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Introduction

The aim of the present paper is to extend the results in the paper "A finite-
difference method on a Riemann surface" [10] to the higher dimensional case.

In Chapter I, we establish orthogonal decomposition theorems concerning
difference forms on an rc-dimensional polyhedron (2 ̂  n < oo) which give an
analogue to de Rham-Kodaira's theory on a Riemannian manifold (cf. Kodaira
[8] and de Rham [14]). Here our definition of a polyhedron differs from the
ordinary one based on a triangulation and is based on a polyangulation of an
n-dimensional manifold (see §1.1). A p-difference (p-th order difference form;
0^p^n) on a polyhedron is defined as a function on a p-chain which takes a
complex value at each oriented p-simplex (see § 2.1). In order to set the definition
of a conjugate difference form which answers our purpose, we introduce the con-
cepts of a conjugate polyhedron and of a complex polyhedron (see § 1.3). A
theory of harmonic difference forms on the complex polyhedron which is analogous
to the theory of differential forms on a Riemannian manifold, is then established
(cf. Mizumoto [10] and [11] in the 2- and 3-dimensional cases). Eckmann [6]
treated a boundary value problem of a harmonic difference form on a polyhedron
(Komplex). Our method, which makes an effective use of a conjugate difference
on a conjugate polyhedron, is different from his.

In Chapter II, we shall concern ourselves with the problem of approximating
a harmonic p-th order differential form on a Riemannian manifold by harmonic
p-th order difference forms. We define a sequence {Kj£=o of normal subdi-
visions of a normal complex polyhedron K0 (see § 1.6) and a Riemannian mani-
fold M based on K0 (see § 1.7). Then we shall discuss the norm convergence of
smooth extensions of harmonic difference forms on Kί9 i=0, 1, 2,..., to a
harmonic differential on M (see Theorems 5.1, 5.2, 5.3 and 5.4, and cf. §5.2 for the
definition of smooth extension). In our present method, the harmonicity of the
limit differential form of smooth extensions of harmonic difference forms and that
of their conjugate difference forms are simultaneously shown. Our method is
based on the fact that the smooth extensions of a harmonic difference form and its
conjugate difference form are closed differential forms, so that their limit differ-
ential forms in the Hubert space of differential forms are a pair of closed and
conjugate closed ones, and thus a pair of harmonic and conjugate harmonic ones.
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The method of orthogonal projection of difference forms and differential forms
is also effectively used.

Dodziuk [5] obtained a finite-difference approximation theorem of somewhat
different type. It seems that his method is closely related rather to the finite

element method than to our method.

Chapter I. Theory of difference forms on a polyhedron

§ 1. Topological foundations

1. Polyangulation. Let En be the n-dimensional euclidean space (n^2).
By a euclidean (^-simplex e° we mean a point on En. A euclidean p-simplex ep

(l^pgrc) is inductively defined as a bounded closed simply-connected domain
on a ^-dimensional plane or on a ^-dimensional spherical surface in En (a bounded
closed simply-connected domain in En itself if p = rc), surrounded by a finite
number of euclidean (p— l)-simρlices ef"1,..., ep

v~
l (v^2), where we assume that

if ef"1 n ep~1^0 (i^j) then ef"1 Π ejΓ1 consists of common simplices of both
boundaries of ef"1 and ej"1. Each r-simplex er (O^rrgp) which is a composing
element of the p-simplex ep, is called an r-face of ep and is called a proper r-face
when r<p. A 0-face e° is also called a vertex of the p-simplex ep. Then p-

simplex ep is its own unique p-face.
Let M be an n-dimensional orientable manifold (n^2).1) By a p-simplex

sp (0 ̂  p ̂  n) on M we mean a pair of a euclidean p-simplex ep and a one-to-one
bicontinuous mapping φ of ep into M. We shall write sp = [ep, φ](0^pgπ).
The image of ep under φ is called the carrier of sp, and is denoted by \sp\ that

is, φ(ep) = \sp\. We will use the same terminologies "r-face" and "vertex" for
those of each p-simplex sp on the manifold M. We say that a point x of M
belongs to sp when x e |sp| (O^p^n).

A collection X of simplices on M is called a polyangulation of M or a ρ0Γy-
hedron2) if it satisfies the following conditions:

( i ) Each point x on M belongs to at least one simplex in K
(ii) Each face sr (Orgrgp) of a simplex sp of K is an element of K;
(iiϊ) If sp,sreK and s pns r7^0, then sp n sr is a finite collection of sim-

plices each of which is a common face of both sp and sr;
(iv) No 0-simplex is a vertex of an infinite number of simplices of K.
It is known that any differentiate manifold M is polyangulable (triangulable)

(cf. Munkres [12]). A manifold M on which a polyangulation is defined, is called
a polyangulated manifold. If for each n-simplex sn = \_en, φ~] of a polyhedron

1) Throughout the present paper, the dimension n of a manifold M will be fixed.
2) Throughout the present paper, the terminology "polyhedron" will be used in this sense.



A finite-difference method on a Riemannian manifold 13

K the euclidean π-simplex en is a cube, then K is called a cubic polyhedron.

If M is closed (open resp.), then K is said to be closed (open resp.).
Let Ω be a compact bordered closed subdomain of M whose boundary

consists of (n — l)-faces of a polyangulation K. Then the polyhedron L defined
as the collection of p-simplices (p = 0,..., ή) of K having their carrier on Ω is
called a compact bordered polyhedron. By \L\ we denote the carrier of L : |L| = Ω.
The collection dLof p-simplices (p = 0,..., n — 1) of L having their carrier on dΩ
is called the boundary of L.

Let Land Lx be two polyhedra. If every n-simplex of Lis an n-simplex of
L!, then Lis called a subpolyhedron of Li and Ll is said to contain L.

2. Homology. On a polyhedron K we can define a homology in the same

manner as in the case of a triangulated polyhedron. An orientation of each

p-simplex (Orgp^n) can be easily defined. An oriented p-simplex is denoted by
the same notation sp as a p-simplex.

For a fixed dimension p (O^pgw) a free Abelian group CP(K) is defined
by the following conditions :

(i) All oriented p-simplices are generators of Cp(K)\
(ii) Each element cp of Cp(K) can be represented in the form of finite sum

where the coefficients a{ are integers. Each element of Cp(K) is called a p-chain.
The boundary d of a p-simplex sp (1 ̂ p^n) is defined by

(1.1) dsp = Σ sPΓl (v = 2 if p = 1; v ^ 2 if 2 ^ p <> n),
i = l

where sf"1,..., s^"1 are (p— l)-faces of sp with the orientation induced by the

orientation of sp. If a (p — l)-simρlex sp-1 is a (p — l)-face of sp with the orien-
tation induced by the orientation of sp, then we write sp~ίadsp. The boundary

of a p-chain cp = Σ/ ^i sf (1 ̂ p^n) is defined by

A p-chain whose boundary is zero, is called a cyc/e. We assume that every
0-chain is a cycle. Since we can easily see that

(1.2) ddsp = 0

for each p-simplex sp (2^p^n), we have

(1.3) ddcp = Σ^δsf = 0
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for each p-chain cp = Σ* 0/sf
Provided any confusion does not occur, for the present case of polyhedron

we shall use the same usual terminologies of homology.

3. Complex polyhedron. Let K and K* be two open or closed poly-

angulations of a common manifold M. The polyhedron K* (K resp.) is called

a conjugate polyhedron of K (K* resp.), if they satisfy the following conditions:

(i) For each p (Ogp^n) and for each p-simplex sp of K there exists one

and only one ^-simplex sq of X* (pΛ q — n)l) such that the intersection \sp\ Π
\sq\ is only one point which is an interior point of both \sp\ and \sq\9 and the
p-simplex sp is disjoint from the other ^-simplex of K* than the ^-simplex sq

the simplex sq (sp resp.) is said to be conjugate to the simplex sp (sq resp.) and
it is denoted by *sp (*sq resp.).

(ii) For a p-simplex sp of K and an r-simplex sr of K*, if \sp\ Π |5rlΊτέ0
then the conjugate simplex *sp (*sr resp.) is a #-face ((n — r)-face resp.) of sr

(sp resp.) and thus it follows that p + r^.n.
We shall introduce an orientation to the conjugate simplex *sp of an oriented

j?-simplex sp (Ogp^n) in such a way that

(1.4) sp x *sp = 1,

where the symbol sp x *sp expresses the intersection number of sp and *sp (cf.
p. 411 of [2] for the definition).

LEMMA 1.1.
(i) **SP = *(*5p) = (-l)pqsp;

(ii) sp~ί^dsp if and only if *spad(-l)p*sp-1 (l<*p<*n).

PROOF, (i) This follows immediately from the relation

sp x *sp = (— ϊ)pq*sp x sp

(cf. pp. 41 2-413 of [2]).
(ii) If follows from the definition (ii) of the conjugate polyhedron that

Is"'1! c= \dsp\ if and only if |*sp|

Hence sp~1adsp if and only if *spcd(— l)r*sp~1 for some r. Then the equation

5^ x B(-l)r*sp-1 = (-l)pdsp x (-l^s^1

(cf. Satz II of p. 413 of [2]) implies that

SP x *s

p = (-l)^-1 x (-

1) Throughout the present paper, the pair/? and q will always express the non-negative integers
wiihp+q=n for the dimension n of M.
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Then by (1.4) we have (— l)p+r= 1. Hence we may take r = p.

The pair of K and K* is called a complex polyangulation of M or a complex
polyhedron, and it is denoted by K=(K9 K*>. A manifold M on which a
complex polyangulation is defined is called a complex-polyangulated manifold.
If M is open or closed, then K=<K, K*> is said to be open or closed respectively.
If both polyhedra K and K* are cubic, then K is said to be cubic.

By a p-chain (O^p^n) of a complex polyhedron JfiC, we mean a formal sum
7 = ̂  + ̂ 2 of a p-chain c^ of X and a p-chain c2 of K*. The boundary dy is

defined by dy = dcί + dc2. Each p-chain y = c1 + c2 with 5c1=0 and dc2 = 0 is
called a cycle. A p-cycle y = ct + c2 is said to be homologous to zero and we write
y~0, if both c± and c2 are homologous to zero.

