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A subalgebra M of a Lie algebra L is termed modular in L (M m L) if M is a

modular element in the lattice formed by the subalgebras of L, i.e., if

( •) <M, I/> n V= <17, M n V} for all U, V^ L with U £ V and

(••) <M, l/> Π F = <17 n K M> for all U,V^L with Λf ^ K hold.

Simple examples for modular subalgebras of a Lie algebra L are the quasi-

ideals of L—Q ^ L is called a quasi-ideal of L (Q q L) if Q is permutable with every

subspace R of L, i.e., if [β, £]<=β + # for all #<=L ([1], p. 28).

That the reverse implication is not true is shown by the Lie algebra L (L =

<£> + </> + < # » defined over a field containing no pair of elements α, β such

that α2 + β2 = — 1, with the following multiplication: [e,/] = g, [/, g~\ = e, [g, e] =

f. L is simple, and every one-dimensional subalgebra of L is maximal and

modular in L, but not a quasi-ideal of L.

We prove the following (ML denotes the core of M in L):

(i) A modular subalgebra M of a Lie algebra L permutable with a solvable

subalgebra A of L is a quasi-ideal of M + A — in particular M is a quasi-ideal of

L if L is solvable.

(ii) A modular subalgebra M of a finite-dimensional Lie algebra L over

any field of characteristic zero is either

a) an ideal of L; or

b) L/ML is metabelian, every subalgebra of LjML is a quasi-ideal, MjML is

one-dimensional and is spanned by an element which acts as the identity map

on ([L, L]+ML)IML; and L/([L, L] + ML) is one-dimensional; or

c) M/ML is two-dimensional and L/ML is the three-dimensional split simple

Lie algebra; or

d) M/ML is a one-dimensional maximal subalgebra of L/ML and L/ML is

a three-dimensional non-split simple Lie algebra.

1. Elementary properties of modular subalgebras

The properties 1.1-1.3 hold for modular elements in more general lattices;

proofs can be found in [9], where the modular elements are called "Dedekind

elements."

PROPOSITION 1.1. Let M be modular in a Lie algebra L and let U be a
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subalgebra of L. Then M ΓiU is modular in U ( [ 9 ] , III, p. 74).

PROPOSITION 1.2. Let M be modular in L and let I be an ideal of L with

Then Mjl is modular in L/I ( [9] , IV, p. 75).

PROPOSITION 1.3. Let M and N be modular in a Lie algebra L. Then

<M, JV> is modular in L ([9], V, p. 75).

LEMMA 1.4. Let M be modular in L, Q be a quasi-ideal of L, and φ: L-»

L' a homomorphism of Lie algebras. Then φ(M) is modular in φ(L)9 and φ(Q)

is a quasi-ideal of φ(L).

LEMMA 1.5. Let M be modular in a Lie algebra L. Then

a) M is a maximal subalgebra of <M, x> for all xeL\M.

b) IL(M), the idealizer of M in L, is either L or M.

PROOF, a) If M^N^(M, x>, then by (**) N = N n <M, x> =<iV n

M>, hence N = M or iV = <M, χ>.

b) Suppose MSIL(M)%L and let xeIL(M)\M,yeL\/L(M). Then M #

M + [y, M] = M + [x-f y, M] and M is a maximal subalgebra of <j , M> and of

<x + y, M> due to a). Now

M S <M, [x + y, M]> ^ <x + y9 M> and

Using a) we get

<x + j ; , M> = <M, [x + y, M]> = <M, [y, M]> = <>;, M>.

This means x + y e < j , M>, hence x e <j>, M>. Therefore, x e IL{M) n <j , M> =

</L(M) Π <j>, M> = M by (**), which contradicts our assumption. •

LEMMA 1.6. Let M be modular in a Lie algebra L and let U be a sub-

algebra ofL with <M, Uy=M+U. Then

a) M is permutable with all quasί-ideals Wof U.

b) Every V^L with U OM^V^U is permutable with M.

c) // in addition, U Π M is a quasi-ideal of U, then M is a quasi-ideal of

M+U.

