Invariant sequences in Brown-Peterson homology and some applications

Etsuo Tsukada

(Received January 8, 1980)

§0. Introduction

Let $B P$ be the Brown-Peterson ring spectrum at p, where p is a prime number. Then

$$
B P_{*}=Z_{(p)}\left[v_{1}, v_{2}, \ldots\right], \quad \operatorname{dim} v_{n}=2\left(p^{n}-1\right),
$$

where the v_{n} 's are Hazewinkel's generators. A sequence of elements $a_{0}, a_{1}, \ldots, a_{s}$ of $B P_{*}$ is said to be invariant if

$$
\eta_{R} a_{i}=\eta_{L} a_{i} \bmod \left(a_{0}, a_{1}, \ldots, a_{i-1}\right) \cdot B P_{*} B P \quad \text { for } \quad i=0,1, \ldots, s,
$$

where $\eta_{R}, \eta_{L}: B P_{*} \rightarrow B P_{*} B P$ are the right and the left units of the Hopf algebroid $B P_{*} B P$ over $B P_{*}$.

The purpose of this note is to prove the following
Theorbm 1.5. Let $s_{0}, s_{1}, \ldots, s_{n}$ be positive integers, and let $p^{e_{i}}$ be the largest power of p dividing s_{i}. Then the sequence $p^{s_{0}}, v_{1}^{s_{1}}, \ldots, v_{n}^{s_{n}}$ is invariant if and only if $s_{0}-1 \leqq e_{1}$ and $s_{i} \leqq p^{e_{i+1}-s_{0}+1}$ for $i=1, \ldots, n-1$.

The case $s_{0}=1$ of this theorem has been given by Baird [4; Lemma 7.6].
As an application, we obtain some γ-elements in $H^{3} B P_{*}$ of order $p^{\text {so }}$ in Corollary 2.5 (p : odd prime). Furthermore, we consider the non-realizability of some cyclic $B P_{*}$-modules in Corollary 2.7.

The author would like to thank Professor M. Sugawara, Professor S. Oka and Professor Z. Yoshimura for their helpful suggestions.

§1. Invariant sequences in $\boldsymbol{B P} \boldsymbol{P}_{\boldsymbol{*}}$

Let p be a prime number, and let $B P$ denote the Brown-Peterson ring spectrum at p. Then, it is known that

$$
B P_{*}=Z_{(p)}\left[v_{1}, v_{2}, \ldots, v_{n}, \ldots\right], \quad \operatorname{dim} v_{n}=2\left(p^{n}-1\right)
$$

where the v_{n} 's are Hazewinkel's generators, and the Hopf algebroid

$$
B P_{*} B P=B P_{*}\left[t_{1}, t_{2}, \ldots, t_{n}, \ldots\right], \quad \operatorname{dim} t_{n}=2\left(p^{n}-1\right),
$$

over $B P_{*}$ admits the left unit and the right unit

$$
\eta_{L}: B P_{*} \longrightarrow B P_{*} B P, \quad \eta_{R}: B P_{*} \longrightarrow B P_{*} B P
$$

satisfying the following equalities:

$$
\begin{align*}
& \eta_{L} v_{n}=v_{n} \tag{1.1}\\
& \eta_{R} v_{n}=v_{n}+\sum_{i=1}^{n-1} v_{n-i} f_{n, i}+p f_{n, n} \tag{1.2}
\end{align*}
$$

where
(1.3) $f_{n, i} \in B P_{*} B P$ is a polynomial in t_{1}, \ldots, t_{n} with coefficients in $Z_{(p)}\left[v_{1}, \ldots\right.$, v_{n-1}] and $f_{n, i}=t_{i}^{p-i}+$ monomials having lower degree with respect to t_{i}, for $i=1, \ldots, n$.
(Cf. [1], [5]; especially, we see immediately (1.2-3) by the results of Hazewinkel [2; Lemma 6.2].)

Definition 1.4. An ideal I of $B P_{*}$ is said to be invariant if $I \cdot B P_{*} B P$ $=B P_{*} B P \cdot I$; and an element $a \in B P_{*}$ is said to be invariant $\bmod I$ if $\eta_{R} a \equiv \eta_{L} a$ $\bmod I \cdot B P_{*} B P$. A sequence $a_{0}, a_{1}, \ldots, a_{s}$ of elements in $B P_{*}$ is said to be invariant if a_{i} is invariant modulo the ideal $\left(a_{0}, \ldots, a_{i-1}\right)$ generated by a_{0}, \ldots, a_{i-1} for $i=0,1, \ldots, s$.