4. Compact bordered complex polyhedron. Let !£=<£, K*> be an open
or closed complex polyhedron. Let Lbe a compact bordered subpolyhedron of
K. Let L*s and L*b be the collections of p-simplices (p = 0,..., n) of K* having
their carrier on

\J |*s°| and W |*s°| respectively.
s°eL-dL sOeL

Let us suppose that |L*S| is not vacuous and is connected. Then the polyhedra
L*s and L*b are the maximal and minimal compact bordered subpolyhedra of
K* respectively under the condition |L*S| c |L| c |L*6| .

Now we shall define a new compact bordered polyhedron L* such that
L*scL* and |L*| = |L|. For each p-simplex sp of dL (Q^p^n — 1) the con-
jugate half q-sίmplex *sp of sp is defined by the conditions:

(i) |«p| = |«p|n|L|;
(ii) *sp has the orientation induced by that of *sp.

By L* we denote the polyhedron defined as the collection of all p-simplices (p =
0,..., n) which are p-faces of n-simplices of L*s and conjugate half n-simplices of
0-simplices of dL. The polyhedron L* is called a conjugate polyhedron of L
and the pair L = <L, L*> is called a compact bordered complex polyhedron.
If the original K is cubic, then L is said to be cubic. The carrier |L| of L is

defined by |L| = |L| = |L*|.
Let L = <L, L*> and L1 = (Lί, Lf> be two complex polyhedra. If L is a

subpolyhedron of L l 9 then L is called a complex subpolyhedron of Lίf

We can see that δL = <<9L, δL*> defines a finite collection of (n — 1)-
dimensional closed complex polyhedra. dL is called the boundary of L.

Let sp (O^prSrc — 1) be an arbitrary p-simplex of the boundary 3L = <dL,
3L*>. Since dL is a finite collection of (n — l)-dimensional complex polyhedra,
we can consider a conjugate (q — l)-simplex of sp on dL, which is denoted by
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LEMMA 1.2. For each p-simplex sp (Q^p^n — 1) of dL the (q — l)-simplex

*sp(δL) is the unique (q — Γ)-face of the q-sίmplex (— l)p*sp contained in

(1.5) *s*(dL)ed(-l)p*sP for each

PROOF. The inclusion relation

\*s'(dL)\ c \d*sP\

follows from the relations |*sp| = |*sp| Γ) |L| and |*sp(<?L)| = |*spl n |3L|. Let
s^+1 be a 0+l)-simplex such that spadsP+1 and |sp+1| n \L-dL\^0. Then, by
(ii) of Lemma 1.1 we have an inclusion relation

(1.6)

We can easily verify the relation

sp+ι x *sp(dL) = sp+ΐ x

Then by (1.6) we have the inclusion relation

when we note the position of two (q — l)-simplices *sp+l and *sp(dL).

A p-simplex or a p-chain (0^/?^n) is said to be in the interior of L =

<L, L*>, if its carrier is in the interior of |L|.

5. Subdivision of a polyhedron. Here we shall make some agreement.
We shall denote subsets of N = {!,..., n} by /r, Js, Lί?..., etc. The subscripts r, s
and t of /r, Js and Lt respectively show numbers of elements of the subsets. By

the small letters ΐ ί9..., ir; JI,...,Λ; /i,.. ., /ί with subscripts we denote elements of

the subsets ir, Js and Lt respectively, i.e. /r = {il9..., ir}, Λ= ={7ι> »Js} an<^ A =
{/!,...,/,}. Here we shall agree that iι< ~<ir9jι< <js and ll<- <lt. If
a family {Ls, Mί?..., NM} of subsets of 7r is a decomposition of /r, i.e. /Γ = L S U
Mr U ••• U -/Vu and Ls, Mί?..., JVU are mutually disjoint, then we write Jr = Ls + Mί +
— \-Nu. For each /pc=AΓ, the complement of Ip in N is denoted by Jq: N = Ip +
Jq. If a p-simplex is denoted by ep

IrLsMt. . . whose meaning is subsequently defined,

then the subscripts /r, Ls, Mf,... will show mutually disjoint subsets of N. We
should note that JrLsMf does not mean a product set of /r, Ls, M,,... .

Let K=(K9 K*y be a cubic complex polyhedron and let sn = [en, φ~\ be an
n-simplex of K. We may assume that the euclidean n-simplex e" is the unit cube

(1.7) e j J ^ ί O g x ^ l (ieJV)}.

We denote each p-face (O^p^n) of e% by
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(1-8) efpLr = {0 g x, ^ 1 (i e /,), x, = 1 (i e Lr), χt = 0 (i e Jq - Lr)}

( O ^ r r g s ) .

We write

We agree that the p-simplex sp

IpLr has the orientation induced by the orientation
of the ^-dimensional space 0-x^ x^.

The euclidean n-simplex e% is divided into 2n cubes

H*U,_Γ = { 0 £ x, ^ y (i e/r), -|- g xt £ 1 (/ 6 /_)} (0 g r £ n)

by the n hyperplanes [xt = 1/2} (i = 1,..., n). Then a subdivision of the n-simplex
s" into 2n new simplices

is defined. Further the subdivision of the n-simplex sn induces subdivision of
each p-face of sn (l^p^n — 1). We denote each p-simplex (O^p^n) of the
subdivision of the euclidean n-simplex e% by

*ep

IrIp_rLsMt = {θ g x^ -i- (i e Jr), -i- ^ x, ̂  1 (i e/p_ r),

x, = 1 (i e Ls), x, = y (i e Mf), x, = 0 (for other ί of N)\

(Q^r<.p,Q^s<.q9Q^t<>q-s),

and we write

We agree that the p-simplex t]s/r/p_rLsMt

 nas tne orientation induced by the ori-
entation of the p-dimensional space 0-xfl xίp, where 7p = /r + 7p_Γ = {i1,..., ip}.
We carry out this procedure for all n-simplices of K so that if a p-simplex sp

(1 ̂  1? ̂  n — 1) is a common p-face of two n-simplices sn and σ" then the subdivision

of sn and σ" induces a common subdivision of the p-face sp, if necessary, by a
suitable choice of each mapping φ. Then we have a new cubic polyhedron K±

which is called the subdivision of the polyhedron K. Since the complex
polyhedron K=<K, X*> is cubic, the conjugate polyhedron K^ of Kx is also
cubic and thus so is the complex polyhedron K1 = <X1, Kfy. The complex
polyhedron K1 = <JC1, Kf> is called the subdivision of K, where we should note
that K% is not a subdivision
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Let sn = |y, φ] be an arbitrary n-simplex in the interior of the conjugate

polyhedron K* and let us assume that the euclidean n-simplex en is the unit

cube eft of (1.7). We denote eft and its 3W —1 adjacent euclidean n-simplices of

eft by

eϊritίn-r-< = {-1 ̂  X; ^ 0 (ίe/r), 1 ̂  X; ^ 2 (ie/ f),

0 ^ xt ^ 1 (iel,-,-,)} (0 ̂  r ̂  n, 0 g ί g n - r).

Especially ^70ro/n = eN Then each euclidean p-simplex

*Uw-tLs = {-1 ^ *i ^ 0 (ze/r), 1 ̂  xf g 2 (ie/,),

0 ^ X; <; 1 (ί e ίp-r-f), *j = 1 (i e L5), xf = 0 (for other i of N)}

( O g r ^ p , O g f ^ p — r, 0 ^ 5 ^ q)

is a p-face of one of these 3W n-simplices. We may assume that the mapping

φ of sn = ^eft9 φ] can be extended to a one-to-one bicontinuous mapping of the

above 3n euclidean n-simplices into the basic manifold M, and the 3" n-simplices

SjU/n-r-t ='KfrUn-r-t» ̂  (° = Γ = "' ° = * = Λ ~ Γ)

are the collection of sn and its 3W — 1 adjacent n-simplices of the conjugate poly-

hedron X*. Then each p-simplex

p p p i η

is a p-face of one of these 3" n-simplices of X*.

We define 3" new euclidean n-simplices

^ ^ x, ̂ -| (ie/n_ r_ r)J (0 g r g n, 0 g ί g n - r)

and euclidean p-simplices

r.tLs = - ^ x( ^ 0 e 7r), £ *, £ - - (ίe/,),

•i- ̂  x, g -|- (ie /„_,_,), x, = 1 (ieL5), xf = -J- (for other i of JV)}

(0 g r g p, 0 g ί ̂  p - r, 0 g s g q).

Then we may assume that each
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is an n-simplex of the conjugate polyhedron K? of the subdivision Kt. Each

p-simplex

is a p-face of one of these 3" n-simplices. We agree that the p-simplex

%siritfP-r-tLs has the orientation induced by the orientation of the p-dimensional
space 0-xίV xίp, where Ip = Ir + lt + lp_r,t = {il9..., ip} .

6. Normal coordinates. Let K be a cubic polyhedron and sn = [e"9 φ]
be an arbitrary n-simplex of K. We can choose the mapping φ so that en is a
unit cube. Then there exists an affine transformation ψ of the unit cube eft of
(1.7) onto en: en = \j/(e^). To each point P of en we can assign the coordinates
of the point ψ~l(P) of e%. These coordinates are called the normal coordinates
of (the point P of) e". Let ι//ί be another affine transformation of e% onto en.
Then both normal coordinates assigned by ψ and \l/ί are said to be equivalent to
each other. We find that a point P on each p-face ψ(e1pLr) of e" has a normal
coordinates (x^..., xn) such that Xj = l( ieL r ) and Xf = 0 (ieJq — Lr). The
essential class (x^,..., xίp) is called the normal coordinates of the point P on the

p-face ^(ef Lr) (induced by the normal coordinates of e")
Let sw = |yι, φ] be an n-simplex of K with normal coordinates assigned on

e". Then we can assign normal coordinates to each point x of sn by giving
the normal coordinates of φ~l(x) e en to the point x.

The set σf (IpaN9 O^pgn — 1) of points of s" having normal coordinates
(x1?..., xπ) with x f = l / 2 (ie Jίy) is called a median p-face of s".

The following lemma can be proved by the method analogous to that in the
case of normal (bary centric) coordinates of triangulation.

LEMMA 1.3. For the collection {sn — \_en, φ~\] of n-simplices of a cubic
polyhedron K, a set of mappings φ can be so chosen that for each common p-face
sp(i^p^n — l) of two n-simplices sn and σ", the normal coordinates of sp in-
duced by sn and σn are equivalent.

A set of normal coordinates chosen in this way is called normal coordinates
of K. A cubic polyhedron K to which such normal coordinates are assigned,
is said to be normal.