PROOF, a) As WqU and <l/,M> = l/+M we have (W, M} = U
, M}+M=(W, MΠ Uy + M=W+M{) U + M=W+M by (*).

b) <F, M>==l/n<K,M>+M=<F, UΠ M}+M=V+M due to (*).

c) Let x = M + m; ueU, meM. As (U CiM)qM we have by (*) <x, M>
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PROPOSITION 1.7. Let M be modular in a Lie algebra L and A be a solva-

ble subalgebra ofL. Then Λ(]M is a quasi-ideal of A; more precisely: AdM

is an ideal of A or dim A\A n M = l or A = tA, A~]+A n M, [[A, A], [A, AJ]^

X f l M = < m > + ( i n M ) i 4 with meM and [α, m] = α (mod(A Π M ) J for all

a e [A, A"].

PROOF. Let aeA\A(]M. 5 : = <α, A ΠM> is solvable, and by (*) it

follows that

B = B n ( 4 n < a , M » = B n <α, M> = <α, B Π M>.

If we pick r ^ l , r e N , maximal with respect to JB ( r )$M, we have M ^ <£ ( r ) , M>

^ < £ , M>gj<α, M> and <£<r>, M} = (a, M> by Lemma 1.5a); now (using (•))

B = B Π <B(P), M> = <B<r>, M ί l 5 ) = B<r> + M 0 B and

fl M

Thus y4πM=jBnM is a quasi-ideal of B due to Lemma 1.6c). In particular,

B = <α, J5 Π M> = <α> -f £ Π Aί = <α> + i ί l M . As α was arbitrary, we have

(An M)qA. The additional remarks of the proposition are a direct consequence

of Theorem 3.6 in [1]. •

COROLLARY 1.8. Let M be modular in L and let A be a solvable sub-

algebra of L permutable with M. Then M is a quasi-ideal of M + A.

The following are two convenient technical lemmas:

LEMMA 1.9. Let M be a modular and maximal subalgebra of a Lie alge-

bra L. Then dim V^ 1 for every subalgebra Vof L with M Π K=0.

PROOF. Suppose M n F = 0 for V^L with d i m F > l , and let OφueV.

But now (*) does not hold, which contradicts M m L:

<u,My Π F = L Π F = F ^ < M > = <M,M n vy. •

LEMMA 1.10. Let M be a modular and maximal subalgebra of a Lie

algebra L. Then M ΓiU is a modular and maximal subalgebra of U for every

subalgebra U of L with U%M.

PROOF. We have (M n U) m U by Proposition 1.1. If x e U \ (M n U), <x,

M> = L holds and by (*) it follows that 17 = U D L = U (Ί <x, M> = <x, U ΓΊ M>. •

2. The finite-dimensional case in characteristic zero

All Lie algebras in this section are finite dimensional and defined over an
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arbitrary field of characteristic zero. The following lemma is a slight extension
of a theorem of Chevalley, Tuck and Towers, which occurs for V—A ([8], pp. 443-
444).

LEMMA 2.1. Let U and V be subspaces of a finite-dimensional algebra
A over any field of characteristic zero with U^V. If U is invariant under all
automorphisms α of A with a(V) = V, then U is invariant under all derivations
d of A with d(V)^V. In particular if A is a Lie algebra and V a subalgebra
of A, then U is an ideal of V.