The purpose of this section is to prove the following
Theorbm 1.5. Let p be a prime number and $s_{0}, s_{1}, \ldots, s_{n}(n \geqq 1)$ be positive integers, and let $p^{e_{i}}$ be the largest power of p dividing s_{i}. Then, the sequence

$$
p^{s_{0}}, v_{1}^{s_{1}}, \ldots, v_{n}^{s_{n}}
$$

of elements in $B P_{*}$ is invariant if and only if

$$
\begin{equation*}
s_{0}-1 \leqq e_{1} \quad \text { and } \quad s_{i} \leqq p^{e_{i+1}-s_{0}+1} \quad \text { for } \quad i=1, \ldots, n-1 \tag{1.6}
\end{equation*}
$$

Proof. (Sufficiency) In (1.2), we put

$$
F_{k}=v_{n}+\sum_{i=1}^{n-k} v_{n-i} f_{n, i} \quad \text { for } \quad k=1, \ldots, n
$$

and we shall prove the following (1.7) by the induction on k :

$$
\begin{align*}
\text { If } s_{0}-1 \leqq e_{n} \text { and } s_{i} \leqq p^{e_{n}-s_{0}+1} & \text { for } \tag{1.7}\\
& i=1, \ldots, k-1, \text { then } \\
\eta_{R}\left(v_{n}^{s_{n}}\right) \equiv F_{k}^{s_{n}^{n}} \bmod J_{k} \cdot B P_{*} B P & \left(J_{k}=\left(p^{s_{0}}, v_{1}^{s_{1}}, \ldots, v_{k-1}^{s_{k}-1}\right)\right) .
\end{align*}
$$

Since $\eta_{R} v_{n}=F_{1}+p f\left(f=f_{n, n}\right)$ by definition,

$$
\eta_{R}\left(v_{n}^{s_{n}}\right)=\sum_{j=0}^{s_{n}}\binom{s_{n}}{j} p^{j} F_{1_{n}-j}^{s^{-j}} f^{j} .
$$

If $s_{0}-1 \leqq e_{n}$, then $\binom{s_{n}}{j} \equiv 0 \bmod p^{s_{0}-j}$ for $1 \leqq j<s_{0}$ because $s_{n} \equiv 0 \bmod p^{e_{n}}$. Thus, the above equality implies (1.7) for $k=1$.

By the same way, for $k \geqq 1, F_{k}=F_{k+1}+v_{k} f\left(f=f_{n, n-k}\right)$ and hence

$$
F_{k}^{s_{n}}=\sum_{j=0}^{s_{n}}\binom{s_{n}}{j} F_{k+1}^{s_{n}-j} v_{k}^{j} f^{j} \equiv F_{k+1}^{s_{n}} \bmod \left(p^{s_{0}}, v_{k}^{s_{k}}\right) \cdot B P_{*} B P
$$

if $s_{k} \leqq p^{e_{n}-s_{0}+1}$, because $\binom{s_{n}}{j} \equiv 0 \bmod p^{s_{0}}$ for $1 \leqq j<s_{k}$. Thus, we see (1.7) by induction.

Now, the conclusion of (1.7) for $k=n$ means that $v_{n}^{s_{n}}$ is invariant $\bmod J_{n}$. Therefore, (1.6) is a sufficient condition.
(Necessity) Let $p^{s_{0}}, v_{1}^{s_{1}}, \ldots, v_{n}^{s_{n}}(n \geqq 1)$ be invariant. Then

$$
\begin{equation*}
s_{0}-1 \leqq e_{n} \quad \text { and } \quad s_{i} \leqq p^{e_{n}} \quad \text { for } \quad i=1, \ldots, n-1 \tag{1.8}
\end{equation*}
$$

In fact, consider the ideal

$$
J_{n, i}=\left(v_{0}, \ldots, v_{i-1}, v_{i}^{s_{i}}, v_{i+1}, \ldots, v_{n-1}\right) \quad\left(v_{0}=p\right)
$$

containing J_{n} for $i=0,1, \ldots, n-1$. Then, $v_{n}^{s_{n}}$ is invariant $\bmod J_{n, i}$, and
(*) $\quad v_{n}^{s_{n}} \equiv \eta_{R}\left(v_{n}^{s_{n}}\right) \equiv\left(v_{n}+v_{i} f\right)^{s_{n}}=\sum_{j=0}^{s_{n}}\binom{s_{n}}{j} v_{n}^{s_{n}-j} v_{i}^{j} f^{j} \bmod J_{n, i} \cdot B P_{*} B P$
by (1.1-2), where $f=f_{n, n-i}$ satisfies (1.3). Therefore, we see that

$$
\binom{s_{n}}{j} v_{i}^{j} f^{j} \equiv 0 \bmod J_{n, i} \cdot B P_{*} B P \quad \text { for } \quad 1 \leqq j \leqq s_{n}
$$

and hence

$$
\begin{aligned}
& p s_{n} \equiv 0 \bmod p^{s_{0}}, \quad \text { if } \quad i=0 ; \\
& s_{i} \leqq s_{n} \quad \text { and } \quad\binom{s_{n}}{j} \equiv 0 \bmod p \quad \text { for } \quad 1 \leqq j \leqq s_{i}, \quad \text { if } \quad \mathrm{i} \geqq 1 .
\end{aligned}
$$