Let JRC=<K, K*> be a cubic complex polyhedron such that K is normal.
If for each common p-face speK(l^p^n — 1) of 2q n-simplices sjf (/=!,..., 2β),
the carrier \*sp\ lies on the union of some median g-faces of 5? (/=!,. ..,2β), then
K* and K are called a normal conjugate polyhedron of K and a normal complex
polyhedron respectively. Here, if K is compact bordered, then it is moreover
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required that for each p-simplex spedK (l^p^n — 1) the carrier |*sp| lies on
the union of some median g-faces.

A subdivision Kί of a normal polyhedron K is called a normal subdivision

of K, if for each p-simplex speKί (Orgp^n — 1), the carrier \sp\ lies on the

carrier of some p-simplex of K or lies on some median p-face of an n-simplex of

K. We may assume that the normal subdivision K^ is normal polyhedron which

has the normal coordinates induced by that of K. Let K^ be the normal conjugate
polyhedron of the normal subdivision K±. Then the complex polyhedron K1 =

<X l s K*> is called a normal subdivision of K.

7. A Riemannian manifold based on a normal polyhedron. Let M be a
manifold on which a normal complex polyhedron K=<X, jf£*> is defined.
Then we can make M into a Riemannian manifold by the following procedure:

(i) With the notation in 6, we can map each n-simplex sn = [en, 0] e K onto
the unit cube e% of (1.7) by the mapping (φo^)-1. By these mappings, local

coordinates in a neighborhood of each point in the interior of each n-simplex

of K are defined.

(ii) If a point x lies on a ]?-face sp of an n-simplex s? (O^pg n — 1) but does

not lie on any (p— l)-face, then there exist just 2q n-simplices s? (i = l,...,2β)

whose common jp-face is the simplex sp. Then we can map the union U?=ιS"

onto a union W?=ιβ" of 2q unit cubes e" (ι = 1,..., 2q) on E71 which have a common

p-face ep in such a way that sp is mapped onto ep and the normal coordinates of
s« (/=!,..., 2g) are preserved. The point x is mapped into a point Peep. By

this mapping, local coordinates in a neighborhood of x are defined. The restric-

tion of these local coordinates to each si is an affine transformation of the local
coordinates defined in (i).

(iii) The transformation between local coordinates defined in (i) or (ii) is

a rotation or a parallel transformation of En and thus the length is invariant

under the transformation. Hence, by making use of these local coordinates we
can introduce a positive definite metric in M and can make M into a Riemannian

manifold.

The Riemannian manifold M constructed by the above procedure (i), (ii)

and (iii) is called a Riemannian manifold based on a normal complex polyhedron

K.

§ 2. Difference forms on a polyhedron

1. Difference calculus. Let K=(K, K*y be an open, closed or compact

bordered complex polyhedron.

By a p-difference (p-th order difference form) φp on K (O^p^n), we mean

a complex valued function φp on the collection of oriented and oppositely oriented
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p-simplices of K such that φp has a value φp(sp) for each oriented p-simplex sp

and φp(-sp) = -φp(sp).

In the case where K is compact bordered, for every 0-simρlex s° of dK*,
let s"-1 be the (rc - l)-simplex of dK with s0 = *5

π-1(5K) and let s? be the 0-

simplex in the exterior of K with 3(— l)"*sw~1=5§ — 5?. Then for every 0-

difference φ° on K we define (p°(s?) by a relation

(2.1) φ°(5?) = 2φ°(s°)-(?)
0(5§).

For every p-difFerence (pp(l:gp^n) on K and for every conjugate p-simplex
*sq of sg e d£ we define ^p(*s«) by a relation

(2.2) φ*(*s«) = 2 φP(*s«) .

We define cίφ
p + c2ψ

p by

s") (0^ p g π),

where φp and I/AP are jp-differences on K, and ct and c2 are complex constants.

The exterior product φpψq of a p-difference φp and a ήf-difFerence ψq (0^
p^n — 1) is defined as an n-diίFerence given by

(2.3)

for each n-simplex sneK, where if s" = *s° then *s" is replaced by *~1sϊl, if
sp = *sq or spedK then *sp is replaced by (— 1)^*~V or *sp respectively, and

v(s*) is the number of 0-simplices s°<=K-dK* with 5°esP. If p = 0, then (2.3)
is reduced to

(2.4) φ°ψn(sn) = φ°(*sM)ψM(sn) .

The complex conjugate φp of a p-diίference φp (Q^p ^n) is defined by

φp(sp)=~φp(sp).
The difference of a p-difference φp (O^p^n — 1) is defined as a (p + 1)-

diίference ^lφ^ given by

Aφp(sp+1) =

for each (p+l)-simplex sp+ίeK. If zlφp = 0, then φp is said to be closed.
We assume that every n-diίference is closed. If for a p-difference φp (l^p^π)

there exists a (p — l)-diίference \l/p~l such that φp = Aψp~1, then φp is said to be
exact. We assume that no 0-difference is exact. We have

AAφp = A(AφP) = 0
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for each p-difference φp (Orgp^n — 2). Hence, if a p-difference φp is exact, then
it is closed.

We agree that every p-diίference φp (l^p^n — 1) on a compact bordered
complex polyhedron K=(K, K*> satisfies the conditions

(2.5) AφP(*s4-l) = Q

and

(2.6) AφP^s*-1) = 0

for each (q- l)-simplex s*'1 6 dK. These assumptions do not mean any essential
restriction.

2. Summation of differences. We define the sum of a p-difference over
a p-chain (O^p^n). Let cp = ̂ iais

p

i be a p-chain of a complex polyhedron K.
The sum of a p-difference φp over the p-chain cp is defined by

The basic duality between a chain and a difference

(2.7)

is obvious, where cp is a p-chain and φ^""1 is a (p— l)-difference.
The following two criteria are also obvious :

A p-difference φp (O^p^n — 1) is closed if and only if \ φp = 0 for everyucP

cycle cp that is homologous to 0;

A p-difference φp (O^p^n) is exact if and only if S φp = Q for every
^J cp

cycle cp.
If a p-difference φp (O^p^rc — 1) is closed, then the period of φp along a p-

cycle cp is defined by § φp

9 which depends only on the homology class of cp.ucP

From the basic duality (2.7), de Rham's duality theorem between the homology
group of p-chains and the cohomology group of p-differences is derived.

Now we shall define the sum of an n-difference over a complex polyhedron
K=CK, K*>. First, let us assume that K is compact bordered or closed.
When by the common notation K we denote the n-chain defined as a sum of
oriented n-simplices contained in K, the sum of an n-difference φn over K

is defined as the sum of φn over the n-chain K. If K is open, then we can set
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provided that the limit exists, where c" is an w-chain of K which approximates K.

3. Conjugate differences. Let φp (O^p^n) be a p-difference on a complex

polyhedron K. Then the conjugate difference *φp of φp is defined as a q-

difference satisfying the condition

*φp(*sp) = φp(sp) (0 ̂  p ̂  n)

for each p-simplex sp e K U {*s* | s9 e K} . Then by (i) of Lemma 1.1 we can see

that

(2.9)

and

(2.10) φpψq = (—

By (2.9), the inverse operator *-1 of the operator * for a p-difference is given by

(2.11)

A p-difference φp (O^p^n) is said to be harmonic if φp and *φ^ are both
closed. By (2.9) and the definition, φp and *φp are simultaneously harmonic.

We introduce the operator

(2.12) <5 = (-l)p*-M*

for a p-difference. By (2.12) and (2.11), the operator δ for a p-difference has the
expression

(2.13) <5 = (-

By (ii) of Lemma 1.1 it follows that

δφp(sp~l) = (-

= Σ <PP

sP-icdsP

Hence we see that the operator δ has the simple meaning

(2.14) δφ*(s*-l)= Σ

for each (p-l)-simplex s*7"1 in K. By the definition of the operator δ, a p-
difference φp (1 ̂ p^ n - 1) is harmonic if and only if
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AφP = δφP = 0.

§ 3. The Hubert space of differences

1. The inner product. Let K=<X, K*> be an open, closed or compact
bordered complex polyhedron. Let φp and ψp (O gp^n) be two jp-differences
on K. We define the inner product (φp, \j/p) = (φ^, î ^ of φp and ̂  by

Then we can easily verify that

\ Σ

(3.1)

Σ
S«eK-dK

where we agree that the sum with respect to an empty set vanishes. By (3.1) we
find that the relations

and

hold.

The norm \\φp\\ = ||φp||jκ: of a p-difference φp is defined by

\\9p\\κ = (<PP> <PpYit2 ( O r g p ^ n ) .

By Γ — Γ(K) we denote the Hubert space of all ^-differences φp on K with a finite
norm ||φp||<+oo for a fixed p(O^p^n). Furthermore, we define the closed

subspaces of Γ as follows :

Γc = {φp I φp is closed, φp e Γ} ,

Γe = {φp I φp is exact, φ*> e Γ} ,

Γh = {φP I φP is harmonic, φp e Γ} ,

Γ* = {φ* I *φP is closed, φf e Γ} ,

Γ* = {(pP I *φ^ is exact, φpeΓ},

Γjf = {φp I *φp is harmonic, φpeΓ} .
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Then it is obvious that ΓecΓc, Γή = Γc n Γ* and ΓJ = ΓΛ.

2. Fundamental theorem.

THEOREM 3.1. If a complex polyhedron K is compact bordered or closed,

then the summation formula

(3.2) (Δφ*-\ ψ*)κ = ^ φ*-1*^ + (φ'-1, δψ>)κ (1£ p £ n)

holds, where if K is closed then the first term of the right hand side vanishes.

PROOF. The case of 2^p^n- 1 : By (3.1) we have

Σ

~- Σ

sPeK-dK

(3.3)

where φ — φp~l and ψ = \l/p.1) By (2.6) the last term of the right hand side of

(3.3) vanishes and further by (ii) of Lemma 1.1, (2.5), (2.14) and Lemma 1.2 we see

that

Σ Aφ(s*)$(s*) + \ Σ
sPeK-dK £ sPed

= Σ Ψd"-1) Σ
sP-ieK-δK sp-ic

+ Σ
'

Σ -

+ Σ

Σ φ(sP'i)δ\l/(sP-ί) + Σ
sP-ieK-dK sP-ied

Similarly, we see that

1) Throughout the present paper, the upperscripts of ψ*~l and \l/p are omitted in the obvious
case.