PROOF. The Lie algebra L(Aut (4)) of the algebraic group Aut (A) of the
automorphisms of A coincides with the derivation algebra Ό(A) of A, a subalgebra
of of. (A) ([4], p. 179 and p. 128). The automorphisms of A which leave V invari-
ant form an algebraic group (: = AUTF (A)), whose Lie algebra L(AUTF(^4))
consists of all endomorphisms of the vector space A mapping Finto F([4], pp.
144-145). Thus Aut (A) n AUTF (A) is an algebraic group ([4], p. 79); these
are the algebra-automorphisms of A which leave V invariant. Since L(Aut (/I)
Π AUTFG4)) = L(Aut04)) Π L(AIΠVG4)) ([4], p. 171, 172), we have L(Aut^) n

ALΠV (A)) = Όv (A) : = {de Ό(A) d(V) c V) ^ D(^). Hence Aut (A) D AUTF (A)
is contained in g, where

g:= {G; G is an algebraic group of automorphisms of the
vector space A with L (G) ̂  Όv (A)} .

Let G (A) = Π {G G e g}. Then G (A) ̂  Aut (A) n AUTF (A). G (A) is an ir-
reducible algebraic group with L(G(A))^.ΌV(A) ([4], Definition 1, p. 86;
Theorem 10, p. 165, and Theorem 14, p. 175). As G(/l) is contained in Aut (A)
Π AUTK (A), thus leaving U invariant by construction, U is invariant under

L (G 04)) ̂  Όv (A) ([8], pp. 443-444). •

THEOREM 2.2. If a Lie algebra L over any field of characteristic zero con-
tains a core-free subalgebra of codimension 1, then L is either one-dimensional,
or two-dimensional non-abelian, or L is the three-dimensional split simple Lie
algebra.

The proof of the theorem can be found in [7], pp. 105-107.

NOTATION. We call a modular subalgebra M of a Lie algebra L maximal
modular in L, if there is no modular subalgebra N of L such that M^N^L.

Using Lemma 2.1, the proof of the next lemma is analogous to part (ii) of
the proof of R. Schmidt's Lemma 1 for groups ([6], p. 361):

LEMMA 2.3. Let M be maximal modular in a Lie algebra L. // M is
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not an ideal of L, then M is a maximal subalgebra of L.

THEOREM 2.4. Let M be maximal modular in a Lie algebra L. If M is
not an ideal of L, one of the following holds:

a) M is of codimension 1 in L and dim L/ML^ 3,
b) M is a maximal subalgebra of L with dim M/ML = 1, and LjML is a

three-dimensional non-split simple Lie algebra.

PROOF. Let L be a counterexample of minimal dimension. M is a maxi-
mal subalgebra of L due to Lemma 2.3, and we can assume that ML = 0 (w.l.o.g.)
by Lemma 1.2.

If the largest solvable ideal of L, the radical of L (rad (L)), is non-trivial,
rad (L)$M holds, hence M is a quasi-ideal of L = M + rad(L) (Corollary 1.8).
As M is maximal in L, we have dim L/M = 1, and by Theorem 2.2 it follows that
dimLjML<L3. Now let rad(L) = 0 and L = 0 ? = 1 £ ί , lgweN, with simple
ideals Et of L.

If n^2, then <M, £ 1 ) = M + £ 1 = L a n d Mn E2^ιM, Et ^/L(M n E2) (since
[Eu E2~\ = 0); thus M Π E2^L, i.e., M ί l £ 2 = 0. By Lemma 1.9 the contradiction
dim E2 ^ 1 follows.

Therefore n = 1 and L is simple.
An easy calculation shows that L is not a counterexample for dimL = 3,

because a) holds if L is split, and b) holds if L is non-split. Hence we may as-
sume that
A) L is a simple Lie algebra with dim L> 3.

If we look at L over an algebraically closed extension field ΐ of !, L® f V is
semi-simple and dimr (L®{ T) = dimL ([3], p. 95). L has non-trivial Cartan-
subalgebras ([2], p. 21), every Cartan-subalgebra H of L remains (as H®t f)
Cartan, and by ([2], p. 36) άimv(H®tΐ) = άimH holds. As dimL>3 it follows
by 1.9 that
Al) dim H^2 and M n HΦ0 for all # e Cart (L) and dim (H/(M n # ) ) ^ 1.

As α(M) m L for all α G Aut (L), Lemma 2.1 leads to (recall that ML = 0)
A2) ΓΊ {α(M); αeAut(L)} = 0 .

