Hilbert space of all p-differences ¢? on K with a finite
norm |@?||<+ oo for a fixed p (0=<p=<n). Furthermore, we define the closed

subspaces of I as follows:
I, = {p?| p?is closed, ¢@Pel},
I',= {p?]| p? is exact, @Pel},
I, = {@P| ¢? is harmonic, ¢?el},
rg = {¢?| *¢? is closed, ¢?el},
I'* = {@P| %P is exact, @Pel},

I’} = {¢P| *¢? is harmonic, ¢@?eT?}.
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Then it is obvious that I',cT',, I',=L.NT¥ and I'f=T,.
2. Fundamental theorem.

THEOREM 3.1. If a complex polyhedron K is compact bordered or closed,
then the summation formula

B2 o ynx=§ oI+ (7L Ok (ISpsn)

holds, where if K is closed then the first term of the right hand side vanishes.

ProoF. The case of 2<p<n-—1: By (3.1) we have

40, Pk = 3 Ap(sNT(s?) + 5 T Ap(s7)T(sP)
sPeK—CK sPedK
(3.3)
F 3 Ap(sOT(esY) + 1 X Ag(rs)(xs9),
s9eK—-0K s9e0K
where ¢ =¢?~1 and Yy =y*.) By (2.6) the last term of the right hand side of

(3.3) vanishes and further by (ii) of Lemma 1.1, (2.5), (2.14) and Lemma 1.2 we see
that

S Ap(HT() + 5 T A9 (s?)
K sPedK

sPeK—-9d
= ¥ o) ¥ Y(s?)
sP~1eK—-0K sp—1cpsp
2 o(sPh) 2 ¥ (s?)
oK

sp-1g sP-1lcgsP,sPeK—0K

sP-1edK

T ooy 3 L)
sP~1c9sP,sPedK

R CatC)

sP~1gK—d

+ % el > w(xs7)

sP-1ggK *sPcd(—1)PksP—1,sPeK—0K

3

*sP<9(—1)PksP~1,sPedK 2

2 K<P(S"")5W(S”") + X @(s7~)* (xs771(3K)).

sP=1eK-9d

Similarly, we see that

1) Throughout the present paper, the upperscripts of ¢?-! and /? are omitted in the obvious
case.
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@ =__ T o) +5 3 o(s7)oF(sP)
s K sP-1e9K

P-1gK—-@
Y xst)oP(xst) + LS p(astt)oP(ss0*Y)
sa+1€K—0K 2 safTesx

= T o(smHoP(sr) + X Ap(rs)Y(xs9)
K s1eK~oK

sP—1eK—-0

— (=1)tr=ba ZK @ (xs1(0K)) % (59).
s9e€d
Hence we find that

(A(P, ll/)x - ((P, 6‘/’)K

= T o )sf(xsP1(0K) = § oxP.
0K

sP-ledK

The case of p=1: By a method similar to that in the case of 2<p<n—1,
we can derive the relations

(o, Wx= T 0T + T o(s)ufi(xs°(0K))

oD ApGs I + 5 $ Ag(xs" )T (xs™)

sn—1eK-0K

and

(@, 00k = 3 @(sDY(s?) + X @(*sm)0Y(*s")
s%eK-0K s"eK
= T o))+ T Ap(xs" )P (xs"Y)
s%eK—-0K sn~1eK-0K

(=D X PG > P(xs").

*sned(—1)mksn—1,s"eK
Hence, by (ii) of Lemma 1.1 and (2.1) we can see that
(4o, ¥)x — (9, 8¥)x
T 0(s0+T(xs°@K)

- X, e {5 de((= sy — psm)

sn~1edK

s°§9K ‘P(so)*xf(*so(aK)) + s"‘izeax (P(*S”—l(aK))*t;(s"'l)

S, ¥

]
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where s""!cds" e K.
The case of p=n can be easily reduced to the case of p=1 when we put
¢O=*'/,n and l//l=*(p"_‘.

3. Orthogonal projection of a compact polyhedron. In 3 and 4, we shall
briefly state the method of orthogonal projection of the Hilbert space of differ-
ences which is analogous to de Rham-Kodaira’s orthogonal decomposition
theorem for differential forms on a Riemannian manifold.

THEOREM 3.2. Let K be a closed complex polyhedron and let I be the
Hilbert space of p-differences (0<p=n) on K. Then the orthogonal decom-
positions:

(34 r=r.+r&=rt+r,

(3.5) r=r,+r.+rs,

(3.6) I,=I,+ T, and TI'* =T, 4 I'*
hold.

Proor. By Theorem 3.1 we see that
(P, #49®) = (= 1)%(4y?, x@2™1)  (0=<p=n-1).

Hence Ay?=0 implies that (Y?, *4p?~1)=0 and thus ¥? is orthogonal to every
element of I'¥.
Conversely, if

(4y?, »¢=™1) = 0

holds for every (q — 1)-difference ¢2=1 on K, then we can easily verify that Ay?=0
on K. Hence on a closed complex polyhedron K, I', is the orthogonal comple-
ment of I'*. Then by the general theory we have the decomposition I'=I",+I'%.
In the case of p=n, by the definition in §2.1 we find that I',=TI and I'*=¢ and
thus we have I'=TI_4 I'}.

The decomposition I'=I* 4 I', immediately follows from the decomposition
I'=T,4I'* of the space I' of g-differences. The decomposition (3.4) implies (3.5)
and (3.6).

Let L={L, L*) be a compact bordered complex polyhedron. A p-differ-
ence ¢? (0£p<n-—1) on L is said to vanish on the boundary 0L={0L, dL*)
if @?(s?)=0 for every p-simplex s? of L. A closed p-difference ¢? (0<p=<n-—1)
is said to belong to the subspace I',, of I', if ¢? vanishes on OL. Similarly, an
exact p-difference @P=Ay?~! (1< p<n) is said to belong to the subspace I',, of
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I, if yP~1 vanishes on 0L. In the case of p=n, we interpret I',y as [ ,o=I.=1T.
In the case of p=0, we interpret I',q as [ ,,=I,=@. The subspaces I'}, and
I'% are defined by I'¥,={¢p?|*@pPel,} and I'¥,={p?|*p?el,}, where I,
and TI',, are the ones of g-differences.

By Theorem 3.1 we obtain the formula

BT W) =§ T+ (~1DAAYn, k0t OSpSn-1).

By making use of (3.7) and an argument similar to that in the proof of Theorem
3.2 we obtain the following theorem.

THBOREM 3.3. Let L be a compact bordered complex polyhedron and
let I be the Hilbert space of p-differences (O<p<n)on L. Then the orthogonal
decompositions:

=T+ TE=T%+T,
=T, +T%=T%+T.,
I'=T, 4 Ty + I,

Iy =Ty + Iy,

Lo = Tho + I'eos

Iy =Ty + I,

Iy=Ty+ ITho=1Tw + I

hold, where I',,=T',NT,, [yo=I,NT.q and C¥o=T,NnT%,.

4. Orthogonal projection on an open polyhedron. Let us suppose that K
is an open or closed complex polyhedron. A p-difference ¢? (0S<p=<n) on K
is said to have compact support if pP(s?)=0 for every p-simplex s? € K except for
a finite number of p-simplices of K.