26 Hisao MIZUMOTO

(φ, δψ)κ = Σ
sP~leK-dK

+ Σ
si + 1eK-d

Σ
-

Hence we find that

(Jφ, ι/r)κ - (φ,

= Σ
sp-iee

The case of p = l: By a method similar to that in the case oΐ 2^p^n— 1,
we can derive the relations

(A<P, Ψ)κ = Σ φ(s
s°eK-8K s°eδK

+ Σ J^ί*^"1)^**""1) + 4"- Σ
sn~ίeK-SK 2. sn-led

and

(Ψ, W)κ = Σ φ(^0)δι?(^0) + Σ φ
s°eK-dK sneK

= Σ φ(^°)(5^(^0) + Σ
s°eK-dK sn~*eK-dK

+ (-!)" Σ ί̂ ί -1) Σ ς»(** ).
^"-ieaK *s"ea(-l)"*s"-1,s"eX

Hence, by (ii) of Lemma 1.1 and (2.1) we can see that

(Δφ9 ψ)κ - O, δ\l/)κ

= Σ φ(s0)*$(*s°(dK))
s°edK

- Σ *$(sn-
5n"16βK

s°edK sn"1edK



A finite-difference method on a Riemannian manifold 27

where s""1 cz dsn e K.
The case of p = n can be easily reduced to the case of p=l when we put

φQ = *ψ« and \l/l = *φn~l.

3. Orthogonal projection of a compact polyhedron. In 3 and 4, we shall
briefly state the method of orthogonal projection of the Hubert space of differ-
ences which is analogous to de Rham-Kodaira's orthogonal decomposition
theorem for differential forms on a Riemannian manifold.

THEOREM 3.2. Let K be a closed complex polyhedron and let Γ be the
Hilbert space of p-differences (Q^p^n) on K. Then the orthogonal decom-
positions:

(3.4) Γ = Γc + Γ* = Γ* + Γβ,

(3.5) Γ = Γh + Γe + Γ?,

(3.6) Γc = Γh + Γe and Γ* = Γh + Γ*

hold.

PROOF. By Theorem 3.1 we see that

*φ«~1) (0 ̂  p ̂  n - 1).

Hence Aψp = Q implies that (φp

9 *Δφq~l) — Q and thus ψp is orthogonal to every
element of Γ*.

Conversely, if

(ΔψP, *φ«~1) = 0

holds for every (q — Indifference φq~l on K, then we can easily verify that Aψp = Q
on K. Hence on a closed complex polyhedron 1C, Γc is the orthogonal comple-
ment of Γ*. Then by the general theory we have the decomposition Γ = ΓC + Γ*.
In the case of p = n, by the definition in §2.1 we find that ΓC = Γ and Γ* = 0 and
thus we have Γ = Γc 4- Γ* .

The decomposition Γ=Γ*4 ^β immediately follows from the decomposition
Γ=ΓC + Γ* of the space Γ of ^-differences. The decomposition (3.4) implies (3.5)

and (3.6).

Let L = <L, L*> be a compact bordered complex polyhedron. A p-differ-
ence φp (O^p^n — l) on L is said to vanish on the boundary δL = <(5L, 5L*>
if φp(sp)=*Q for every p-simplex sp of δL. A closed p-difference φp (O^p^n — 1)
is said to belong to the subspace Γc0 of Γc if φp vanishes on dL. Similarly, an
exact p-difference φp = Δψp~l (1 ̂ p^ri) is said to belong to the subspace Γe0 of
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Γe \ϊ\l/p~l vanishes on dL. In the case of p = n, we interpret Γc0 as Γc0 = Γc = Γ.

In the case of p = 0, we interpret Γe0 as ΓeQ = Γe—0. The subspaces ΓJ0 and

Γ*0 are defined by Γΐ0 = {φp\*φpeΓc0} and Γ*0 = {̂ | *^eΓ,0}, where Γc0

and Γe0 are the ones of ^-differences.

By Theorem 3.1 we obtain the formula

(3.7) (ψp, tAφ*-1) = § φ^ψP + (- 1)<W, *^-1) (0 ̂  p g n - 1) .
^dL

By making use of (3.7) and an argument similar to that in the proof of Theorem

3.2 we obtain the following theorem.

THEOREM 3.3. Let L be a compact bordered complex polyhedron and

let Γ be the Hubert space of p-differences (O^prgπ) on L. Then the orthogonal

decompositions:

Γ = ΓCO + Γ* = Γc*0 + Γe,

•* ~ * c + Γ CQ — Γ c 4- Γ eQ,

^ = Γh 4- Γe0 4- Γ*Q,

ΓC = Γh 4- ^eO»

Γe = Γhe + Γe0,

^Λ = Γfo 4- ^AO = •* hO + -* Λ e

hold, where Γhe = Γh n Γe, Γh0 = Γh Π Γc0 αnί/ no = Γh n Γ*0.

4. Orthogonal projection on an open polyhedron. Let us suppose that K

is an open or closed complex polyhedron. A p-diίference φp (O^p^n) on K

is said to have compact support if φp(5p) = 0 for every p-simplex sp e K except for

a finite number of p-simplices of K.

For Irgpίgn, let Γ^0 be the subclass of Γe which is defined as a collection of

the p-difference φp such that φp = Aφp~1 for some (/? - l)-difference i/^"1 with

compact support. We define the subspace ΓeQ of Γ as the closure of Γ'e0 in Γ

(l^p^n). In the case of p = 0, we interpret Γe0 as Γe = 0. The subspace ΓJ0

is defined by Γ*0 = {φp\ *φpeΓe0}, where Γe0 consists of ^-differences. From

the definition it follows that ΓeQ = Γe and Γ*0 = Γ* (Q^ p^ri) for a closed .complex

polyhedron K. For O^p^n — 1, let Γ'c0 be the subclass of Γc which is defined

as a collection of the closed p-difference φp with compact support. In the case

of p = n, we interpret Γ'c0 as ΓC — Γ. The subclass Γ^ is defined by Γ'c$ = {φp\

*φpeΓ'CO}, where Γ'c0 consists of p-differences. The subspaces Γc0 and Γ*0
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are defined as the orthogonal complements of Γ* and Γe respectively:

Γ = ΓCO + Γ* and Γ = Γ*0 + Γe.

Then we have Γc0c;Γc0c:Γc and Γ;gc:Γ*0c:Γ*.

By making use of (3.7) we can prove the following theorem.

THEOREM 3.4. Let K be a closed or open complex polyhedron and let Γ
be the Hubert space of p-differences (Q^p^n) on K. Then the orthogonal

decompositions of the same type as that in Theorem 3.3 hold.

Chapter II. Difference forms and differential forms

§ 4. The convergence of differences with respect to subdivisions

1. Natural extension of difference. Let K=(K, K*y be a cubic complex

polyhedron and Kί = (,Kl9 K^y be a subdivision of K. Let φp (Ogpgn) be a

closed p-difference on K. Then we shall define the natural extension tyφp of φp

to the subdivision Kt as a p-difference on K{ as follows.

We shall use the notation in §1.5. First, we assume that the difference φp

vanishes on K*. Then the natural extension φp is a p-difference on K1 which

is defined by

(4.1) ϊ

for each p-simplex speK1 and which vanishes on K%.

Secondly, we assume that the difference φp vanishes on K. If K is closed

or open, then the natural extension %φp is a p-difference on K^ which is defined by

(4.2)

2p+

min(tt,s)

Σ
u=0 i = max(0,tι-g+s)

(I, + lt + ϊp,r.t = κμ + Rv + &,-μ-v)

for each p-simplex sp e Kf and which vanishes on K±. If K is compact bordered,
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then we may assume that the difference φp is defined on K*b (cL §1.4 for

the notation). Then the natural extension §φp is a p-difference on Kfb which is

defined by (4.2) for each p-simplex sp e Xf b.

For a generic φp on K, the natural extension \\φp is defined as the sum

bφp = ϊ\φκ + t(φκ*> where \\φp

κ and tιφ|* are the natural extensions of the restric-

tions of φp to K and K* respectively.

In what follows we write simply φIpLr and <Pιrjtιp_r_tLs f°r ΦP(S/PLΓ)
 anc*

<Pp(sΐrΊtϊP-r-tLs) respectively.

LEMMA 4.1. \\φp is closed on Kv.

PROOF. If sp+1eKί9 then we may assume that sp+1 = tjSj^1joLoMt by a

choice of a suitable normal coordinates. When we set Ip+ 1 =/p+ 1 =Np + Ll and

sgn(Lj; TV,) = sgn

we obtain that

lIoLoM)

sgn(L ι ; 7Vp

Σ s g n ( L ι ; Λ r p ) Σ Σ
Li=/p + , * \v=OK v <=M,UL 1

Σ Σ Σ sgn (Lj ;
V=0 K v<=:Mt Np + Lι = Ip + ι

If sp+1 e Kf , then we may assume that sp+1 = t]5/^1

0/p + 1_ r L o by a choice of a

suitable normal coordinates. When we set /p+1 = Jr + /0-f / p + 1_ r = Mp-f L! and

Mp = Kμ + KQ + Kp_μ, and we introduce the following new notation;

(4.3) eί * * N r
^ ' ΛμΛQΛp-μΛί s I^ι

= {-1 ^ Xί g 0 (ίeKμ), 0 ̂  xf ^ 1 (/ e £,_„),

x, = 1 (ieNs), Xi = -1 (ieLO, x, = 0 (ie /„_! - JVS)},
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•Slμtfotfp-μtfsLi = LeKμRo^P-μNsL^ ΦΊ

and

^Iμffotfp-μNsLi = L^eKμRQKp-μNsLί9 0

we obtain that

sgn(L ι ;Mp)
r

+ . Σ f sgn (Lt Af,)
Mp-Γ f-Lι — Ip + i-r

2̂ - {̂ . Σ ι=/p sgn (L, M,) g ̂  Σ ̂  |o

'I Σ ΦKμRoRp-μNu ~" Σ ^^M^O^p-MNM

X N u C j ^ . i U L i μ P M NwC^^-i M

y Σ sgn(L ι ;M,)Σ Σ Σ
^ Λfp-P+Lι=/p + ι-r /ί=0^McJ r U=

Σ VKuRo&p-vWuVLi) + Σ ψKuRoKp

,,4' Hr-ι Σ A Γ Σ βgnίA A/,)!;1 Σ Σ
2P+2β-t-r 1 H=13 LHr-!+Li=7r ' ,.=OKM = Mr-i Λίu-ι«=J,-ι