By Al) and the maximality of M in L we have
Bl) d i m M ^ 2 .

Now we show that
B2) M is not solvable and M is not three-dimensional split simple.

Assume the contrary. Take He Cart (L) such that H%M. Due to A2)
there exists a β e Aut (L) such that HnM^Hn β(M). M and β(M) are modular
and maximal in L (Lemma 1.4). Al), Bl) and Lemma 1.9 imply that H Π β(M)
Φ 0, M n j?(M) ̂  0. Furthermore

H Π M $ β(M), i.e., # n M $ M n β(M), and
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H Π β(M) $ M, i.e., H Π β(M) £M 0 j?(M).

M Π β(M) is modular and maximal in M, rsp. in β{M) by Lemma 1.10. So we

have dim M/(M n j8(M)) = 1 =dim j8(M)/(M Π J?(M)) by the choice of L, and there-

fore M = # n M + Mnj8(M), and β(M)=Hϊ) β(M) + Mnβ(M). As i ϊ is nil-

potent (hence solvable) the maximal quasi-ideal M Π // of H is of codimension 1

in H (Lemma 1.10, Proposition 1.7); thus H=Hf]M+Hnβ(M). Now we have

[M, jS(M)] g M + j?(M), i.e., M + β(M) = <M, jS(M)> = L.

Hence dim L/M=dimj8(M)/(M Πj8(M)) = l, and by Theorem 2.2 it now follows

that dimL^3 — which is a contradiction to A).

Next we prove the following:

B3) M is semi-simple.

Suppose rad(M)^0. By A2) and (*) there exists a 0(M)£rad(M), βe

Aut (L), such that M=MnL=M(\ <rad (M), β(M)}=rad (M)+Mn j3(M). M

Π β(M) cannot be solvable if it were, M would be solvable. M n β{M) is a quasi-

ideal of M (Corollary 1.8), and dim M/(M n j8(M)) = 1 by the maximality of M n

j8(M) in M (Lemma 1.10). So (M Π β(M)) q β(M) since dim M n β(M) = dim M - 1

Let (MΠi5(M)yω> denote n ^ (Mnβ(M)Yn); then (M Π j8(M))(ω>^0 is

an ideal of M and of j8(M) due to Corollary 3.3 in [1], Thus the contradiction

(M Π 0(M))<ω><ι<M, β{hφ=L follows.

Now we can show that

B) M is three-dimensional non-split simple.

Suppose M is not simple. Let E be one of the simple ideals of M not con-

tained in α(M) Φ M, α e Aut (L). Then (by (•))

M = L n M = <α(M), E} Π M = <£, M n α(M)> = JE + M Π α(M).

Mnα(M) cannot be solvable since M=M<n> = (Mna(M)yn> + jE: for all n e N .

Let i = ( M n α(M))M and β = ( M n α(M))α(M). The choice of L and Lemma 1.10

lead to

dim (M n α(M))/Λ ^ 2 and dim (M Π α(M))/J5 ̂  2.

Hence (M n α ( M ) ) ( 2 ) ^ ^ Π B, and because A, rsp. B, is a semi-simple ideal of M,

rsp. α(M), we have

0 # (M n α(M))<ω> = Λ<ω> = 1̂ = B = J3(ω> = (M Π

where (M n α(M))<ω> denotes n *= 1 (M Π α(M))<">. But now 0 ^ ( M n α(M))<ω>

<α<M, α(M)>=L contradicts the simplicity of L — M is therefore simple. Lem-

ma 1.10 and the choice of L lead to dim Mj(M nj8(M))Af=dim M<: 3 for all
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β{M)ΦM, β e Aut(L), i.e., M is a three dimensional non-split simple subalgebra

ofLbyB2).