For 1<p<n, let I',, be the subclass of I', which is defined as a collection of
the p-difference @P such that @?=Ay?~! for some (p—1)-difference Y?~! with
compact support. We define the subspace I',, of I' as the closure of I'yy in I
(1=p=n). In the case of p=0, we interpret I',, as I',=@. The subspace I'},
is defined by I'!y={¢?| *¢?eTl,,}, where I',, consists of g-differences. From
the definition it follows that I',o=I",and I'*,=I% (0<p=<n) for a closed complex
polyhedron K. For 0<p<n-—1, let I',, be the subclass of I'. which. is defined
as a collection of the closed p-difference @P with compact support. In the case
of p=n, we interpret I',, as I',=I'. The subclass I'.} is defined by I'.§={¢p?|
*x@P eIy}, where I',, consists of p-differences. The subspaces I',, and I'¥,
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are defined as the orthogonal complements of I'* and I, respectively:
'r=r,,+TI*% and I'=T% +T.,.

Then we have I'.gcl' o<l and I'§cT'¥,cTI'*.
By making use of (3.7) we can prove the following theorem.

THEOREM 3.4. Let K be a closed or open complex polyhedron and let I'
be the Hilbert space of p-differences (O<p<n) on K. Then the orthogonal
decompositions of the same type as that in Theorem 3.3 hold.

Chapter II. Difference forms and differential forms

§4. The convergence of differences with respect to subdivisions

1. Natural extension of difference. Let K=(K, K*) be a cubic complex
polyhedron and K,=<K,, K%) be a subdivision of K. Let ¢? (0<p=<n) be a
closed p-difference on K. Then we shall define the natural extension ge? of ¢*
to the subdivision K, as a p-difference on K, as follows.

We shall use the notation in §1.5. First, we assume that the difference ¢?
vanishes on K*. Then the natural extension ¢P is a p-difference on K,; which
is defined by

4.1) h(Pp(hSII’,I,, LMy

t - ~
2pl+t VZ:ON ;M ©P(st,(L,unyy) Up=1,+1,_,)

for each p-simplex s? € K, and which vanishes on K%.
Secondly, we assume that the difference ¢? vanishes on K. If K is closed
or open, then the natural extension h¢? is a p-difference on K, which is defined by

4.2) HQP(BST, 1,2, - - L)
1 ro
= et E’o vgo Ki<I, Re<T,
4 3q-u min(u,s)
,,z=:o 4 j=max (0;u—gq+s) My <Ly Ny-icJq—Ls

)
(PP(SKMKVKP_“-V(M,_.uzvu_,))

(Ir + It + jp—r—t = K—u + Kv + Kp—u—v)

for each p-simplex s? € K} and which vanishes on K;. If K is compact bordered,
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then we may assume that the difference ¢P is defined on K*® (cf. §1.4 for
the notation). Then the natural extension h¢? is a p-difference on K¥* which is
defined by (4.2) for each p-simplex s? € K}P.

For a generic ¢? on K, the natural extension hor is defined as the sum
h@? = hoLk+ 1ok, where ho% and hok. are the natural extensions of the restric-
tions of ¢? to K and K* respectively.

In what follows we write simply ¢;,,, and @rr;,

©P(s¥ 1.1 _ _.1) respectively.
100y —p—cLs y

-—r-

.L, for ¢P(sf ;) and

LeMMA 4.1. ho? is closed on K.

Proor. If s?*'eK,, then we may assume that sP*!=nsf*!;, \ by a

pt
choice of a suitable normal coordinates. When we set I, =1I,,,=N,+L; and

iy ipe
sgn (L,; N,) = sgn )
I1 ng e np
we obtain that
4 h(Pp(hsII,::lloLoMt)

= Z Sgn (Ll; Np) {h(pp(hsgploLo(MtuLl)) - h(Pp(hsﬁp’oLoMg)}

Np+Li=Ip+,

1 t+1 t
= opFtFl 2 sgn (L,; N,J(E 2 PNk, —22 X (prKV>

Np+Li=Ip+, v=0K,cM_ UL, v=0 KycM,

1 t
= SpFeeT > X h sgn (L1§Np) ((pN,,(K\,ULl) - QDN,,K‘,)

v=0 Ky M Np+Li1=Ip+1

t
= ke £ 5 A0(sHLk) =0,

=0 KycsM

If s"*' e K, then we may assume that sP*'=4s}'7; ., _ 1, by a choice of a
suitable normal coordinates. When we set I,,,=1I,+ Io+ i,,+ 1-r=M,+L, and
M,=K,+K,+ R p-p» and we introduce the following new notation:

(4'3) e%pROKp—MNSLl
= {—1 é Xi é 0 (iEKu)a 0 é Xi é 1 (iEKp—y)’

xi=1 (ieNs), X; = _’1 (ieLl), xl'=0 (ier_l —NS)}’

14
BeR,RoRp-uNsL

{4

IIA

X é—‘l‘: (iEKu)’ %§x1§% (iekp—y)!
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-3 4 I S =1 g -
Xi =y GeNy, x; = 4 (ieLy), x; = 4 (iedy-y Ns)}’

—_ P
S'k,.xoxp-,NsL, = [eK,.KoRP-“NsLl’ ¢]
and
hsk = [hek #]
KuRoRp-uNsLy — K“KQKP-“NsLl’ ’
we obtain that
P p+1
b (hsIrIO’p"‘i-rLO)

=M ;L =1 sgn (Ll; Mp) {h(pp(hspﬂ,-_llo]pq-l_rLQ) - h(pp(hspﬂr-llolpq.l—rlvoLl)}
r-1 1=4r

> sgn (Ly; M) {0o?(8s] 100,00 — 897857 1om,_.10)}

Mp-r+Ll=Ip+ 1-r

=1 {M > sgn(Ly; ,,)z > oy 3

2rtr=t re1tLi=I, KucMy-y u=0 44

. - — Y PR.RoRp-uN
(N..cE:.mL: PRuRoRy - NuSJg-1 uRoRp-sNu

- > ¢x,.xox,-,.~..-.1_.>

Nu-1€Jgq-1

]. r q 3q—u
+ > > sgo (L; Mp) X 2 2 Ga -

2 Mp-ytLi=Ip+1-r p=0K,<I, u=0

( Y PRuRoRp-u(NuULy) +~ 2 OR.RoRp-pNu-1

NucJg-1 u=1SJg-1

- z ‘Px“xox,,_,.nu)}

NucJq-31ULy

=2,,+zq+r-12q: [ > sgn(Ly; ,,)Z 2

M,-1+L=1I, 0KucMy-t Nu-1SJg-1

((pK“ROKP-#(Nu-IULl) - (pKuKOKp-uNu—lLl)

; {
= sgn (L,;
+t3 Mo ,+1§-1,.“ - gn (L1; M,) z:o x,‘glr Nugq-x(¢x“k°kp'“(N"UL')

- (pK“RoKP-“N.‘) + Z (goxuxokp—uNu-l - (pK“knxp—“(N.‘-luLl))}]