4- Σ sgn(L ι ;Mp)Σ Σr { Σ (ΦI^P-^-ULO
^ j(ϊp-r+Ll = ίp + l-r /t=θX μ C/ r (NudJ^.j

- VK^oRp-nNu) + Σ (ψRμRoKp-μNu-i ~ 9KμR0Rp - μ(N u - j U LI)) (
A f u - i ^ J q - i ' -J

3«

\ Σ _ sgn(Li; Mp)
I Xμ — 1 4" L i ~~ K μ,

4- Σ. sgn(L!
^p-μ+Li — Kp + ι-μ

,-ι Σ jir Σ Σ Σ, ^Φ(4:UP+1-Λ-,)=0-r i j
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Henceforth, we need to somewhat modify the definition of the inner product

of jp-differences. We define length of a 1-simplex s1 of a cubic complex poly-

hedron K by giving a common positive number h to each sieK\J {*sn~1\ s"'1

e K}. If each s1 e K u ! s""1 e K} has length ft, then K is said to have side

length ft. We agree that if K has side length ft, then the subdivision Kx of K

has side length ft/2. If K has side length ft, then the inner product (φp, \l/p)κ of

(pp and \l/p is defined by

4- Σ φp(sp)ϊj/p(sp)

~ Σ φp(*s«)\l/p(*sq)\
£ s*edK )

(compare with (3.1)), where the sum with respect to an empty set vanishes. We
agree that each K has side length 1 except in the case where K is taken as a

subdivision of some complex polyhedron.

LEMMA 4.2. If K is closed or open, or K is compact bordered and φp

vanishes on K*, then the following inequality holds:

\\W\\Kl£ \\φp\\κ

PROOF. First, we assume that the difference φp vanishes on K*. For an

arbitrary n-simplex snεK9 its contribution ||φ||Jn to the square norm \\φ\\ί is

equal to

(4.4) = Σ Σ Σ
Δ Ip+Jq=N s=0 Ks^J

Let cn be the n-chain of Kί which is the sum of the subdivision of the n-simplex

s". Then the n-chain cn is a sum of 2" n-simplex of K^ with |C"| = |SM|. By the
definition (4.1) we see that the contribution |hφ||?n of cn to the square norm

I I ̂ lU! is equal to

( 1 \n-2p 1 4 <l-t P

y) ^ Σ Σ 2 ' Σ Σ Σ Σ
* / Z Ip + Jq = Nt = 0 S=OΓ=0 Ks + Mt<=Jq Ip = Ir+lp-r

9 I g-f

Σ Σ 9? Σ
Ip+Jq=N ί=0 z s=0 £S4

Ip+Jg=N lτ=0 V τ / 2T ,

v=0 Nv<=Mt

\(pr κ \2

\ripKsl

Ψlp(Ks(ίNv)

tv/2]q q~v / n — v \ 1 q~v tv/2
+ Σ Σ ( ?

 τ )^rΣ Σ Σ
v=l τ=0 \ τ /^ s=0 J g =X s +Lq_ s μ=
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Hence we find that

33

3« t j «-v

^7 2-+Jg=tf v=l -̂  s=0 Jβ=ί

cv ] v2—ι 2—1
,q-s μ=0 Mμ+Nv-μ<=Lq-s

\(Plp(KsUMμ) ~ Φlp(KsUNv-μ)\ = '

and thus

Σ Σ-
sneK Ip+Jq=N v = l

[v/2]

, /i=0 Mu

Secondly, we assume that the difference φp vanishes on K. For an arbitrary

n-simplex s" eK*, the contribution ||<p||Jn of the π-simplex sn to the square norm
\\φ\\κ is written in the same form as (4.4). By the definition (4.2) we can see that

the contribution H k i φ l l i ^ n i s " ! of the portion of Kf restricted to support |^"| to the
square norm Ihφllj^ is equal to

|s»|

= ( "o" ) Σ Σ Σ 0H-f Σ Σ Σ
\ 2 / Jp+Jg=Nr=0 f=0 ^ /p=I r+Jt+/p- r-t s=0 L sczj q

ίp + Jq=N r=0 f==0 /p = J r+/t+

r r 4 min(w,s)

Σ Σ Σ Σ Σ 3<-» Σ
μ=0 v=0 Kμ^Ir Rvcϊt «=0 i=max(0,M+s-

y
f=0 j 7

Σ Σ

Σ Σ
-i<=Ls N M - iC Jq-Ls

y y y
r=0/p = J r+I t- r+lp_ t^pUlσ=7 r

« «-M / ,, 7/ \ 9-M Cu/2]

Σ Σ Σ(?7")2"32 ί-"-"Σ Σ Σ Σ
Ui: τ=r t-r «=0 Jfe=0 \ ^ / s=0 L scJ g μ=0 Mμ+Nu-μ<= Jq-Ls
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(Ip = Kμ 4- Kv + Kp__μ_v = Kp + Kκ + Kp_p_κ = Lσ + Lτ + Lp_σ_ τ),

where if w = 0, Kp = Lσ = Ir and Xκ = Lτ = / f_ r, then the term with respect to

cp in parentheses is replaced by a term

\9lrϊt-rfp-tLs\
2

Hence we find that

•ά Σ Σ Σ Σ Σ \<pJrit-rtf-tL,\2
Z Ip+Jq=Nr=0 Ip=Ir+ϊt-r+ϊp-t s=0 Ls<=Jq

 P

y

Σ Σ Σ^YΣ" Σ CΣ ] Σ
UIσ=7r ^ κ Ul τ =J t _ r w=0 \ 5 / s=OL scJ β μ=θ MM+Λru-μlc Jq-Ls

Therefore, we obtain that

I M I i - l h Φ l l i i
S" ^ 7 yί23n+« s4k* JP+J;=N t=o ιoί r=o/ P =j

€ / 1 \w 9-M [w/2]

Σ Σ Σ (f ) Σ Σ Σ Σ
J?'pUl< r = Jr ^ I CUl τ=7 t- r M = 0 \ -> / S=OLs<=Jq μ=0 Mμ+Nu-μCjq-Ls

\<PKpRκRp-p-κ(LsUMμ) ~ ^Lαlτlp-^-.CL.UNu^)!2 ^ 0.

By Lemmas 4. 1 and 4.2 we know that if φ? e ΓC(K) then %φP e Γ^Ki).

Let {Kf = <Kί5 ^*>}?Lo be a sequence of complex polyhedra such that K0

is cubic and Kt is a subdivision of K^! (ί = l, 2,...). Let <pp be a ^-difference

of ΓC(KQ) and tj*^ (ι'=l, 2,...) be the natural extension of ^i~1φp to Kt where
%°φp = φp. The ^-difference ^^ on Kt (i = l, 2,...) is called the natural

extension of a p-difference φp to K^.

2. Norm convergence with respect to subdivision. With the notation in 1,

let φp>i = φi be an element of the Hubert space Γ^Kf) of closed ^-differences

onK,(f = 0, I,...)-

LEMMA 4.3. Suppose that K0 is closed or open, or K0 is compact bor-

dered and φl vanishes on Kf for each i. If the orthogonality

(4.5) (φl - tf-W, φ*)Kj = 0
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holds for every i,j (j>i), then the sequence {φ1}?^ has the following properties:

( i ) HφΊljCί is monotone decreasing with i ;

(ii) lim Hφ'11,, = lim H^VHs,;
i-*oo i,y-*°o

(iϋ) lim n^ - n'-yn*, = 0.
i,j-»oo J

PROOF. The orthogonality (4.5) and Lemma 4.2 imply that

\\9j - n'-Vlli, = Ih'-Vlli, - II^ΊIi, ^ IIΦΊIi,

Hence we have (i), (ii) and (iii).

REMARK. For instance, if φ^Γ^K^ and φi-^iφ°eΓe0(K^ (i = 0, 1,...),
then the assumption (4.5) of Lemma 4.3 is satisfied.

§5. The difference approximation of a differential on the Riemannian
manifold based on a normal comlex polyhedron

1. Hubert space of differentials. Let M be an open or closed orientable
analytic Riemannian manifold with a positive-definite metric ds2 = J Σ έ i j g i j d x i d X j 9

where gtj = #i/x 15..., xn) are assumed to be real analytic functions of xί9...9 xn.
For two ^-differentials (p-th order differential forms) ω and τ on
the inner product (ω, τ) of ω and τ is defined by

(ω, τ) = (ω, τ)M = \ ω*τ,
JM

where by ω*τ we denote the exterior product of the differential ω and the conjugate
*τ of τ. Let Γ = Γ(M) be the Hubert space consisting of all measurable ^-differ-
entials ω on M with finite norm ||ω||=(ω, ω)1/2< + oo.1} We define the sub-
classes ΓJ = ΓJ(Af) and ΓJ* = ΓJ*(M) of Γ by

ΓJ =

= {ω I J*ω = 0, ω e Γ n C1} .

In the case of p = n (p=0 resp.), we interpret Γl

c (ΓJ* resp.) as Γl

c =Γ n C1 (ΓJ* =

Γ n C1 resp.).

Let ΓJ0 = Πo(M) (Γ1

eg = Γ1

eS(M) resp.) be the subclass of Γ consisting of all

1) We shall use the common notation Γ with some subscript for both spaces of ^-differences

and /^-differentials with finite norm. If any confusion may occur, then we shall indicate
the polyhedron K and the Riemannian manifold M like Γ(K) and Γ(M) respectively.
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^-differentials ω such that ω = dτ(ω = *dτ resp.) for some (p— l)-differential τ

((q - l)-differential τ resp.) of class C2 with compact support. In the case of p = 0
(p = n resp.), we interpret Γ*0 (Γ*ξ resp.) as 0. The subspaces Γe0=Γe0(M) and

Γ*0==Γ*0(M) of Γ are defined as the closures in Γ of Γl

eQ and Γl

e$ respectively.

We define the subspaces ΓC=ΓC(M) and Γ* = Γ*(M) of Γ as the orthogonal com-

plements of Γ*0 and Γe0 respectively. By Γh=Γh(M) we denote the subspace of
Γ formed by harmonic ^-differentials. Then it is known (cf. Kodaira [8]) that

ΓJcΓc, ΓJ*cιΓ* and Γή = Γ cnΓ*, and the orthogonal decompositions:

Γ = Γh 4- Γe0 4- Γ*0 (de Rham-Kodaira's decomposition),

Γc = Γh + Γe0,

Γΐ = Γh + Γe*0

hold.
Let Ω be a compact bordered subdomain of the Riemannian manifold M .