We have the following deductions from B):

B4) dim M n β(M) = 1 for all β{M) φM,βe Aut (L)

B5) dimM n H = 1 for all He Cart (L) (by Al))

B6) All Cartan-subalgebras of L are two-dimensional, and dim 4 ^ 2 holds for

every solvable subalgebra A of L (since dim Aj{M n A)^ 1 and dim A=dim M n

Now we show the following:

Cl) Let E be a three-dimensional non-split simple Lie algebra over a field I of

characteristic zero. Then for any two independent elements a and z of E (i.e.,

z e E \ < α » , there exist scalars τ, (z), j = 1, 2, 3, such that

[|>> z], α] = τ^z) α + τ2(z). z and

[[α, z], z] = τ3(z) α - τ^z) z and τ2(z) τ3(z) ^ 0.

It is clear that α, z and [α, z] span £. Thus fixing a we have for each z 6

£\<α> that

( i ) [[>> * ] , «] = ^i^ + ^ 2 ^ 5 A + μ3a> Mi # 0, and

(ii) [[α, z], z] = Axz + A2[α, z] + A3α, A3 ^ 0,

where μt=μ£z)el and A ^ A ^ e ί for i = l, 2, 3. As [[[α, z], α], z] = [[[α, z],

z], α] holds, (i) and (ii) imply

(iii) μ3 = - λl9 μ2λί = A2μl5 and μ2λ3 = A2μ3.

Using (i) and setting ^ = μ2aΛ-μxz we have [[<*, f ] , a]=μ^+μ2[α, f ] , i.e., /i! =

/21(f)=μ1, β1=β1{S)=μ29 and /Ϊ3=/Ϊ3(£)=O. By (iii) we have

where ί 3 = ί 3 ( f ) and ί 1 = I 1 ( f ) = - / ϊ 3 = 0 , l 2 = ί 2 ( f ) = 0 ; hence

/l2 = μ2 = 0.

Now

[[α, f ] , α] = μ i f and [[α, * ] , ί ] =

with μ x # 0 , ί37^0. Replacing f by μ3ai μίz the result follows.

Now we claim that

C2) M + α ( M ) ^ L for all αeAut(L).

Suppose M+α(M)=L for an α(M)#M, αe Aut(L). Then L is five-dimen-
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sional by B) and B4). But this is not possible — if we look at L over an algebrai-

cally closed extension field V of I, L® f f is semi-simple ([3], p. 95), dim r (L® f f)

= dimL = 5 holds ([3], p. 95) and H®tΐ is two-dimensional for every He

Cart(L) ([3], p. 36). Looking now at the Cartan-decomposition of L®tV rsp.

if®(ϊ ' , dim r (L® f f) = dimL cannot be an odd number. (Using Cl) and the

Jacobi-identity we can give an elementary proof of C2) showing the elementary

character of the result.)

Next we prove the following:

C3) Let P and β be elements of Ω: = {α(M); αeAut(L)} such that Hf\Pφ

Hf]Q for a Cartan-subalgebra H of L. Then if <α> =P Π β, <x> =H n P and

=H Π β we have

<fl>, and

and for ze{x, j;},

(1) [[fl,z],£i] = τ2(z).z

[[α, z], z] = τ3(z) α with τ2(z) τ3(z) Φ 0, and

(2) [ [[α,x],y],α]=0 = [[α,x],[fl,j;]],

(3) [[α, x], [[α, x], j]] = τ3(x) τ2(j;)y,

(4) [[fl,Λ,[[fl,x],rf] = τ3ω.τ2(x)x, and

/ = <[[Λ, 'X], y], α> is a Cartan-subalgebra of L with P Π J = Q Π J = P IΊ β = <α>.

As a consequence of B4) and B5) we get dim P Π g = dim H Π P = dim H (] Q

= 1. By A2) there exist P,QeΩ such that H Π P = <x>^<>^> = // n β for an

i ί e Cart (L). Setting <Λ> = P n β, P and β are of the above form. For z e {x, y}

we have by Cl)

[[α, z], a] = τ^-a + τ2(z) z,

( i )

[[Λ, Z], Z] = τ3(z) α - τ^z). z with τ2(z) τ3(z) # 0.

if must be abelian by B6), hence [x, y] = 0. Using (i) we have

[[[α, x], >;], α] + [[α, x], [α, j]] = [[[α, x], α], y\ = τ^x)^, ̂ 1,

[[[«, yl x], a-] + [[α, y\9 La, x]] = [[[e, y], fl], x] = τ^j;) [α, x].