Nu-lc"q'l

= 2

q
2p+2q+r— 3u Nu-1Slq-1 40 KT,

{K E . sgn (L1; Mp) ((PKu-lkoKpn-y.Nu—x - ¢Ku-1KOKp+l—uNu—1Ll)
u=1TL1=Ru

< +LZ_R sgn (Ly; Mp) (PR, RoRp-u(Nu-rVUL1) — (PK,,KOK,,-“N,,_J}
p-utL1=Rp+1-p

T % T 400k k) =0

q
=T X 36
2p+2q+r 3 Nu-i1SJg-1 u=0 Ka<
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Henceforth, we need to somewhat modify the definition of the inner product
of p-differences. We define length of a 1-simplex s! of a cubic complex poly-
hedron K by giving a common positive number # to each s!€ KU {*s"1| s"~1
e K}. Ifeach ste KU {*s" 1| s" '€ K} has length h, then K is said to have side
length h. We agree that if K has side length h, then the subdivision K; of K
has side length h/2. If K has side length h, then the inner product (¢?, y?)x of
P and yY? is defined by

(9% W= 3 Qe PR(s) + 5 T r(s?)F(s)

F T @) + 5 T (s )TF(xs0)]
s9eK—-0K s9e0K

(compare with (3.1)), where the sum with respect to an empty set vanishes. We
agree that each K has side length 1 except in the case where K is taken as a
subdivision of some complex polyhedron.

LemMmA 4.2. If K is closed or open, or K is compact bordered and P
vanishes on K*, then the following inequality holds:

la@Plle, = l9Plk-

Proor. First, we assume that the difference P vanishes on K*. For an
arbitrary n-simplex s" € K, its contribution |¢@|/2. to the square norm [¢|% is
equal to

1 q
(4.4) lolz. = 2, 2 2 X lor,x,l%

p+Jg=N 5=0 KsSJq

Let ¢ be the n-chain of K, which is the sum of the subdivision of the n-simplex

s".  Then the n-chain c¢" is a sum of 2" n-simplex of K; with |c¢"|=|s"|. By the

definition (4.1) we see that the contribution |h¢|2. of c¢" to the square norm
la@l, is equal to

s 1 \"2r 1 4 9=t P

Irolz=(5) 5 T ¥2T S

Ip+Jg=N1=0  s=0r=0Ks+M,cJgq Ip=I,+1p_,
la@?(bst, 1, km)|?

t 2

> X D1, (KsUNy)

v=0 N,cM,
=1 SEARES 2
= 2 I Z {EO(T>219 EO K;Jq |(pIsz,

v=1 1=0 T §=0 Jg=KstLg-s p=0 Mu+Ny_pCLg-s

5=0 Ko+ M cJq

(¢1,,(KSUM,.)‘I_’1,,(KSUNV_,.) + @IP(K,UM“)(PI,(KSUNV-,,))} .
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Hence we find that

lelz— el

q-v [v/2]

v
13" 50 7,=KTFLeos 150 MutNThcLq-s

I(plp(KsUM,,,) - qu,,(K,UN\,_“)IZ =0,

and thus
lolk—laelk,
34 4 1 = [v/21]
T 2% SEK ],,+;.,=N v§1 3Y 50 =KLy 4Z0 Mu+NThcL,s

|01, (keMw = PrpksUN,-l? 2 0.

33

Secondly, we assume that the difference ¢? vanishes on K. For an arbitrary
n-simplex s” € K*, the contribution | ¢]|2. of the n-simplex s” to the square norm
llo|%k is written in the same form as (4.4). By the definition (4.2) we can see that
the contribution ||5¢l[|%,n s Of the portion of K¥ restricted to support |s”| to the

square norm [|4o|[%, is equal to

||h(/’||12z1n|sn|

(L)" » r ¥t > 3 s
—\2 ) IptTa=N1=01=0 2" [ ,=1+fi+1p-p-¢ $=0 Li<J,

LI CR R RSP

— 1 S 3(p—r-t)
= e X Y 202

24m%4  {T4=Nr=0t=0 Ip=I+Te+1,- ot 5=0 LocJ,
r t q min(u,s)
PINDIND D D M L
u=0 v=0 K,<I, Ry,cI¢ u=0 i=max(0,u+s—q) Ms-ycLsNy-i=Jg—Ls

2
PRuRVRp—p-v(Ms—1UNu-1)

=1 ii'(l’;t)zup—n-zjj

r=0 Ip=l+Tre+1,- RoUTo=1I,

q q-—y — q—u [u/2]
¥y (‘I Y u>2u32‘1—u—2k2 DS

RULo=1,_p 4u=0 k=0 §=0 LoJgq p=0 My+Ny,-pcJa—Ls
(PR, RrRp-pre(LeUM) PLoLeLpm gmo(LsUNu-p)

+ PR RuRp-p-re(LeVMu) PLoLeLpgme(LsUNu-p)
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(Ip = K-u + Kv + Kp—y-—v = K_p + Kx + Kp—p-x = Ea + Zt + Ep—u-—r)»

where if u=0, K,=L,=I, and K,=L,=I,_,, then the term with respect to
¢ in parentheses is replaced by a term

(R S
Hence we find that

(@) ot + 2 {7 )2 {7 ooy

t q
53D N0 D YN Y YT S A

Ip¥Tg=Nr=0 Ip=I,+1—,+1p- s=0 LycJ,

~a@lE npsm
_ sn p 1 t
23m%a 1 {Te=N xz=:o d EO Ip=LtTe 1,

I - RSN Vi o)
RoULo=I, UL =1, 4=0\ 3 / $=0L/SJy i=0 Mu+Nu jcis—Ls

I(prK,cKp_,_x(LsUM“) - ¢L,L,L,,_.,_,(L,UN,,_,.)|2 20
Therefore, we obtain that

lolk — laelk,

=235n:-q 2 2 Zp L 2!:

stek* I,47g=N1=0 10" /=0 1,=1+17_ +1,-,

u 41— [u/2]

KPULQ-I"KK‘JL;-'I: ru= 0( > s-—OLsCJq p=0 Myu+Ny-p,<Jg—Ls
[ PR R Ry pore (LML) — PLoLLy-gme(LsUNu-

By Lemmas 4.1 and 4.2 we know that if ¢? € I' (K) then ho? e I' (K,).

Let {K;=(K;, K¥)>}2, be a sequence of complex polyhedra such that K,
is cubic and K is a subdivision of K;_; (i=1, 2,...). Let ¢? be a p-difference
of I'(K,) and gigP (i=1, 2,...) be the natural extension of gi~l¢? to K; where
gop?=¢P. The p-difference hip? on K, (i=1,2,...) is called the natural
extension of a p-difference ¢? to K.

2. Norm convergence with respect to subdivision. With the notation in 1,
let pPi=¢' be an element of the Hilbert space I'(K;) of closed p-differences
on K, (i=0, 1,...).

LemMA 4.3. Suppose that K is closed or open, or K, is compact bor-
dered and ¢’ vanishes on K} for each i. If the orthogonality

(4.5) (q‘)" - hj_i{.ni, (Pi)x, =0
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holds for every i, j (j> i), then the sequence {@*}2, has the following properties:
(i) |l¢ilk, is monotone decreasing with i,
(i) Hm loile, = lim /o' lx,:
(iif) i}iglwllfpf — W7k, = 0.
Proor. The orthogonality (4.5) and Lemma 4.2 imply that
lo) — =ik, = I8/ 70 %, — o1k, < Ik, — lo/ll%,-
Hence we have (i), (ii) and (iii).