Then the domain Ω is itself a Riemannian manifold. Hence the above orthogonal
decompositions can be applied to any such domain Ω.

2. Smooth extension of a difference. Let K=<K, K*> be an open, closed
or compact bordered normal complex polyhedron and M be the Riemannian

manifold based on the normal complex polyhedron K. Let φp be a p-difference
on K (O^p^n). For each cubic n-simplex s" = [en, φ] of K we can choose the
n-simplex e" and the mapping φ so that the normal coordinates of sn are preserved
and en is the unit cube

of the n-dimensional euclidean space En. We can adopt the coordinate system
x1?..., xn as a local coordinate system on |s"| cM. With the notation in §1.5 we

define the smooth extension %φp of φp to the support |s"| by the p-differential
%φp on |sn| satisfying the condition

(5.1) W= Σ ωIfdXiί dxtp9I pcN

(5.2) ω^ = ?OJ K?L V***-*''*-*'**'^"*^-.S — U J q — Λ.s-rJLq-a

on the local coordinate neighborhood (|s"|; x1?..., xn), where x = l — xt.
First, let us assume that φp vanishes on K*. Then we define the smooth

extension %φp of the difference φp to the Riemannian manifold M by the p-
differential on M which is the smooth extension #φp of φp to \sn\ for each s"e K.
Here the coefficients ωlp of (5.1) are generally discontinuous at a point of the
carrier |sr| of r-simplex sreK(0^r^p). Then we define the coefficients of
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(5.1) on the carrier |sr| by

for a fixed system of local coordinates about a point xe|s r | , where v(sr) is the

number of n-simplices sn such that sr is a face of s", and by |sπ|° we denote the

interior of |s"|.

Secondly, let us assume that φp vanishes on K. If K is open or closed, then

we can similarly define the smooth extension #φp of φp to the Riemannian

manifold M. If K is compact bordered, then we define the smooth extension

%φp of φp to M by the p-differential on M which is the smooth extension %φp of

φp to |sπ| for 5" e K*s and vanishes on M- |K*S|.

Now, let us assume that φp is a generic p-difference. Let φ| and φζ* be the

restrictions of φp to X and K* respectively, and let #</>| and #φ|* be the smooth

extensions of φ£ and <p£* to M respectively. By the ^-differential %φp = %φpz +

ΰφζ* on M we define the smooth extension of the p-difference φp to the Riemannian

manifold M.

LEMMA 5.1. If φp is closed on K and #φpeΓ(M), then %φpeΓc(M).

Here, ifK is compact bordered and if the support of φp contains some simplices

ofK*9 then %φpeΓc(M) is replaced by %φpeΓc(Ω) (Ω = |K*S|).

PROOF. We may assume that l^p^n — 1, and φp is the restriction of a

generic φp to K or X*. Let Q be an arbitrary cubic n-chain (see 4) of K or K*.

It is sufficient to prove that #φ*eΓe(l7) (l/=|βl) Since φp is closed on K, φ*

is exact on Q and thus there exists a (p — Indifference φp~l such that Aψp~ί=φp.

First, we shall prove that

on 17. By (5.1) and (5.2), we can write

/,_, = Σ Σ ^/,-A*tr **.*ίi
S=0 Jq + ί = Ks+Lg-s+ l

for each 5M e Q. Then, by the definition of d^'1 we have

where

)/, = Σ sgn (Aftp
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Since

v V2- 7 2-
S=0 Jq = Ks+Lq-s

we obtain

= Σ Σ Σ βgn(Af ι ;s=0 Jq

 = Ks+Lq-s Ip=Mι+Np-ι

= Σ Σ
S—U Jq— K.s~r]Lq — 5

which implies that d^φP-ί = ̂ A\l/P-1 = ̂ φP on ί/.

Secondly, we can easily construct a (p — l)-differential ωp~l of C2 such that

1 - d$ψ*-l\\υ < s for any ε > 0.

Hence we have %φP e Γe(U).

3. The relation between φp and jfφp

LEMMA 5.2. Lei K ί?e αw open, closed or compact bordered normal

complex polyhedron, and M be the Rίemannian manifold based on K. Let

φp and ψp be p-differences of ΓC(K). Then the following inequalities hold:

(5.3) l l j fφiU ^ \\φ>\\i ̂

(5.4) \(φ,P ψP)κ

where if K is compact bordered then \\φp\\κ of (5.3) is replaced

sPeK+K*s-(8K+dK*s)

PROOF. By the definitions (5.1) and (5.2), for each n-simplex sn eK and for

the smooth extension %φp of the restriction of φp to sw, we can see that

ri ri q
= Σ \ -\ Σn r Σ

Ip + Jq=N JO JO S=0 Jq = Ks+

= A Σ {£ Σ \ΨιpK,\
•> N=JP+J, ls=OK.«=J, '

r
Ks+Lq-s

2
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Σ Σ Σ
ί=l Δ s=OJq=Ks+Lq.sμ=0 Mμ+Nt-μ<=Lq-s

Hence by (4.4) we have

(5.5) \\φ\\ln -

= ^~ Σ Σ 9? Σ Σ Σ
J IP+Jq=N t=l Δ s=OJq=Ks+Lq-s μ=0

\Φlp(KsVMμ) "~
^ 0,

which implies the first inequality of (5.3). By analogous calculation and Schwarz's

inequality we obtain the inequality (5.4).

The second inequality of (5.3) follows from the equalities

ί.π, - \\φp\\2

sn

= 4 Σ Σ {(;)£ Σ \<PιpKs\
2

^ N=Ip+Jqτ=l (\τ/s=OKs^Jq p

τ /,7 __ / \ β-ί [f/2]

+ Σ(; )Σ Σ Σ Σ
f=l \ τ ~~ * / s=0 Jq=X s+Lg- s μ=0 Mμ+JV t-μc:Lq- s

KSU M μ

1 € 4-τ

Oσ 2^ 2^ 2^
r T=l 5=0 Jq=Ks+Lg_ s Nτ<=Lq-s

By Lemma 5.2, φp 6 ΓC(K) if and only if %φp e ΓC(M). Here, if K is compact

bordered and if the support of φp contains some simplices of K*9 then $φp e ΓC(M)

is replaced by «φ^eΓc(Ω) (Ω = |K*S|).

4. Courant-Friedrichs-Lewy's Lemma. Let K=(K, K*y be a cubic com-
plex polyhedron. An n-chain β of K is called a cw&e of £, if there exists a one-to-

one bicontinuous mapping φ of a euclidean cube βe = {/^λ:ί^m (i = l,...,n)}
(/, m: integrers; / + l<m) onto Q and if each n-simplex s" eg is the image of a

euclidean π-simplex en = {μi ^xi^μi+l (l^μ^m, μ^. an integer; ΐ = l,..., n)}

by the mapping φ. Let Q* be the conjugate polyhedron of β. We may assume

that each n-simplex s" e β*s is the image of a euclidean n-simplex en = {μ,-— 1/2^

x^μ^+1/2 (/<μt <w; i = l,..., n)} by the mapping φ. For the n-simplex s" eg

corresponding to e" = {μt ̂  xf ̂  μf + 1 1 ̂  i ̂  n}, we write

ep

lp = {μf g x, g (i e Ip\ xt = μf (i e Jq)}

and
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sf , = [«?,,£] ( O ^ p ^ n ) ,

which is a p-face of s" e Q. For the n-simplex s" 6 Q*s, we write

eΐp = |μ( - -1- g x, g μ, + ̂  (ie/,), x, = μ, -

and

y

which is a p-face of sn e Q*s.
Let {QJ. = <gJ., <2*>}}ίJ (vj^l) be an increasing sequence of complex sub-

polyhedra of K such that each Qj is a cube and β7 (j = 1,..., v + 1) is the minimum
cube under the condition l6y-ι|c:|Qy|0. Let φp (Orgp^n) be a p-difference on
Qv+ 1. From φp we can define a 0-difference w/p (IpaN) by setting

(5.6) M/p(5?0) = φp(s'Ip)

for the vertex 5?0 and the p-face sfp of each n-simplex s" of Qv + 1 + β?+ι

LEMMA 5.3. // φp is harmonic on Qv+ί, then the l-dίfference Δulp is
harmonic on Qv.

PROOF. It is sufficient to verify that δAuIp = Q. We use the notation in
§ 1.5 and the notation (4.3). If we note the equality

sgn (Ki Mp_ i) sgn (î  Λf p _ 0

= - sgn (Lj; Mp_! u X t) sgn (̂  M^j U L^ (M^i + Xi + I^cN),

then we obtain

Σ {(^/o/oίpLo "" ΨloRiMp-iLo) + (ψlQΊQίpLQ ~ <PKJQ&p-iL<)}
Ip=Mp-ι+Kι

+ Σ {(φ/oTofpLo "" ^Wo/pLi) + (ψloJoϊpLo ~ ^Jo/o/pLoLi)}
LιcJ9

Σ sgnCKi; M^ONsgnCX!; Mp.l)(φIoJoίpLo - <Pι0*lΛj,_lLo)

Σ
Lι<=Jq

.̂̂  - (piMpLo)

+ Σ sgn(Li; Mp^Xφ^tf ^ - ΦwoίMp-iULjriJf
Li^Jg ) J
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sgn(Lj; IA {sgii^; Jp) (φIojoίpLί - 9i0joipLo)

Σ sgnCK^; Mp_! U
Ip=Mp-ί+Kί

Ip)((pioJoipLo -

+ Σ sgn (K, M p _ j u ̂
7p=Mp-ι + Kt

Σ sgn (K, Mp_ t
/ p—M p - ι+Xι

- Σ sgn (L, /p

where Nr = Nr = Nr = Nr for an arbitrary subset ΛΓr of N. Since φp is harmonic,

the last side vanishes.

LEMMA 5.4. (cf. pp. 49-51 of [4] and p. 315 of [10].)