Thus setting w = [[α, x], ^] = [[fl, ^ ] , x] we get
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[u, α] = δx\_a, x] + (52[α, y\9 and

[[α, x], [α, yj\ = - ^ [ α , x] + <52[α, y] with

(in) * i = γ τ i G 0 and 5 2 = -^τ 1(x).

Now [u, x]=τ 3 (x)[α, y\ and [u, y] = τ 3 ( j)[α, x] by (i); hence

[«, α + jSjX + )S2^] = 0, where

(iv) βx = - δ2 τ3(x)-1, )52 = - 5X -τaOO-1.

M is linearly independent of v: = a + βίx + β2y by C2). Therefore J : = <w, ι?>

= <w> + <u> is two-dimensional and abelian and by B6) a Cartan-subalgebra of

L. Now

0 φ λxu + 2 2 ϋ e P n /, and

0 Φ μγu + μ2v e Q Π J, where Al9 λ2, μ l 5 μ2 e ϊ.

So we obtain A 1 = 0 = μ 1 , as M ^ P + Q and t e P + β, and βi=Q = β29 as j ^ P and

x ί 2, whence τ1(x) = τ1(<y) = 0 by (iii) and (iv). Thus J = <[[α, x], y]9 a} and

?Π J = Qn J = P Π β = <α>. The equations (l)-(4) follow from (i)-(iv) and

Next we show that

C) M is not three-dimensional non-split simple.

Assume the contrary. Let P, ζ), //, 7 be as in C3), < / > ^ / L « O ) holds for

all leL by B6). Let iV = <[[α, x], ^]> + <[α, )>]> + <.}>>; then L is the vector

space direct sum L = N + P, where P = <x> + <[α, x]> + <α>. By the equations

(l)-(4) of C3) we have [iV, P]^N9 and N is not a subalgebra of L.

Let w = tf + x and let i eJ L «w»\<w>; then v = p + n with p e P and neN\0

(as/ P «M» = < W ». Now

[M, υ] = [α + x, p] + [α + x, n] e <M> ,

and since [P, iV] c iv we have

[α + x, n ] e P Π iV = 0.

Let n = yjL[[α, x], ^] + y2[«» ^ + 73^ where-fte ϊ, i = l, 2, 3. By C3), by [x, >;]

= 0, and since [[[α, x], j ] , x] = [[[>, x], x], y], we obtain

0 = [n, α + x]

= 7i(0 + τ3(x) [α, y]) + y2(τ2(y)y + [[α, y], x]) + y3(- [α, >] + 0).

Thus y2 = 0 (as τ 2 # 0 ) and 7i τ 3 = y3. Now n = 7i([[0, x], ^] + ̂ W) 7 ) a n d J ' : =
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<[[α, x], y"] + τ3(x)y, α + x> is abelian, whence a Cartan-subalgebra of L.
So QΠJ'ΦO for β = <J> + <[fl,j]) + <fl)6Ω by Al). Hence there exist

elements q e Q and j e J' such that

[α, x], y] + τ3(x)j0 + A2(α + x)

+ μ2[a, y] + μ3

α> w h e r e 4 ty e U U j e {1, 2, 3}.

Now

λt = 0 and λ2 = 0,

whence y = 0, which is a contradiction.
But now C) contradicts B) and therefore L cannot be a counterexample. •

COROLLARY 2.5. A simple Lie algebra L over any field of characteristic
zero has proper, non-trivial modular subalgebras if and only if L is three-
dimensional.