ReMARK. For instance, if ¢'eI'(K;) and ¢*—hip®erl (K, (i=0, 1,..)),
then the assumption (4.5) of Lemma 4.3 is satisfied.

§5. The difference approximation of a differential on the Riemannian
manifold based on a normal comlex polyhedron

1. Hilbert space of differentials. Let M be an open or closed orientable
analytic Riemannian manifold with a positive-definite metric ds>=3; ; g;; dx;dx;,
where g;;=g;/(x;,..., X,) are assumed to be real analytic functions of x;,..., x,.
For two p-differentials (p-th order differential forms) w and 7 on M (0<p<n),
the inner product (w, t) of w and 7 is defined by

(@, T) = (@, Ty = SM wHE,

where by w7 we denote the exterior product of the differential w and the conjugate
*7 of 7. Let I'=I'(M) be the Hilbert space consisting of all measurable p-differ-
entials w on M with finite norm |o|=(w, w)!/?< + 0. We define the sub-
classes I''=TY{(M) and I''*=I1*(M) of I' by

I'i={w|do=0, welnC'},
Ir''* ={w|d*ow =0, wel nC'}.

In the case of p=n (p=0 resp.), we interpret I'} (I'}* resp.) as I''=I'n C (I't*=
I'n C! resp.).

Let I'ly=T1o(M) (I'¥=IL¥(M) resp.) be the subclass of I' consisting of all

1) We shall use the common notation [” with some subscript for both spaces of p-differences
and p-differentials with finite norm. If any confusion may occur, then we shall indicate
the polyhedron K and the Riemannian manifold M like I"(K) and I"(M ) respectively.
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p-differentials @ such that w=dt (w==xdt resp.) for some (p—1)-differential
((q — 1)-differential 7 resp.) of class C? with compact support. In the case of p=0
(p=n resp.), we interpret I'}, (I''§ resp.) as g. The subspaces I',o=I",(M) and
I'*,=T*,(M) of I are defined as the closures in I" of I', and I''§ respectively.
We define the subspaces I',=I"(M) and I'*=I"*(M) of I as the orthogonal com-
plements of I'*y and I',, respectively. By I',=I',(M) we denote the subspace of
I’ formed by harmonic p-differentials. Then it is known (cf. Kodaira [8]) that
I'el, T''*cI* and I'y=I . nT%, and the orthogonal decompositions:

I'=T, 4 I,y + I'*, (de Rham-Kodaira’s decomposition),
Fc = Fh + FeOa
I't=n,+T%

hold.

Let Q be a compact bordered subdomain of the Riemannian manifold M.
Then the domain Q is itself a Riemannian manifold. Hence the above orthogonal
decompositions can be applied to any such domain Q.

2. Smooth extension of a difference. Let K=<(K, K*) be an open, closed
or compact bordered normal complex polyhedron and M be the Riemannian
manifold based on the normal complex polyhedron K. Let @f be a p-difference
on K (0=p=<n). For each cubic n-simplex s"=[e", ¢] of K we can choose the
n-simplex e” and the mapping ¢ so that the normal coordinates of s* are preserved
and e" is the unit cube

e ={0=x,51(G=1,.,n)}

of the n-dimensional euclidean space E". We can adopt the coordinate system
X1,-.» X, @s a local coordinate system on |s"|c M. With the notation in §1.5 we
define the smooth extension $@? of @P to the support |s"| by the p-differential
#P on |s"| satisfying the condition

(5.1) toP = IZNwI,, dx;,---dx;,

q
5.2) Oy, = s2=:o quKszJ;qu (pIszxh"'xksx;f"x;q-,
on the local coordinate neighborhood (|s"|; x,..., x,), where xj=1—x,.

First, let us assume that @? vanishes on K*. Then we define the smooth
extension #¢P of the difference ¢? to the Riemannian manifold M by the p-
differential on M which is the smooth extension #¢? of ¢? to |s"| for each s"e K.
Here the coefficients w;, of (5.1) are generally discontinuous at a point of the
carrier |s"| of r-simplex s"e K (0<r<p). Then we define the coefficients of
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(5.1) on the carrier |s"| by

1 lim @, ()

o (x) = ——
’v( ) V(S") sredsn &ox, e|sn|°

for a fixed system of local coordinates about a point x € |s"|, where v(s") is the
number of n-simplices s” such that s” is a face of s”, and by |s"|° we denote the
interior of |s*|.

Secondly, let us assume that ¢? vanishes on K. If K is open or closed, then
we can similarly define the smooth extension #@? of @? to the Riemannian
manifold M. If K is compact bordered, then we define the smooth extension
#P of p? to M by the p-differential on M which is the smooth extension #¢@? of
P to |s"| for s" € K** and vanishes on M — |K*s|.

Now, let us assume that ¢? is a generic p-difference. Let @2 and ¢§. be the
restrictions of ¢? to K and K* respectively, and let @£ and #¢%. be the smooth
extensions of ¢ and @%. to M respectively. By the p-differential $¢p?P=4#¢pk+
# @&« on M we define the smooth extension of the p-difference ¢? to the Riemannian
manifold M.

LeMMA 5.1. If @? is closed on K and $o?el'(M), then #¢Pel (M).
Here, if K is compact bordered and if the support of P contains some simplices
of K*, then $¢oP eI (M) is replaced by $¢? € I' (Q) (2=|K*3|).

PrROOF. We may assume that 1Sp=<n-—1, and ¢? is the restriction of a
generic @? to K or K*. Let Q be an arbitrary cubic n-chain (see 4) of K or K*.
It is sufficient to prove that $p? e I' (U) (U=|Q|). Since ¢? is closed on K, ¢*
is exact on Q and thus there exists a (p—1)-difference Y7~ such that dyr~1=¢>.

First, we shall prove that

dfyrt = gAYr!
on U. By (5.1) and (5.2), we can write
W= T (@, dxdx,

q+1

— Xy, X x’ ...x'
), _, Equ+,=x§L.,-s+,l/”"""‘ PRRRR TR FRALDT B

for each s" € Q. Then, by the definition of d#y?~! we have
dgyr! = ; ZN (dgy¥)y,dx;,---dx;
where

Oy
(@), =, T sen(My; Ny D

my
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Since
0 # _ k! ’ ’
%n:p‘— B sgo Jq=Ks+Lg-s (ll’NP‘l(KsuMl) - lPNP--IK-v)x"l“'x"sx’l''.xlq-S’
we obtain
q
(@), =2 > > sgn (My; Ny ) (U, koumy) = ¥Npoikl)*

520 Jq=KstLg-s Ip=M(+Np—;

- Y soe ’
Xy Xk X1t X,

q
= SZ.OJ _KZ+L AY(S1,r,) Xk, X, X1, X1y
= qg=ARs g-s

which implies that d§y?P~1=#AYyP~1=4¢? on U.
Secondly, we can easily construct a (p—1)-differential w?~! of C? such that

|dwP=t — diypP=1||, < ¢ for any ¢ > 0.
Hence we have $¢@? e I' (U).
3. The relation between ¢? and #¢°®.