(5.7) v2 Σ \\^uIp\\2

Qo^\\φP\\2

Qv + ί.
IP c N

PROOF. First, we assume that φp vanishes on βv + 1. Then, by the formula
(3.2) we have

(5.8) \\AuIp\\*QQ ^ \\AuIp\\2

Qj = § uIp*AΓIp

where Λj (j = 0,..., v — 1) is the 0-chain defined as the sum of all 0-simplices of

dQJs. When we add the inequalities (5.8) for j and Ipc:N9 we have

^y Σ \ulp\
2 (k=2 VΛkIpCN p

Furthermore, when we add the last inequalities for k, we have

(5.9) V(V + 1)ΣN\\^^^

^ Σ \9f\2.
Ql\l-6Q"+ι

Secondly, let us assume that φf vanishes on Q*+1. When we take β0
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βv+1 for <2os and Q*ίί of (5.9) respectively, we have

(5.10) v(v + 1) Σ IMw/jδo ^ Σ
P

The inequalities (5.9) and (5.10) imply the present lemma.

LEMMA 5.5. Let {K~(Ki9 £f>}£L0 be a sequence of open or closed cubic
complex polyhedra such that Kf is a subdivision of Ki_ί (i = l, 2,...). Let φl

(i = 0, 1,...) be a p-dίfference of Γh(K^) such that HΦ'H^ is bounded with respect

to ί. Then, the limit relations:

(5.11) EKl(φ')s Σ Σ Σ Σ M,L.-φί,<L.-L,)l2->o
sneKι Ip+Jq=N s=l LscJq

(l -» 00)

and

(5.12) Eκ,(*φ')=Σ Σ Σ Σ IH>'),.ι,-(V),f<LΓ-wl2-»o
sMe«"i J p+/ g=Nr=l L rc/p

(/ -> oo)

ΛoW.

PROOF. We fix an arbitrary n-simplex s" eKl. We can always find an in-

creasing sequence βo> > 61 °f concentric cubes of K3 such that |6ol = l s W l
Let Qj (7 = 0,..., 4; i = 4, 5,...) be the subdivision of Qj'1 which is a cube of

Ki9 and let (?) = <βj, β}*>. Then, by Lemma 5.4, we have

(3-2-3 - i)2 Σ N<llέί ^ HφΊlδi 0' = 3, 4,...),
/p C^V

where w}p is the 0-difference defined by (5.6) for the present φ*. On the other
hand, we can easily verify that

0 / , ; (' = 3' 4>-)

Hence we have

" |i (' - 3' 4' ">•( 3 . 2 - 1)' i

Adding the last inequalities for all simplices s" εKί9 we obtain

4 2 H^' l l i i ('' = 3> 4" ),

which implies the limit relations (5.11) and (5.12) because of the assumption of
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the lemma.

In the case where J£f is compact bordered, Lemma 5.5 is reduced to the
following somewhat minor result.

LEMMA 5.6. Let {Kt = ̂ Ki9 Kf>}?=0 be a sequence of compact bordered
cubic complex polyhedra such that Kt is a subdivision of K^^ (ί = l, 2,...).
Let jL0 = <L0, L*> be an arbitrary complex subpolyhedron of K0 with |L0|<=
|K0|°, and let {Lι = (Li9 L*y}?=0 be a sequence of complex polyhedra such that
LicKi and |L|| = |L0| (i=l, 2,...). Let φί (i = l, 2,...) be a p-dijference of
Γh(Ki) such that \\φl\\Ki is bounded with respect to i. Then, the limit relations

(5.13) £Ll+LϊKφ')->0 (i-*oo)

and

(5.14) JWϊK φO-'O (i->oo)

hold.

5. The estimation of || tf*φ-*ftφ || . Let K=<X, X*> be an open, closed

or compact bordered normal complex polyhedron and M be the Riemannian
manifold based on K. Let φp be an element of the Hubert space Γh(K) of har-
monic p-differences (O^p^n).

Let s" = |>w, φ] and σ" = [ε", φ~] be a pair of n-simplices such that s"eK
(sweX* resp.), σ"eK* (σneK resp.) and |sπ| n \σn\^09 where if K is compact
bordered, then we interpret K* as K* = K*s. We can choose the n-simplices en

and ε", and the mapping φ and ^ so that the normal coordinates of sn and σn

are preserved, and en and ε" are the unit cubes

and

on the euclidean space En. We can adopt the coordinate system xί9...9xn as a
local coordinate system on |sπ| n |σπ|cM. By the definitions (5.1) and (5.2),
the smooth extension of the restriction of the p-diίference φ = φp to the n-simplex

sn is denoted by
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on the local coordinate neighborhood (|s"|; x l 9..., XΛ), where x = l — xt. The
conjugate diίferential *#φ of the smooth extension jfςo has the expression

*tfφ = Σ_ sgn(/p; Jq) ωlpdxh dxjq.
1 p~\~J q — N

By the coordinate transformation

χ ξi = y - *i

the unit cube ε" is transformed to the unit cube

Then each g-face of the euclidean n-simplex εn and each g-face of the ^-simplex
σn can be written in the forms

εjqKr = {0 ^ ξt £ 1 (ie Jβ), ξ, = 1 (i6XΓ),.fι = 0 (ie/, - Xr)}

(0 ̂  r ̂  p)

and

respectively. We agree that the ^r-simplex σjqKr has the orientation induced by

the orientation of the ^-dimensional space 0-Xjj x^. For the restriction of
the conjugate difference *φ to the n-simplex σn which has a value at each g-face

σjqKr of σn, we introduce the notation

If we note that

then we find that

When we introduce a coordinate system

<Γί = l - £ l = x/ + -i- (ί =!,...,»)

on the local coordinate neighborhood (|σj; ξΊ,...9 ζ'n), the smooth extension
of the restriction of the difference *<p to σn can be written in the form
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= £N<>>jdxh-dxJ9,

P

On setting

τ/, = sgn(Jj>; Jq)°>ip ~ ωJq>

we can write

and

Γ l / 2 f l / 2 /

(5.16) ||**<»-**φ||f..|n|..| = \ -\ ( Σ
JO JO \Jq<^N

We shall estimate the integral (5. 16). First we note that ωlp can be written

in the form

ω/p = Σ _ Σr Φ/pKΛΓ ^Xi!-^!,-.
S— 0 Jq — Ks+Lq-s

= Σ Σr Φι,̂ r * * . l + Σ ( - i ) " u Σ
s=0 Jq = Ks+Lg-s \ V=l M v cLq- s

= Σ (-i)s Σ **,-*** Σ (-i)v Σ ΨιpMvs=0 Ks<=Jq v=0 M vcχ s

 p

Σ (-l)s Σ x*,-**. Σ?
S=l KgCjq V = 0

Similarly, we can write

ω,f = Σ Σ
r=0 Ip—Kr+Lp-rp-

Hence, by (5.15) we find that

τj, = sgn(Jp; Jq)ωlp - ωjq

Σ (-1)5 Σ *kl "*.
s=l Ks^Jq v=0

-f (-1)' Σ ί t l-^Σf(-
Γ=l Kr^Ip V = 0
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For simplicity, we set

and

ΦJ, κr = Σ1 (- l)v Σ {(*φ)jqMv -
q v = 0 M vcK r-Kι q

We sum the square norms (5.16) for all n-simplices sn εK + K*9 and for all pairs
5M and σn with \sn\ n \σn\^0. Then in the case where K is open or closed, we
obtain

(5.17) Hφ

= 2π y y y y r— πs+σ y y•̂  Z w Z w Z ^ V 1 / Z^ ^
s"eJiΓ/p+J q =JV5=l σ=l Ks^JqLσcJ

Σ Σ Σ (-i)r+^ Σ Σ
+J q =Nr=l p=l Kr^IpLp^I

Σ Σ sgn(/p;/β)Σ Σ (-l)s+r

s",σ"e«:,|s"|'>n|σ"|°=1F0 I f+J q=N s=l r=l

Σ, Σ y+Ju+o ί*/,ιc.*yfLr + ί/,r.Φίftr>,
KS<^J q Lr<= lp -̂

where ί and w are the numbers of elements of Ks n Lσ and Kr n Lp respectively,

and if ί = 5 = σ (u = r = p resp.) then {Φ/pKsΦ/pL<r + Φ/pχsΦ/pL<y} ({Φ*gχrΦί9Lp

+ ΦjqκrΦ*qLp} resp.) is replaced by \ΦIpKβ\
2 (\Φ3qKr\

2 resp.). In the case where
K is compact bordered, we also obtain an equation analogous to (5.17).

LEMMA 5.7. IfK is open or closed, then the inequality

HΦ - **?ll!f ^ ̂ C (̂Φ) + £*(*<?) + {£ί(Φ)}1

holds, and if K is compact bordered, then the inequality

s, w/zerβ Ω=|X*5|, Eκ(φ) and Eκ(*φ), etc. are the quantities defined in
Lemma 5.5, and A is a constant depending only on the dimension n.
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PROOF. We note that generic terms appearing in the right hand side of
(5.17) have the following three types:

{(*<P)jqMv ~ (*<P)jq(WMv)} {(*<P)jqNμ -

and

(<PίpMv ~~ ΦlpίKiU}

except their coefficients. Then by Schwarz's inequality we have the present lemma.

As a consequence of Lemmas 5.5 and 5.7 we obtain:

COROLLARY 5.1. Let {K^Q be a sequence of open or closed normal com-
plex polyhedra such that KI is a subdivision ofKi.ί (i=l, 2,...), and let M be
the Riemannian manifold based on KQ. Let φP'i = φi (ΐ = 0, 1,...) be a p-

dίfference of Γh(K^ such that ||φlΊ|js;. is bounded with respect to i. Then the
following limit relation holds:

As a consequence of Lemmas 5.6 and 5.7 we obtain:

COROLLARY 5.2. Let {KJ?L0 be a sequence of compact bordered normal
complex polyhedra such that Kt is a subdivision of Ki^1 (ΐ = l, 2,...), and let
M be a compact bordered Riemannian manifold based on K0. Let φp'i = φi

(i = 0, 1,...) be a p-difference of Γh(K^) such that \\φi\\Ki is bounded with respect

to i. Then the limit relation

holds for an arbitrary closed subregion Ω of M°.

6. Fundamental theorem.

THEOREM 5.1. Let {Kf = <]£;, Kf>}-i0 be a sequence of open, closed or com-

pact bordered normal complex polyhedra such that KI is the normal subdivision

of Kj-i 0 = 1, 2,...). Let M be a Riemannian manifold based on the normal
complex polyhedron K0. Let φi (i = 0, 1,...) be a p-difference of Γh(Kι).