Since $p^{e_{n}}$ is the largest power of p dividing $s_{n}, p^{e_{n}-k}$ is that dividing $\binom{s_{n}}{p^{k}}$ for $k \leqq e_{n}$. Thus, these imply (1.8).

Now, the first inequality in (1.6) is seen by that in (1.8) since the sequence $p^{s_{0}}, v_{1}^{s_{1}}$ is invariant. Assume inductively that the inequality in (1.6) holds for $i=1, \ldots, n-2(n \geqq 2)$. Then, the assumptions of (1.7) for $k=n-2$ hold, since $e_{i} \leqq e_{n}$ by (1.8). Therefore, $\eta_{R}\left(v_{n}^{s_{n}}\right) \equiv F_{n-1}^{s_{n}} \bmod J_{n-1} \cdot B P_{*} B P$ by (1.7), and (*) for $i=n-1$ is also valid $\bmod J_{n} \cdot B P_{*} B P$. Thus, by the same way as the above proof, we see that

$$
s_{n-1} \leqq s_{n} \quad \text { and } \quad\binom{s_{n}}{j} \equiv 0 \bmod p^{s_{0}} \quad \text { for } \quad 1 \leqq j<s_{n-1}
$$

and hence $s_{n-1} \leqq p^{e_{n}-s_{0}+1}$. These show the necessity by induction. q.e.d.

§ 2. Some applications

In the first place, we consider some γ-elements in $H^{3} B P_{*}$.
Let p be an odd prime number. For positive integers s_{1}, s_{2}, s_{3} with

$$
\begin{equation*}
s_{1} \leqq p^{e_{2}}, \quad s_{2} \leqq p^{e_{3}} \tag{2.1}
\end{equation*}
$$

($p^{e_{i}}$ is the largest power of p dividing s_{i}), by using the invariant sequence p, $v_{1}^{s_{1}}, v_{2}^{s_{2}}, v_{3}^{s_{3}}$ in Theorem 1.5 for $s_{0}=1$, Miller-Ravenel-Wilson [4; Corollary 7.8] defined the element

$$
\begin{equation*}
\gamma_{s_{3} / s_{2}, s_{1}}=\eta\left(v_{3}^{s_{3}^{3}} / p v_{1}^{s_{1}} v_{2}^{s_{2}}\right) \in H^{3} B P_{*} \tag{2.2}
\end{equation*}
$$

and proved that it is nontrivial unless $s_{1}<s_{2}=p^{e_{3}}=s_{3}$.
Now, let s_{0}, s_{1}, s_{2} and s_{3} be positive integers with

$$
\begin{equation*}
1 \leqq s_{0}-1 \leqq e_{1} \quad \text { and } \quad s_{i} \leqq p^{e_{i+1}-s_{0}+1} \quad \text { for } \quad i=1,2 \tag{2.3}
\end{equation*}
$$

Then, the sequence $p^{s_{0}}, v_{1}^{s_{1}}, v_{2}^{s_{2}}, v_{3}^{s_{3}}$ is invariant by Theorem 1.5 , and by the same way as the definition of the element in (2.2), this sequence determines the element

$$
\begin{equation*}
\gamma_{s_{3} / s_{2}, s_{1}, s_{0}}=\eta\left(v_{3}^{s_{3}} / p^{s_{0}} v_{1}^{s_{1}} v_{2}^{s_{2}}\right) \in H^{3} B P_{*} . \tag{2.4}
\end{equation*}
$$

Since (2.3) implies (2.1) and $s_{2}<p^{e_{3}}$, the element $\gamma_{s_{3} / s_{2}, s_{1}}$ in (2.2) is also defined and is nontrivial; and there holds clearly the relation

$$
p^{s_{0}-1} \gamma_{s_{3} / s_{2}, s_{1}, s_{0}}=\gamma_{s_{3} / s_{2}, s_{1}} \text { in } H^{3} B P_{*}
$$

Thus, we have the following
Corollary 2.5. Let p be an odd prime number. Then, for positive integers s_{0}, s_{1}, s_{2} and s_{3} with (2.3), the element $\gamma_{s_{3} / s_{2}, s_{1}, s_{0}} \in H^{3} B P_{*}$ of (2.4) is defined and is of order $p^{s o}$.