LemMA 5.2. Let K be an open, closed or compact bordered normal
complex polyhedron, and M be the Riemannian manifold based on K. Let
@? and YP be p-differences of I (K). Then the following inequalities hold:

(5.3 #0713 = lloPlk < 37040713
(5.4) I(@,P YP)x — (#0P, $YP)pl
= {(le?lk — #0713 (WPl — 189713032,

where if K is compact bordered then | @P||%k of (5.3) is replaced

1
QP+ xes = > lpP(sP)2 + 5 3 loP(sP)|2
sPeK+K*s—(9K+0K*s) sPeokToKks

ProOF. By the definitions (5.1) and (5.2), for each n-simplex s” € K and for
the smooth extension #@? of the restriction of @? to s”, we can see that

1 1
leoltm = E -l Pz, ax,
P

1 1.4
N
Ip+7q=NJo 0

2
’ ’
2 Ok Xy X X1, X1, _, | dxqee-dx,
520 Jg=Ks+Lq-s

s

-1 { 2
31 N=fFva, 550 x,yE'J, 91,1
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a4 1 9z [¢/21
+ > 5t

t
t=14 §=0J4=KstLg-s p=0 Mu+N;—pcLg-s

((pIP(K,UM,‘) @I,(KSUNg_,‘) + alp(KsUM“) (PIP(KSUN,_“))/(L'
Hence by (4.4) we have

(5.5 el — I#elfm

q- [:/2]

t
34 =N 1=y 2¢ - <
Ip+Tq=N i=1 2" §20 Jg=Ks¥Lg-s =0 Mu+Ne—pcLq-s
—_ 2
|¢1P(K5UMM) (pIP(K,UN,_“)I go’

which implies the first inequality of (5.3). By analogous calculation and Schwarz’s
inequality we obtain the inequality (5.4).
The second inequality of (5.3) follows from the equalities

3905021y — L0712
=3 =, 2 (9L 5, lorxl

29 Nof S, =1 $=0KicJ,

+3 (120 > bl

=1\ T =1/ =07,=K¥Lg-s =0 Mu+Ni—pcLg-s

(@1, kM) PrykeNe-y T Prpkoumy) ‘PIP(KSUNt-M))}

2

Y Pr koM
Zomzy, P EsIM

1 q
=2—qNZ 2 h

=Ip+Jq1=15=0 Jg=Ks+Lg-sN:SLg—s

By Lemma 5.2, ¢ e I' (K) if and only if $¢? e ' (M). Here, if K is compact
bordered and if the support of @? contains some simplices of K*, then #¢? e I' (M)
is replaced by #@? e I'(Q) (2=|K*9).

4. Courant-Friedrichs-Lewy’s Lemma. Let K=<{K, K*) be a cubic com-
plex polyhedron. An n-chain Q of K is called a cube of K, if there exists a one-to-
one bicontinuous mapping ¢ of a euclidean cube Q¢={I<x;=<m (i=1,..., n)}
(I, m: integrers; I+ 1<m) onto Q and if each n-simplex s” € Q is the image of a
euclidean n-simplex e"={y;<x;<u;+1 (ISp;<m, p;: an integer; i=1,..., n)}
by the mapping ¢. Let Q* be the conjugate polyhedron of Q. We may assume
that each n-simplex s” € Q*s is the image of a euclidean n-simplex e"={y;—1/2<
x;Su+1/2 (I<p<m; i=1,..., n)} by the mapping ¢. For the n-simplex s"e€ Q
corresponding to e"={y; <x;Su;+1; 1<i<n}, we write

ef, ={msSx; s+ 1(Gel) x=p (iel)}
and
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si,=L[ef,,¢] (O=p=n),

which is a p-face of s"e Q. For the n-simplex s" € Q*s, we write
e ={u-—-1—<x <w+LGel) x,=uw—L (ied)
I, i 2 =M = Hi 2 y 24 i Hi 2 q

and
st,=1lef,,¢] (O=p=n),

which is a p-face of s” € Q*.

Let {Q;=<Q;, 01 }3§ (v=1) be an increasing sequence of complex sub-
polyhedra of K such that each Q; is a cube and Q;(j=1,..., v+1) is the minimum
cube under the condition |Q;_,|<|Q;|°. Let ¢? (0S<p=<n) be a p-difference on
Q,.;. From ¢r we can define a O-difference u;, (I,=N) by setting

(5.6) up,(s§,) = @7(st,)
for the vertex s, and the p-face s7, of each n-simplex s” of Q, ., +Q%%;.

LemmA 5.3. If @P is harmonic on Q,.,, then the l-difference Au,, is
harmonic on Q,,.

Proor. It is sufficient to verify that d4u; =0. We use the notation in
§1.5 and the notation (4.3). If we note the equality

sgn (Ky; M,_{)sgn(Ly; M,_,)
= —sgn (Ly; M,_; UK,) sgn (K;; M,_;UL,) (M,_, + K; + L,=N),
then we obtain

0duy,(s%,1,)

=I —MZ 1+K1{(‘P10101‘,L0 - (pIoklﬂp—lLo) + (qDIoIoIpLo - (pxxioMP_ILo)}
p~Mp-

+ Lgl {(Protot,0 = Plotot,ory) t (Protet,Lo — Plolo,LoL)}
1 q

= > sgn(K; M,_y) [{sgn (K15 My ) (@rotot,o — PloR1Mp-1Lo)

Ip,=Mp-1+K;

+ ZJ Sgn (Ll; Mp—l) ((pL1Ioﬂp_1K1 - qDIoIo(Mp-lULl)“K)}

L;C q

- { sgn (Ky; M,_ 1) (PR 10m, - 1o — Plolot,Lo)

+ ZJ Sgn (Ll; Mp—l)((pllloﬂp-lLo - (pIoTo(Mp-luLl)‘Lo)}]

LicJgq
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- 2 sgn(Ly; Ip)[{Sgn (L1; 1) (Protot,L, — Plotot,Le)
q

LicJ

+ > sgn (K3 M,_ 1 UL)(@roroMp- 0Ly Kk, — (DIOIO(MP_NL,)*LO)}
I,=Mp=1+K;

- {Sgn (Ll; Ip)((pfoioipLo - qDIoIoIpLoLl)

+ Z Sgn (Kl; Mp"l U KI) ((PL,ioM,,_,K, - @L]Ioﬂ,-qLo)}i]

Ip=Mp_-1+K;
=, _MZ i 5B (K5 M,_ ) {00(shg, k) — 00(shr, L)}
p=Mp-y 1
- gJ sgn(Ly; 1) {A(p(sg:}o(lpULl)‘Lo) - AQ)(SIE,T}OI,,LD)} )

where N,=N,=N,=N, for an arbitrary subset N, of N. Since @ is harmonic,
the last side vanishes.

LemMa 5.4. (cf. pp. 49-51 of [4] and p. 315 of [10].)

(5.7) V2 Y |l dugli3, < le?l3, .,

Ip<N

Proor. First, we assume that @ vanishes on Q,,,. Then, by the formula
(3.2) we have

(5-:8) |dur 0o < 1 dur 3, = §,  wr,*du,
J

l_ 2 2>
< 5(S,, lunl =, lus,

(.} = 09"-3 V- 1),

where A4; (j=0,..., v—1) is the 0-chain defined as the sum of all 0-simplices of
0Q%s. When we add the inequalities (5.8) for j and I,=N, we have

1
2 < L 2 _ 2
k3, Idu, I, < 3 (S, I b= )
1
< = 2 _
=2 ’SAk IEN lur,| (k= 1L...,v).