If {<Pl}T=o forms a Cauchy sequence, i.e.

(5.18) lim Ih'-V - φ'll*, =0 (j = ί)
i,j-*<x>

holds, then the sequence {$9^=0 of smooth extensions strongly converges to a

harmonic p-differential ωeΓΛ(M), i.e.

(5.19) lim ||«φ< - ω||M = 0.
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Furthermore, if Kt are open or closed then the limit relations

(5.20) limllφΊlί^lim
i-»oo i-*oo

and

(5.21) l im| |JV-
i->oo

hold, and if Kt are compact bordered then the limit relations

(5.22) lim ||φ'll*,+zr = lim H*V'IU = IM
i-»oo

and

(5.23) lim || IV - *ω||o = 0
i->00

hold for an arbitrary closed subregion Ω of M°9 where

\\φl\\Ki+KΪs = Σ l/7)VePΉ 2 -L -i- Σ ImifvPM2

sPeKί+KV-ί^+a*?) |(^ ̂  ^1 + 2 s*eβκ,+0κr lφ (ίy j |

PROOF. First, let us assume that Kt (ϊ = 0, 1,...) are open or closed.
Lemma 5.2 and the limit relation (5.18) imply that

(5.24) lim ||*φ'-M'-VI|M = 0.
i,y->oo

Here we note that each coefficient of the differentials ^^J~iφi uniformly con-
verges as 7-^ oo on each compact subregion Ω of M for a fixed i. In the inequality

(5.25) ||tfφ' - *φ*|lM

^ \\$φj - J f^ 'VIlM + \\%<Pk - *H*~y HM

if for any ε > 0 we choose a compact subpolyhedron Lt of Kf so that

llίn'-y - *n*-y iiίf-i, ^ 2 11^11 .̂̂  < |- (Q = ILJ),

then the inequality

(5.26) ||PJ'-y - Pfc~y HM < ε

holds for sufficiently large 7, /c and for a fixed /. From (5.25), (5.24) and (5.26),
if follows that

(5.27) lim
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The limit relation (5.27) and Lemma 5.1 assure that there exists a p-differential
ω eΓc(M) satisfying (5.19) and the second equality of (5.20).

By (5.5) we can see that there exists a constant C not depending on ί such that
the inequalities

l lφΊli, - l l*ΦΊI5f ^ c EKt(φ>) (/ = o, i,...)

hold. Then, by Lemma 5.5, we obtain the first equality of (5.20).
By Corollary 5.1 and (5.19) we have (5.21) which implies *ω e ΓC(M). Hence

ωeΓA(M).

Secondly, let us assume that Kt (i = 0, 1,...) are compact bordered. If we use
Lemma 5.6 and Corollary 5.2 in place of Lemma 5.5 and Corollary 5.1 respec-
tively, then the same proof with some modification holds also for this case.

7. The method of orthogonal projection.

THEOREM 5.2. Let {K~^Ki9 Kfy}f=0 be a sequence of open, closed or
compact bordered normal complex polyhedra such that Kt is the normal sub-

division of Ki-i (i = l, 2,...). Let M be a Riemannian manifold based on the
normal complex polyhedron KQ. Let χ be an arbitrary p-dίfference of ΓC(K0).
Here, if K0 is compact bordered, then χ is assumed to vanish on K$. Let φl

(z' = 0, 1,...) be the projection of the natural extension kj 'χ on /VJRQ. Then,

we obtain the same conclusion as in Theorem 5.1. Furthermore, the monotone

convergence of norms

(5.28) IIΛ.MMlif (;^<χ>)

holds. If χ vanishes on K*, then the inequalities

(5.29) ll^ll*.

hold for every i, the limit differential ω is the projection of the smooth extension
$χ on Γh(M), and hence $χ-ωeΓeQ(M).

PROOF. The assumption of the theorem implies that

(5.30) trt = <^ + </,', ^eΓβ0(K|> (i = 0, 1,...).

Hence we find that

(5.31) φi - Vφ° = ̂ ° - ^eΓ^K,) (i = 0, 1,...).

Therefore, by Lemma 4.3 the assumption (5.18) of Theorem 5.1 is satisfied, and
thus the same conclusion as in Theorem 5.1 holds. The monotone convergency

(5.28) follows from Lemma 4.3, and (5.20) or (5.22).
The first inequality of (5.29) follows from (5.3). Let us assume that χ vanishes
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on K$. Then we can verify that $χ = %biχ. In fact, noting

for each p-simplex speKΐ9 we easily see that #χ = #tιχ, where sp = bjs?rj LβMt,
ep=\^ejrJp_rLsMt and /Γ + /p_ r = /p with the notation in §1.5. The assumption
and (5.31) imply that tfφ* - $φ° = ΰφ* - Wφ° e Γe0(M). Hence, by (5.19) we see
that ω — ΰφ1 eΓe0(M) for every i. Because of ωeΓh(M), ω is the projection of
ΰφ1 on ΓΛ(M) for every z. Thus we have the second inequality of (5.29). Fur-
thermore, by (5.30), ω is the projection of %χ = Wχ on ΓΛ(M).

8. Difference approximation of a differential. Let K=(K, £*> be an
open, closed or compact bordered normal complex polyhedron, and M be the
Riemannian manifold based on K. Let Θ be a closed p-differential on M, of class
C1 (l^p^n). For an arbitrary n-simplex sn = [e#, φ]eK, we choose a local
coordinate neighborhood (|SΛ |; xl5..., xπ) so that

(5.32) s": ej} = { 0 g x , g l (i = 1,..., «)}.

The p-diflferential 6> has a local representation

Θ= Σ 0Ipdxit-dXip
I pcN

on the local coordinate neighborhood (|sπ|; xl5..., xπ), where each coefficient
Θj is a complex valued function on the unit cube e%. By a difference approx-
imation ψ of <9 on the normal complex polyhedron K, we mean the closed p-
diίference on K defined by

for each p-face sp

ίpLr of sn, where the notation sp

IpLr and ep

IpLr follows the definition
in §1.5. Here, if K is compact bordered, then by the similar method the differ-
ence approximation ψ is also defined for each p-face of each half n-simplex of K*.

THEOREM 5.3. Let {Kt = ̂ Ki9 Kfy}f=0 be a sequence of open, closed or
compact bordered normal complex polyhedra such that Kf ι's the normal sub-
division oj KI-I for each i, and let M be the Riemannian manifold based on
K0. Let Θ be a closed p-differential on M, of class C1 (l^p^n), and let ̂



A finite-difference method on a Riemannian manifold 51

(ϊ' = 0, 1,...) be the difference approximation of Θ on Kt. Here, in the case where
Kt are open, we assume that for a compact bordered sub polyhedron Li ap-
proximating Kt the limit relation

(5.33) lim \\ψ'\\Kt-Li = 0
Li^Ki

holds uniformly with respect to i. Then, ψ1 eΓc(Kt) (ϊ = 0, 1,...) and ΘeΓc(M),
and for the sequence {φi}(iLo of the harmonic component φl of \j/1 the same
conclusion as in Theorem 5.1 is obtained. Furthermore, when we denote the
restrictions of φl to Xf and Kf by φl

Ki and φfc* respectively, the sequences

{%Ψκi}ΐ=Q and {%φlκ*}T=o strongly converge to the common limit p-differential
ω/2 which is the harmonic component of Θ.

PROOF. We note that the coefficients of J^, #^kj> ί^'tyi, and W'1^*

(j > i) uniformly converge to the corresponding common coefficients of Θ as ί,
j-κx) on each compact subregion Ω of M. By this fact, the assumption (5.33)
and Lemma 5.2, we can easily verify that i/^eΓ^KV) for every i, the limit
relations

(5.34) lim|W-2β||M = 0
i-κx>

and

(5.35) lim \\9tf-ψ - 2θ\\M = 0
ί,J-*00

hold, and <9eΓc(M).
The limit relations (5.34) and (5.35) imply that

(5.36) lim |||̂  - W~ψ\\M = 0 ( j > ΐ ) .
i.J-"00

Let φij (j>i) be the harmonic component of t| '~/^ί on KΓ Then, by Lemma
5.2 the limit relation (5.36) implies that

(5.37) lim ||*φ'-*φ"||M = 0 (j>i).
i,j-*°°

By making use of the limit relation (5.37), we can prove the present theorem by
method analogous to that in Theorem 5.1. The remaining parts are obvious.

9. Difference approximation on a compact bordered region.

THEOREM 5.4. Let {K^ζKi, £f>}£=o be a sequence of an open or closed
normal complex polyhedra such that K,. is the normal subdivision of K^^ for
each i, and let M be the Riemannian manifold based on K0. Let Ω be an arbi-
trary compact bordered subregion of the Riemannian manifold M. Let {Lt
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= <L/? Lfy}f=0 be a sequence of compact bordered normal complex polyhedra
such that IZ^ I c|.L.|0, \Li\-*Q° (ΐ->oo) and L^Kifor each i.

Let Θ be a closed p-differential of Γl

c(Ω) (\<^p<>n\ let φ1 (i = 0, 1,...) be

the difference approximation of Θ on Li9 and let {φl}f=o be the sequence of the

harmonic components of \j/1 on L r Then, the sequence { jfφ'}^ of smooth

extensions strongly converges to a harmonic p-differential ωeΓh(Ω) which is
the harmonic component of2Θ on Ω, i.e. the limit relation

lim ||jφ' - ω||0, = 0
ί->αo

holds for each compact subregion Ω' of Ω°, and the following limit relations
hold:

for a fixed number k, where Lfcί = <Lfcί, L^ > (i>k) is the subpolyhedron of Li

with \Lki\ = \Lk\. Furthermore, the sequences {tfφljί^o and {%ΨlL*}T=o strongly

converge to the common limit p-differential ω/2 which is the harmonic
component of Θ.

PROOF. We can easily verify that the limit relations

' '-2011^=0

and

lim llp 7'"^ - 2®|| f l> = 0 (j > i)

hold for each compact subregion Ω' of Ω°. Thus we have

(5.38) lim Uflt^-ty* - #ψJ\\Ω = 0.

Let φij be the harmonic component of ^'^ on L/7 . Then, by Lemma 5.2

the limit relation (5.38) implies that

lim ||#<?<->' - #φJ\\Ω. = 0 (j > i ) .
i,./-*00

By making use of Theorems 5.1 and 5.2, the remaining parts are proved. The

detailed argument is omitted.
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