COROLLARY 2.6. Let L be a Lie algebra over an arbitrary field I of char-
acteristic zero. Then a modular subalgebra M of L is either a quasi-ideal of
L or else MjML is a one-dimensional, maximal subalgebra of the three-dimen-
sional non-split simple Lie algebra L/ML.

REMARK. The complete result referred to in the introduction is an im-
mediate consequence of Corollary 2.6 and Theorem 3.6 in [1].

PROOF. W.l.o.g. we may assume that M L =0. We use induction on
dim L\M. If dim L/M = 1, then M is a quasi-ideal of L. Let & = {N m L M <*
N^L}. If y = φ, there is nothing to prove due to Theorem 2.4. Now we pick
a n M ' e y such that dimM'fMis minimal. The corollary holds for M' by induc-
tion and we are left with two cases:
A) M'qL.

Let xeL\M' and ueM' be arbitrary. By (**) we have M=<M, M'Π
<x + w» = <M, x + «>nM'q <M, x + w>. So for an arbitrary m e M the follow-
ing holds: [m, x-f-«] = 2(x + u) (modM), and [m, x + tt]=(μx + [m, M]) (mod
M) with A, μeϊ. Hence [m, u] = λu (modM) holds and MqL.
B) M' q L, i.e., M' is a maximal subalgebra of L with dim M'jMf

L = 1, and L/M^
is a three dimensional non-split simple Lie algebra.

We may assume that M'L is non-trivial, otherwise M=0. Let xeL\M' and
M eM' be arbitrary. By (**) we have M n Mi, = <M, Aί' Π <x + u » Π Mi, = <M,
x + « ) n M ί < ( M , x + u ) . So MflMi, is idealized by x and x + w, hence by
u=(x + u) — x. Therefore M Π Mi,<iL, which implies M Π Mi,=0. By the
minimality of M'9 M'=M+M'L holds (see Prop. 1.3), and M is one-dimensional
(so let M=(m}). Let v e M'L be arbitrary. Then by (*) we have
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<ι>> = o , M n Mf

Ly

Now, for arbitrary v, weM'L,

[m, v] = Aυι;, [m, w] = Aww and [m, v + w~}=: λ(υ+w)(v + w)

with λΌ, λw, λiυ+yv) eI. So λυ-λw-λ(υ+w) and there exists a A e ϊ such that

[m, D] = Ai; for all v e Mi,.

This also implies that M'L^[M, L] for λφO — for λ = 0 , Mi,(^M) idealizes M,

and hence M is an ideal of L by Lemma 1.5b), i.e., the contradiction M = 0 follows.

Next let x e L \ M\ M e M', and u G M'L be arbitrary. Then

[m, [x + u, vj] = A[x + u, t;], and

[m, [x 4- M, t;]] = [[m, x + u], t;] + λ[x + u, v~].

Therefore [[m, x + u], ϋ]=0 for all choices of x, u and v, hence [[M, L], M i ] = 0.

Thus [[M, L] L , Mi,]=0, where [M, L ] L denotes the smallest ideal of L con-

taining [M, L]. As L/Mi, is simple and Mf

L^[_M, L], [M, L]L = L holds. So

[L, Mi,] = 0, which implies that M'L ( $ M ) is contained in /L(M), hence M^L by

Lemma 1.5b) and the contradiction M=0 follows (as M L =0). •

COROLLARY 2.7. Lei L be a Lie algebra over any field of characteristic

zero. If every subalgebra of L is modular in L, then L is either metabelian or

else three-dimensional non-split simple.

PROOF. If UqL for all C/^L, then L is metabelian ([1], Theorem 3.8).

If there exists a subalgebra U of L, which is not a quasi-ideal of L, then L contains

a three-dimensional non-split simple subalgebra £ = < e > + </> + <#>. Suppose

L^JE; then dim L>3.

But now <e> has to be a quasi-ideal of L since dimL/<e>^3 by Corollary

2.6, which is not possible, because <e, /> = E Φ <e> + </> — hence L = £ . •
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