Furthermore, when we add the last inequalities for k, we have

2 N 2
59 o+ D T 1wy S SM,,ZCN |y,
= > lerA

V41— 003y

Secondly, let us assume that @P vanishes on Q¥,;. When we take Q, and
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Q0,4+, for Q¥ and Q%¥;, of (5.9) respectively, we have

(5.10) U I VUM RS

v+1=0Qv+1

The inequalities (5.9) and (5.10) imply the present lemma.

LeMMA 5.5. Let {K;=<(K;, K¥>}2, be a sequence of open or closed cubic
complex polyhedra such that K; is a subdivision of K;_, (i=1, 2,...). Let ¢*
(i=0, 1,...) be a p-difference of I'(K,) such that |¢}| g, is bounded with respect
toi. Then, the limit relations:

. 9 . .
(5.11) Eg, ()= X 2 2 2 el = @hw-Lnl?—0

s"eKi Ip+Jg=N s=1LscJ,
(- )

and

(5.12) Ex(xp) =3 % ¥ T (60D — 60D wmryl? =0

s"eKi Ip+Jg=Nr=1L,<Ip
(i > )
hold.

Proor. We fix an arbitrary n-simplex s" € K;. We can always find an in-
creasing sequence Q3,..., 03 of concentric cubes of K such that |Q3|=]s"|.

Let Qi (j=0,...,4; i=4, 5,...) be the subdivision of Qi~! which is a cube of
K;, and let Qi =<Q}, Qi*>. Then, by Lemma 5.4, we have

(27~ D2 T duf I3 S Io'ly G =34,

where u} is the O-difference defined by (5.6) for the present ¢’. On the other
hand, we can easily verify that

E iy gine (o} + E jiypius (x¢)) 2"II)ZC:N |]Au},“i,;' (¢=34,.).
Hence we have

i i 2" i -
EQ;')+Q;‘;"(‘P ) + EQ:‘)+Q;';'>(*¢ ) = B3 0)E o ”é; @i=3,4,..).

Adding the last inequalities for all simplices s" € K, we obtain
6”

Exi(Qoi) + Ex,(*(Pi) = —(3—2,73—1)—2 ”‘Pi”%:.- (i=34,..),

which implies the limit relations (5.11) and (5.12) because of the assumption of
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the lemma.

In the case where K, is compact bordered, Lemma 5.5 is reduced to the
following somewhat minor result.

LeMMA 5.6. Let {K,=<K;, K¥>}2, be a sequence of compact bordered
cubic complex polyhedra such that K, is a subdivision of K;,_, (i=1, 2,...).
Let Ly={Ly, L¥> be an arbitrary complex subpolyhedron of K, with |Ly|<
IKo|°, and let {L,={L;, L¥>}%, be a sequence of complex polyhedra such that
L,cK; and |L)|=|Ly| (i=1,2,...). Let ¢' (i=1,2,...) be a p-difference of
I'(K)) such that |¢!| g, is bounded with respect to i. Then, the limit relations

(5.13) Epsp? (@) >0 (i o)
and

(5.14) Ep+pp(*9) >0 (i 0)
hold.

5. The estimation of ||#*x¢ —*3¢p|. Let K=(K, K*) be an open, closed
or compact bordered normal complex polyhedron and M be the Riemannian
manifold based on K. Let ¢? be an element of the Hilbert space I',(K) of har-
monic p-differences (0= p<n).

Let s"=[e", ¢] and 6"=[e", Y] be a pair of n-simplices such that s"e K
(s" € K* resp.), 6" € K* (6" € K resp.) and |s"| N |6"| #¢@, where if K is compact
bordered, then we interpret K* as K*=K*s. We can choose the n-simplices e”
and &", and the mapping ¢ and ¥ so that the normal coordinates of s” and o"
are preserved, and e” and &" are the unit cubes

et = {0 é X; é 1 (l = 1,-“9 n)}

and

lIA
IIA

n — J__ _1__ . ._1_ | =

e = { FEXS5 (i=1,..., n)}

on the euclidean space E". We can adopt the coordinate system x,,..., x, as a
local coordinate system on |s"| N |6"|=M. By the definitions (5.1) and (5.2),
the smooth extension of the restriction of the p-difference ¢ =¢? to the n-simplex

s" is denoted by

to = ;N @, dx;,++-dx;,,
p

q
’ ’
wp, = 2. 2 Pr g Xy XX, X,
4 s=0t’q=Ks+Lq—s pis 1 s’ 1 q-s
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on the local coordinate neighborhood (|s*|; x,,..., X,), Where x;=1-—x;. The
conjugate differential *#¢ of the smooth extension #¢ has the expression

*$Q = ; , e (I, J) o, dx;-dx;,.

ptIq=

By the coordinate transformation

P S

o=y X (i=1o,n),
the unit cube ¢" is transformed to the unit cube

={0=¢=21 (i=1,..,n)}.

Then each g-face of the euclidean n-simplex &* and each g-face of the n-simplex
o" can be written in the forms

gk ={0=s& =1 (ied) &=1(€kK) =0 (iel, - K))}
O=r=p
and
o x, = [&f .k, Yox~ ']

respectively. We agree that the g-simplex o x has the orientation induced by
the orientation of the g-dimensional space O-x;,---x;,. For the restriction of
the conjugate difference *@ to the n-simplex ¢" which has a value at each g-face
o x, of ¢”, we introduce the notation

(*@)s .k, = *(P(Ggqx,) .
If we note that
05 ko = 580 (5 J,) *s§ 1,
then we find that
(5.15) (*(P)J.,Ko =sgn(l,; J,) Dr,Lo-
When we introduce a coordinate system

é’i=l—él=xi+%— (i=1,...,n)

on the local coordinate neighborhood (|o,|; &1,..., &), the smooth extension #x¢
of the restriction of the difference *¢ to ¢” can be written in the form

$o0 = T 0;,d8), 48,
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= (0)) dx...-dx.
JEN Jg" Vi1 Jg®

p
w,; = * L E .
Iq rgo IP:KE:LP_' (*0)s .k, Sk, S, lyer

On setting

TJq = sgn (Ip; Jq) wlp - w.lq’

we can write
*HQ — fx@ = Ty dx; --dx;
#(0 # (p qucN Jq J1 Ja

and

1/2 1/2
G16) 130 — #r0lmaion = (. [0 5 00,7 dxied,,

0 0

We shall estimate the integral (5. 16). First we note that w,, can be written
in the form

— ’ ’
@p, = 2 h Pr kX, XuXi1y" " X1,
s=0J4=Kst+Lg-s

q 4=s
=3 5 gt w1 DD T xex)
v= v q=-s

§=0 J g=Ks+Lq-s =54

9

s=0

(=1 2 XX, 2 (ZDY X Pr,m,
Ks v=0 M,<cKg

cJgq

q s—=1
= @k, T SZ:I (—1y Kséqukl"'xks Z.O (=1 MVCXK:,—KS(pIpMV — QL (kM) -

Similarly, we can write

)4

Wy, = 2 2 (*(P)Jql(,.ékx"'ék,é;{"é;,,_,

r=0 Ip=Ky+Lp-r
P r—1
=)kt 2 (=1 X &d, X (1)
r=1 K.<Ip v=0 M, <K,—K;
{(*‘p)Jqu - (*®) gk UMy} -
Hence, by (5.15) we find that