In the second place, we consider some cyclic $B P_{*}$-modules for any prime p. For the invariantness in Definition 1.4, we notice the following lemma which may be known:

Lemma 2.6. For positive integers $s_{0}, s_{1}, \ldots, s_{n}(n \geqq 1)$, the sequence $p^{s_{0}}$, $v_{1}^{s_{1}}, \ldots, v_{n}^{s_{n}}$ is invariant if and only if the ideal ($p^{s_{0}}, v_{1}^{s_{1}}, \ldots, v_{n}^{s_{n}}$) is invariant.

Proof. The necessity is seen immediately by definition.
Suppose that $J=\left(p^{s_{0}}, v_{1}^{s_{1}}, \ldots, v_{n}^{s_{n}}\right)$ is invariant, and set

$$
\eta_{R} v_{k}=v_{k}+f_{k}, \quad f_{k} \in Z_{(p)}\left[v_{1}, \ldots, v_{k-1} ; t_{1}, \ldots, t_{k}\right]
$$

by (1.2-3). Then, for $i=1, \ldots, n$,

$$
\left(v_{i}+f_{i}\right)^{s_{i}}=\eta_{R}\left(v_{i}^{s_{i}}\right) \in B P_{*} B P \cdot J=J \cdot B P_{*} B P
$$

and we see that $\eta_{R}\left(v_{i}^{s_{i}}\right)-v_{i}^{s_{i}}=\left(v_{i}+f_{i}\right)^{s_{i}}-v_{i}^{s_{i}} \in\left(p^{s_{0}}, v_{1}^{s_{1}}, \ldots, v_{i-1}^{s_{i}-1}\right) \cdot B P_{*} B P$. Thus the sequence $p^{s_{0}}, v_{1}^{s_{1}}, \ldots, v_{n}^{s_{n}}$ is invariant, as desired. q.e.d.

Corollary 2.7. Let p be a prime number and $s_{0}, s_{1}, \ldots, s_{n}(n \geqq 1)$ be positive integers such that (1.6) does not hold. Then, there exists no finite CWcomplex X whose $B P$-homology $B P_{*}(X)$ is isomorphic to $B P_{*} /\left(p^{s_{0}}, v_{1}^{s_{1}^{1}}, \ldots, v_{n}^{s_{n}}\right)$ as $B P_{*}$-modules.

Proof. If there exists such a finite CW-complex X, then we see that the ideal ($p^{s_{0}}, v_{1}^{s_{1}}, \ldots, v_{n}^{s_{n}}$) is invariant by the same way as the proof of [7; Corollary 4], using the result of Landweber [3] that annihilator ideals of primitive elements are invariant. Thus, the corollary follows immediately from Theorem 1.5 and the above lemma.
q.e.d.

Example 2.8. For $n, m \geqq 0$ and $t, s \geqq 1$ with $t p^{n}>p^{m-n}$ and $t, s \neq 0 \bmod p$, $B P_{*} /\left(p^{n+1}, v_{1}^{t p^{n}}, v_{2}^{s p^{p}}\right)$ is not realizable; while the realizability of $B P_{*} /\left(p^{n+1}, v_{1}^{t p^{n}}\right)$ was shown by S. Oka, (for any odd prime p, L. Smith [6] also showed that of $\left.M U_{*} /\left(p^{n+1},[C P(p-1)]^{t p^{n}}\right)\right)$.

References

[1] J. F. Adams, Stable Homotopy and Generalized Homology, Chicago Lectures in Math., University of Chicago Press, Chicago, 1974.
[2] M. Hazewinkel, Constructing formal groups III; Applications to complex cobordism and Brown-Peterson cohomology, J. Pure Appl. Algebra 10 (1977), 1-18.
[3] P.S. Landweber, Annihilator ideals and primitive elements in complex cobordism, Ill. J. Math. 17 (1973), 272-284.
[4] H. R. Miller, D. C. Ravenel and W.S. Wilson, Periodic phenomena in the AdamsNovikov spectral sequences, Ann. of Math. 106 (1977), 469-516.
[5] D. C. Ravenel, A novice's guide to the Adams-Novikov spectral sequence, Geometric Applications of Homotopy Theory II, Lecture Notes in Math. 658, Springer, Berlin, 1977, 404-475.
[6] L. Smith, On realizing complex bordism modules II; Applications to the stable homotopy groups of spheres, Amer. J. Math. 93 (1971), 226-263.
[7] R.S. Zahler, Nonrealizability of some complex bordism modules, Proc. Amer. Math. Soc. 47 (1975), 218-222.

> Department of Mathematics, Faculty of Science, Hiroshima University
.