Ty, = sgn (I,; J)w;, — oy,

q s—1
=sgn(l,; J,) sz=:1 (=1 K,;Jq X, X, vz=:o (- l)vac%__Kl (P10, — Pry&ivm,)

r=1

S Y b S (DT {0 — (O} -
r=1 Ky<Ip V=0 M,

<K,—Ki
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For simplicity, we set

s—1
D=2 (1) ¥ (9rm, — Prkumy)
v=0 My K=Ky

and

r=1
7,,!(, =2 (=) % {(*(P)Jqu - (*(p)Jq(KluM\.)} .
v=0 M -K;

vEKp

We sum the s.quare norms (5.16) for all n-simplices s” € K+ K*, and for all pairs
s" and o with |s"| n|o"|#@. Then in the case where K is open or closed, we
obtain

(.17)  |*te — t*0|%

q

SEAD D D o VY CRVL D D HEE SR

SNEK Ip+74=N 5=1 o=1 Ki€JqLocdq
{20,k P1,L, + P1,x.P1,1.}

EETD D D I sl G VL0 Dyt —

oc"eK Ipt+Jq=Nr=1 p=1 Kr<Ip Lo<lIp

. {45?,,1(,53‘.,@, + q_)?qx,‘pfql,,,}

Y ARAD I W C

s",o"eK,|[s"|°n|e"|°*F0 Ip+J 4=

1 ~ ~
Z on+2(s+r) {¢Ipxs¢fqldr + @IPKSQ.’;‘QL,-}’

KsSJdq LyS1p

where ¢t and u are the numbers of elements of K;n L, and K, N L, respectively,
and if t=s=0 (u=r=p resp.) then {®; x®; ;. +PpxPr,r,} (P} P}.L,
+ ®% x,PF,.,} resp.) is replaced by |Dr,k,|? (197 &,1* resp.). In the case where
K is compact bordered, we also obtain an equation analogous to (5.17).

LemMmA 5.7. If K is open or closed, then the inequality
%40 — #x0l3 < ALEx(9) + Ex(*@) + {Ex(9)}'/*{Ex(+¢)}'/?]
holds, and if K is compact bordered, then the inequality
[0 — #*03 < ALEgsges(@) + Egsges(*9)
+ {Eg+xos(@)}H{ Eg s xos(*9)} /2]

holds, where Q=|K*3|, Ex(¢) and Ex(*@), etc. are the quantities defined in
Lemma 5.5, and A is a constant depending only on the dimension n.
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Proor. We note that generic terms appearing in the right hand side of
(5.17) have the following three types:

(P1,m, — q’Ip(KlUMV))(QoI,N“ = @r, LN

{(*(p)JqM‘, - (*(p)Jq(KIUM.,)} {(*(o).quu - (*‘P)J,,(Llun,‘)}
and

(‘PIPMV - ¢IP(K1UMV)) {(*(p).qu" - (*GD)Jq(L,UN“)}
except their coefficients. Then by Schwarz’s inequality we have the present lemma.

As a consequence of Lemmas 5.5 and 5.7 we obtain:

CoROLLARY 5.1. Let {K;}2, be a sequence of open or closed normal com=
plex polyhedra such that K; is a subdivision of K;_, (i=1, 2,...), and let M be
the Riemannian manifold based on K,. Let ¢@P*=¢' (i=0,1,...) be a p-
difference of I'(K;) such that |¢}|k, is bounded with respect to i. Then the
following limit relation holds:

I*#0! — #x0*|3 >0  (i— o).
As a consequence of Lemmas 5.6 and 5.7 we obtain:

COROLLARY 5.2. Let {K,}2, be a sequence of compact bordered normal
complex polyhedra such that K; is a subdivision of K;_; (i=1, 2,...), and let
M be a compact bordered Riemannian manifold based on K,. Let ¢Pi=¢!
(i=0, 1,...) be a p-difference of I'(K;) such that |¢| g, is bounded with respect
to i. Then the limit relation

[*4p" — #x¢'|3 >0  (i— o)
holds for an arbitrary closed subregion Q of M°.
6. Fundamental theorem.

THureorEM 5.1. Let {K;=<{K,;, K}¥>}2, be a sequence of open, closed or com-
pact bordered normal complex polyhedra such that K; is the normal subdivision
of K,_, (i=1,2,...). Let M be a Riemannian manifold based on the normal
complex polyhedron K,. Let ¢'(i=0,1,...) be a p-difference of I'(K)).
If {p*}2, forms a Cauchy sequence, i.e.

(5.18) lim [[0/7¢! — @l]lg, =0 (j2i)

i,j—®©

holds, then the sequence {$¢‘}2, of smooth extensions strongly converges to a
harmonic p-differential w e I' (M), i.e.

(5.19) hrg l#¢! — o]y = O.
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Furthermore, if K; are open or closed then the limit relations

(5.20) hjg loilg, = 'lgg [#0 n = llollp
and
(5.21) lim | 0" — %]y = 0

hold, and if K; are compact bordered then the limit relations

(5.22) llgg lo g+t = ,hfg 0 a = llolln
and
(5.23) lim [[+¢! — *0lq = 0

hold for an arbitrary closed subregion Q of M°, where

THP——— Lo 2 i)

i(ep)]|2 .
sPeK;+K%* —(0K+0K"®) lp*(sP)* + 2 sPedK;+oK}®

Proor. First, let us assume that K; (i=0, 1,...) are open or closed.
Lemma 5.2 and the limit relation (5.18) imply that

(5.24) lim (507 — #5779y = 0.
i,j—o0

Here we note that each coefficient of the differentials #4/~i¢p? uniformly con-
verges as j— oo on each compact subregion Q of M for a fixed i. In the inequality

(5.25) o) — $0*|u
< 49/ — #8770y + 150* — #5570y
+ #0770 — #0570 (k>j>1),
if for any >0 we choose a compact subpolyhedron L; of K, so that
I86770" — $80 o S 2@ lkp-n, < 5 (2= L),
then the inequality

(5.26) #8770 — $h*ipi|y, < e

holds for sufficiently large j, k and for a fixed i. From (5.25), (5.24) and (5.26),
if follows that

(5.27) Lim 407 — 40%u = 0.
Jyk—©
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The limit relation (5.27) and Lemma 5.1 assure that there exists a p-differential
w e I' (M) satisfying (5.19) and the second equality of (5.20).

By (5.5) we can see that there exists a constant C not depending on i such that
the inequalities

loilk, — I#¢'l3 = CEx(@)  (i=0,1,..)

hold. Then, by Lemma 5.5, we obtain the first equality of (5.20).

By Corollary 5.1 and (5.19) we have (5.21) which implies *w e I' (M). Hence
wel(M).

Secondly, let us assume that K; (i=0, 1,...) are compact bordered. If we use
Lemma 5.6 and Corollary 5.2 in place of Lemma 5.5 and Corollary 5.1 respec-
tively, then the same proof with some modification holds also for this case.

7. The method of orthogonal projection.

THeEOREM 5.2. Let {K;=<{K;, K})>}2, be a sequence of open, closed or
compact bordered normal complex polyhedra such that K, is the normal sub-
division of K;_, (i=1, 2,...). Let M be a Riemannian manifold based on the
normal complex polyhedron K,. Let y be an arbitrary p-difference of I (K,).
Here, if K, is compact bordered, then x is assumed to vanish on K§. Let ¢*
(i=0, 1,...) be the projection of the natural extension w'y on I'(K,). Then,
we obtain the same conclusion as in Theorem 5.1. Furthermore, the monotone
convergence of norms

(5.28) loile, Nl (i— o)
holds. If y vanishes on K§, then the inequalities
(5.29) lo'lx, 2 [1#0'ly 2 ol

hold for every i, the limit differential w is the projection of the smooth extension
#x on I' (M), and hence $y—w e T ,o(M).

Proor. The assumption of the theorem implies that

(5.30) hix =o' + i, Yel oK) (i=0,1..).
Hence we find that
(5.31) 0F — Big® = kY0 — YieT oK)  (i=0,1,.).

Therefore, by Lemma 4.3 the assumption (5.18) of Theorem 5.1 is satisfied, and
thus the same conclusion as in Theorem 5.1 holds. The monotone convergency
(5.28) follows from Lemma 4.3, and (5.20) or (5.22).

The first inequality of (5.29) follows from (5.3). Let us assume that y vanishes
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on K¥. Then we can verify that #y=4#4'y. In fact, noting

a .
= Z z X, X x’ ...x' _ dx ...dx,
U=01q=Kg+Nq—qXIPKCS'ePl kq ko ny ng-o i1 ip
=l T T sty = E(s?)
T2rFt Sy cM,X Tp(LsUNy)) = X
= v

for each p-simplex s? € K, we easily see that #y=4#4y, where s?=bs] 1 _ r.um,
e? =lqe‘1’r,p_rLth and T,+Tp_,=1p with the notation in §1.5. The assumption
and (5.31) imply that $¢!—#¢° =40’ —#h'@® e I,o(M). Hence, by (5.19) we see
that w— ¢ eI o(M) for every i. Because of we I'(M), w is the projection of
#¢' on I'y(M) for every i. Thus we have the second inequality of (5.29). Fur-
thermore, by (5.30), w is the projection of #x=#4*y on I',(M).

8. Difference approximation of a differential. Let K=(K, K*) be an
open, closed or compact bordered normal complex polyhedron, and M be the
Riemannian manifold based on K. Let @ be a closed p-differential on M, of class
C' (1£p£n). For an arbitrary n-simplex s"=[e}, ¢] e K, we choose a local
coordinate neighborhood (|s*|; x,..., X,) so that

(5.32) s: e ={0=x,21 (i=1,.,n)}.
The p-differential © has a local representation

0= 3 Op,dx; dx;,
I,cN
on the local coordinate neighborhood (|s"|; x,..., X,), where each coefficicn
0, is a complex valued function on the unit cube e}. By a difference approx-
imation ¥ of © on the normal complex polyhedron K, we mean the closed p-
difference on K defined by

Vet = 0 (er=eh,)
le?|

for each p-face sf,;, of s”, where the notation s7; and ef,;, follows the definition

in §1.5. Here, if K is compact bordered, then by the similar method the differ-

ence approximation y is also defined for each p-face of each half n-simplex of K*.

THEOREM 5.3. Let {K;=<(K;, K¥>}72, be a sequence of open, closed or
compact bordered normal complex polyhedra such that K; is the normal sub-
division of K;_, for each i, and let M be the Riemannian manifold based on
K,. Let @ be a closed p-differential on M, of class C* (1=<p<n), and let
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(i=0, 1,...) be the difference approximation of © on K;. Here, in the case where
K; are open, we assume that for a compact bordered subpolyhedron L; ap-
proximating K, the limit relation

(5.33) lim [y g,-z, =0
Li—K;

holds uniformly with respect to i. Then, y'e'(K}) (i=0, 1,...) and © e ' (M),
and for the sequence {¢'}2, of the harmonic component @' of Y the same
conclusion as in Theorem 5.1 is obtained. Furthermore, when we denote the
restrictions of @' to K; and K¥ by ¢k, and @kt respectively, the sequences
{80k, )20 and {$0}1}2, strongly converge to the common limit p-differential
/2 which is the harmonic component of ©.

Proor. We note that the coefficients of #yk,, 1;1//,‘(:, #4570k, and #hi‘ialz}(;
(j>1i) uniformly converge to the corresponding common coefficients of @ as i,
j— oo on each compact subregion Q of M. By this fact, the assumption (5.33)
and Lemma 5.2, we can easily verify that yieI'(K,) for every i, the limit
relations

(5.34) lim [|[#y! — 20[ ) =0

and

(5.35) lim (#5770 =20y =0
iy,j—o

hold, and ® e I' (M).
The limit relations (5.34) and (5.35) imply that

(5.36) .lim 497 — g0/~ Wiy =0 (j>i).

i,j—o
Let @i/ (j>i) be the harmonic component of 4/~%)¢ on K,. Then, by Lemma
5.2 the limit relation (5.36) implies that
(5.37) lim (407 — #0¥ [y =0  (j>1i).

i,j—o©
By making use of the limit relation (5.37), we can prove the present theorem by
method analogous to that in Theorem 5.1. The remaining parts are obvious.

9. Difference approximation on a compact bordered region.

THeOREM 5.4. Let {K;=<(K;, K¥)>}2, be a sequence of an open or closed
normal complex polyhedra such that K, is the normal subdivision of K;_, for
each i, and let M be the Riemannian manifold based on K,. Let Q be an arbi-
trary compact bordered subregion of the Riemannian manifold M. Let {L;
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={L;, L¥)}2, be a sequence of compact bordered normal complex polyhedra
such that \L;_ ;| c|L;]°, |L;| > Q° (i»> ) and L;<K, for each i.

Let © be a closed p-differential of T'Y(Q) (1=Zp<n), let Y* (i=0,1,...) be
the difference approximation of © on L;, and let {¢'}2, be the sequence of the
harmonic components of Y on L;. Then, the sequence {$¢'}?, of smooth
extensions strongly converges to a harmonic p-differential weI'y\(Q) which is
the harmonic component of 20 on Q, i.e. the limit relation

lim [39* — wllg = 0
i—o

holds for each compact subregion Q' of Q°, and the following limit relations
hold:

im0 vzzt = lim #0410y = ool

for a fixed number k, where Ly={Ly;, L¥;> (i>k) is the subpolyhedron of L,
with |Ly|=|L,|. Furthermore, the sequences {$¢},}7o and {$pi*}2, strongly
converge to the common limit p-differential w/2 which is the harmonic
component of ©.

ProoF. We can easily verify that the limit relations

iy’ — 20 =0

and

lim 57771 — 20 =0 (j > )

LTV And

hold for each compact subregion Q' of Q°. Thus we have
(5.38) lim #0770 — g = 0.
i,jow

Let ¢/ be the harmonic component of y/~%* on L;. Then, by Lemma 5.2
the limit relation (5.38) implies that

Aim 404 — #0i]lo. =0 (j > i).
i,j—©

By making use of Theorems 5.1 and 5.2, the remaining parts are proved. The
detailed argument is omitted.
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